Solving Equations Exactly

Morris Newman
Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(August 22, 1967)

Abstract

A congruential method for finding the exact solution of a system of linear equations with integral coefficients is described, and complete details of the program are given. Typical numerical results obtained with an existing program are given as well.

Key Words: Exact solutions, Hilbert matrices, linear equations, modular arithmetic.

1. Introduction

The problem of the solution of a given set of linear equations $A x=b$ on a high-speed digital computer has been studied intensively, and there are a large number of methods, more or less satisfactory, for carrying out such a solution. Nevertheless occasions arise when existing methods are inadequate, either because the solutions are required exactly, or because the coefficient matrix A is "ill-conditioned." A notorious example of the latter is furnished by the Hilbert matrices $A=H_{n}$ given by

$$
H_{n}=\left(\frac{1}{i+j-1}\right), \quad 1 \leqq i, j \leqq n .
$$

Here even for moderate values of n (say 7 or 8) the solution hy any of the waỉal meinods becomes awkward, if not impossible. For these reasons, as well as many others, the method of solution described in this note is of interest. It is not at all sensitive to the condition of A, since it determines the exact solution (and not an approximate one) by number-theoretical methods. Thus the usual ills caused by round-off, truncation, etc., do not exist. It can fail, of course, but not for any of the reasons which cause the usual methods to fail. Its principal disadvantages are that it is limited to systems with integral elements, and that it is somewhat time-consuming. It is not particularly suited to hand computation, and definitely finds its role in high-speed digital computation.

A related discussion and elaboration are given by I. Borosh and A. S. Fraenkel in their article. ${ }^{1}$

[^0]
2. Description of the Method

Let A be a nonsingular integral $n \times n$ matrix, b an integral $n \times 1$ vector. Put

$$
d=\operatorname{det}(A)
$$

and denote the adjoint of A by $A^{a d j}$, so that $A^{a d j}$ is also a nonsingular integral $n \times n$ matrix, satisfying

$$
A A^{\mathrm{adj}}=A^{\mathrm{adj}} A=d I .
$$

For any matrix $B=\left(b_{i j}\right)$ define

$$
M(B)=\max _{i, j}\left|b_{i j}\right|
$$

Let x be the solution of the system

$$
A x=b .
$$

Then

$$
x=\frac{1}{d} A^{\text {adj }} b=\frac{1}{d} y,
$$

where

$$
y=A^{\text {adj }} b
$$

is also an integral vector.
The method is based on the following simple observation: Suppose that m is an integer such that

$$
\begin{gathered}
(d, m)=1 \\
m>2 \max (|d|, M(y))
\end{gathered}
$$

Then any pair of solutions d_{m}, y_{m}, of the congruences

$$
d \equiv d_{m} \bmod m
$$

$$
A y_{m} \equiv d b \bmod m
$$

satisfying

$$
\begin{aligned}
& \left|d_{m}\right|<\frac{1}{2} m \\
& M\left(y_{m}\right)<\frac{1}{2} m
\end{aligned}
$$

must in fact coincide with d, y.
It is clear that $d=d_{m}$, since $d \equiv d_{m} \bmod m$ and $|d|<\frac{1}{2} m, \quad\left|d_{m}\right|<\frac{1}{2} m$. Furthermore since $A y \equiv d b$ $\bmod m, A y_{m} \equiv d b \bmod m$, we have $A\left(y-y_{m}\right) \equiv 0$ $\bmod m$. Hence $A^{\text {adj }} A\left(y-y_{m}\right) \equiv 0 \bmod m, d\left(y-y_{m}\right)$ $\equiv 0 \bmod m$; and since $(d, m)=1$, it follows that $y \equiv y_{m} \bmod m$. Finally, since both $M(y)<\frac{1}{2} m$, $M\left(y_{m}\right)<\frac{1}{2} m$, we have $y=y_{m}$.

