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Abstract. Many economic models are completed by finding a parameter vector θ that optimizes a

function f (θ ), a task that can only be accomplished by iterating from a starting vector θ0. Use of a

generic iterative optimizer to carry out this task can waste enormous amounts of computation when

applied to a class of problems defined here as finite mixture models. The finite mixture class is large

and important in economics and eliminating wasted computations requires only limited changes to

standard code. Further, the approach described here greatly increases gains from parallel execution

and opens possibilities for re-writing objective functions to make further efficiency gains.
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1. Introduction

A basic computational task in economics is to optimize an objective f (θ ) by choos-

ing the value of a P × 1 vector θ ,

θ∗ = arg max
θ∈�

f (θ ). (1)

When closed-form solutions to (1) are not available, the objective must be optimized

using an iterative algorithm. Since at least Goldfeld et al. (1966) the most common

strategy to solve (1) has been to:

• write a computer procedure that takes as input the vector θ then evaluates and

returns f (θ );

∗Documented code that implements the algorithm described is available from the author for ob-

jectives written in C and other languages. It runs in both serial and parallel mode using the MPI

library.
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• write a program that calls an optimization package, V̄ ( f (·), θ0), that starts one

of several iterative algorithms at some value θ0 and returns as output a vector

θ̄ ≈ θ∗.

An all-purpose or generic optimizer such as V̄ ( f (·), θ0) typically offers a

menu of algorithms designed to handle different types of objectives, for ex-

ample, smooth, continuous, or discontinuous objectives and constrained or un-

constrained parameter vectors. Given the choice of algorithm, f (·) is treated

as a black-box and generic optimization is applicable in virtually any con-

text. This versatility comes at a cost when there are internal features of f (·)
that, if exploited, would reduce the computations required to repeatedly evaluate

f (θ ).

This paper studies a particular class of optimization problems referred to as fi-

nite mixture models. A single evaluation of f (θ ) in a finite mixture model requires

solving several costly sub-problems. In addition, some parameters are dedicated

to a particular sub-problem, but the solutions are combined or mixed so that the

contribution of parameters to f (θ ) is not separable. These are the hallmarks of a

canonical economic analysis: estimation of parameters of a heterogeneous agent

economy using generalized method of moments. Special cases of this general

problem include calibrated dynamic equilibrium economies with heterogeneous

agents (Rios-Rull, 1999) and micro-econometric estimation with (finite support)

unobserved heterogeneity (Heckman-Singer, 1984). A pioneering finite mixture

model combining equilibrium, heterogeneity, and consistent estimation appears in

Eckstein and Wolpin (1990).

The main point of this paper is that optimizing an objective in the finite mixture

class using a generic optimizer results in many redundant calculations. Undoubt-

edly, economists have realized this fairly obvious point and modified their code

accordingly, but no reference has been found in the literature. One reason may

be that without proper notation the exact amount of redundancy is not so obvious

because of the combinatoric nature of optimizing the objective in a finite mix-

ture model. With proper notation, the point is made with some algebra, and the

gains from eliminating the redundancy are shown to reduce computational costs

by 1000% for a modest-sized model and by even more for large-scale models

with many types and parameters. Further, many of these redundant calculations are

avoided by making limited once-and-for-all changes to a generic optimizer, rather

than re-programming each objective. In particular, the generic V̄ ( f, θ0) that makes

direct calls to f (θ ) is replaced by an optimizer Ṽ ( f̃ , θ0, σ ) that communicates with

f (θ ) through a user-written interface f̃ (c, b). The argument σ provides information

on the internal structure of f (θ ) and the argument c specifies the sub-task to be

carried out.

The second point of this paper is that Ṽ executes in parallel more efficiently

than a generic optimizer without requiring the user to write parallel code. This is

important, because parallel execution is a major source of increased computing
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capacity over the last decade, yet use of parallel algorithms in economics has

developed slowly. Writing parallel code is seen by even experienced programmers

as an onerous task, and except in special cases non–linear optimization algorithms

are not obviously parallel. (That is, such code running on two processors may not

finish much faster than code running on one processor.) The separable sub-tasks in

the finite mixture model are inherently parallel to each other, but only if they are

not hidden inside a black-box objective function. Thus, the interface f̃ allows the

optimizer Ṽ to exploit the returns to parallel execution inherent in finite mixture

models and to do so without requiring parallel code inside the user-defined f̃ . For

example, the modest model referred to earlier can efficiently use 72 more processors

when coded as f̃ than as a black-box objective f. Thus, a one-time shift away from

black-box optimization allows an economist to drastically increase the efficient use

a cluster of processors.

Reducing the computational cost of solving finite mixture models, even if

based on obvious facts and mundane modifications to code, is important be-

cause quantitative economics is a “compute bound” task. That is, the size and

nature of problems tackled is limited by computing power. If economic analy-

sis were not constrained by computation complexity then, given exponential in-

creases in computing power, the computational time required by every published

paper would be converging to zero seconds. This does not appear to be the case.

Instead, the size of problems continues to expand with falling computing costs.

Further, Ṽ may not be a neutral technological change that simply reduces the re-

searcher’s waiting time. It may affect which models are formulated in the first

place.

Finite mixture models arise in quantitative economics when a single analy-

sis accounts for several simultaneous concerns. In general terms, the three ba-

sic concerns usually accounted for are: individual rationality (utility and profit

maximization), internal consistency (competitive or strategic equilibrium), and

external consistency (explaining or fitting data by setting free parameters of the

model). What distinguishes the various literatures within the finite mixture class

are the algorithms internal to f (θ ) that account for these concerns and differing

weights assigned to these concerns. For example, some work emphasizes statisti-

cally consistent estimates of parameters at the exclusion of equilibrium restric-

tions. Other work, such as quantitative macroeconomics, imposes costly equi-

librium conditions but does not always select parameters to conform to external

data.

The third point of this paper is that re-organizing θ and f (θ ) to reduce costs

of computation also opens the possibility of balancing competing concerns that

shape the overall objective f (θ ). This point is also fairly obvious given the proper

notation. Use of a generic optimizer encourages the modeler to nest competing

concerns. For example, the optimizer V̄ might be used to choose parameters to

maximize a likelihood function given that other parameters, such as prices, are

computed internally within f (θ ). In this sense, the concern for internal consistency
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is nested within a concern for external consistency. An alternative is to let the

optimizer choose prices along with other parameters based on an overall objec-

tive that balances competing concerns. In other and more familiar terms, a con-

strained optimization problem can be converted into an unconstrained (Lagrangian)

problem. What is less obvious is whether which statement of the problem is bet-

ter without solving both versions, a self-defeating exercise. This paper provides

conditions to check whether re-coding a given model to balance rather than nest

competing concerns should be expected to reduce the time required to find a

solution.

Section 2 defines the finite mixture class and introduces the parallel comput-

ing environment that Ṽ is designed to operate under. The finite mixture class is

illustrated by some simple examples and by casting the analysis of Lee (2005)

from a generic optimization problem into a finite mixture model. Common prob-

lems in economics that will not gain from casting them as finite mixtures are also

discussed. Section 3 describes three standard optimization routines to highlight

that redundant calculations in finite mixture models exist across the spectrum of

optimization algorithms currently used in economics. No new optimization al-

gorithm is proposed here, although a straightforward improvement to simulated

annealing arises naturally when applying it to finite mixture models. Section

4 provides the main results on the computational inefficiency of generic opti-

mization executed both in serial and in parallel. Section 5 considers the trade-

off in using either a nested or balanced representation of a given finite mixture

model.

2. Finite Mixture Models

2.1. NOTATION

The elements of a finite mixture model include scalars, vectors, functions, and

tasks. A sub-vector or scalar element of a vector v is denoted by v[s] where the

appropriate sub-vector indexed by the scalar s is defined somewhere in the text. The

notation v[s, t] is short for a sub-vector of a sub-vector, i.e. v[s][t]. Let Z denote

the set of integers through Z, {1, 2, . . . , Z}, for any integer Z > O . Let I be the

set of positive integers (Z = ∞). The length of a vector v is denoted by |v| ∈ I.

Parameters of the problem are integers denoted with capital Roman letters, such

as G and N. Arguments to a function are placed inside round brackets, (· · ·). The

output of a function is itself a vector denoted with the same symbol. For example,

the result of computing the function µ(g, γ [k]) is a vector denoted µ[g, k]. A task τ

is a composite function that can implicitly require the solution of other functions as

sub-tasks. The computational cost of a task τ is denoted by C{τ }. When execution

is serial, computational cost are interpreted as seconds of processor time. When

discussing parallel execution of a task, some care will be required in interpreting

costs, since total processing time is not the same as elapsed time.
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2.2. DEFINITION

The objective in a finite mixture is a function f : ℜP → ℜ. Computing f involves

three layers of sub-tasks written:

f (θ ) = �G
g=1

(

�K
k=1(µ(g, γ [k]), λ[g])

)

, (2)

where

µ : G × ℜN → ℜM , �: ℜK M × ℜK → ℜQ, and �: ℜG Q → ℜ. (3)

Figure 1 represents the objective function (2) as a hierarchy of tasks. The innermost

task µ(·) is a numerically solved model or problem.1 It takes as parameters the scalar

g and the vector γ [k]. The first is an index for one source of heterogeneity across

problems, and g will be referred to as the observed group. It also can be thought

of indexing the environments that agents may be find themselves in. The vector

γ [k] is of length N and contains parameters of µ, that can be varied to optimize

f (θ ), which can vary for each type k, the other source of heterogeneity. Here k will

be referred to as the latent or unobserved type, which is consistent with the use of

these terms in econometrics when mapped into this framework (see the examples

in Section 3).

