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Abstract This article adopts a novel technique to numerical solution for fractional time-delay diffusion equa-
tion with variable-order derivative (VFDDEs). As a matter of fact, the variable-order fractional derivative
(VFD) that has been used is in the Caputo sense. The first step of this technique is constructive on the construc-
tion of the solution using the shifted Legendre–Laguerre polynomials with unknown coefficients. The second
step involves using a combination of the collocation method and the operational matrices (OMs) of the shifted
Legendre–Laguerre polynomials, as well as the Newton–Cotes nodal points, to find the unknown coefficients.
The final step focuses on solving the resulting algebraic equations by employing Newton’s iterative method.
To illustrate and demonstrate the technique’s efficacy and applicability, two examples have been provided.

Mathematics Subject Classification (2000) 34K28 · 65-XX · 35-XX

1 Introduction

In recent decades, fractional calculus (FC) has played a significant role in science and engineering, and
therefore, the scientists focused on its applications to model the real phenomena [2,23,24,29]. The fractional
derivative and integrals were recognized to be an efficient tool to describe the properties of complex dynamical
processes more accurately than the standard integer derivative and integral [14,17,21,27,38]. Fractional partial
differential equations (FPDEs) are a fascinating subject, because they are frequently used to explain a variety
of phenomena in real-world situations, including signal processing control theory, fluid flow, potential theory,
information theory, finance, and entropy [7,9,25,32].
Samko in 1993 [29] introduces the VOFDEs. These fractional operators can be considered as a generalization
of fractional operators of constant orders. Indeed, the variable-order FPDEs extend the fractional fixed-order
PDEs and occur in problems in the areas of physics and engineering [11,12,26,32,34].
Many models of specific processes or dynamical systems in real-world problems exhibit neutral delay, which
is always described using delay differential equations (DDEs) or time-delay systems [6,18,35]. Despite the
fact that FPDEs have been considered by a few researchers [16,22,37] and the references therein, there has
been no work done in the area of VFDPDEs to our knowledge. Therefore, this reason motivates us in this paper
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to propose a numerical technique to solve a class of VFDDEs using the collocation method and the OMs of
the shifted Legendre–Laguerre polynomials.
A considerable advantage of the method is that the shifted Legendre–Laguerre polynomial coefficients of the
solution are found very easily using computer programs. Also, according to the proposed model, the time of
the occurrence of an event does not have fix domain. Therefore, for approximating the time functions in the
problem, we apply the Laguerre polynomials, which defined in [0,∞).
Finally, using a few terms of shifted Legendre–Laguerre functions, approximate solution converges to the exact
solution.

2 Preliminaries

For the continuous function δ : [0, ∞) → (0, 1) and m, β ∈ N ∪ {0}. The variable-order fractional derivative
and integration definitions, along with some of the fundamental definitions and properties, are introduced in
this section and will be used throughout the paper [8,11,15,31,36].

Definition 2.1 TheRiemann–Liouville variable-order fractional integral operatorwith order n−1 < δ(ξ, τ ) ≤
n, τ > 0 of ν(ξ, τ ) is defined as

I δ(ξ,τ )
τ ν(ξ, τ ) = 1

�(δ(ξ, τ ))

∫ τ

0
(τ − ρ)δ(ξ,τ ) ν(ξ, ρ) dρ, (2.1)

where τ > 0 and �(.) is the Gamma function. According to the above definition, variable-order fractional
integration satisfies the following property:

I δ(ξ,τ )
τ τβ =

{
�(β+1)

�(β+δ(ξ,τ )+1) τ
β+δ(ξ,τ ), β > −1

0, otherwise.
(2.2)

Definition 2.2 [13] The fractional derivative of ν(ξ, τ ) in the Caputo experience is described as

0D
δ(ξ,τ )
τ ν(ξ, τ ) = I n−δ(ξ,τ )

τ Dn
τ ν(ξ, τ )

= 1

�(n − δ(ξ, τ ))

∫ τ

0
(τ − ρ)n−δ(ξ,τ )−1 ∂nν(ξ, ρ)

∂ρn
dρ,

(2.3)

for n − 1 < δ(ξ, τ ) ≤ n, τ > 0, and n ∈ Z+. It has the taking after valuable property