In applying the observation above we choose $m=m_{1} \cdot m_{2} \ldots m_{s}$, where $\left(m_{i}, m_{j}\right)=1$ for $i \neq j$, and use the Chinese remainder theorem. Define m_{i}^{\prime} by

$$
\frac{m}{m_{i}} m_{i}^{\prime} \equiv 1 \bmod m_{i}, \quad 0 \leqq m_{i}^{\prime}<m_{i}, \quad 1 \leqq i \leqq s
$$

Then the solution of the system

$$
z \equiv a_{i} \bmod m_{i}, \quad 1 \leqq i \leqq s
$$

is given by

$$
z \equiv \sum_{i=1}^{s} \frac{m}{m_{i}} m_{i}^{\prime} a_{i} \bmod m
$$

For each $i, 1 \leqq i \leqq s$ determine $d_{m_{i}}, y_{m_{i}}$ so that

$$
\begin{gathered}
d \equiv d_{m_{i}} \bmod m_{i}, \\
A y_{m_{i}} \equiv d b \bmod m_{i} .
\end{gathered}
$$

(We shall show how this can be done without having computed d previously.)

Next determine d_{m}, y_{m} by

$$
\begin{aligned}
d_{m} & \equiv \sum_{i=i}^{s} \frac{m}{m_{i}} m_{i}^{\prime} d_{m_{i}} \bmod m, \\
y_{m} & \equiv \sum_{i=i}^{s} \frac{m}{m_{i}} m_{i}^{\prime} y_{m_{i}} \bmod m .
\end{aligned}
$$

Finally, determine d, y so that

$$
\begin{aligned}
& d \equiv d_{m} \bmod m, \\
& y \equiv y_{m} \bmod m,
\end{aligned}
$$

and $|d|<\frac{1}{2} m, M(y)<\frac{1}{2} m$.
The practical utility of this method rests primarily on the fact that the bulk of the computations are performed modulo the "single-length" numbers m_{i}, $1 \leqq i \leqq s$. The final reconstruction according to the Chinese remainder theorem is done accumulatively
throughout the computation and is the only time when multi-length operations are required. In practice the moduli m_{i} are chosen as prime powers, for then the solution of the congruential system

$$
\begin{gathered}
d \equiv d_{m_{i}} \bmod m_{i} \\
A y_{m_{i}} \equiv d b \bmod m_{i}
\end{gathered}
$$

becomes particularly simple.
The ideal program would first determine a permissible value for m. This can be done by Hadamard's inequality, for example, which states that the absolute value of a determinant does not exceed the product of the euclidean lengths of its row vectors. This implies that

$$
\begin{gathered}
|d| \leqq n^{\frac{n}{2}} M(A)^{n}, \\
M(y) \leqq n(n-1)^{\frac{n-1}{2}} M(A)^{n-1} M(b)
\end{gathered}
$$

which are at once derivable from Hadamard's inequality and from the specific form of the elements of $A^{\text {adj }}$ as cofactors of the elements of A. Thus it is certainly sufficient to choose
$m>c=2 \max \left(n^{\frac{n}{2}} M(A)^{n}, \quad n(n-1)^{\frac{n-1}{2}} M(A)^{n-1} M(b)\right)$
and satisfying

$$
(m, d)=1 .
$$

The simplest way to do this effectively would be to generate a sequence of different primes $p_{1}, p_{2}, \ldots, p_{s}$ such that $\left(d, p_{i}\right)=1,1 \leqq i \leqq s, p_{1} p_{2} \ldots p_{s}>c$; and then choose $m=p_{1} p_{2} \ldots p_{s}$.

In practice, the procedure outlined above is unnecessarily conservative and time consuming. A good practical alternative is to operate instead with a predetermined set of moduli m_{i}, knowing full well that in certain instances the process will fail. Failure principally occurs if (m_{i}, d) >1 for some i. By choosing the m_{i} as large primes, the probability of such an occurrence can be made so small that this is not an important practical consideration.