The economic model µ is re-solved for each combination of k and g.2 The

symbols � and � denote functions that transform their arguments and pass the

result to the next level. The task � uses the concatenated output vectors of

the economic model, µ[g, 1]µ[g, 2] · · · µ[g, K ] to evaluate the result for observed

type g. The weight of types is determined by the K-vector, λ[g]. The outermost task

� aggregates the concatenated contributions of each group, [�[1] �[2] . . . �[G]],

into a real number, �[1] = f (θ ). Each group may receive different weights, but it is

assumed here that the weights are not chosen by the optimizer and can be included

in the definition of �.

Figure 1. Diagram of a finite mixture model.
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2.2.1. Assumptions and Requirements

Ra. Five positive integers define the organization of f (θ ):

σ = ( G K N M Q ), (4)

where G and K are the number of observed and unobserved groups, N is the

length of γ [k], and M and Q are finite bounds on the output produced by

sub-tasks µ and �. That is, |µ[g, k]| ≤ M and |�[g]| ≤ Q for all g and k.

Rb. The parameter vector θ contains λ and γ in a pre-specified order:

θ =

(

λ

γ

)

=



































λ[1]

λ[2]

...

λ[G]

γ [1]

γ [2]

...

γ [K ]



































. (5)

It follows that p = |θ | = K (G + N ). The domain of the objective is � ⊂ ℜP .3

Rc. �K
k=1 is homogeneous of degree 0 in λ[g], so without loss of generality

∑

k λ[g, k] = 1. The number of unconstrained is less than or equal to

P − G = K (G + N ) − G ≡ PU .

Rd. The direct cost of aggregation is zero: C{�G
g=1} = 0; and evaluation is subject

to constant returns to scale: C{�K
k=1} = K C{�1}.

Some of the requirements simply choose one of many equivalent ways to de-

scribe θ and f (·). Assuming that the aggregation task is costless simplifies many

of the expressions later on, but otherwise is not required. Typically, � =
∑

or

� =
∑

ln(·), and in either case the assumption is essentially true relative to the

cost of solving a complex underlying economic model. If it were not true, then the

cost of computing the underlying model is so small that the issues addressed here

are not important.

DEFINITION 1. Finite Mixture Model. Let f (θ ) : � → ℜ take the form (2)

and let C0
P denote the set of such functions. The task Ṽ : C0

P × ℜP × I5 → ℜP is

a finite mixture model when

θ̃ ≡ Ṽ ( f̃ (·), θ0, σ ) ≈ arg max
θ∈θ

f (θ ). (6)

There is a simple but critical implication of identifying a finite mixture model

not with the economic model nor the overall objective itself but rather the choice
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of parameters that optimize the overall objective. The finite mixture model is not

solved just by evaluating f (θ ) but only when the optimal parameter vector is found.

Therefore, any evaluations of f (θ ) during iterative optimization are properly seen

as intermediate results required to compute θ̃ . Once θ̃ is found, the model may be

applied in completely different ways. For example, policy experiments are to be

carried out or evidence for competing theories is to be assessed. But it seems that

the preponderance of computation involved in generating final results presented in

the economics literature usually consists of finding parameters of the economy to

be analyzed.

What matters then is the total cost of computing θ̃ and not simply the cost of com-

puting f (θ ). The idea is not uncommon. Any algorithm akin to the “EM” algorithm

exploits the fact that function evaluations during optimization are simply means to

an end that need not embody all the restrictions ultimately imposed at the final

parameter vector. As an example of an important finite mixture model, consider the

estimation of a discrete choice dynamic program. Aguirregabiria and Mira (2002)

propose an extension of the algorithm of Hotz and Miller (1993), which itself was

motivated in part by avoiding calculations embedded in Rust’s (1994, 1996) nested

fix point algorithm. The Aguirregabiria and Mira procedure uses the fact that a joint

concern for consistency and individual rationality does not imply that it is optimal

to impose individual rationality exactly while searching for consistent parameters.

Recently, Arcidiacono and Jones (2003) considered a balanced approach to these

problems in the presence of unobserved heterogeneity. Imai et al. (2002) describe

a Bayesian approach to balancing the concern for individual rationality. The point

of this paper is that similar results apply to the much broader class of problems in

computational economics in which one solution of the model requires two or more

objectives to be optimized.

DEFINITION 2. Related Problems and Special Cases. Let Ṽ ( f (·), θ0, σ ) be a

finite mixture model.

1. Black-box optimization is a finite mixture model with G = K = M = Q = 1:

θ =

(

1.0

γ [1, 1]

)

f (θ ) = �(�(µ(1, γ [1]))) = µ[1, 1]. (7)

where λ[1, 1] = 1.0 is the redundant weight of the single latent type in the single

observed group,4 and � and � are redundant tasks.

2. The black-box representation of a finite mixture model is:

B{Ṽ } = Ṽ ( f̃ (·), θ0, σ
B[σ ]), (8)

where σ B[σ ] = (1 1 K (N + G) 1 1) .
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3. Optimization of a partially separable objective is the case: Q = M = G = 1 <

K ; � =
∑

; and λ redundant:

f (θ ) =
K

∑

k=1

µ(1, γ [k]). (9)

4. Let Ṽn( fn(·), θ0σn) and Ṽb( fb(·), θ0σb) be two representations of a particular

finite mixture model. Then fb is said to be balanced and fn is said to be nested

objectives relative to each other if: Nb ≥ Nn; C{�b} ≤ C{�n}; and C{µb} ≤
C{µn}.

The first case formalizes the obvious statement that a black-box objective is

a special type of finite mixture model. The second case also formalizes an obvi-

ous fact, that any finite mixture model can be solved as a black-box optimiza-

tion problem. This is useful because the cost of solving a particular problem

using Ṽ (·) versus a generic optimizer V̄ (·) is simply the difference in the cost

of solving Ṽ and B(Ṽ ), written as C{Ṽ } and C{B(Ṽ )}, respectively. The third

case illustrates that additive objectives are very special cases of the broad fi-

nite mixture class. In a nested objective (case 4), certain parameters and one

or more concerns are not under the direct control of ṽ. Imposing these con-

cerns inside f (θ ) uses calculations to impose them only as intermediate inputs

to the final solution θ∗. (This view of iterative optimization is elaborated in

Section 4.)

2.3. IMPLEMENTING f̃

One way to code (2) is to write different functions for (µ, �, �). In some respects,

it is more convenient to ask for an interface function, f̃ (c, b), that stands between

these tasks and Ṽ .5 The first argument is a vector describing the call being made,

c = ( τ k g θ j ), (10)

which allows Ṽ to control the execution of tasks and to split f (θ ) into components

that can be computed separately. The first element is the task to carry out, τ ∈
{µ, �, �}. The last element j is a tag that Ṽ uses to keep track of asynchronous

(parallel) tasks. The argument b is a buffer that handles both input and output. A

two-way buffer allows Ṽ to send all the input necessary to carry out the specify

task and then to receive back the results. Thus, pseudo-code for f̃ is given in

Example 1.

The tag j is not used by f̃ , but becomes an important ingredient for efficient

parallel execution, because the processor assigned to calculate a given task may

not have carried out the requisite sub-tasks. Separating the call type from the input

buffer then frees Ṽ from keeping track of what information already has been sent

to the processor. The input to � is of size KM, and the input to � is of size
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GQ. The buffer must be able to hold the largest message passed between Ṽ and

f̃ : |b| = max{K M, G Q}. Examples 2–4 in the appendix provide pseudo-code for

modifying standard optimization code in order to exploit the interface f̃ .

2.4. PARALLEL EXECUTION

Nagurney (1996) surveys applications of parallel processing in economics, and

Doornik et al. (2002) discuss reasons and methods for making transparent paral-

lel execution more common in computational economics. The term ‘parallel pro-

cessing’ refers to several overlapping computer architectures and software envi-

ronments, which is understandable because computations can be done in parallel

at widely different levels of sophistication. At the highest level, economics can

be done in parallel by having two co-authors work on two projects separately.
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At a slightly lower level, a single researcher can run two different programs on dif-

ferent computers. Some tasks are “embarrassingly” parallel and can also be solved

simultaneously on separate processors. A Monte Carlo experiment can be conducted

twice as fast simply by starting the same program on two different computers with

different initial random seeds. Working down, we reach perhaps the lowest level of

parallel computation, vector processing. A vector processor can carry out a single

operation simultaneously on multiple memory cells, thus, parallelizing tasks such

as matrix arithmetic.