0D
δ(ξ,τ )
τ τm =

{
�(m+1)

�(m−δ(ξ,τ )+1) τ
m−δ(ξ,τ ), n ≤ m ∈ N

0, otherwise.
(2.4)

3 Function approximation

Consider the basis function 
m̃ñ(ξ, τ ) which is two variable function and important to deal with VFDPDEs,
and can be expanded as


m̃ñ(ξ, τ ) = Gm̃(ξ) �ñ(τ ), (ξ, τ ) ∈ � = [0, 1] × [0,∞), (3.1)

where m̃ = 0, 1, . . . , M̃, ñ = 0, 1, . . . , Ñ ,Gm̃(ξ) is the shifted Legendre polynomials defined on the interval
[0, 1] and �n(τ ) is the shifted Laguerre polynomials defined on the interval [0,∞).
The shifted Legendre–Laguerre polynomials are ⊥ w.r.t the weight function 
(ξ, τ ) = exp(−τ) in the �,
i.e., [3–5] ∫ ∞

0

∫ 1

0

(ξ, τ )
m̃ñ(ξ, τ )
i j (ξ, τ ) dξdτ = 1

2m̃ + 1
δm̃iδñ j , (3.2)

where δm̃i and δñ j are the Kronecker functions. Any function ν(ξ, τ ) ∈ L2(�) and may be decomposed as

ν(ξ, τ ) =
M̃∑

m̃=0

Ñ∑
ñ=0

νm̃ñ
m̃ñ(ξ, τ ) � GT(ξ)V �(τ), (3.3)
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where

νm̃ñ = (2m̃ + 1)
∫ ∞

0

∫ 1

0

(ξ, τ )ν(ξ, τ )
m̃ñ(ξ, τ )dξdτ (3.4)

and

V =

⎡
⎢⎢⎣

ν00 ν01 ν02 ... ν0Ñ
ν10 ν11 ν12 ... ν1Ñ
...

...
...

. . .
...

νM̃0 νM̃1 νM̃2 ... νM̃ Ñ

⎤
⎥⎥⎦ ,

G(ξ) = [G0(ξ), G1(ξ), . . .GM̃ (ξ)]T, �(τ ) = [�0(τ ), �1(τ ), . . . �Ñ (τ )]T. (3.5)

4 Pseudo-operational matrix of integer order integral of the shifted Legendre and Laguerre
polynomials

The purpose of this section is to find the OMs of the integer order quintessential of SLPs and the (S�Ps),
respectively, using Taylor polynomials (TPs) [1,28,30], which is described as follows:

Tk(ξ) = ξ k, k = 0, 1, . . . , M.

The SLPs may be expressed by means of the TPs as

G(ξ) = D1 T (ξ),

since

T (ξ) = [1, ξ, ξ2, . . . , ξM ]T, D1 = [d1ıj ](M+1)×(M+1),

d1ıj =
{

(−1)ı+j (ı+j)!
(ı−j)! (j !)2 , ı ≥ j

0, otherwise.
(4.1)

Then, by integrating G(ξ), the pseudo-operational matrix of the SLPs is obtained
∫ ξ

0
G(ρ) dρ =

∫ ξ

0
D1T (ρ)dρ = D1

∫ ξ

0
T (ρ)dρ

= ξD1�1T (ξ) = ξD1�1D
−1
1 G(ξ) = ξϑ1G(ξ),

where ϑ1 = D1�1D
−1
1 is the pseudo-operational matrix of the integer order integral of the SLPs and�1 is

defined by [10,20,33]

�1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 ... 0
0 1/2 0 ... 0
0 0 1/3 . . . 0
...

...
...

. . .
...

0 0 0 ... 1/(M + 1)

⎤
⎥⎥⎥⎥⎦ .

