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Abstract

A common method of generalizing binary to multi-class classi�cation is the error correcting code (ECC). ECCs may be 
optimized in a number of ways, for instance by making them orthogonal. Here we test two types of orthogonal ECCs on 
seven di�erent datasets using three types of binary classi�er and compare them with three other multi-class methods: 
1 versus 1, one-versus-the-rest and random ECCs. The �rst type of orthogonal ECC, in which the codes contain no zeros, 
admits a fast and simple method of solving for the probabilities. Orthogonal ECCs are always more accurate than ran-
dom ECCs as predicted by recent literature. Improvments in uncertainty coe�cient (U.C.) range between 0.4 and 17.5% 
(0.004–0.139, absolute), while improvements in Brier score between 0.7 and 10.7%. Unfortunately, orthogonal ECCs are 
rarely more accurate than 1 versus 1. Disparities are worst when the methods are paired with logistic regression, with 
orthogonal ECCs never beating 1 versus 1. When the methods are paired with SVM, the losses are less signi�cant, peak-
ing at 1.5%, relative, 0.011 absolute in uncertainty coe�cient and 6.5% in Brier scores. Orthogonal ECCs are always the 
fastest of the �ve multi-class methods when paired with linear classi�ers. When paired with a piecewise linear classi�er, 
whose classi�cation speed does not depend on the number of training samples, classi�cations using orthogonal ECCs 
were always more accurate than the other methods and also faster than 1 versus 1. Losses against 1 versus 1 here were 
higher, peaking at 1.9% (0.017, absolute), in U.C. and 39% in Brier score. Gains in speed ranged between 1.1% and over 
100%. Whether the speed increase is worth the penalty in accuracy will depend on the application.

Keywords Multi-class classi�cation · Error-correcting codes · Constrained linear least squares · Conditional 
probabilities · Support vector machines · C45 Neural networks and related topics · C61 optimization techniques · 90C20 
quadratic programming · 62H30 Classi�cation and discrimination · 68T10 pattern recognition

1 Introduction

Many methods of statistical classication can only dis-
criminate between two classes. Examples include lineear 
classi�ers such as perceptrons and logistic regression [1], 
piecewise linear classi�ers [2, 3], as well as support vector 
machines [4]. There are many ways of generalizing binary 
classi�cation to multi-class and the number of possibilities 
increases exponentially with the number of classes.

One should distinguish between multi-class methods 
that use only a subset of the binary classi�ers, adding more 
as the algorithm narrows down the class, and those that 
use all of the binary classi�ers, combining the results or 

solving for the class probabilities. In the former category, 
we have hierarchical multi-class classi�ers such as decision 
trees [5, 6] and decision directed acyclic graphs (DDACs) 
[7]. In the latter category, two common methods are one-
versus-one (1 vs. 1) and one-versus-the-rest (1 vs. rest) [8]. 
These in turn generalize to error-correcting codes (ECCs) 
[9].

Early experiments with ECCs used random codes: the 
assumption is that if the codes are long enough (there 
are enough binary classifiers) they will adequately 
span the classes. Later work focused on optimizing the 
design of the codes: what type of codes will best span 
the classes and produce the most accurate results? Here 
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we can also distinguish between two types: those that 
use the data to help design the codes [10–12] and those 
that are independent of the data but use the mathemat-
ical properties of the codes themselves to aid in their 
construction [13–15]. It is these latter type of optimized 
error-correcting codes we turn to in this note.

In error-correcting coding, there is a coding matrix, 
A, that specifies how the set of multiple classes is par-
titioned for each binary classifier. For a given column, if 
members of the jth class are to be labeled −1∕ + 1 for the 
binary classifier, then the jth row is assigned a −1∕ + 1 . 
If the jth class is left out, then the jth row is assigned a 
0. Typically, the class of the test point is determined by 
the distance between a row in the matrix and a vector 
of binary decision functions:

where �
i
∈ {−1, 0,+1} is the ith row of the coding matrix 

and � is a vector of decision functions at test point, � . If we 
take the upright brackets as a Euclidean distance we can 
expand (1) as follows:

Since |�| is constant over i, it may be removed from the 
expression. Also, for the purposes of this note, each row 
of A will be given the same number of non-zero entries, 
hence:

This is most evident for the case in which each binary clas-
si�er partitions all of the classes so that there are no zeros 
in A as is the case for the one-versus-the-rest partitioning. 
Then (1) reduces to a voting solution:

Both [13] and [14] show that to maximize the accuracy of 
an ECC, the distance between each row, |�i − �j|i≠j , should 
be maximized. Using the above assumptions, this reduces 
to:

Note the absolute value prevents degenerate rows. In 
other words, the coding matrix, A, should be orthogonal.

In this note, we describe a fast and simple algorithm 
that uses orthogonal ECCs to solve for the conditional 
probabilites in multi-class classification. There are three 
reasons to require the conditional probabilities:

1. Probabilities provide useful extra information, speci�-
cally how accurate a given classi�cation is, in absence 
of knowledge of its true value.