These levels of parallel processing are described in decreasing order of sophis-

tication or flexibility of the independent processors (co-authors down to vector

hardware) and in increasing order of coordination (from separate tasks down to a

single operation on specific memory cells). Modes of parallel processing differ in

their efficiency when applied to different tasks. A vector processor cannot effec-

tively compute two different rational expectations equilibria at once. By the same

token, two co-authors are not particularly effective at multiplying two matrices

together.

Between vector processing and running multiple jobs on independent processors

lies a range of parallel processing paradigms. A mixture of two currently common

ones is illustrated by Figure 2. Eight processors share one long-term storage unit

(disk). They are organized in pairs into four nodes. Processors in the same node

share a memory unit (RAM). The nodes can communicate with each other through

Figure 2. A mixed parallel architecture.
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a network, typically at a slower speed than with RAM and, depending on the

architecture, faster or slower than with disk.

Two processors in the same node can operate simultaneously on different seg-

ments of memory that are assigned to a single program. This is ‘single instruction,

multiple data stream’ or SIMD architecture. For example, consider a loop that adds

up a vector of numbers. A compiler aware of the SIMD architecture can cause the

loop to execute up to twice as fast by assigning each processor to sum half of the

vector and ensuring that one processor adds the two partial results to complete the

operation. The next segment of the user’s program may ‘parallelize’ as well, but

it might just as well include a complex operation that the compiler cannot cause

to execute on several processors with predictable results. For example, a loop over

k that calls a user-written function µ(g, γ [k]) will not parallelize using SIMD ar-

chitecture. The compiler cannot be sure that separate function calls do not refer to

and modify shared memory locations. If they do, then the order in which separate

processors operate helps determine the results, making them unreliable.

The form of parallel execution important for solving finite mixture models is

running copies of a single program on multiple data (SPMD). Multiple copies may

run on the same physical node in Figure 2, but their memory is segmented. A

Monte Carlo exercise is an obvious example of a SPMD-ready problem. Iterative

optimization has some elements that can benefit from simple SPMD execution by

starting the algorithms at different initial vectors or with other options. However,

the gains from independent optimizations is not particularly large, because nothing

revealed about the objective in one copy can be shared with the others. To do better,

the copies of the program must communicate with each other to coordinate their

actions. Unlike execution in SIMD architecture, which can be transparent to the

programmer, parallel programming using SPMD requires calls to special library

routines that send messages back and forth across processors.6

3. Example of Finite Mixture Models

3.1. A SIMPLE EXAMPLE

An example of a finite mixture model is the random-effects probit model estimated

on panel data (McFadden and Train, 2000). The model can be written

y∗
i t = X i tβi + ǫi t

yi t = (y∗
i t > 0) (11)

ǫi ≡







ǫi1

...

ǫiT






∼ N (0, �(νi ))

Prob [βi = βk, νi = νk] = λ[k]
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for i = 1, 2, . . . , I , t = 1, 2, . . . , T , and k = 1, 2, . . . , K . Typically, only one

set of mixture weights over the random effects is specified, so G = 1. Also, only

the intercept term typically varies across types, but the notation allows the whole

coefficient vector and the variance parameters νk to be type specific. The model

parameter vector takes the form γ [k] = (βk σ k). If there are N1 coefficients

and N2 parameters in νk , then N = N1 + N2. The likelihood of an observation

conditional on being type k is

µ[i, k] =

∫

R(yi1;xi1βk )

· · ·

∫

R(yiT ;xiT βk )

f (ǫi ; �(σ k)) dǫi , (12)

where

R(yi t ; X i tβ
k + νk) =

{

(−∞, −(X i tβ
k + νk)] for yi t = 0

−(X i tβ
k + νk), ∞) for yi t = 1.

(13)

Unless T is small or the variance matrix �(νk) is highly restricted, the integral in

(12) is expensive to compute. As a finite mixture model, the conditional likelihood

for each observation is reported by µ. Thus, M = I . Once the K vectors have been

computed, unobserved heterogeneity is integrated out:

fpanel(θ ) = � =
I

∑

i=1

�[i] =
I

∑

i=1

ln

(

K
∑

k=1

λ[k]µ[i, k]

)

. (14)

The vector of individual log-likelihoods is reported by �, thus Q = I .7 The

parameter vector for a random-effects probit is:

σpanel = ( 1 K N I I ). (15)

Thus, θ̃ = Ṽ ( fpanel(), θ0, σpanel). The gain from re-casting the model as a finite

mixture comes through two channels. First, the mixture probabilities λ[k] are treated

differently than the parameters inγ [k]. None of the K costly integrals is re-computed

when only the weights are varied. Second, when only one of the type-specific

parameters is changed, the other K − 1 costly integrals are not re-computed.

Not all numerical optimization in economics gains from casting the problem as

a finite mixture model. For example, the log-likelihood function for an ordinary

logit model can be written

flogit(θ ) =
∑

i=1

ln (exp{yi (−X iθ )}/1 + exp{−X iθ}), (16)

where X i is the vector of exogenous controls for observation i, yi is the endoge-

nous binary indicator, and θ is the vector of estimated coefficients, usually denoted
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by β̂. Computing flogit(θ ) requires no intermediate results, and results from past

evaluations of the likelihood do not reduce the cost of computing flogit(θ ). In addi-

tion, the cost of computing the likelihood for each observation is so small that any

gains in treating i as an index of heterogeneity would be swamped by additional

communication costs. For these very reasons, the cost of solving the logit model

has been negligible for two decades.

A non-trivial example of a problem that is not amenable to a finite mixture

representation is the fixed-effect linear regression, written:

Yi t = X i tβ + ηi + ǫi t , (17)

for t = 1, . . . , Ti , i = 1, . . . , N , and ǫi ∼ N (0, �(ν)) the vector of disturbance

terms for observation i. The variance matrix is determined by a vector of estimated

parameters ν. The term ηi is an intercept term specific to observation i. Note that

G = K = 1 and the parameter vector takes the form:

γ [1] = (β ν η1 η2 · · · ηI ) (18)

The computational problem here is a long parameter vector and a sparse Hessian

matrix, because ηi and η j do not interact with each other (their cross-partial in

the residual sum of squares is zero). To cast this as a finite mixture model, the

‘unobserved’ type must be associated with the index i, because there are parameters

specific to each individual. As with the logit model, there are no intermediate results

worth storing and the extra communication costs of sending the full parameter vector

back and forth would swamp any gains in separating the problems.

3.2. AN EXTENDED EXAMPLE

To further fix ideas, a finite mixture model current in the literature is mapped into

the form (2). Lee (2005) estimates an equilibrium model of schooling, occupational

choice, wages and cohort size using 25 years of data from the Current Population

Survey along with other sources. The economy is a perfect foresight overlapping

generations environment. Non-stationarity is caused by the exogenous pre–World

War II baby-bust and the post-war baby-boom. At each age between 16 and 65

individuals choose to be in one of four distinct occupations indexed by m: at home,

at school, at work in a blue collar job, and at work in a white collar job. The payoff

of each occupation depends on the person’s current state, denoted S. The probability

of possible states next year depends on the current state and the current occupation.

The core of the model is therefore a dynamic programming problem:

max
m∈{1,2,3,4}

u(m, s) + δE[V (S′; S, m)]. (19)
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Observed heterogeneity is associated with sex and birth cohort. Thus, each index g

would be associated with a pair t(g) and f (g), where t(g) ∈ {1865, . . . , 2065} is the

birth year of group g and f (g) ∈ {0, 1} is an indicator for female members of group

g. The total number of groups is G = 2 × 200 = 400. Unobserved heterogeneity

enters (19) by assuming that within each demographic group there are two types.

This might suggest K = 2, but Lee estimates some sex-specific parameters. Within

the finite mixture format, this requires K = 4. Types 1 and 2 would be specific

to men and types 3 and 4 specific to women. The type proportions are assumed to

differ across groups only between sexes and not cohorts. Based on this information,

we can determine that the weighting vector λ is of size 1600 × 1 vector satisfying

a set of 1598 linear restrictions

λ[k, g] = λ[k, f (g)]

λ[4, g] = 1 −
3

∑

k=1

λ[k, g]

for all g.

Of the parameters specifying the problem facing an agent of type k,g, some

would be traditionally defined as (exogenous) structural parameters and others as

(endogenous) prices. We partition γ [k] accordingly:

γ [k] = (γx [k] γp[k] ). (20)

A total of 29 parameters belong to γx because they are at least partially under

the control of the optimization package.8 They include a discount factor, a rate of

random retirement between ages 60 and 65, and a correlation between contem-

poraneous wage shocks across occupations. The two occupations each has a wage

equation with seven parameters: coefficients on education, experience and its square

along with the standard deviation of i.i.d occupation-specific wage shocks. Each

occupation also has a non-pecuniary benefit, although the blue-collar benefit is

normalized to zero. Agents face a stream of benefits from attending school defined

by six parameters, including tuition costs, re-entry costs, and a standard deviation

of the shock of the random component of the non-pecuniary component of school

attendance. Three parameters define the stream of rewards from staying at home.