Similarly
�(τ) = D2T (τ ), (4.2)

where

d2ıj =
⎧⎨
⎩

(−1)ı (ı)!
(ı − j)! (j !)2 , ı ≥ j

0, otherwise.
(4.3)

Also, with the aid of integrating �(τ), we gain the operational matrix of integer integration of the (S�Ps) as∫ τ

0
�(ρ) dρ =

∫ τ

0
D2T (ρ)dρ = D2

∫ τ

0
T (ρ)dρ

= τD2�2T (τ ) = τD2�2D
−1
2 �(τ) = τϑ2�(τ),
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where ϑ2 = D2�2D
−1
2 is the pseudo-operational matrix of the integer order integral of the shifted (S�Ps) and

�2 is given by

�2 =

⎡
⎢⎢⎢⎢⎣

1 0 0 ... 0
0 1/2 0 ... 0
0 0 1/3 . . . 0
...

...
...

. . .
...

0 0 0 ... 1/(N + 1)

⎤
⎥⎥⎥⎥⎦ .

5 Pseudo-operational matrix of the variable-order fractional integral of the (S�Ps)

To obtain the operational matrix of the variable-order Riemann–Liouville fractional integration of order
δ(ξ, τ ) > 0 of the vector �(τ) defined in Eq. (3.5), we need to calculate first variable-order Riemann–Liouville
fractional integral of the TPs which is written as

I δ(ξ,τ )
τ T (τ ) = τ δ(ξ,τ ) γ

δ(ξ,τ )
N T (τ ), (5.1)

where

γ
δ(ξ,τ )
N =

⎡
⎢⎢⎢⎢⎣

�(1)
�(1+δ(ξ,τ ))

0 0 ... 0

0 �(2)
�(2+δ(ξ,τ ))

0 ... 0
...

...
...

. . .
...

0 0 0 ...
�(N+1)

�(N+1+δ(ξ,τ ))

⎤
⎥⎥⎥⎥⎦ .

Also, we need to find

I δ(ξ,τ )
τ τT (τ ) = τ 1+δ(ξ,τ ) γ̂

δ(ξ,τ )
N T (τ ), (5.2)

where

γ̂
δ(ξ,τ )
N =

⎡
⎢⎢⎢⎢⎣

�(2)
�(2+δ(ξ,τ ))

0 0 ... 0

0 �(3)
�(3+δ(ξ,τ ))

0 ... 0
...

...
...

. . .
...

0 0 0 ...
�(N+2)

�(N+2+δ(ξ,τ ))

⎤
⎥⎥⎥⎥⎦ .

Lemma 5.1 Let �(τ) be the (S�Ps) vector defined in (3.5) and q − 1 < δ(ξ, τ ) ≤ q ∈ Z+ The pseudo-
operational matrix of variable-order fractional integration of the vector �(τ) can be expressed as

I δ(ξ,τ )
τ �(τ ) = τ δ(ξ,τ ) �

δ(ξ,τ )
N T (τ ), (5.3)

where �
δ(ξ,τ )
N = D2 γ

δ(ξ,τ )
N D−1

2 .

Proof A direct application of the relations (4.2) and (5.1) is given as

I δ(ξ,τ )
τ �(τ ) = I δ(ξ,τ )

τ D2 T (τ ) = τ δ(ξ,τ )D2 γ
δ(ξ,τ )
N T (τ )

= τ δ(ξ,τ ) D2 γ
δ(ξ,τ )
N D−1

2 �(τ)

= τ δ(ξ,τ ) �
δ(ξ,τ )
N �(τ).


�
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6 The approach

This section is devoted to finding the numerical solution of the following VFDPDEs:

Dδ(ξ,τ )
τ ν(ξ, τ ) − η

∂2ν(ξ, τ )

∂ ξ2
= f (τ, ν(ξ, τ ), ν(ξ, τ − κ)),

0 ≤ ξ ≤ 1, 0 < τ ≤ ∞ (6.1)

subject to
ν(0, τ ) = ν0(τ ), ν(1, τ ) = ν1(τ ). (6.2)

and

ν(ξ, 0) = g0(ξ),
∂ν(ξ, 0)

∂τ
= g1(ξ). (6.3)

So that, ν(ξ, τ ) is an unknown function, the known functions ν0(τ ), ν1(τ ) , g0(ξ) and g1(ξ) are given contin-
uous functions. Also, q = max(ξ,τ )∈�{δ(ξ, τ )} and q ∈ Z+.