(1)c(�) = argmin
i

|�
i
− �(�)|

c = argmin
i

∑

j

(
|�i| + |�| − 2�i ⋅ �

)

|�i| = |�j| = const.

(2)c = argmaxA�

min |�i ⋅ �j|i≠j

2. The relationship between the binary probabilities and 
the multi-class probabilities derives uniquely and rig-
orously from probability theory.

3. Binary classi�ers that do not return calibrated prob-
ability estimates, but nonetheless supply a continuous 
decision function, are easy to recalibrate so that the 
decision function more closely resembles a probability 
[16, 17].

Two types of orthogonal ECCs along with three other multi-
class methods-1 versus 1, 1 versus the rest, and random 
ECCs–will be tested on seven di�erent datasets using three 
di�erent binary classi�ers–logistic regression, support vec-
tor machines (SVM), and piece-wise linear–to see how they 
compare in terms of classi�cation speed, classi�cation accu-
racy and accuracy of the conditional probabilities.

2  Algorithm

We wish to design a set of m binary classi�ers, each of which 
return a decision function:

where Pj(c|�) is the conditional probability of the cth class 
of the jth classi�er. Each binary classi�er partitions a set of 
m classes such that for a given test point, �:

where A = {aij ∈ {−1,+1}} is a coding matrix for which 
each code partitions all of the classes and pi = p(i|�) is the 
conditional probability of the ith class. In vector notation:

This result derives from the fact that the class probabili-
ties are additive [18]. The more general case where a class 
can be excluded, that is the coding may include zeroes, 
aij ∈ {−1, 0,+1} , will be treated in the next section.

Note that this assumes that the binary decision functions, 
� , estimate the conditional probabilities perfectly. In practice 
there are a set of constraints that must be enforced because 

� is only allowed to take on certain values. Thus, we wish to 
solve the following minimization problem:

rj(�) = Pj(−1|�) − Pj(+1|�)

m
∑

i=1

aijpi = rj ; j = [1,… , n]

(3)A
T
� = �

(4)argmin
�

|AT
� − �|

(5)

m
∑

i=1

pi = 1

(6)pi ≥ 0; i = [1,… ,m]
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If A is orthogonal,

where I is the m ×m identity matrix, then the uncon-
strained minimization problem is easy to solve. Note that 
the voting solution in (2) is now equivalent to the inverse 
solution in (3). This allows us to determine the class easily, 
but we also wish to solve for the probabilities, � , so that 
none of the constraints in (5) or (6) are violated.

The orthogonality property allows us to reduce the mini-
mization problem in (4) to something much simpler:

where �
0
= A�∕n with the constraints in (5) and (6) remain-

ing the same. Because the system has been rotated and 
expanded, the non-negativity constraints in (6) remain 
orthogonal, meaning they are independent: enforcing 
one by setting one of the probabilities to zero, pk = 0 for 
example, shouldn’t otherwise a�ect the solution. This still 
leaves the normalization constraint in (5): the problem, 
now strictly geometrical, is comprised of �nding the point 
nearest p

0
 on the diagonal hyper-surface that bisects the 

unit hyper-cube.
Brie�y, we can summarize the algorithm as follows: (1) 

move to the nearest point that satis�es the normalization 
constraint, (5); (2) if one or more of the probabilities is nega-
tive, move to the nearest point that satis�es both the nor-
malization constraint and the non-negativity constraints, 
(6), for the negative probabilities; (3) repeat step 2. More 
formally, let � be a vector of all 1’s:

• i ∶= 0 ; m
0
∶= m

• while ∃k pik < 0 ∨ �i ⋅ � ≠ 1:

• if �
i
⋅ � ≠ 1 then �

i+1 ∶= �
i
+ (�

i
⋅ � − 1)∕m

i

• let K be the set of k such that pi+1,k < 0

• for each k ∈ K :

• pk ∶= 0

• Remove k from the problem

• m
i+1

∶= m
i
− |K |

• i ∶= i + 1

Note that resultant direction vectors for each step form 
an orthogonal set. For instance, suppose m

0
= 4 and after 

enforcing the normalization constraint, the �rst probability 
is less than zero, p1,1 < 0 , then the direction vectors for the 
two motions are:

AA
T
= nI

argmin
�

|� − �0|

1

2
[1, 1, 1, 1] ⋅

1

2
√

3

[−3, 1, 1, 1] = 0

More generally, consider the following sequence of 
vectors:

where i ∈ [1,m] and j ∈ [1,m] . [19] A nice feature of this 
method, in addition to being fast, is that it is divided into 
two stages: a solution stage and a normalization stage.

