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Abstract. Two-player games are a useful formalism for the synthesis of reactive
systems. The traditional approach to solving such games iteratively computes
the set of winning states for one of the players. This requires keeping track of
all discovered winning states and can lead to space explosion even when using
efficient symbolic representations. We propose a new method for solving reach-
ability games. Our method works by exploring a subset of the possible concrete
runs of the game and proving that these runs can be generalised into a winning
strategy on behalf of one of the players. We use counterexample-guided back-
tracking search to identify a subset of runs that are sufficient to consider to solve
the game. We evaluate our algorithm on several families of benchmarks derived
from real-world device driver synthesis problems.

1 Introduction

Two-player games are a useful formalism for the synthesis of reactive systems, with
applications in software [15] and hardware design [4], industrial automation [7], etc.
We consider finite-state reachability games, where player 1 (the controller) must force
the game into a goal region given any valid behaviour of player 2 (the environment).

The most successful method for solving two-player games is based on the control-
lable predecessor (Cpre) operator [14], which, given a target set of states, computes the
set from which the controller can force the game into the target set in one round. Cpre
is applied iteratively, until a fixed point is reached. The downside of this method is that
it keeps track of all discovered winning states, which can lead to a space explosion even
when using efficient symbolic representation such as BDDs or DNFs.

We propose a new method for solving reachability games. Our method works by
exploring a subset of the concrete runs of the game and proving that these runs can be
generalised into a winning strategy on behalf of one of the players. In contrast to the
Cpre-based approach, as well as other existing synthesis methods, it does not represent,
in either symbolic or explicit form, the set of states visited by the winning strategy.
Instead, it uses counterexample-guided backtracking search to identify a small subset
of runs that are sufficient to solve the game.

We evaluate our algorithm on several benchmarks derived from driver synthesis
problems. We find that it outperforms a highly optimised BDD-based solver on the
subset of benchmarks that do not admit a compact representaion of the winning set,
thus demonstrating the potential of the new approach.
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2 Related work

Our algorithm is inspired by the RAReQS QBF solver [10]. RAReQS treats a QBF
formula in the prenex normal form as a game between the universal and the existential
player. It uses counterexample-guided backtracking search to efficiently expand quan-
tifier blocks. We build on the ideas of RAReQS, to construct a domain-specific solver
for reachability games that takes advantage of the structure of such games.

One alternative to the Cpre-based method encodes the game as a quantified boolean
formula (QBF), where controller and environment moves are encoded as alternating ex-
istential and universal quantifiers [2]. More recently several SAT-based synthesis meth-
ods have been proposed [13, 5]. Similarly to Cpre-based techniques, they incrementally
compute the set of winning (or losing) states, in the DNF form, and refine it using a
SAT solver. Sabharwal et al. [16] explore the duality of games and QBF formulas and
propose a hybrid CNF/DNF-based encoding of games that helps speed up QBF solving.
The bounded synthesis method [11] aims to synthesise a controller implementation with
a bounded number of states. In the present work, we impose a bound on the number of
rounds in the game, which is necessary to encode it into SAT.

Our method uses counterexample-guided abstraction refinement to identify poten-
tially winning moves of the game. Several abstraction refinement algorithms for games
have been proposed in the literature [9, 1]. Our algorithm is complementary to these
techniques and can be combined with them.

The idea of solving games by generalising a winning run into a complete strategy
has been explored in explicit-state synthesis [6]. In contrast to these methods, we use
a SAT solver to compute and generalise winning runs symbolically. This enables us to
solve games with very large state spaces, which is not possible using explicit search,
even when performing it on the fly.

3 Background

Games and strategies A reachability game G = (S, L., L,,I,O,d) consists of a
set of states .S, controllable actions L., uncontrollable actions L,,, initial state I €
S, aset O € 25 of goal states, and a transition function & : (S, L., L,) — S. The
game proceeds in a sequence of rounds, starting from an initial state. In each round,
the controller picks an action ¢ € L.. The environment responds by picking an action
u € L,, and the game transitions to a new state 0 (s, ¢, u).

A controller strategy m : S — L. associates with every state a controllable action
to play in this state. Given a bound n on the number of rounds, 7 is a winning strategy
in state s at round ¢ < n if any sequence (s;, u;, Si+1, Uit1, -, Sn), such that s; = s
and sp41 = 0(sk, m(sg), u), visits the goal set: 3j € [i,n].s; € O. A state-round pair
(s, 1) is winning if there exists a winning strategy in s at round i. A state-round-action
tuple (s, 7, ¢) is winning if there does not exist a spoiling strategy for s and ¢ at round ¢.

In this paper we are concerned with the problem of solving the game, i.e., checking
whether the initial state I is winning at round O for the given bound n. Note that bound-
ing the number of rounds to reach the goal is a conservative restriction: any winning
strategy in the bounded game is winning in the unbounded game. If, on the other hand,
a winning strategy for a bound n cannot be found, n can be relaxed.

Symbolic games In this paper we deal with symbolic games defined over three sets of
boolean variables X, Y., and Y,,. Each state s € S represents a valuation of variables X,
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Fig. 1: Abstract game tree.

each action ¢ € L. (u € L,,) represents a valuation of variables Y. (Y, ). The transition
relation § of the game is given as a boolean formula A(X, Y., Y,,, X') over state, action,
and next-state variables.