For this problem, assume that the easiest order of spinoff with appreciate to ξ and τ is 2. Therefore, we
obtain the following approximate functions as:

∂4ν(ξ, τ )

∂ξ2∂τ 2
� GT(ξ)U�(τ), (6.4)

where the unknown matrix U is defined as follows:

U =

⎡
⎢⎢⎣
u00 u01 u02 ... u0N
u10 u11 u12 ... u1N
...

...
...

. . .
...

uM0 uM1 uM2 ... uMN

⎤
⎥⎥⎦ .

By integrating of the above equation with (6.4) with respect to τ and using the initial condition (6.3), we have

∂3ν(ξ, τ )

∂ξ2∂τ
� τGT(ξ)Uϑ2�(τ) + ´́g1(ξ). (6.5)

Integrating (6.5) with respect to τ yields

∂2ν(ξ, τ )

∂ξ2
� τ 2GT(ξ)Uϑ2ϑ̂2�(τ) + τ ´́g1(ξ) + ´́g0(ξ), (6.6)

where ∫ τ

0
ρL(ρ)dρ =

∫ τ

0
ρD2T (ρ)dρ = D2

∫ τ

0
ρT (ρ)dρ

= τ 2D2�̂2T (τ ) = τ 2D2�̂2D
−1
2 �(τ) = τ 2ϑ̂2�(τ),

(6.7)

and

�̂2 =

⎡
⎢⎢⎢⎢⎣

1/2 0 0 ... 0
0 1/3 0 ... 0
0 0 1/4 . . . 0
...

...
...

. . .
...

0 0 0 ... 1/(N + 2)

⎤
⎥⎥⎥⎥⎦ .

Now, by integrating (6.6) with respect to ξ , we get

∂ν(ξ, τ )

∂ξ
� ξ τ 2GT(ξ)ϑT

1Uϑ2ϑ̂2�(τ) + τ(ǵ1(ξ) − ǵ0(0)) + (ǵ0(ξ) − ǵ0(0))

+ ∂ν(0, τ )

∂ξ
,

(6.8)
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and

ν(ξ, τ ) � ξ2 τ 2GT(ξ)ϑ̂T
1 ϑT

1U ϑ2ϑ̂2�(τ) + τ(g1(ξ) − g1(0) − ξ ǵ1(0))

+ (g0(ξ) − g0(0) − ξ ǵ0(0)) + ξ
∂ν(ξ, 0)

∂ξ
+ ν0(τ ),

(6.9)

where ∫ ξ

0
ρP(ρ)dρ =

∫ ξ

0
ρD1T (ρ)dρ = D1

∫ ξ

0
ρT (ρ)dρ

= ξ2D1�̂1T (ξ) = ξ2D1�̂1D
−1
1 G(ξ) = ξ2ϑ̂1G(ξ),

(6.10)

and

�̂1 =

⎡
⎢⎢⎢⎢⎣

1/2 0 0 ... 0
0 1/3 0 ... 0
0 0 1/4 . . . 0
...

...
...

. . .
...

0 0 0 ... 1/(M + 2)

⎤
⎥⎥⎥⎥⎦ .

Integrating (6.4) w.r.t. ξ and by the aid of the conditions (6.2) and (6.3) yields

∂3ν(ξ, τ )

∂ξ∂τ 2
� ξGT(τ )ϑT

1U�(τ) + ∂3ν(0, τ )

∂x∂τ 2
. (6.11)

∂2ν(ξ, τ )

∂τ 2
� ξ2GT(ξ)ϑ̂T

1 ϑT
1U�(τ) + ξ

∂3ν(0, τ )

∂ξ∂τ 2
+ ´́ν0(τ ). (6.12)

It is remarkable that ∂3ν(0,τ )

∂ξ∂τ 2
is unknown function, by integrating (6.11) from 0 to 1 with respect to ξ , we get

∂3ν(0, τ )

∂ξ∂τ 2
� ´́ν1(τ ) − ´́ν0(τ ) − STDT

1ϑT
1U�(τ),

where

∫ 1

0
ξGT(ρ)dξ =

∫ 1

0
ξT (ξ)DT

1 dξ = STDT
1 ,

and

S =
[
1

2
,
1

3
,
1

4
, . . .