Because Lee’s original two types have been expanded to four, there are restrictions

that γx [1] = γx [3], γx [2] = γx [4], and γx [1, s] = γx [2, s] for all parameters except

12 sex-specific parameters.

The sequence of endogenous occupation-specific skill prices that an agent faces

are specific to the calendar year, y. In Lee’s formulation of the overall objective,

prices are not under the control of the optimization package. Instead, at each eval-

uation of the objective, prices are computed out of sight of V̄ (·). Agents make

decisions over fifty periods (ages 16–65), so this leads to 100 prices effective to
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a given group. To ensure each agent’s problem is completely defined by γ [k], the

full vector γp[k] of 200 prices indexed by y would be included in γ [k].9 Agents in

cohort t at age a see as the current the prices for year y = t + a − 16. Because

equilibrium prices do not differ across unobserved type, the model imposes the set

of 600 linear restrictions γp[1] = γp[2] = γp[3] = γp[4].

One solution of the model generates a large vector of choice probabilities (con-

ditional on the current state S) that come from solving (19):

µ[g, k] = [Prob(m | S)]. (21)

Based on a mixture of these output vectors, parameters are chosen to address two

concerns. First, the predictions are matched to data and prices are chosen to satisfy

equilibrium restrictions. Let Y [m, S] denote a 12 × 1 vector of moments implied

by the current state and occupational choice. For the first concern the state space is

partitioned into subsets based on values of the last two elements of Y [m, s], current

years of schooling and presence of young children in the household:

{C[d] : C[d] ⊂ S, Y [m, S][11 : 12] = d∀S ∈ C[d]}.

Then predicted conditional moments are coumputed

� = Ŷ [d, g] =
4

∑

k=1

λ[k, g]
∑

s∈C[d]

4
∑

m=1

P(m | s)P(s | C[d], k, g)Y [m, s]. (22)

Of a possible 208,000 moments, 140,400 were matched because in some cases

Y [y, g] was further averaged over groups. For the second concern, each calendar

year had four equilibrium conditions derived from a pre-defined aggregate Cobb–

Douglas production function. Given the current prices, the quantity of each skill

demanded equals the quantity supplied, and the price of each skill equals its marginal

revenue at quantities demanded. Total skills in calendar year y equal the cohort-

size weighted sum of the skill supplies within each demographic group. Let ND(y)

denote the vector of net skill demands in year y and MR(y) denote the vector of

skill marginal revenue. The equilibrium restriction can be expressed as a smooth

function � : ℜ4 → ℜ written �(ND(y), γp[y] − MR(y)) such that �(·, ·) ≥ 0 and

�(x, z) = 0 if and only if x = z = (0, 0).

In Lee’s formulation, prices are not under the control of the optimization problem

but rather are computed internally within a black-box objective. Using the notation

defined here, his parameter vector and objective can be written:

θ =





λ[1, f ]

λ[1, m]

γx



 (23)
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θ̃ = arg min
θ

(Y [d, g] − Ŷ (d, g; θ, γ ∗
p (θ )))′ A(Y − Ŷ (d, g; θ, γ ∗

p (θ )))

subject to γ ∗
p (θ ) = arg min

γp

∑

y

�(ND(y; θ, γp(θ )), γp[y]

−MR(y; θ, γp(θ ))).

The external consistency of the model is measured by the weighted distance between

observed and predicted moments. The vector Ŷ stacks all predicted moments and Y

stacks all observed moments from the data in a corresponding vector. The matrix A

is a restricted weighting matrix described by Lee (2005). The internal consistency

of the model is measured by the sum of distances from equilibrium across years.

Using the definitions introduced earlier, this constrained form of the objective is

said to be nested, because the concern for internal consistency (equilibrium prices)

is nested within the concern for external consistency. The optimization algorithm

has no direct control over the price vector γp. By choosing the nested form the

researcher specifies a lexicographic ordering of concerns. In addition, the parameter

vector θ contains no separable subsets because the solutions of all agents’ problems

enter into
∑

y �(·, ·). Thus, the objective (23) is only trivially a finite mixture

model.

If finding equilibrium prices were inexpensive, then it is likely that use of a

constrained optimization algorithms to solve (23) would be efficient. However, the

set of equilibrium prices is both large and complex, making Lee’s use of a specialized

iterative procedure to solve for equilibrium (thereby nesting the concern) a practical

solution. The tradeoff is that equilibrium is solved repeatedly for parameter values

that are never used, so one might consider de-nesting the equilibrium concern to

balance it with the concern for external consistency. For example, consider the

parameter vector and model

θ =

(

λ

γ

)

= (λ γx [1] γp[1] · · · γx [K ] γp[K ] )′ (24)

f (θ ) = (Y − Ŷ )′ A(Y − Ŷ ) + ωi

∑

y

�(ND(y)γp[y] − MR(y)). (25)

The weight ωi is chosen by the researcher. Now the objective can be broken down

into 4×100 separate individual problems that each depend on a vector of parameters

γ [k]. The result of these 400 problems are then ‘mixed’ using weights � to evaluate

the model’s predictions. These predictions are then assessed for external and internal

consistency at the final stage. The optimal parameter vector for an objective of

the form (25) balances two of the concerns within Lee’s analysis: internal and

external consistency. Setting ωi very large approximates, the lexicographic ordering

of concerns implied by final parameters of a nested objective.
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4. Iterative Optimization of Finite Mixture Models

4.1. ALGORITHMS

Press et al. (1987), Judd (1998), and many other texts provide excellent descrip-

tions of numerical optimization techniques. Here, the details of an algorithm are

important only that they imply a sequencing of function evaluations. Let the nth

iteration (n ≥ 0) of an iterative optimization algorithm begin after H (n) evaluations

of the objective. Define (�H , FH ) as the current history of an iterative optimization,

where �H = {θh}
H
h=0 is the sequence of parameter vectors already evaluated, and

FH = { fh}
H
h=0 is the corresponding sequence of real numbers fh = f (θh). At the

start of iteration n, one of the vectors previously evaluated has been designated as the

‘current vector’, θn ∈ �H (n). For our purposes, the essential elements of an iterative

optimization algorithm are the current vector, the next vector θH+1 = N (�H , FH ),

and a stopping rule which determines, H∗, the number of evaluations before con-

vergence to θ∗ is declared. The total cost of black-box iterative optimization can

be written

C{B(Ṽ )} = C{ f (θ0)} +
H∗−1
∑

H=0

C { f (N (�H , FH ))} = H∗C{ f }. (26)

From (26) it becomes obvious that all of the features of iterative optimization

typically emphasized – the size of θ , the choice of θ0, the choice of algorithm N (hn),

the properties of f (θ ), and the desired precision in approximating θ∗ – affect the

total cost of solving (1) only through the scalar H∗. They have no direct effect on

C{ f }, although they may lead the researcher to chose models with C{ f } small in

order to make C{B(Ṽ )} acceptably low. When the objective is not a black-box, then

a more general cost of optimization obtains:

C{Ṽ } = C{ f (θ0)} +
H∗−1
∑

H=0

CH+1{ f (N (�H , FH ))}

= C{ f } +
H∗
∑

H=0

CH { f }

≤ H∗C{ f } = C{B(Ṽ )}, (27)

where CH { f } ≤ C{ f } for H > 0, because at some points in the history it might

be possible to evaluate f (N (�H , FH )) with fewer new computations than (27)

requires. When f (θ ) is a black-box, there is usually no way to tell f (θ ) which

intermediate results to keep. There is also no way for f (θ ) to send intermediate

results back to V̄ (·) for keeping. Storing and recalling all past intermediate results is

itself not feasible when literally thousands of function evaluations may be required

to reach a desired level of precision.
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Three standard optimization algorithms are now described with the purpose of

illuminating the difference between C{V } and C{Ṽ }.

4.1.1. Quasi-Newton with Numerical Gradients

The focus on numerical gradients is motivated by the observation that it is a rare

event indeed when a heterogeneous agent economy involving dynamics, equilib-

rium, uncertainty or strategic choice yields analytical first or second derivatives

for the overall objective. Newton’s method with numerical gradients and Hessians

would only amplify the gains in computation described for quasi-Newton methods.

Q0. Begin quasi-Newton iteration n with θn , an associated PU × 1 gradient vector

∇ f (θn), and a current approximation to the PU × PU inverse Hessian matrix

[∇2 f −1]n .

Q1. Carry out a line maximization in a direction indicated by the current informa-

tion: θh+m ′ = θn + tm ′ Dn , where Dn = −[∇2 f −1]n∇ f (θn), and tm ′ are scalars

(m ′ = 1, 2, . . . , nL ) that depend on the line-maximization algorithm and the

computed values f (θh+m ′).