3  Constructing the coding matrix

Finding an A such that AAT
= nI and aij ∈ {−1, 1, } is quite 

a di�cult combinatorial problem. When zeros are added 
in, aij ∈ {−1, 0, 1} , it becomes even more di�cult. Work in 
signal processing may be of limited applicability because 
coding matrices are typically comprised of 0’s and 1’s 
rather than −1 ’s and +1 ’s [20, 21]. In our case, a further 
restriction is that columns must contain both positive and 
negative elements, or:

A simple method of designing an orthogonal A is using 
harmonic series. Consider the following matrix for six 
classes ( m = 6 ) and eight binary classi�ers ( n = 8):

This will limit the size of m relative to n; more precisely: 

m ≤ ⌊2 log2 n⌋ . Moreover, only certain values of n will be 
admitted: n = 2

t where t is a whole number.
The �rst three rows in (8) comprise a Walsh-Hadamard 

code [22]: all possible permutations are listed. A square 
( n = m ) orthogonal coding matrix is called a Hadamard 
matrix [23]. It can be shown that besides n = 1 and n = 2 , 
only Hadamard matrices of size n = 4t exist, and it is still 
unproven that examples exist for all values of t [24]. A very 
simple, recursive method exists to generate matrices of 
size n = t2 [24] but cannot be made to have the property 
in (7) since the matrix includes both a row and column of 
only ones. Such a matrix will include a “harmonic series” of 
the same type as in (8).

vij =
1√

(m − i)2 − 2(m − i − 1)

⎧
⎪⎨⎪⎩

0; j < i

−m + i + 1; j = i

1; j > i

(7)

m∑

i=0

aij ≠

m∑

i=0

|aij|; j = [1… n]

(8)

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1

−1 − 1 − 1 − 1 1 1 1 1

−1 − 1 1 1 − 1 − 1 1 1

−1 1 − 1 1 − 1 1 − 1 1

1 1 − 1 − 1 − 1 − 1 1 1

−1 1 1 − 1 − 1 1 1 − 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Two types of orthogonal coding matrices are tested in 
this note. The �rst type includes no zeros and is gener-
ated using a “greedy” algorithm. We choose n to be the 
smallest multiple of 4 equal to or larger than m. and start 
with an empty matrix. Candidate vectors containing both 
positive and negative elements are chosen at random to 
comprise a row of the matrix but never repeated. If the 
candidate vector is orthogonal to existing rows, then it is 
added to the matrix. New candidates are tested until the 
matrix is �lled or we run out of permutations. A full matrix 
is almost always returned especially if m < n . The matrix 
is then checked to ensure that each column contains both 
positive and negative elements. Note that the whole pro-
cess can be repeated as many times as necessary. An eight-
class example follows:

This type of coding matrix can be solved using the algo-
rithm described in Sect. 2, above.

The other type of orthogonal coding matrix to be tested 
in this note includes zeros. The construction is similar 
except now the matrix is allowed to take on values of zero 
while the number of non-zero values (− 1 or + 1) is kept 
�xed. A size is chosen for the matrix typically larger than 
the number of classes while the resulting matrix will nor-
mally be somewhat smaller since degenerate and �xed 
value columns (a correctly-trained binary classi�er would 
always return the same value) are removed. The param-
eters chosen for each class size are shown in Table 1.

Coding matrices of this type were generated by pure, 
brute force with no attempt to track previous trials. An 
example coding matrix for six classes is shown below. 
Redundant columns have been bold out.

This type of orthogonal ECC is solved using a general, iter-
ative, constrained, linear least-squares solver [25].

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − 1 1 1 − 1 − 1 1 − 1

1 − 1 − 1 1 − 1 1 − 1 1

1 − 1 − 1 − 1 1 1 1 − 1

1 1 1 1 1 1 − 1 − 1

1 1 1 − 1 − 1 1 1 1

−1 − 1 1 1 1 1 1 1

−1 − 1 1 − 1 − 1 1 − 1 − 1

1 − 1 1 − 1 1 − 1 − 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 − 1 0 1 0 0 1 − 1 0 0 − 1

0 1 − 1 0 − 1 − 1 0 − 1 −1 0 0 0

−1 0 1 0 0 0 − 1 − 1 0 − 1 0 − 1

1 0 0 − 1 0 − 1 − 1 1 0 −1 0 0

0 − 1 − 1 0 − 1 1 − 1 0 0 0 1 0

0 − 1 0 1 0 − 1 1 0 0 − 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

More work will need to be done to �nd e�cient meth-
ods of generating these matrices if they are to be applied 
e�ciently to problems with a large number of classes.

4  Results

Orthogonal error-correcting codes were tested 
on seven different datasets: two for digit recogni-
tion–“pendigits” [26] and “usps” [27]; the space shuttle 
control dataset–“shuttle” [28]; an urban land classi�ca-
tion dataset–“urban” [29]; a similar one for satellite land 
classi�cation–“sat”; a dataset for patterned image rec-
ognition–“segment”; and a dataset for vehicle recogni-
tion–“vehicle” [30]. The last three are borrowed from the 
“statlog” project [1, 28].