1

M + 2

]T
.

Then
∂2ν(ξ, τ )

∂τ 2
� ξ2GT(ξ)ϑ̂T

1 ϑT
1U�(τ) + x[ ´́ν1(τ ) − ´́ν0(τ ) − STDT

1ϑT
1U�(τ)]

+ ´́ν0(τ ).

(6.13)

By integrating (6.13) for τ , we acquire to

∂ν(ξ, τ )

∂τ
� ξ2τGT(ξ)ϑ̂T

1 ϑT
1Uϑ2�(τ) + ξ [ν́1(τ ) − ν́0(τ ) − τ STDT

1ϑT
1Uϑ2�(τ)]

+ ν́0(τ ) + g1(τ ).

(6.14)
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6.1 The operational matrix of the delay term

In this subsection, the delay term ν(ξ, τ −κ)will be approximated using the operational matrix of the Laguerre
polynomials as follows:
consider [10]

ν(ξ, τ − κ) = GT(ξ)U�(τ − κ), (6.15)

where
�(τ − κ) = HPT(τ − κ), (6.16)

and

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)0

0! (00) 0 0 ... 0

(−1)0

0! (10)
(−1)1

1! (11) 0 ... 0

(−1)0

0! (20)
(−1)1

1! (21)
(−1)2

2! (22) ... 0

...
...

...
. . .

...

(−1)0

0! (N0 )
(−1)1

1! (N1 )
(−1)2

2! (N2 ) ...
(−1)N

N ! (NN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To get P(τ − k) by means of P(τ ), we must employ the next relation

P(τ ) = [1, τ, τ 2, . . . , τ N ], P(τ − κ) = [1, τ − κ, (τ − k)2, . . . (τ − k)N ].
P(τ − k) = P(τ )BT−k, (6.17)

where

BT−κ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(00)(−κ)0 (10)(−κ)1 (20)(−κ)2 · · · (N0 )(−κ)N

0 (11)(−κ)0 (21)(−κ)1 · · · (N1 )(−κ)N−1

0 0 (22)(−κ)0 · · · (N2 )(−κ)N−2

...
...

...
. . .

...

0 0 0 · · · (N2 )(−κ)0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using Eqs. (6.15)–(6.17), we have

ν(ξ, τ − κ) = GT(ξ)UBT−κH
T�(τ). (6.18)

6.2 Computation of VFD of ν(ξ, τ )

Here, we expand Dδ(ξ,τ )
τ , 0 < δ(ξ, τ ) ≤ 1 in terms of the (S�Ps), using Eq. (6.14), we get

Dδ(ξ,τ )
τ ν(ξ, τ ) = I 1−δ(ξ,τ )

τ

(
∂ν(ξ, τ )

∂τ

)

� ξ2τ 2−δ(ξ,τ )GT(ξ)ϑ̂T
1 ϑT

1U ϑ2 �̂
1−δ(ξ,τ )
N �(τ) + ξ I 1−δ(ξ,τ )

τ (ν́1(τ ) − ν́0(τ ))

− ξτ 2−δ(ξ,τ )STDT
1ϑT

1Uϑ2 �̂
1−δ(ξ,τ )
N �(τ) + �(1)

�(2 − δ(ξ, τ )
τ 1−δ(ξ,τ )g1(ξ)

+ I 1−δ(ξ,τ )
τ ν́0(τ ). (6.19)
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So that

I 1−δ(ξ,τ )
τ (τ�(τ )) � τ 2−δ(ξ,τ )�̂

1−δ(ξ,τ )
N �(τ),

since

�̂
1−δ(ξ,τ )
N = D2ϑ̂

1−δ(ξ,τ )
N D−1

2 .