Q2. One of the nL new vectors becomes θn+1. Approximate ∇ f (θ k+1) numerically,

perhaps with a two-sided (central) numerical gradient,

∇ f (θ ) ≈
�f (θ + ǫ) − �f (θ − ǫ)

2 diag(ǫ)
. (28)

The right side is shorthand for evaluating f (·) at 2PU different vectors, sitting

in two P × PU matrices, θ + ǫ and θ − ǫ. The matrix ǫ is diagonal so each

column includes a small change in a single element of θ . The division in (28)

is as an element-by-element operation on two vectors. Thus, after the last line-

maximization evaluation, the quasi-Newton algorithm will specify the next

2PU evaluations to be added to the history:

θh(n)+nL+1[1] = θh(n)+1[1] + diag(ǫ[1])

θh(n)+nL+2[1] = θh(n)+1[1] − diag(ǫ[1])

θh(n)+nL+3[2] = θh(n)+1[2] + diag(ǫ[2])

θh(n)+nL+4[2] = θh(n)+1[1] − diag(ǫ[2]) (29)

...

θh(n)+nL+2PU −1[PU ] = θh(n)+1[PU ] + diag(ǫ[PU ])

θh(n)+nL+2PU [PU ] = θh(n)+1[PU ] − diag(ǫ[PU ]).

Q3. Update [∇2 f −1]n+1 without further function evaluations (for example, using

the BFGS formula).

Line maximization in Q1 is not inherently parallel, because the sequence of

values tm ′ is determined by realized values of the objective. On the other hand, the
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gradient computation in Q2 is parallel, because the sequence of valuations can be

determined at once and distributed to independent processors. Thus, a quasi-Newton

algorithm contains some elements that scale with the number of processors available

and some that do not. The ratio of time spent in these two parts of the algorithm is,

to a large extent, under the control of the researcher. The researcher can choose to

use, say, 2D finite deviations to approximate the gradient, where Q2 sets D = 1.

Increasing D improves the direction of search. The researcher can also choose the

precision in the line maximization to effect nL . The fraction of evaluations per

iteration that can be done in parallel is 2D PU/(nL + 2D PU ). Note that even with

D = 1 the ratio increases automatically with the number of free parameters.

4.1.2. Nelder–Mead Simplex

The NM Simplex or Amoeba algorithm is a non-gradient method very commonly

used in economics, sometimes as a robust and intelligent method to find starting

values for a quasi-Newton routine.

S0. Begin iteration n of the Nelder–Mead algorithm with a set of PU + 1 distinct

evaluations Sn ⊆ �PU +1 that together form a simplex in ℜPU

. The current

vector is the best valued point: θn ≡ maxθ∈Sn f (θ ). Without loss of generality,

θn is element PU + 1 of the Sn .

S1. Evaluate f (θ ) at two trial vectors, θh(n)+1 and θh(n)+2, both functions of the

current simplex. Either or both vectors might replace elements of Sn to form

Sn+1. If so, iteration n is complete.

S2. Otherwise, PU further evaluations are required to collapse the simplex around

θn:

θh(n)+2+1 =
1

2
(θn + Sn[1])

θh(n)+2+2 =
1

2
(θn + Sn[2])

... (30)

θh(n)+2+PU =
1

2
(θn + Sn[PU ]).

Like the line maximization step of a quasi-Newton iteration, the two trial eval-

uations in S1 are not inherently parallel, since which point to try the second time

depends on the outcome of the first. Like the gradient calculation Q2, shrinking the

simplex in S2 is a classic parallel operation, because the evaluations can be done in

any order. In the case where the simplex is collapsed the ratio determining the scal-

ing of an iteration across parallel processors is PU/(PU + 2). Many iterations may

not result in a collapse so the effective scaling of the whole algorithm is possibly

much lower than this.

A key difference between S2 and Q2 when applied to a finite mixture model is

that many if not all the parameter values in S2 differ from those in θn . It is therefore
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not possible to isolate the sub-tasks that need to be resolved. However, the finite

mixture form of (2) allows the sub-tasks to be carried out in parallel. Thus, parallel

execution of the simplex collapse in Ṽ (·) is less ‘granular’ than in V̄ (·). And the

initial simplex S0 can be constructed in parallel using steps in each of the free

parameters starting from θ0 : θ1 = θ0 = ǫ[1], θ2 = θ0 + ǫ[2], etc.

4.1.3. Black–Box Simulated Annealing

Discontinuities and multiple local optima in f (θ ) both severely limit the reliability

of gradient and simplex algorithms. Metropolis’s simulated annealing algorithm

attempts to overcome these problems by making random mistakes with decreasing

probability as the algorithm plays out.

A0. Begin iteration n with θn and a current ‘temperature’ T n . Draw a PU × 1

pseudo–random vector z and a pseudo-random variable ν.

A1. Evaluate f r = f (θh(n)+1), where θh(n)+1 = θn + z.

A2. Update the current vector using the rule:

θn+1 = M
(

θn, θh(n)+1

)

≡

{

θh(n)+1 if ( f n > f r ) or (ν < T n)

θn otherwise.
(31)

Adjust T n+1 toward zero.

As with line maximization and simplex collapsing, evaluating the objective at

the trial vector typically involves resolving all sub-tasks. In a finite mixture model,

this amount work can made much more productive.

4.1.4. Finite Mixture Simulated Annealing

Å0. Begin with θn , T n and z.

Å1. Let z[i : j] denote the PU ×1 vector, which contains 0 except in the contiguous

elements i–j which equal the corresponding elements of z. Construct up to

2G+K separate trial vectors that retain the current vector except within a subset

set of structured components of the parameter vector:

θ
†
1 = θn + z[1 : K ]

θ
†
2 = θn + z[(K + 1) : 2K ]

...

θ
†
G = θn + z[(G − 1)K + 1 : G K ]

θ
†
G+1 = θn + z[G K + 1 : G K + N ]

θ
†
G+2 = θn + z[G K + N + 1 : G K + 2N ]

... (32)

θ
†
G+K = θn + z[G K + N (K − 1) + 1 : PU ]
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θ
†
G+K+1 = θn + z[1 : K ] + z[(K + 1) : 2K ]

...

θ
†
G+K+G = θn + z[1 : K ] + z[(G − 1)K + 1 : G K ]

...

θ
†
2G+K = θn + z.

The last such vector is the same as θ r in black-box simulated annealing. In

others, sub-vectors of θn are retained. Let R ≤ 2G+K be the number of trial

vectors chosen to consider and let jr be a sequence of R indices into the possible

combinations in (32).

Å2. Proceed under one of two options:

Option a: define θ r as the best of these selected objectives:

θn+1 = M

(

θn, max
r=1,...,R

θ
†
jr

)

. (33)

Option b: evaluate outcomes sequentially according to rule (31):

θ
‡
0 = θn

θ
‡
1 = M

(

θ
‡
0 , θ

†
j−1

)

... (34)

θ
‡
R = M

(

θ
‡
R−1, θ

†
j−R

)

θn+1 = θ
‡
R

The 2G+K possible combinations use the same 2GK solutions of µ related to

θn and θn + z. To avoid recomputing these values requires storing more than one

intermediate solution. When the evaluation task is cheap, then all 2G+K options can

be evaluated at little marginal cost compared to the one trial vector θ r . This re-use

of solutions is possible only because of the finite mixture form of the objective and

the corresponding structure in the parameter vector.

To summarize, describing these leading optimization algorithms as sequences

of related function evaluations demonstrates three points:

• Many vectors in an algorithm’s history relate closely to the current vector. When

combined with the partitioning of the parameter vector in a finite mixture model,

this dependence implies that many intermediate calculations are replicated ex-

actly during the history of the algorithm.

• Storing intermediate results for the current vector, and possibly a small number

of other results, can eliminate these replicated calculations. However, a black-

box objective cannot be told by the optimizer, and cannot infer on its own, where



364 CHRISTOPHER FERRALL

in the stream of function evaluations the algorithm is currently located. Storage

of intermediate results for the current vector alone is not possible in black-box

optimization.

• A potentially large proportion of evaluations can be done in parallel because the

sub-tasks of a finite mixture model are separate and the sequence of parameter

vectors is at times completely independent of the results of current calculations.

The parallel execution must be coordinated, for example as in the client/server

model described in Section 2 and exhibited in the appendix.

4.2. PRECISION AND AVOIDED CALCULATIONS

Let δ denote the task of gaining a unit of precision in solving (2). The conventional

notion of precision typically concerns the value ‖θn − θ∗‖/‖θn−1 − θ∗‖, which

measures how much improvement is made per iteration of an algorithm. As is well

known, the precision gained per iteration depends crucially on the match between

the objective and the algorithm. For example, a quasi-Newton iteration applied

to a (concave) quadratic function will essentially arrive at θ∗ in one iteration.

However, the same algorithm applied to a discontinuous function has no guarantee

of any improvement. Simulated annealing starting from the same point may make

significant gains after the same number of function evaluations. But when applied to

a smooth concave function, simulated annealing falls hopelessly behind in precision

compared to quasi-Newton. The simplex algorithm falls in between in terms of

robustness and efficiency.

The purpose here is not to consider the matching of algorithms to a given ob-

jective, so the usual formulae for rates of convergence are not particularly relevant.

Rather, we wish to compare the performance of a given algorithm when applied to:

• a given objective represented as a black-box or a finite mixture model,

• a given objective optimized under parallel or serial execution,

• a given finite mixture model represented by a balanced versus nested objective.