3. The Detailed Program

Suppose that the machine for which the program is being written is capable of multiplying or adding together any pair of whole numbers $<K$ in absolute value. We choose as moduli the s largest primes $m_{i}<K$, and precompute and store the numbers $\frac{m}{m_{i}}, m_{i}^{\prime}$. Notice that $0 \leqq m_{i}^{\prime}<m_{i}<K$, but that the numbers $\frac{m}{m_{i}}$ must be stored as multilength numbers. In addition m and $\frac{m-1}{2}$ are required and must be stored
similarly. The choice of s is a matter of expediency: If $K \approx 10^{10}$ then $s=10$ should suffice for most purposes. The program (in broad outline) is as follows:
(1) Read in n, A, b.
(2) Clear s-length answer cells d, y.
(3) Set $i=1$ (modulus tally).
(4) Transfer A, b modulo m_{i} to working temporaries.
(5) Determine $d_{m_{i}}, y_{m_{i}}$ so that

$$
\begin{aligned}
d_{m_{i}} & \equiv d \bmod m_{i} \\
A y_{m_{i}} & \equiv d b \bmod m_{i},
\end{aligned}
$$

and $d_{m_{i}}$ and the components of $y_{m_{i}}$ lie between 0 and $m_{i}-1$, inclusive. (As will be shown, d need not be known.)
(6) Accumulate s-length results:

$$
\begin{aligned}
& d+\frac{m}{m_{i}} m_{i}^{\prime} d_{m_{i}} \rightarrow d, \\
& y+\frac{m}{m_{i}} m_{i}^{\prime} y_{m_{i}} \rightarrow y .
\end{aligned}
$$

(7) If $i<s$, replace i by $i+1$ and go to (4); otherwise go on.
(8) Reduce d, y modulo m so that

$$
\begin{gathered}
|d|<\frac{1}{2} m \\
M(y)<\frac{1}{2} m
\end{gathered}
$$

(9) Check s-length answers by multiplication:

$$
A y=d b .
$$

(10) Compute (in floating) the components of $x=\frac{1}{d} y$.
(11) Print results (d, y as s-length integers; x as floated numbers).
The basic computation of course takes place in (5), and we describe this in some detail. Suppose then that p is a prime, and we are interested in oulving

$$
\begin{aligned}
d_{p} & \equiv d \bmod p \\
A y_{p} & \equiv d b \bmod p
\end{aligned}
$$

Let $B=\left(b_{i j}\right)$ be the $n \times(n+1)$ matrix (A, b). The procedure is as follows:
(5.1) Set $k=1$.
(5.2) Set $S=1$ (cell in which d_{p} is calculated).
(5.3) Determine r so that $r \leqq k \leqq n$, and $\left(b_{r k}, p\right)=1$. (If no such r exists, the machine prints out the information that the system is singular modulo p and halts.)
(5.4) If $r=k$, go to (5.6); otherwise go on.
(5.5) Interchange rows r and k, and replace S by $-S$. Continue to denote the resulting matrix by B.
(5.6) Determine $b_{k k}^{\prime}$ (by the euclidean algorithm) so $b_{k k} b_{k k}^{\prime} \equiv 1 \bmod p$.
(5.7) Replace S by $b_{k k} S$, and $b_{k t}$ by $b_{k k}^{\prime} b_{k t}, k \leqq t \leqq n$ +1 , all computations being performed modulo p. Continue to denote the resulting matrix by B.
(5.8) For $1 \leqq s \leqq n, s \neq k$, replace $b_{s t}$ by

$$
b_{s t}-b_{s k} b_{k t}, \quad k \leqq t \leqq n+1,
$$

all computations being performed modulo p; and continue to denote the resulting matrix by B.
(5.9) If $k<n$, replace k by $k+1$ and go to (5.3); otherwise go on.
(5.10) $d_{p}=S$.
(5.11) $y_{p}^{(i)} \equiv S b_{i n+1}(\bmod p), \quad 1 \leqq i \leqq n$.

It will be seen that the time required to accomplish step (5) is approximately equivalent to that required to solve a single linear system by the elimination method. Thus the total time is roughly that required to solve s such systems, and so is quite moderate.

We note one or two other points: In the accumulation described by (6), we reduce $m_{i}^{\prime} d_{m_{i}}$ and $m_{i}^{\prime} y_{m_{i}}$ modulo m_{i} before multiplication by $\frac{m}{m_{i}}$. The effect of this is that at the end of step (6) $, 0 \leqq d<s m, M(y)<s m$. The reduction required by step (8) is then relatively easy to accomplish.

It is certainly possible to provide for the contingency that $\left(d, m_{i}\right)>1$ for some i by a more elaborate program. If this occurs, the faulty m_{i} must be discarded and a new one substituted. The necessary constants would then have to be recomputed and the problem started anew.