Also, for 1 < δ(ξ, τ ) ≤ 2

Dδ(ξ,τ )
τ ν(ξ, τ ) = I 2−δ(ξ,τ )

τ (
∂2ν(ξ, τ )

∂τ 2
)

� ξ2τ 2−δ(ξ,τ )GT(ξ)ϑ̂T
1 ϑT

1U ϑ2 �̂
2−δ(ξ,τ )
N �(τ) + ξ I 2−δ(ξ,τ )

τ ( ´́ν1(τ ) − ´́ν0(τ ))

− ξτ 2−δ(ξ,τ )STDT
1ϑT

1Uϑ2 �̂
2−δ(ξ,τ )
N �(τ) + I 2−δ(ξ,τ )

τ
´́ν0(τ ). (6.20)

Substituting the approximations (6.6), (6.9) and (6.20) into Eq. (6.1) and the nodal points of Newton–
Cotes [19], then we get an algebraic system of equations and using the Newton’s iterative method. We get the
unknown matrix U.
Substituting U into Eq. (6.9), we attain the approximate solution of the problem (6.1)–(6.3).

7 Numerical examples

To demonstrate the ability of the proposed method for solving VFDDEs, two tested examples are given:

Example 7.1 Consider the VFDDEs (6.1) with η = 1, κ = 0.1 and subject to

ν(0, τ ) = 0, ν(1, τ ) = 0, τ ∈ [0,∞), (7.1)

ν(ξ, 0) = 10ξ2 (1 − ξ)2,
∂ν(ξ, 0)

∂τ
= 0, (7.2)

where

f (ν(ξ, τ ), ν(ξ, τ − κ)) = 10ξ2(1 − ξ)2
τ 2−δ(ξ,τ )

�(3 − δ(ξ, τ ))

−20(6ξ2 − 6ξ + 1)(τ 2 + 1) − 10(τ − 0.1 + 1)2ξ2(1 − ξ)2.

This problem has an exact solution ν(ξ, τ ) = 10ξ2(1 − ξ)2(τ 2 + 1) and

δ(ξ, τ ) = 9

5
− 0.005 cos(ξτ ) sin(x).

Figure 1 represents the AE of Example 7.1 for M=N=8 and distinct values of δ(ξ, τ ). Also, Fig.2 represents a
comparison between the exact solution and the approximate solution using the proposed method.

Example 7.2 Consider the VFDDEs (6.1) with η = 1, κ = 0.2 and subject to

ν(0, τ ) = 0, ν(1, τ ) = 0, τ ∈ [0,∞), (7.3)

ν(ξ, 0) = ∂ν(ξ, 0)

∂τ
= 5ξ (1 − ξ), (7.4)

where

f (ν(ξ, τ ), ν(ξ, τ − κ)) = 5ξ(1 − ξ)
τ 1−δ(ξ,τ )

�(2 − δ(ξ, τ ))
− 10τ + 5ξ(1 − ξ)(τ − 0.2 + 1).

This problem has a exact solution ν(ξ, τ ) = 5ξ(1 − ξ)(τ + 1) and

δ(ξ, τ ) = 2 − 0.2 cos(τ ) sin(ξ).

Figure 3 represents AE of Example 7.2 for M = N = 8 and distinct values of δ(ξ, τ ). A comparison between
the exact and the approximate solutions of Example 7.2 is given in Fig. 4.
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(a) Absolute Error(AE) δ(ξ, τ) = 9
5 −

0.005 cos(τξ) sin(ξ)
(b) Absolute Error(AE) δ = 1.7

Fig. 1 AE of Example 7.1

(a) exact solution (b) Approximate solution

Fig. 2 Approximate and exact solution of Example 7.1

(a) Absolute Error δ(ξ, τ) = 2− 0.2 cos(τ)sin(ξ) (b) AbsoluteError δ(ξ, τ) = 1 + 1
2sin(τξ)exp(−τ)

Fig. 3 AE of Example 7.2

123



Arab. J. Math.

(a) exact solution (b) Approximate solution

Fig. 4 Approximate and exact solution of Example 7.2

8 Conclusion

In this paper, we formulate the collocation method and the OMs of shifted Legendre–Laguerre polynomials to
approximate the solutions of VFDDEs. The proposed method transform the VFDDEs to system of algebraic
equations using the nodal points of Newton–Cots. By solving the algebraic system using Newton’s iterative
methods, numerical solutions are obtained. The numerical results approved that the proposedmethod is accurate
and has very high accuracy as M and N increased.
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