For these purposes, it is reasonable to define precision not in terms of θ , but with a

certain amount of computation that would be expected to move the iterative algo-

rithm towards θ∗, taking into account that a longer parameter vector will ultimately

require more iterations and more function evaluations. Put another way, the measure

of costs should take into account that H∗ in (27) is affected by the size of the model.

DEFINITION 3. Precision in θ∗. The unit cost of increased precision in comput-

ing θ∗ is defined as the cost of evaluating f (θ ) and ∇ f (θ ) using central differences

as many times as there are free parameters, PU :

C{δ} ≡ C{ f } + 2PU C{∇ f }. (35)

This definition accounts for the fact that a model with more parameters is a more

difficult optimization problem requiring more iterations to converge. For example,
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gaining the same precision in a model with double the number of parameters is

assumed to take twice as many iterations and each iteration can take essentially

twice as long. Thus, a unit of precision requires quadruple time. This serves as a

benchmark for assessing the potential practical impact in computational time from

using Ṽ rather than V̄ to solve a finite mixture model.

IMPLICATION 2: Black-Box Costs. Let B{Ṽ } be the black-box represen-

tation of an optimization problem. The costs of evaluating the objective, the

gradient, and a unit of precision are:

C̄{ f } = G(K C{µ} + K C{�1}) (36)

C̄{∇ f } = 2PU C̄{ f } = 2(G(K − 1) + K N )C̄{ f } (37)

C̄{δ} = PU (1 + 2PU )C̄{ f }. (38)

This is a direct implication of the setup of the problem, and as the notation

suggests these are upper bounds on the costs of the task.

IMPLICATION 3: Finite Mixture Costs. Let V be a finite mixture model, and

suppose f (θn) has been computed and the G K output vectors µ[g, γ [k]] have

been stored. Then

I3a. C̃{∇ f } = 2K G(NC{µ} + (N K + K − 1)C{�1}). (39)

I3b. Algebra reduces the difference between (37) and (39) to

dc(∇ f ) = C̄{∇ f } − C̃{∇ f }

= 2K G[[K (G − 1) + N (K − 1)]C{µ} + (K − 1)(G − 1)C{�1}],

(40)

which is non-negative and a fourth-order expression in G, K , and N . It is

quadratic in G and K and linear in N , all else is constant.

13c. For K > 1 and G > 1 more algebra leads to a relative efficiency gain of

%dc(∇ f ) = 100 ×
dc(∇ f )

C̃{∇ f }
= 100 ×

(K − 1)(G − 1)
(

1 +
(

K
K−1

+ N
G−1

)

ρ
)

N (ρ + K ) + K − 1

(41)

where ρ = C{µ}/C{�1} is the ratio of solution costs to evaluation costs.

Table I presents some examples of finite mixture models and their costs. Consider

a model of modest size, G = K = N = 4. For example, an individual’s prob-

lem is characterized by four parameters, there are four demographic groups (say,

race × sex), and each demographic group is made up of a different mixture of
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four unobserved types. Then the difference in the cost of computing a numerical

gradient is 768C{µ}+288C{�1}. If the model takes 3 s to solve and 1 s to evaluate

each case, this amounts to a 51 min difference between C{∇ fṼ } and C{∇ fv}. So,

Ṽ would reach an additional unit of precision in solving (1) roughly 24 h before

V̄ would. This reduction in computational time may result in solving exactly the

same model in an afternoon rather than overnight. Or it may spur the development

of a larger and better model that can be solved overnight. This difference in total

time reflects a percentage difference in costs of 240: calculating ∇ f takes nearly

3.5 times as long using V̄ .

Table I illustrates that the inefficiency in using generic optimization to solve

a finite mixture model is explosive in terms of problem size. The compounding

problem in models with unobserved heterogeneity problem is so big that very

good reasons must be present to consider setting K ≫ 1 when using black-box

optimization. An alternative method to improve a model’s performance is to solve

a different model, requiring some combination of increased N , C{µ}, and C{�}.
It would seem typical that development of a bigger model is expensive (in terms of

development costs) relative to adding more heterogeneity to an existing model. By

relaxing the constraint on increasing K, it is possible that much richer results can

be generated without the cost of greatly complicating the underlying model.

4.3. PARALLEL EXECUTION

Once a user has written the interface f̃ between f (θ ) and of Ṽ , they are spared the

onerous task of converting code that works in serial to work in parallel, because Ṽ

exploits the independent nature of the sub-tasks (see Figure 1). The performance of

Ṽ relative to V̄ is greatly modified when running in parallel on several independent

but coordinated processors. There is no way for V̄ to distribute the sub-tasks across

different processors, but Ṽ can assign each of the GK model solutions µ(g, γ [k])

to a separate processor or as many as are available. The G solutions to �(g) can

also be conducted in parallel once the corresponding input vector is complete.10

DEFINITION 4. Costs Under Parallel Execution. Define:

a. C||z{τ } as elapsed time to perform task τ when executed on Z equally responsive

and independent processors;

b. χ{τ } as the maximum number of processors that can be used in parallel for a

given task: ∀ Z > χ{τ }, C||z{τ } = C||χ{τ }{τ };
c. ceil{x} as the integer ceiling of x (e.g., ceil{1.1} = 2).

Note that C||1{τ } = C{τ } and that if τ is a stand-alone task not made up of

sub-tasks, then χ{τ } = 1.

IMPLICATION 4: Maximal Scaling of f (θ ). Let communication time between

processors be negligible relative to C{ f (θ )}.
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I4a. For all Z > 0, elapsed time to calculate B( f̃ ) is C||z{B( f̃ )} = C̄{ f } in (36).

That is, χ{B( f̃ )} = 1.

I4b. Elapsed time to calculate f̃ (θ ) is

C||z{ f̃ } = ceil{G K/Z}C{µ} + ceil{G/Z}K C{�1}. (42)

That is, χ{ f̃ } = G K and in this case the cost of computing f̃ is simply

C{µ} + K C{�1}.
I4c. For Z ≥ G K , the percentage difference in elapsed time for a single function

evaluation is

%d||G K ( f ) = 100 ×
C||z{B( f̃ )} − C||z{ f̃ }

C||z{B( f̃ )}

= 100 ×
K G − 1 + (G − 1)Kρ

1 + ρ
. (43)

The terms C̄{ f } and C||G K { f̃ } are the best and worst costs of evaluating

an objective in isolation (without any stored intermediate calculations). As

discussed in Section 3, some aspects of optimization are not subject to strong

gains from parallel execution. Implication 4 states the limits to gains from parallel

execution for these evaluations. Table I summarizes dc( f ) = C{B( f̃ )} − C{ f̃ },
the difference in elapse time to compute the objective starting from scratch, for

various problems under parallel execution with eight processors. Total processing

time is the same for each algorithm as it was under serial execution. Elapsed time

for B( f̃ ) is also the same, because a black-box presents no sub-tasks that can

be done in parallel. When f (θ ) is to be evaluated at related parameter vectors

the marginal cost of another evaluation can be even lower than C||G K { f̃ }. The

next implication covers the inherently parallel phases of an optimization algorithms.

IMPLICATION 5: Maximal Scaling of ∇ f (θ ). Define f̃ and B( f̃ ) as in the pre-

vious implication.

I5a. χ{∇ B( f̃ ))} = 2PU and C‖2PU {∇ B( f̃ )} = C̄{ f }.
I5b. χ{∇ f̃ } = 2N K G and C‖2N K G{∇ f̃ } = C{µ} + K C{�1}.

Calculating the gradient of a finite mixture objective can scale up to 2NKG

parallel processors and become as cheap to compute as the model for one type.

Table I also reports dc(∇ f ). Calculating a black-box gradient does benefit from

more processors because the 2PU function evaluations can be done simultaneously.

As under serial execution, redundant calculations are made and the fall in elapsed

time comes with an inefficiency borne by other users of the same processors. When

N is relatively large, calculation of ∇ B( f̃ ) can complete faster than ∇ f̃ , but it

would still be slowing down the system as a whole as under serial execution.

Table I also reports d(χ ) = χ{∇ f̃ } − χ{∇ B( f̃ )}, the difference in the number

of processors that can be kept busy all at once while calculating the gradient in a
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finite mixture and black-box objective. There are cases when d(χ ) < 0, which are

situations in which N is relatively large. While ∇ B( f̃ ) can use more processors

simultaneously in these cases, it is still doing so inefficiently and will not complete

the gradient any faster in elapsed time than ∇ f̃ running on fewer processors. The

elapsed time difference under maximum scaling is not large, like it is under a fixed

number of processors, because implicitly computing capacity is added to keep up

with the scale of the problem. Yet, a finite mixture gradient is always faster to

compute.

4.4. BALANCED VERSUS NESTED OBJECTIVES

The objective f (θ ) in a finite mixture model is based on three tasks (µ, �, �):

model solution, evaluation, and aggregation. These tasks are treated as black-boxes

that are connected to each other as in Figure 1. Since the black-box is a special case,

there is no loss of generality. Is there a gain to exploiting this special structure?

There are three aspects to that question.