Two types of orthogonal ECCs were tested: the �rst type 
described in Sect. 3, with no zeros in the codes, and the 
second type which includes zeros. These were compared 
with three other methods: one-versus-one, one-versus-
the-rest, and random ECCs with the same length of coding 
vector (number of columns), m, as the orthogonal matri-
ces of the �rst type. The 1 versus rest multi-class as well 
as the random ECCs were solved using the same type of 
constrained linear least squares method as used for the 
second type of orthogonal ECC [25]. By enforcing the nor-
mality constraints using a Lagrange multiplier, 1 versus 1 
may be solved with a simple (unconstrained) linear equa-
tion solver [31].

Table 1  Table showing 
parameters chosen for the 
second type of orthogonal 
coding matrix: for the number 
of classes, m, the initial length 
of the code, n

0
 , and the 

number of non-zero values in 
each code, |�

i
| ( i = 1,… ,m ), 

are given

n0 ≈ m log2 m

m n
0

|�
i
|

4 7 4

6 12 6

7 15 7

8 17 8

9 20 9

10 23 10
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Three types of binary classifier were used: logistic 
regression [1], support vector machines [4], and a peice-
wise-linear classifer [3]. Logistic regression classi�ers were 
trained using LIBLINEAR [32].

Support vector machines (SVMs) were trained using 
LIBSVM [33]. Partitions were trained separately then com-
bined by �nding the union of sets of support vectors for 
each partition. By indexing into the combined list of sup-
port vectors, the algorithms are optimized in both space 
and time [33]. For SVM, the same parameters were used for 
all multi-class methods and for all partitions (matrix col-
umns). All datasets were trained using “radial basis func-
tion” (Gaussian) kernels of di�ering widths.

LIBSVM was also used to train an intermediate model 
from which an often faster piecewise-linear classi�er [3] 
was trained. It was thought that this classi�er would pro-
vide a better use-case for orthogonal ECCs than either of 
the other two. The single parameter for this algorithm–the 
number of border vectors–was set the same for each data-
set as used in [3] for the 1 versus 1. For the other multi-
class algorithms, the number of border vectors was dou-
bled for small values (under 100) and increased by �fty 
percent for larger values to account for the more complex 
decision function created by using more classes in each 
binary classifier. Multi-class classifiers were designed, 

Table 2  Total classi�cation 
time, solution time, uncertainty 
coe�cient and Brier score for 
seven di�erent datasets using 
�ve di�erent coding matrices: 
1 versus 1, 1 versus the rest, 
randoms, orthogonal with no 
zeros, and orthogonal with 
zeros