4. An Existing Program and Numerical Results

A pilot version of this program was written for the Q32 computer at the System Development Corporation, Santa Monica, Calif. The computer was used on a "time sharing" basis, under partial support of the National Institutes of Health on project number 2050404. The writer would like to thank Russell Kirsch of the National Bureau of Standards for generously providing access to this computer.

The following 10 primes were chosen as moduli: 9999889, 9999901, 9999907, 9999929, 9999931, 9999937, 9999943, 9999971, 9999973, 9999991.

In the appended JOVIAL program, the lines have the following function:

1-8. Array declarations.
9-26. Precomputed constants.
27-40. Read in n, A, b.
41-42. Clear answer cells.
43-44. Set up modulus p.
45-51. Transfer A, b modulo p to temporaries.
52-74. Solve $A x_{p} \equiv b \bmod p$.
75-78. Compute d_{p}, y_{p}.
79-85. Accumulate d, y.
86. Reset modulus.

87-93. Reduce to range $\left(-\frac{1}{2} m, \frac{1}{2} m\right)$.
94-97. Print exact results (y, d).
98-109. Multilength normalization subroutine.

110-117. Euclidean algorithm.
118. Error print.

119-122. Compute and print floated results (x).
A number of test problems were run with uniform success, among which were the Hilbert matrices of all orders up to and including $n=13$ (a limit imposed by considerations of time). Define

$$
t_{n}=\text { L.C.M. }(1,2,3, \ldots, 2 n-1) .
$$

Then $t_{n} H_{n}$ has integral elements. We chose b as the first unit vector, so that the output was the first column of $\left(t_{n} H_{n}\right)^{-1}=\frac{1}{t_{n}} H_{n}^{-1}$. Since H_{n}^{-1} is known exactly, ${ }^{2}$ we were able to verify the results. In the numerical results that follow, the lines

$$
\begin{array}{lllll}
A_{0} & A_{1} & A_{2} & A_{3} & A_{4} \\
A_{5} & A_{6} & A_{7} & A_{8} & A_{9}
\end{array}
$$

stand for the 10 -length integer

$$
A_{0}+10^{7} A_{1}+\ldots+10^{63} A_{9} .
$$

The print-out has the form

$$
y
$$

d
x
We give the results for $n=9,10,11,12$ as representative examples.

2296512839517939900
00000

- $1860480-5807169-1599300$

00000
8876160952533720525000
00000

- 3256960-7152027-1231505 00
$00000 \quad n=9$
80851205744088400239300
00000
- 1092224 - $6722299-747113400$

00000
61702401488177800478700
00000
$-2097280-850387-457416400$
00000
31340809645230108001000
00000
550848013289748061460
00000
$+.661103602 \mathrm{E}-005$
$-.264441441 \mathrm{E}-003$
$+.339366516 \mathrm{E}-002$
$-.203619910 \mathrm{E}-001$
$+.661764706 \mathrm{E}-001$
$-.123529412 \mathrm{E}+000$
$+.132352941 \mathrm{E}+000$
-. $756302521 \mathrm{E}-001$
$+.178571429 \mathrm{E}-001$
14547202473993253221143450
00000
$-7008640-7462660-344456-2150900$
00000
21382409402571551130734414400
00000
$-7048320-8802831-8460751-6097590-2$
00000
160294489718935535157960988110