First, will an optimizer Ṽ ( f, θ0, σ ) based on this structure outperform the black-

box optimizer V̄ ( f, θ0)? The previous section provided an affirmative answer. As

long as storage and communication costs are small relative to computational costs,

then Ṽ will reduce the time it takes to optimize f (θ ). In certain problems, the

reduction can easily make a model feasible to solve using Ṽ when it would not be

feasible using V̄ .

Second, can a broad spectrum of problems encountered in economics be broken

down into these tasks without resorting to the trivial case of G = K = 1? As

Table I indicates, problems that are mixture models in a trivial sense will not benefit

from Ṽ . The example in Section 3 attempted to show by analogy that models that

allow for heterogeneity and impose some combination of individual rationality,

equilibrium (internal consistency), and consistent estimation (external consistency)

are non-trivial examples of this framework. Much larger models (greater amounts

of observed and unobserved heterogeneity) may become feasible to solve when

using Ṽ rather than V̄ .

The third aspect of the question is whether reformulating the objective function to

exploit the finite mixture form of a problem leads to any further gains. The particular

change considered here is choosing between the nested and balanced representations

of a given finite mixture model defined earlier in Definition 2 (case 4).

By definition, unnecessary calculations can be avoided by solving nested prob-

lems simultaneously (in balance), so that only at the ultimate answer are both

concerns satisfied. However, more balance requires a longer parameter vector. For

example, suppose one of the concerns in the model is that agents use optimal de-

cision rules. In a nested representation, the objective might call a procedure that

computes optimal decision rules each time the optimizer evaluates the objective. In

a balanced representation, the optimizer would be asked to choose decision rules

for agents, along with other parameters. The objective must assess how far the
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rules sent in θ are from being optimal, which is presumably cheaper than actu-

ally finding the optimal rules. Thus, the tradeoff between the nested and balanced

representation of a finite mixture model is one of more parameters to optimize in

return for lower costs of solving the model during iterative optimization. Although

all concerns that enter f would enter both representations, their relative importance

will likely differ. The results of optimizing fn and fb are therefore not necessarily

equivalent.

The balanced representation of an objective relates to the approach of penal-

izing an objective when side constraints are not met. The nested representation

relates to imposing side constraints directly, such as choosing optimal decision

rules for agents at each evaluation of a likelihood function. The balanced or

penalized-objective approach would augment f (θ ) with a penalty for non-optimal

decision rules. The difference here is that explicit allowance for the finite mixture

form of the objective gives the modeler more control over these tradeoffs. The

issue is when will the cost of optimizing ever more parameters outweigh the

benefit of not imposing nested concerns at each evaluation of the objective.

IMPLICATION 6: Balanced Versus Nested Objectives. Let fb and fn be balanced

and nested representations of a given finite mixture model and for x = b, n define

Dx ≡ NxC{µx} + (Nx K +K −1)C{�x}. For τ = ∇, δ, define dc(τn) ≡ C{τ ( fn)}−
C{τ ( fb)}. Then:

I6a. dc(δn) > 0 → dc(∇n) > 0 ↔ Dn > Db.

I6b. NnC{µn} − C{�n} > NbC{µb} − C{�b} → dc(∇n) > 0 for all K and all G.

I6c. Dn > Db & G(K − 1)/K > (Db Nb − Dn Nn)/(Db − Dn) → dc(δn) > 0.

All of these results are based on algebraic manipulations of previously defined

costs of computing tasks. The expression Dx determines whether a gradient calcula-

tion is faster using fb or fn, taking into account changes in solution costs, numbers

of parameters, and redundant calculations. Because the balanced approach adds

model parameters to the optimization problem, a necessary condition for a unit of

precision to be cheaper is that the balanced gradient is cheaper. I6b gives a sufficient

condition for the balanced gradient to be cheaper to compute for any value of K

and G. Finally, a cheaper gradient and large values of G and K together imply that

δ is cheaper in the balanced representation. The values of G and K have to be large

enough to make up for the increase in dimensionality as measured in the expression

(Db Nb − Dn Nn)/(Db − Dn), which may be positive or negative. These results allow

a researcher to attempt various approaches to balance their objective and check for

potential gains or losses in computational efficiency without having to carry out a

full evaluation of the objective and its gradient (let alone to solve the finite mixture

model by optimizing both problems).

Table II illustrates Implication 6. First, consider a model without heterogeneity

and with no difference in costs between the balanced and nested representations.



SOLVING FINITE MIXTURE MODELS 371

Table II. Balanced vs. nested objectives.

Shared Parameters of Parameters of

parameters balanced representation nested representation Costs of precision

# Types # Groups # Economic Total Costs # Economic Total Costs Nested–balanced

(K ) (G) parameters (N ) Pu C{µ} C{�} D parameters Pu C{µ} C{�} D (dcδn)

1 1 2 2 1 1 4 1 1 1 1 2 −12

1 1 2 2 1 1 4 1 1 5 3 8 0

1 1 11 11 1 1 22 4 4 10 5 60 −4

2 1 11 23 1 1 34 4 9 10 5 85 −68

2 2 11 24 1 1 34 4 10 10 5 85 272

4 4 11 56 1 1 58 4 28 10 5 135 17,024

4 4 12 60 1 1 63 4 28 10 5 135 0

Costs measured in elapsed time. D = NC{µ} + (N K + K − 1)C{�}. See Implication I6.

However, the balanced version has Nb = 2 model parameters versus Nn = 1 in the

nested version. The result is that a unit of precision costs dc(δn) = 12 s more in

the balanced version. We get to zero difference in a case where the nested version

has a model that costs five times more to compute and a evaluation that costs three

times as much. The next segment of the table considers a balanced representation

that is very efficient. It cuts model and evaluation costs to one-tenth and one-fifth

their values in the nested version, respectively. It takes 11 model parameters versus

4 to achieve these savings. Without heterogeneity, the nested solution is slightly

cheaper to solve. Adding an unobserved type (K = 2) makes the difference larger,

but then adding an observed type (G = 2) results in the cost of precision under the

balanced objective being 272 s lower.

Finally, in the bottom of Table II, the model and evaluation costs are the same

as the middle rows, but now there are four observed and unobserved types. With

Nn = 11 a unit of precision is 17,000 s cheaper than the balanced objective. How-

ever, adding a single model parameter brings the difference to exactly zero. Thus,

differences between nested and balanced objectives are very sensitive to differ-

ence in all dimensions, particularly when heterogeneity is a major element of the

analysis. Rules of thumb based on previous experience may be very misleading.

By the same token, the comparisons in Implication 6 are themselves only rough

guides to the choice of how to represent a given model. The realized cost of opti-

mizing fn compared to fb depends on the properties of the sub-tasks, the quality

of starting values, and so forth. Some models may lend themselves to a balanced

objectives, others not. For example, if the underlying model can use specialize so-

lution methods with fast convergence it might prove inefficient to solve the model

using ordinary non-linear optimization methods. Even in that case, the balanced op-

timizer can assess partial solutions to the model on other grounds (such as distance

from equilibrium) and replace many cases of solving quickly the model at bad pa-

rameters values with fewer cases of solving slowly the model with good parameter

values.
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4.5. INTERPRETING RESULTS

Depending on the type of finite mixture model being solved, there will exist external

standards with which to assess the ultimate parameter vector θ∗. For example,

sufficient conditions for maximum likelihood estimates of a model’s parameters to

be statistically consistent, efficient, and asymptotically normal are well known. A

likelihood as in Rust (1994, 1996) that nests other concerns inside it can appeal

to such results. When choices (and in equilibrium models, prices) are optimized

simultaneously with underlying parameters, the standards for assessing results are

not so clear. What can be said is that the final parameter vector balanced the concerns

specified by the researcher, and that a balanced objective can approximate a nested

objective with appropriate weights on each concern. At the minimum, a modeler

may find a balanced objective to be a good way to get estimates of all free variables

before they re-nest the model to impose exactly some concerns at each objective

evaluation.

One might hope for a sounder basis for making changes in overall solution

strategies. As an analogy for such a standard, consider Debreu’s (1983) vanguard

proof that the Walrasian competitive equilibrium is a Nash equilibrium in a game

played among agents and a fictitious auctioneer. The auctioneer’s objective is

to minimize the value of the excess demand function by choosing prices taking

as given the quantities demanded by the agents, who in turn take as given the

prices called out by the auctioneer. The first and third terms in objective (25)

reflect exactly these strategies. Under usual regularity conditions, there would ex-

ist a price that simultaneously sets all marginal utilities to zero and equates ag-

gregate demand to aggregate supply. In Debreu’s notion of a social equilibrium

the primitive preferences and endowments of agents are taken as given by all

players.

When preference and technology parameters vary along with choices and prices,

the notion of a social equilibrium does not apply. No player is concerned with a

choice of these parameters because no player is concerned with external consistency

of the equilibrium. Consider introducing a second fictitious player, the econome-

trician, with the objective of maximizing external consistency. The strategies for

each type of player are:

• the econometrician calls out preferences of K agent types, each denoted γp[k],

and population weights γ [k, g], taking the choices of other players as given;

• the auctioneer calls out equilibrium outcomes denoted γe[g], taking the choices

of other players as given;

• K agent types call out conditional decision rules λd[k, g] taking as given the

choices of other players.