Logistic regression is used as the base binary classi�er

Bold values are the best score for a given dataset between multi-class methods

Dataset Method Time (s) Sol. only (s) U.C. Brier score

pendigits 1 versus 1 0.489 ± 0.006 0.410 ± 0.004 0.956 ± 0.006 0.0566 ± 0.003

1 versus rest 0.118 ± 0.0042 0.0823 ± 0.0011 0.864 ± 0.008 0.113 ± 0.002

ECC 0.18 ± 0.01 0.136 ± 0.007 0.723 ± 0.026 0.180 ± 0.008

Ortho. 1 0.048 ± 0.004 0.01095 ± 8e−5 0.785 ± 0.010 0.172 ± 0.002

Ortho. 2 0.24 ± 0.01 0.185 ± 0.010 0.862 ± 0.010 0.123 ± 0.009

sat 1 versus 1 0.092 ± 0.004 0.067 ± 0.001 0.736 ± 0.009 0.176 ± 0.004

1 versus rest 0.033 ± 0.0048 0.0202 ± 2e−4 0.677 ± 0.007 0.204 ± 0.002

ECC 0.043 ± 0.0048 0.0274 ± 6e−4 0.637 ± 0.025 0.217 ± 0.009

Ortho. 1 0.019 ± 0.006 0.00422 ± 8e−5 0.665 ± 0.009 0.210 ± 0.002

Ortho. 2 0.046 ± 0.005 0.0271 ± 0.0017 0.688 ± 0.018 0.197 ± 0.010

segment 1 versus 1 0.04 ± 5.9e−06 0.0336 ± 4e−4 0.911 ± 0.009 0.0987 ± 0.0057

1 versus rest 0.012 ± 0.0042 0.0094 ± 2e−4 0.868 ± 0.010 0.144 ± 0.004

ECC 0.016 ± 0.0052 0.0124 ± 4e−4 0.803 ± 0.040 0.179 ± 0.020

Ortho. 1 0.004 ± 0.005 0.00168 ± 6e−5 0.849 ± 0.015 0.166 ± 0.004

Ortho. 2 0.02 ± 2.9e−06 0.0147 ± 0.0012 0.880 ± 0.018 0.127 ± 0.008

shuttle 1 versus 1 1.10 ± 0.03 0.867  ± 0.014 0.796 ± 0.013 0.0824 ± 0.0017

1 versus rest 0.33 ± 0.01 0.185 ± 0.003 0.605 ± 0.010 0.1341 ± 0.0006

ECC 0.42 ± 0.01 0.265 ± 0.011 0.535 ± 0.120 0.144 ± 0.026

Ortho. 1 0.183 ± 0.005 0.042 ± 0.001 0.593 ± 0.006 0.131 ± 0.002

Ortho. 2 0.48 ± 0.03 0.31 ± 0.03 0.710 ± 0.095 0.101 ± 0.024

urban 1 versus 1 0.031 ± 0.003 0.0185 ± 1e−4 0.693 ± 0.026 0.188 ± 0.006

1 versus rest 0.007 ± 0.005 0.0052 ± 4e−4 0.667 ± 0.018 0.204 ± 0.004

ECC 0.009 ± 0.003 0.0068  ± 4e−4 0.647 ± 0.031 0.210 ± 0.008

ortho. 1 0.007 ± 0.005 0.00064 ± 4e−5 0.674 ± 0.016 0.206 ± 0.004

ortho. 2 0.014 ± 0.005 0.0082 ± 6e−4 0.693 ± 0.017 0.198 ± 0.006

usps 1 versus 1 0.63 ± 0.01 0.347 ± 0.005 0.898 ± 0.010 0.0827 ± 0.0022

1 versus rest 0.152 ± 0.004 0.0704 ± 9e−4 0.840 ± 0.007 0.112 ± 0.003

ECC 0.205 ± 0.005 0.112 ± 0.005 0.769 ± 0.021 0.1416 ± 0.006

Ortho. 1 0.1 ± 2.1e−05 0.0096 ± 5e−4 0.815 ± 0.009 0.132 ± 0.002

Ortho. 2 0.30 ± 0.02 0.16 ± 0.01 0.846 ± 0.015 0.112 ± 0.004

vehicle 1 versus 1 0.002 ± 0.004 0.00436 ± 8e−5 0.685 ± 0.041 0.245 ± 0.011

1 versus rest 0 0.00142 ± 6e−5 0.654 ± 0.037 0.263 ± 0.006

ECC 0 0.00143 ± 8e−5 0.599 ± 0.049 0.279 ± 0.013

Ortho. 1 0 0.00043 ± 3e−5 0.656 ± 0.038 0.263 ± 0.007

Ortho. 2 0 0.0014 ± 0.0001 0.636 ± 0.042 0.263 ± 0.019
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trained and applied using the framework provided within 
libAGF [3, 34, 35]

Results are shown in Tables 2, 3, and 4. Con�dence limits 
represent standard deviations over 10 trials using di�erent, 
randomly chosen coding matrices. For each trial, datasets 
were randomly separated into 70% training and 30% test. 
“U.C” stands for uncertainty coe�cient, a skill score based 
on Shannon’s channel capacity that has many advantage 
over simple fraction of correct guesses or “accuracy” [34, 
36, 37]. Probabilities are validated with the Brier score 
which is root-mean-square error measured against the 
truth of the class as a 0 or 1 value [16, 38].

For all of the datasets tested, orthogonal ECCs provide 
a small but signi�cant improvement over random ECCs in 
both classi�cation accuracy and in the accuracy of the con-
ditional probabilities. This is in line with the literature as in 
[9, 14]. Improvements range from 0.4% to 17.5% relative 
(0.004 to 0.139 absolute) in uncertainty coe�cient and 0.7% 
to 10.7% in Brier score. Results are also more consistent for 
the orthogonal ECCs as given by the calculated error bars.

Also as expected, solution times are extremely fast for 
the �rst type of orthogonal ECC. In many cases the times 
are an order-of-magnitude better than the next fastest 
method. Depending on the problem and classi�cation 

Table 3  Total classi�cation 
time, solution time, uncertainty 
coe�cient and Brier score for 
seven di�erent datasets using 
�ve di�erent coding matrices: 
1 versus 1, 1 versus the rest, 
random, orthogonal with no 
zeros, and orthogonal with 
zeros