[^1]00000
$-9007360-7429732-8837894-4024703-27$
00000
27731208453075372030756145341
00000
$-1275520-3984119-8999527-279180-38$
00000
$563776069920594499763139590 \quad 19$
00000
$-2412416-2253879-2061061-140580-4$
00000
79288327977568938742854262111011
00000
$+.429566993 \mathrm{E}-006$
$-.212635662 \mathrm{E}-004$
$+.340217058 \mathrm{E}-003$
$-.257997936 \mathrm{E}-002$
$+.108359133 \mathrm{E}-001$
$-.270897833 \mathrm{E}-001$
$+.412796698 \mathrm{E}-001$
$-.375939850 \mathrm{E}-001$
$+.187969925 \mathrm{E}-001$
$-.396825397 \mathrm{E}-002$
7570112599090707470310
00000
$-4206720-5945445-4482183-1020$
00000
7031040936185740258019970
00000
$-5623040-2071066-5757414-186450$
00000
452096058730992726424978890
00000
$-2467072-6793918-6724558-3132450$
00000
118336041626357520836339490
$00000 \quad n=11$
$-8664320-1963766-252678-8150780$
00000
1025920238798210333706452700
00000
$-6011520-3283547-7125942-2867860$
00000
632947271723131905861547500
00000
9768320338817435170332850110
00000
$+.519776062 \mathrm{E}-006$
$-.311865637 \mathrm{E}-004$
$+.608137992 \mathrm{E}-003$
$-.567595459 \mathrm{E}-002$
$+.297987616 \mathrm{E}-001$
$-.953560372 \mathrm{E}-001$
$+.192982456 \mathrm{E}+000$
$-.248120301 \mathrm{E}+000$
$+.196428571 \mathrm{E}+000$
$-.873015873 \mathrm{E}-001$
$+.166666667 \mathrm{E}-001$
1260803885341344110792486153937
00000
$-4014720-2801882-1039178-6275997-281561$
00000

3676800871058991415931065996569771
00000
$-3864000-5494130-7784298-2449239-3909927$
-70000
47296007162434581951036751343023534
470000
$-4094080-1744323-5084059-3244700-6326686$
-1870000
62419203056831735900954863724840050
4820000
$-7910400-721410-8912605-3235810-4996514$
$-8180000 \quad n=12$
$5456000801567545845047064564440571 \quad t_{n}=5354228880$
9090000
$-2819200-561097-5820915-294519-6108400$
-6360000
912768022443883283661178076443360
2540000
$-7499520-2008803-5466306-2444769-3698464$
-440000
4841600290523738810466773950493200
146420000
$+.268946291 \mathrm{E}-007$
$-.192296598 \mathrm{E}-005$
$+.448692063 \mathrm{E}-004$
$-.504778570 \mathrm{E}-003$
$+.323058285 \mathrm{E}-002$
$-.128146453 \mathrm{E}-001$
$+.329519451 \mathrm{E}-001$
$-.559006211 \mathrm{E}-001$
$+.621118012 \mathrm{E}-001$
$-.434782609 \mathrm{E}-001$
$+.173913043 \mathrm{E}-001$
$-.303030303 \mathrm{E}-002$