The payoff to agents is their utility or profit given their preferences, the equi-

librium outcomes, and decision rules. The payoff to the auctioneer is the negative

distance from equilibrium given decision rules and population weights. The payoff
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to the econometrician is the distance between externally generated data (moments)

and the model’s predicted values given the decision rules, equilibrium outcomes,

and population proportions.

Obviously, a Nash equilibrium to this game is one in which agents choices are

optimal given preferences and prices, equilibrium is achieved, and exogenous data

are best explained by the estimated preferences, choices and prices. A social plan-

ner’s problem which puts some weight on each player’s objective is equivalent to

a balanced objective. The weights are chosen by the researcher in order to balance

the three competing concerns. The typical nested formulation is akin to a Stackel-

berg game, with the econometrician moving first followed by the auctioneer and

the agents. This solution appears to be easier to interpret; but in some models, the

computational advantage of a balanced objective may be large enough to displace

the more manageable nested objective as the default approach to specifying the

finite mixture model. It will then be important to assess results from a balanced ob-

jective on their own terms, perhaps using a game-theoretic framework as suggested

here.

5. Conclusion

If Laocoon were alive today he might warn us to “beware of geeks bearing gifts.”

The road to current methods of numerical optimization in economics is littered with

hardware (vector processors, connection machines, etc.) and software (neural net-

works, genetic algorithms) that promised general breakthroughs in computational

practice. These breakthroughs were just over a horizon requiring only some invest-

ments in expensive hardware, dedicated software, or new modeling approaches.

Many of these gifts turned out to be Trojan horses. Costs were paid in advance

for future benefits. Meanwhile, general technological advance allowed researchers

who had kept using generic resources to overtake and then surpass those who had

invested in specific investments, which did not catch on. Thus, a call to re-formulate

optimization problems in economics should be made and received with a great deal

of skepticism. There are five reasons why a switch from V̄ to Ṽ may not turn out

to be a Trojan horse.

First, Ṽ includes as a special case the long-standing preferred method of coding

objective functions. Thus, a function f implemented through the interface f̃ can

still be optimized using a generic optimizer.

Second, the structure of finite mixture models is exploited by Ṽ without any

attempt to tweak the performance of the underlying optimization algorithm. Tried-

and-true algorithms still form the basis of the optimization.

Third, the only special assumption about the computing environment for the

advantages of Ṽ to outweigh its overhead is that communication and storage costs

are small relative to processing costs. To the extent that the underlying tasks in

finite mixture models remain non-linear and reliant on iterative algorithms, this
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assumption appears innocuous. The present and the future of intensive computing

include parallel processing. Generically, optimization of well-behaved functions

does not lend itself to parallel processing. However, using Ṽ exploits all the returns

to parallel execution inherent in the class of finite mixture models.

Fourth, a focus on finite mixture models is justified because their elements relate

to longstanding touchstones of economics: concerns for individual rationality, in-

ternal consistency, and external consistency. It is not argued that economics should

in the future compute different problems, and that Ṽ makes it feasible to compute

those problems. Rather, it is argued that most current problems computed in eco-

nomics are already non-trivial forms of the finite mixture model. The seemingly

diverse problems currently solved numerically have more in common than gen-

erally recognized, because their common features are less important when using

generic optimization.

Finally, using a nested (or sequential) algorithm to optimize a finite mixture

model has the potential to waste a great number of calculations by imposing certain

concerns exactly on each candidate parameter vector, although only one such pa-

rameter vector will ultimately be used. Use of Ṽ rather than V̄ allows the researcher

to control the balance among all concerns. The iterative algorithm can speed to a

final result by avoiding exact solutions to some concerns during iteration. Con-

ditions have been provided that a researcher can check beforehand to have some

confidence whether switching to a balanced objective will in fact decrease the cost

of solving the overall objective.

Appendix

A.1. APPENDIX: SERIAL EXECUTION

A.1.1. Steps to Convert V̄ into f̃

S1. Create space for holding values for one previous evaluation of θ , denoted

θh, µh, �h and �h .

S2. Replace direct calls to f (θ ) with a function f f (θ, r, h) that is internal to Ṽ .

The last two arguments are boolean values. When h is true the optimization

algorithm is requesting that f f (·) hold results for this evaluation. When r is

true, the optimization algorithm is modifying elements of γ . Therefore, µ(·)
may need to be resolved for some types. The evaluation of f (·) at the beginning

of an iteration would typically have r = h = 1. All steps taken in a numerical

gradient routine would have h = 0 and would have r = 1 if the index of the

incremented parameter is greater than KG.

S3. Write code for f f (·) as in Example 2, which is the function that calls the

user’s f̃ function. Whether a particular model is resolved depends on whether

γ [k] = γ h
k . If so, then the held values of �h

kg are still valid for all g and they

can be sent to f̃ when evaluating the model. When r = 0, only elements of λ

are being modified so no calls to µ need be made.
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A.2. APPENDIX: PARALLEL EXECUTION

The pseudo-code for ff given in Example 2 calls tasks sequentially. It will not work

efficiently under parallel (distributed) execution. To do this, a list of tasks must

be set up and performed all at once. To keep track of asynchronous results, each

sub-task is assigned an integer tag j. The total number of separate tasks in one

evaluation is T u = G K + G + 1. So, for example, tag 1 is associated with task

�, tags 2 through G + 1 are associated with the task � and values of g between

1 and G. The tags between T l = G + 2 and T u are associated with µ and all the

combinations of k and g. A look-up table can be constructed that associates each

tag j with a task and values of k and g.

Using these tags, Ṽ can be coded so that parallel execution is transparent to the

user. Example 3 illustrates this. The parallel environment is set up and maintained

within Ṽ , which is organized as a client/server system. That is, one processor takes

on the role of the client and carries out the optimization routine. All other processors

take on the role of server. They wait for instructions sent by the client. Two special

tags must be defined. The tag j = STOP = −1 is sent by the client to servers when

optimization is complete and they should exit. The tag j = NEW = 0 is sent to the
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client along with a new vector in the message buffer to be used for all tasks until a

new parameter vector is sent.

Example 3 provides pseudo-code for using such a coding of tasks to com-

pute the objective in parallel. The code refers to two routines, receive and send,

that carry out communication between processors. These routines are pseudo-

versions of MPI Recv and MPI Send. The routine initialize is a pseudo-version of

MPI Initialize (see Swann, 2002 for more information).

To compute a gradient or set up a simplex in parallel requires setting up a list

of evaluations to perform in parallel. Represent the list as a vector L, where L[d]

is one of D parameter vectors to evaluate in parallel. For example, in a central

difference numerical gradient D = 2PU . Positive and negative changes to param-

eter n might be given indices d = 2(n − 1) and d = 2(n − 1) + 1, respectively.

Let manyf(L,h,r) be a routine that processes a vector of evaluations in paral-

lel. Tags sent to and from processors will have the form t = (d − 1)T u + j .

Once the whole list of parameter vectors have been processed, the results are

stored in a vector F where F[d] = f (L[d]). For example, the gradient routine

inside a parallel finite mixture optimizer would call F = manyf(L,r,h) and then

construct the gradient in a simple loop: ∇ f [n] = (F[2(n −1)]− F[2(n −1)+1])/

(2ǫ[n]).
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Notes

1The model µ is only part of the definition of a finite mixture model, but the term ‘model’ is used

since it is typical to talk of “a model of firm behavior” or “a model of household behavior” as part of

an overall analysis. For clarity, µ will be referred to as the ‘economic model.’
2When certain combinations of k and g are impossible, the model µ can do nothing.
3Constrained iterative optimization can be carried out using transformations of the parameter vector

or using augmented (penalized) objective functions. For example, see Judd (1998). The key results

about solving finite mixture models developed here survive the presence of such constraints.
4This can be avoided by allowing the option of setting G = 0 to indicate that no weights are

necessary.
5For example, initializations common to each task can be programmed once inside f̃ rather than

separately in each sub-task.
6Swann (2001, 2002) concisely describes the principles of programming with message passing

across processors and illustrates them using parallel optimization of an additively separable log-

likelihood function, a special case of a finite mixture model. The straightforward parallel execution

across observations he describes is precluded from working efficiently by the presence of unobserved

heterogeneity or equilibrium restrictions.
7Setting Q = I makes it straightforward for Ṽ to implement the BHHH approximation to the

Hessian matrix. A flag is set that indicates the evaluation task is an individual log-likelihood. When

a gradient in θ is being computed, these intermediate values can be stored and used to compute the

outer product of the gradient vector.
8The stock of schooling at age 16 and the number of children by age differ across groups but are

held fixed throughout the optimization process and can be excluded from γx [k].
9To avoid multiple copies of common parameters, θ could be defined to include λ, γ and a third

vector that is shared by all problems.
10Schittkowski (2001) describes the optimizer NLPQLP, which exploits distributed (parallel) exe-

cution of the sequential quadratic algorithm. As a generic optimizer, NLPQLP cannot keep track of

intermediate results required to reduce the granularity of a finite mixture model.
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