A support vector machine is used as the base binary classi�er

Bold values are the best score for a given dataset between multi-class methods

Dataset Method Time (s) Sol. only (s) U.C. Brier score

Pendigits 1 versus 1 1.07 ± 0.14 0.409 ± 0.006 0.985 ± 0.003 0.0319 ± 0.0024

1 versus rest 0.84 ± 0.10 0.082 ± 0.002 0.981 ± 0.003 0.0361 ± 0.0034

ECC 3.20 ± 0.86 0.13 ± 0.01 0.975 ± 0.004 0.0412 ± 0.0032

Ortho. 1 2.13 ± 0.89 0.013 ± 0.002 0.979 ± 0.004 0.0382 ± 0.0026

Ortho. 2 1.17 ± 0.28 0.20 ± 0.01 0.982 ± 0.004 0.0354 ± 0.0034

Sat 1 versus 1 1.39 ± 0.35 0.077 ± 0.009 0.800 ± 0.010 0.145 ± 0.003

1 versus rest 1.70 ± 0.54 0.028 ± 0.005 0.786 ± 0.009 0.153 ± 0.003

ECC 3.2 ± 1.6 0.04 ± 0.01 0.787 ± 0.011 0.152 ± 0.004

Ortho. 1 3.8 ± 1.0 0.008 ± 0.003 0.792 ± 0.011 0.149 ± 0.003

Ortho. 2 1.79 ± 0.52 0.034 ± 0.007 0.789 ± 0.009 0.150 ± 0.004

Segment 1 versus 1 0.18 ± 0.05 0.034 ± 0.001 0.923 ± 0.007 0.0882 ± 0.0053

1 versus rest 0.11 ± 0.03 0.0102 ± 0.0005 0.919 ± 0.007 0.0938 ± 0.0051

ECC 0.13 ± 0.07 0.014 ± 0.001 0.915 ± 0.013 0.0938 ± 0.0071

Ortho. 1 0.16 ± 0.07 0.0018 ± 0.0001 0.925 ± 0.008 0.0890 ± 0.0048

Ortho. 2 0.11 ± 0.03 0.015 ± 0.001 0.919 ± 0.012 0.0883 ± 0.0050

Shuttle 1 versus 1 6.3 ± 1.0 0.98 ± 0.06 0.982 ± 0.003 0.0182 ± 0.0015

1 versus rest 6.0 ± 1.6 0.26 ± 0.03 0.978 ± 0.006 0.0215 ± 0.001

ECC 12.4 ± 5.7 0.43 ± 0.10 0.878 ± 0.210 0.0731 ± 0.100

Ortho. 1 10.0 ± 4.7 0.09 ± 0.03 0.974 ± 0.003 0.0222 ± 0.0010

Ortho. 2 6.6 ± 1.6 0.40 ± 0.04 0.978 ± 0.002 0.0230 ± 0.0068

Urban 1 versus 1 0.41 ± 0.21 0.222 ± 0.003 0.726 ± 0.035 0.170 ± 0.009

1 versus rest 0.26 ± 0.10 0.0059 ± 7e−4 0.708 ± 0.038 0.176 ± 0.011

ECC 0.71 ± 0.31 0.0085 ± 0.0011 0.711 ± 0.030 0.178 ± 0.009

Ortho. 1 0.79 ± 0.24 0.0014 ± 3e−4 0.723 ± 0.023 0.173 ± 0.009

Ortho. 2 0.22 ± 0.15 0.0088 ± 0.0011 0.715 ± 0.026 0.172 ± 0.009

Usps 1 versus 1 33.9 ± 17.0 0.42 ± 0.02 0.929 ± 0.006 0.0664 ± 0.0023

1 versus rest 22.9 ± 7.6 0.110 ± 0.009 0.921 ± 0.005 0.0732 ± 0.0020

ECC 73.0 ± 29.0 0.150 ± 0.009 0.915 ± 0.006 0.0754 ± 0.0022

Ortho. 1 70.1 ± 29.0 0.018 ± 0.003 0.922 ± 0.006 0.0712 ± 0.0018

Ortho. 2 34.8 ± 16.0 0.21 ± 0.02 0.920 ± 0.008 0.0707 ± 0.0027

Vehicle 1 versus 1 0.047 ± 0.013 0.00465 ± 8e−5 0.635 ± 0.023 0.272 ± 0.007

1 versus rest 0.055 ± 0.016 0.0016 ± 0.001 0.625 ± 0.033 0.277 ± 0.009

ECC 0.053 ± 0.024 0.0017 ± 0.0002 0.610 ± 0.061 0.282 ± 0.011

Ortho. 1 0.050 ± 0.018 0.00050 ± 3e−5 0.621 ± 0.032 0.277 ± 0.009

Ortho. 2 0.042 ± 0.006 0.00155 ± 9e−5 0.639 ± 0.025 0.278 ± 0.009
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method, this may or may not be signi�cant. Since SVM is a 
relatively slow classi�er, solution times are a minor portion 
of the total. For the logistic regression classi�er, solving 
the constrained optimization problem for the probabilities 
typically comprises the bulk of classi�cation times. Oddly, 
the solver for the 1 versus 1 method is the slowest by a 
wide margin, even though it’s a simple (unconstrained) 
linear solver [31]. This could potentially be improved by 
using a faster solver [37] or by employing the iterative 
method given in [31].

The two types of orthogonal ECCs were quite close in 
accuracy, with sometimes one taking the lead and some-
times the other. For the linear classi�er, the second type 

was always more accurate while the �rst type was faster. 
Since it admits zeros, the decision boundaries are usually 
simpler–see below. For both the SVM and the piecewise 
linear classi�er, skill scores were very similar, di�ering by 
at most 2.9% relative, 0.018 absolute, in U.C. and 17% in 
Brier score. For the SVM, the second type was faster while 
for the piecewise linear classi�er, the �rst type was faster. 
The explanation for this follows.