Jovial Program

1.00 ARRAY A 1617 I;
2.00 ARRAY C 1617 I;
3.00 ARRAY V 1710 I ;
4.00 ARRAY W 1210 I ;
5.00 ARRAY MOD 10 I ;
6.00 ARRAY INV 10 I;
7.00 ARRAY Z 10 I;
8.00 ITEM SS F; ITEM TT F; ITEM NUM F; ITEM DEN F;
9.00 VALUES MOD 999988999999019999907999992999999319999937
$10.009999943999997199999739999991 ;$
11.00 VALUES INV 73691852629157685484895344456502552
12.003472916520222332513781292005053746 ;
13.00 VALUES W 497773980278345690123538898312113737686385584115
$14.0011508299994830527807115291 \quad 954651695320615812518$
$15.00 \quad 92021234699699120098999947106263753722984593635028209581$
$16.00 \quad 99367406614348422239212271499994650778209997731548216183$
17.005103433325367234993152247429132922999944303659841431474
$18.00 \quad 22319916034197104263053078312048927133898999944109722683$
$19.00 \quad 279102429582055033108173657421224414330221368749999435$
$20.00 \quad 06535597460785024242763272840 \quad 10382488705894785509139922$
21.0099994290250100129699646163079611859467307458576137307785

```
22.00 155097 9999401 0 9352927 6498696 8521281 1579588 4721737 3700720
23.00 7028477 156241 9999399 0 8058781 9352296 9214244 9260206 9463057
24.00 2740085 4312028 166897 9999381 0 7470971 3888109 6424092 5872382
25.00 4092685 4802284 3931831 2809951 172468 9999372 8735485 1944054
26.00 3212046 7936191 2046342 7401142 6965915 1404975 86234 4999686;
27.00 READ M ;N=M + 1;
28.00 PRINT 14H (MATRIX BY ROWS);
29.00 I = 0;
30.00 Rl. H=0;
31.00 R2.READ C[I ,J];
32.00 IF J EQ N-2; GOTO R3;
33.00 J=J + 1; GOTO R2;
34.00 R3. IF I EQ M - 1; GOTO R4;
35.00 I = I + 1; GOTO Rl;
36.00 R4. PRINT 10H (RIGHT SIDE);
37.00 I=0;
38.00 R5. READ C[I ,N - 1];
39.00 IF I EQ M - 1; GOTO C1;
40.00 I = I + 1; GOTO R5;
41.00 C1. I=0;C2.J=0;C3.V[I ,J]=0;IF J EQ 9;GOTO C4;
42.00 J= J + 1;GOTO C3;C4.IF I EQ M ;GOTO R6;I=I +1;GOTO C2;
43.00 R6. L=0;
44.00 R7. P=MOD[L];
45.00 I = 0;
46.00 R10. J=0;
47.00 R8. REMQUO (C[I J] , P=Q ,A[I ,J]);
48.00 IF I EQ N-1; GOTO R9;
4 9 . 0 0 ~ J = J ~ + ~ 1 ; ~ G O T O ~ R 8 ;
50.00 R9. IF I EQ M-1;GOTO R11;
51.00 I= I + 1;GOTO R10;
52.00 R11. K=0;SGN =1;
53.00 Q0.R = K ;EX=1;
54.00 Q1.B = A[R ,K] ;GOTO EO;
55.00 Q2. IF D EQ 1;GOTO Q3;
56.00 IF R EQ M - 1:GOTO ERR;R=R + 1;GOTO Q1;
57.00 Q3.IF R EQ K ;GOTO Q5;
58.00 T=K ;SGN=-SGN;
59.00 Q4.F=A[R ,T];A[R ,T]= A[K ,T] ; A[K ,T]=F;
60.00 IF T EQ M ;GOTO Q5;
61.00 T = T + 1;GOTO Q4;
62.00 Q5.S = 0;Q8.IF K EQ S;GOTO Q7;
63.00 G= X*A[S ,K] ;REMQUO (G ,P=Q ,G);
64.00 T=K;
65.00 Q6.REMQUO (G*A[K ,T] ,P=Q ,F);F=A[S ,T]-F ;REMQUO (F ,P=Q ,A[S ,T]);
66.00 IF T EQ M ;GOTO Q7;T=T + 1;GOTO Q6;
67.00 Q7. IF SEQ M - 1;GOTO Q9;S=S + ;GOTO Q8;
68.00 Q9. IF K EQ M - 1;GOTO Q12;K=K + 1;GOTO Q0;
```