Unfortunately, there is one method that is consistently 
more accurate than the orthogonal ECCs and this is 1 ver-
sus 1. The orthogonal ECCs only beat 1 versus 1 three times 
out of 21 for the uncertainty coe�cient and one time out 
of 21 for the Brier score. Improvements in uncertainty 

Table 4  Solution time, 
uncertainty coe�cient and 
Brier score for seven di�erent 
datasets using �ve di�erent 
coding matrices: 1 versus 1, 
1 versus the rest, random, 
orthogonal with no zeros, and 
orthogonal with zeros

A piecewise linear classi�er is used as the base binary classi�er

Bold values are the best score for a given dataset between multi-class methods

Dataset Method Time (s) Sol. only (s) U.C. Brier score

Pendigits 1 versus 1 1.71 ± 0.08 0.45 ± 0.02 0.977 ± 0.005 0.0383 ± 0.003

1 versus rest 0.62 ± 0.02 0.088 ± 0.004 0.967 ± 0.006 0.0539 ± 0.0021

ECC 0.77 ± 0.02 0.14 ± 0.01 0.955 ± 0.011 0.0603 ± 0.0061

Ortho. 1 0.64 ± 0.01 0.0122 ± 0.0005 0.961 ± 0.006 0.0560 ± 0.0037

Ortho. 2 1.3 ± 0.1 0.21 ± 0.02 0.969 ± 0.007 0.0471 ± 0.0033

Sat 1 versus 1 1.97 ± 0.07 0.098 ± 0.02 0.783 ± 0.009 0.159 ± 0.005

1 versus rest 1.17 ± 0.03 0.035 ± 0.007 0.768 ± 0.012 0.168 ± 0.003

ECC 1.54 ± 0.05 0.045 ± 0.01 0.765 ± 0.013 0.165 ± 0.004

Ortho. 1 1.50 ± 0.04 0.010 ± 0.004 0.776 ± 0.009 0.162 ± 0.004

Ortho. 2 1.6 ± 0.2 0.047 ± 0.01 0.763 ± 0.009 0.169 ± 0.010

Segment 1 versus 1 0.170 ± 0.005 0.0353 ± 4e−4 0.911 ± 0.011 0.096 ± 0.005

1 versus rest 0.099 ± 0.0032 0.0104 ± 4e−4 0.883 ± 0.019 0.119 ± 0.004

ECC 0.113 ± 0.005 0.015 ± 0.001 0.888 ± 0.026 0.116 ± 0.010

Ortho. 1 0.099 ± 0.003 0.00190 ± 5e−5 0.896 ± 0.011 0.115 ± 0.005

Ortho. 2 0.15 ± 0.01 0.0160 ± 7e−4 0.910 ± 0.011 0.103 ± 0.007

Shuttle 1 versus 1 4.398 ± 0.093 0.90 ± 0.03 0.981 ± 0.010 0.0274 ± 0.0110

1 versus rest 2.51 ± 0.04 0.217 ± 0.006 0.967 ± 0.028 0.0315 ± 0.0083

ECC 2.89 ± 0.06 0.28 ± 0.02 0.972 ± 0.005 0.0313 ± 0.0044

Ortho. 1 2.63 ± 0.04 0.045 ± 0.001 0.976 ± 0.002 0.0261 ± 0.0010

Ortho. 2 3.7 ± 0.3 0.35 ± 0.03 0.976 ± 0.004 0.0270 ± 0.0043

Urban 1 versus 1 0.94 ± 0.02 0.023 ± 0.001 0.724 ± 0.019 0.172 ± 0.009

1 versus rest 0.23 ± 0.01 0.005 ± 0.001 0.698 ± 0.032 0.184 ± 0.011

ECC 0.314 ± 0.008 0.008 ± 0.001 0.692 ± 0.028 0.184 ± 0.006

Ortho. 1 0.31 ± 0.01 0.0012 ± 4e−4 0.717 ± 0.022 0.176 ± 0.008

Ortho. 2 0.44 ± 0.03 0.011 ± 0.001 0.719 ± 0.034 0.176 ± 0.015

Usps 1 versus 1 14.4 ± 0.2 0.41 ± 0.02 0.914 ± 0.005 0.075 ± 0.002

1 versus rest 6.2 ± 0.1 0.08 ± 0.01 0.897 ± 0.007 0.101 ± 0.002

ECC 7.5 ± 0.1 0.14 ± 0.02 0.881 ± 0.006 0.095 ± 0.003

Ortho. 1 7.3 ± 0.1 0.014 ± 0.004 0.897 ± 0.006 0.089 ± 0.002

Ortho. 2 12 ± 1 0.20 ± 0.02 0.899 ± 0.008 0.084 ± 0.003

Vehicle 1 versus 1 0.017 ± 0.005 0.0044 ± 1e−4 0.628 ± 0.038 0.273 ± 0.007

1 versus rest 0.017 ± 0.005 0.00156 ± 8e−5 0.607 ± 0.036 0.282 ± 0.007

ECC 0.02 ± 2.9e−06 0.00158 ± 5e−5 0.602 ± 0.067 0.283 ± 0.014

Ortho. 1 0.015 ± 0.005 0.00046 ± 1e−5 0.614 ± 0.026 0.281 ± 0.007

Ortho. 2 0.016 ± 0.005 0.0015 ± 1e−4 0.597 ± 0.041 0.287 ± 0.011
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coe�cient range from insigni�cant to 0.6% relative or 
0.004 absolute. The Brier score improved by 2.6%. Losses 
using linear classi�ers were the worst, peaking at 14.6% 
relative, 0.203 absolute, in uncertainty coe�cient and 50% 
in Brier score. The results for logistic regression provide a 
vivid demonstration as to why 1 versus 1 works so well: 
because it partitions the classes into “least-divisible units”, 
there are fewer training samples provided to each binary 
classi�er, the decision boundary is simpler and a simpler 
classi�er will work better

Nonetheless, there is a potential use case for our 
method. Although orthogonal ECCs are less accurate than 
1 versus 1, they don’t lose much. If they are also faster, 
then a speed improvement may be worth a small hit in 
accuracy for some applications [3]. While 1 versus 1 beats 
orthogonal ECCs by a healthy margin using linear classi-
�ers, the biggest loss in U.C. for SVM is only 1.5% relative, 
0.011 absolute. Losses for Brier score are somewhat worse, 
peaking at 6.5%. Unfortunately, because the speed of a 
multi-class SVM is proportional mainly to the total num-
ber of support vectors [3], orthogonal ECCs rarely provide 
much of a speed advantage. What is needed is a constant-
time–ideally very fast–non-linear classi�er. This is where 
the piecewise-linear classi�er comes in.

For uncertainty coe�cient, 1 versus 1 was always bet-
ter than orthogonal ECCs when using the piecewise-linear 
classi�er. Losses peak at 1.9 % relative, 0.017 absolute. For 
the Brier score, only one of the seven datasets showed an 
improvement over 1 versus 1 at 4.9 %. The worst loss was 
39 %. Improvements in speed range from 1.1 % to over 
100 %. Much of the speed di�erence is simply the result 
of using fewer binary classi�ers.

The purpose of the piecewise linear classifier is to 
improve the speed of the SVM. This speed increase is bet-
ter with orthogonal ECCs than with 1 versus 1. Orthogo-
nal ECCs applied to piecewise linear classi�ers are faster 
than the the fastest SVM for �ve out of the seven datasets. 
Speed often trades o� from accuracy. [3] provides a pro-
cedure for determining whether it’s worth switching algo-
rithms or not. A similar analysis will not be repeated here 
due to time and space considerations, however whether 
any improvement in speed is worth the consequent hit in 
accuracy will depend on the application.

5  Conclusions

As predicted by recent literature, solving for multi-class 
using orthogonal ECCs was more accurate than the 
equivalent problem using random ECCs. Unfortunately, 
they were still unable to beat one-versus-one as an e�ec-
tive multi-class method. The author’s own work suggests 

that the 1 versus 1 classi�cation almost always works well 
regardless of the dataset [35]. Hsu and Lin [8] �nd that 1 
versus 1 outperform both 1 versus rest and random ECCs 
on a test of ten di�erent datasets using SVM. One-versus-
one is also used, often exclusively, with many statistical 
classi�cation software packages.

There may still be room for further work, however, with 
the most likely fruitful line of inquiry being, �rst, on adap-
tive methods that use the data to �gure out how best to go 
from binary to multi-class. In [35], for instance, even though 
1 versus 1 was almost always most accurate, there was one 
dataset that bene�tted from a more customized treatment. 
Recent work has focused on both empirically-designed 
decision trees [5, 6, 39] as well as empirically-designed ECCs 
[10–12]. Decision trees are the easiest to tackle because 
there are fewer possibilities and because a tree can be built 
from either the top down or the bottom up.

A second potential area for future work is in multi-class 
methods integrated with the base binary classi�er, for 
instance with all the binary classi�ers being trained simul-
taneously [8]. It stands to reason that more integrated 
multi-class methods would tend to be more accurate than 
those, such the ones disussed in this note, that treat the 
binary classi�er as a “black box”, since there can now be 
sharing of information.

There is also a potential use case for orthogonal ECCs. 
If they are paired with a fast, non-linear binary classi�er 
with better than O(N) performance, where N is the num-
ber of training samples, orthogonal ECCs should almost 
always be faster than 1 versus 1 while giving up little in 
accuracy. The algorithm presented here that solves for 
the probabilities is simple and elegant and may suggest 
new directions in the search for more e�cient and accu-
rate multi-class classi�cation algorithms. Since it is fast it 
could help provide speed improvements for such applica-
tions as real-time computer vision, image processing, and 
voice-recognition.
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