$\mathrm{Q} 12 . \mathrm{K}=0 ; \mathrm{EX}=2 ; \mathrm{Q} 15 . \mathrm{B}=\mathrm{A}[\mathrm{K}, \mathrm{K}] ; \mathrm{GOTO} \mathrm{E} 0$;
$\mathrm{Q} 13 . \mathrm{F}=\mathrm{X}$ *A[K , M$] ; \mathrm{REMQUO}$ ($\mathrm{F}, \mathrm{P}=\mathrm{Q}, \mathrm{F}$);
71.00 IF F GQ $0 ; \mathrm{GOTO}$ Q14;F=F+P;
$72.00 \quad \mathrm{Q} 14 . \mathrm{A}[\mathrm{K}, \mathrm{M}]=\mathrm{F}$;
73.00 IF K EQ M-1;GOTO P16;K=K +1 ;GOTO Q15;
74.00 Q16.GOTO L18;
75.00 L18.I $=0 ; \mathrm{R} 12 . \mathrm{SGN}=\mathrm{SGN} * \mathrm{~A}[\mathrm{I}, \mathrm{I}] ; \mathrm{REMQUO}$ (SGN , $\mathrm{P}=\mathrm{Q}, \mathrm{S}, \mathrm{GN}$);
76.00 IF I EQ M-1;GOTO F3;I $=\mathrm{I}+1 ;$ GOTO R12;F3. IF SGN GQ 0 ;
77.00 GOTO F1;SGN = SGN + P;GOTO F1;F1.K $=\mathrm{M}-1 ; \mathrm{F} 2 . \mathrm{T}=\mathrm{A}[\mathrm{K}, \mathrm{M}]$ *SGN;
78.00 REMQUO ($\mathrm{T}, \mathrm{P}=\mathrm{Q}, \mathrm{A}[\mathrm{K}, \mathrm{M}]$);IF K EQ $0 ; \mathrm{GOTO} \mathrm{R} 13 ; \mathrm{K}=\mathrm{K}-1 ; \mathrm{GOTO} \mathrm{F} 2$;
79.00 R13.EX $=1 ; \mathrm{K}=0$;REMQUO (INV[L] *SGN , $\mathrm{P}=\mathrm{Q}, \mathrm{R}$);
80.00 R14.Z[K] = W[L ,K] *R + V[M ,K] ;IF K EQ 9;GOTO NRM ;K=K + 1;GOTO R14;
81.00 R15.K $=0 ;$ R16.V[M ,K] $=\mathrm{Z}[\mathrm{K}]$;IF K EQ 9;GOTO R17;K = K + 1;GOTO R16;
82.00 R17.EX $=2 ; \mathrm{I}=0 ; \mathrm{R} 20 . \mathrm{K}=0 ; \mathrm{REMQUO}$ (INV[L] *A[I , M] , $\mathrm{P}=\mathrm{Q}, \mathrm{R}$);
83.00 R18.Z $[\mathrm{K}]=\mathrm{W}[\mathrm{L}, \mathrm{K}] * \mathrm{R}+\mathrm{V}[\mathrm{I}, \mathrm{K}] ; \mathrm{IF}$ K EQ 9;GOTO NRM ;K = K + 1;GOTO R18;
$84.00 \mathrm{R} 22 . \mathrm{K}=0 ; \mathrm{R} 19 . \mathrm{V}[\mathrm{I}, \mathrm{K}]=\mathrm{Z}[\mathrm{K}]$; IF K EQ 9;GOTO R21; $\mathrm{K}=\mathrm{K}+1 ;$ GOTO R19;
85.00 R21.IF I EQ M-1;GOTO RM ; I = I + 1;GOTO R20;
86.00 RM. IF L EQ 9;GOTO RR ;L=L+1;GOTO R7;
87.00 RR.I $=0$;RR 1 .K=9;CMP .IF V[I ,K] LS W[11 ,K] ;GOTO RR2;
88.00 IF V[I ,K] GR W[11 ,K] ;GOTO RR3;IF K EQ 0;GOTO RR3;
$89.00 \mathrm{~K}=\mathrm{K}-1$;GOTO CMP;
90.00 RR3.EX $=3 ; \mathrm{K}=0 ;$ RR4.Z[K] $=\mathrm{V}[\mathrm{I}, \mathrm{K}]-\mathrm{W}[10$,K] ; IF K EQ 9;GOTO NRM;
$91.00 \mathrm{~K}=\mathrm{K}+1$;GOTO RR4;
92.00 RR6.K $=0 ;$ RR5. $\mathrm{V}[\mathrm{I}, \mathrm{K}]=\mathrm{Z}[\mathrm{K}]$;IF K EQ 9;GOTO RR1;K $=\mathrm{K}+1$;GOTO RR5;
93.00 RR2.IF I EQ M ;GOTO PR ; I = I + 1 ;GOTO RR1;
$94.00 \quad$ PR. $\mathrm{I}=0$;
95.00 PR1.PRINT V[I ,0] ,V[I ,1] ,V[I ,2] ,V[I ,3] ,V[I ,4];
96.00 PRINT V[I ,5] ,V[I ,6] ,V[I ,7] ,V[I ,8] ,V[I ,9];
97.00 IF I EQ M ;GOTO G4; $=\mathrm{I}+1$;GOTO PR1;
98.00 NRM.K $=0$;
99.00 N1.REMQUO (Z[K] , $10000000=\mathrm{Q}, \mathrm{Z}[\mathrm{K}]) ; \mathrm{Z}[\mathrm{K}+\mathrm{l}]=\mathrm{Q}+\mathrm{Z}[\mathrm{K}+1]$;
100.00 IF K EQ 8;GOTO N2;K=K+1;GOTO N1;
$101.00 \quad \mathrm{~N} 2 . \mathrm{K}=9$;
102.00 N3.IF Z[K] GR $0 ;$ GOTO N6;IF Z[K] LS 0;GOTO N7;
103.00 IF K EQ $0 ;$ GOTO NN $; \mathrm{K}=\mathrm{K}-1$;GOTO N3;
104.00 N6.K $=0 ;$ N4.IF $Z[K]$ GQ $0 ;$ GOTO $\mathrm{N} 5 ; Z[K]=Z[K]+10000000$;
$105.00 \mathrm{Z}[\mathrm{K}+1]=\mathrm{Z}[\mathrm{K}+1]-1$;N5.IF K EQ 8;GOTO NN;K=K+1;GOTO N4;
106.00 N7.K $=0 ;$ N8.IF $Z[K]$ LQ 0;GOTO N9;Z[K] $=\mathrm{Z}[\mathrm{K}]-10000000$;
$107.00 \mathrm{Z}[\mathrm{K}+1]=\mathrm{Z}[\mathrm{K}+1]+1$;N9.IF K EQ 8;GOTO NN ; $\mathrm{K}=\mathrm{K}+1$;GOTO N8;
108.00 NN.IF EX EQ 1;GOTO R15;IF EX EQ 2;GOTO R22;IF EX EQ 3;
109.00 GOTO RR6;
$110.00 \quad \mathrm{E} . \mathrm{F}=\mathrm{B} ; \mathrm{D}=\mathrm{P} ; \mathrm{S}=1 ; \mathrm{X}=0$;
111.00 E1.REMQUO ($\mathrm{F}, \mathrm{D}=\mathrm{G}, \mathrm{T}$);
112.00 IF T EQ 0;GOTO E2;
$113.00 \mathrm{~F}=\mathrm{D} ; \mathrm{D}=\mathrm{T} ; \mathrm{T}=\mathrm{S}-\mathrm{G}{ }^{*} \mathrm{X}$;
$114.00 \quad \mathrm{~S}=\mathrm{X} ; \mathrm{X}=\mathrm{T}$;GOTO E1;
115.00 E2.IF D GQ 0;GOTO E3;
$116.00 \mathrm{D}=-\mathrm{D} ; \mathrm{X}=-\mathrm{X}$;
117.00 E3.IF X LS $0 ; \mathrm{X}=\mathrm{P}+\mathrm{X}$;IF EX EQ $1 ; G O T O$ Q2;IF EX EQ 2;GOTO Q13;
118.00 ERR .PRINT P ,13H (DIVIDES DET A) ;GOTO RM;
$119.00 \mathrm{G4.I}=0 ; \mathrm{G} 3 . \mathrm{NUM}=\mathrm{V}[\mathrm{I}, 9] ; \mathrm{DEN}=\mathrm{V}[\mathrm{M}, 9] ; \mathrm{K}=2$;
$120.00 \mathrm{G} . \mathrm{TT}=\mathrm{V}[\mathrm{I}, 10-\mathrm{K}] ; \mathrm{SS}=\mathrm{V}[\mathrm{M}, 10-\mathrm{K}] ; \mathrm{NUM}=10000000 .{ }^{*} \mathrm{NUM}+\mathrm{TT}$;
$121.00 \mathrm{DEN}=10000000 .{ }^{*} \mathrm{DEN}+\mathrm{SS} ; \mathrm{IF}$ K EQ $10 ; \mathrm{GOTO} \mathrm{G} 2 ; \mathrm{K}=\mathrm{K}+1$;GOTO G1;
122.00 G2.PRINT NUM/DEN ; IF I EQ M-1;STOP ; I = I + 1 ;GOTO G3;
(Paper 71B4-240)

[^0]: ${ }^{1}$ I. Borosh and A. S. Fraenkel, Exact solutions of linear equations with rational coefficients by congruence techniques, Math. Comp, 20, 107-112 (1966).

[^1]: ${ }^{2}$ 1. R. Savage and E. Lukacs, Tables of inverses of finite segments of the Hilbert matrix, NBS AMS 39, $105-108$ (1954).