4 Abstract game trees

Our algorithm constructs a series of abstractions of the input game. An abstraction re-
stricts actions available to one of the players. Specifically, we consider abstractions
represented as trees of actions, referred to as abstract game trees. Together with a state-
round pair (s, i), an abstract game tree defines an abstract game played from this state.
Figure 1a shows an example abstract game. In the abstract game, the environment player
is required to pick actions from the tree, starting from the root node. After reaching a
leaf, it continues playing unrestricted. The tree in Figure la restricts the initial envi-
ronment action to the set {a,d}. After choosing action d, the environment reaches a
leaf of the tree and continues playing unrestricted. Alternatively, after choosing a, the
environment is required to play action b in the next round.

Nodes of an abstract game tree are uniquely identified by the list of edge labels
along the path from the root to the node. We identify an abstract game tree with the set
of its nodes. For example, the tree in Figure la can be written as {(), (d), (a), (a,b)}.
We denote leaves(T) the subset of leaf nodes of a tree 7.

A partial strategy Strat : T — L. assigns a controllable action to be played
in each node of the abstract game tree. Figure 1b shows an example partial strategy.
The controller starts by choosing action «. If the environment plays a, the controller
responds with 3 in the next round, and so on. Given a partial strategy Strat, we can
map each leaf [ of the abstract game tree to (s',i') = outcome((s, i), Strat, ) obtained
by playing all controllable and uncontrollable actions on the path from the root to the
leaf.

5 The algorithm

Figure 2 and Algorithm 1 illustrate our algorithm, called EVASOLVER. The algorithm
takes a concrete game G as an implicit argument. In addition, it takes a state-round
pair (s,7) and an abstract game tree ABSGT and returns a winning partial strategy
for it, if one exists. The initial invocation of the algorithm takes the initial state (I, 0)
and an empty abstract game tree (). The empty game tree does not constrain opponent
moves, hence solving such an abstraction is equivalent to solving the original concrete
game. The algorithm is organised as a counterexample-guided abstraction refinement
(CEGAR) loop. The first step of the algorithm uses the FINDCAND function, described
in detail below, to come up with a candidate partial strategy for ABSGT. If it fails to
find a strategy, this means that no winning partial strategy exists for ABSGT. If, on
the other hand, a candidate partial strategy is found, we need to verify if it is indeed
winning for ABSGT.



Algorithm 1 CEGAR-based algorithm for solving games

function EVASOLVER((s, 2), ABSGT) function FINDCAND((s, i), ABSGT)

output a winning partial strategy if there is one; () otherwise & Njmi n—10(85,¢5u5,841)A
CAND < FINDCAND((s, 7), ABSGT) Vi ., O(s5)
// FINDCAND returns a precise solution fori = n — 1 for | € ljeiaé.)-e.s’(ABSGT) do

t{ i = {‘1,/ -1 ;eturl}FCAND // e are environment actions along the path from
BSGT' <+ ABSG // the root to l in ABSGT

loop let] = (e;
if CAND = () return () p(_/\(e“””sr):e

COUNTEREX <— VERIFY((s, i), ABSGT, CAND) - m=i...r DA (5: = 8) A
if COUNTEREX = NU LL return CAND ¢1  rename(¢, ) A (s = s) A p

else sol <= SAT(Acicaves(ansar) 1)
ABSGT’ + REFINE(ABSGT’, COUNTEREX) if sol = unsat return ()
CAND < EVASOLVER((s, i), ABSGT') return {(v, c}|v € nodes(ABSGT), ¢ = sol |c, }
end loop end function
d functi
end function function VERIFY((s, 7), ABSGT, CAND)
function REFINE(ABSG)T, (I, SPOILING)) for l<5€/ li?;llfso(qiiégglzasfg)) ioBsGT )
let! = (e;,...,er ) = outcome((s, v), ABSGT,
return ABSGT U {(e;, . . ., e;-), SPOILING(())) } SPOILING «— EVASOLVER((s', %), 0)
end function if SPOILING # 0 return (I, SPOILING)
return NU L L // no spoiling strategy found
end function
(s,1),ABSGT
The VERIFY procedure searches for a T e i i)
spoiling counterexample strategy in each [EvaSomverjeameny VE;;FYI( [Rerive]
leaf of the candidate partial strategy by T AT T
calling the dual solver EVASOLVER. The Lose WIN'(RETURN CANDIDATE)
dual solver solves a safety game on be- Fig. 2: CEGAR loop of Algorithm 1

half of the environment player, where the environment must stay away from the goal
for a bounded number of steps. Figure 1c¢ shows a spoiling strategy discovered in one
of the leaves of the abstract game tree. The dual algorithm is analogous to the primary
solver. We do not present its pseudocode due to limited space. If the dual solver can
find no spoiling strategy at any of the leaves, then the candidate partial strategy is a
winning one. Otherwise, the REFINE function extracts the first move of the spoiling
strategy (i.e., the move that the strategy plays in the root node () of the abstract game
tree constructed by the dual solver) and uses it to refine the abstract game by adding a
new edge labelled with this move to the leaf (Figure 1d).

We solve the refined game by recursively invoking EVASOLVER on it. If no partial
winning strategy is found for the refined game then there is also no partial winning
strategy for the original abstract game, and the algorithm returns a failure. Otherwise,
the partial strategy for the refined game is projected on the original abstract game by
removing the leaves introduced by refinements. The resulting partial strategy becomes
a candidate strategy to be verified at the next iteration of the loop.

The loop terminates, in the worst case, after refining the game with all possible en-
vironment actions. However, to achieve good performance, the algorithm must be able
to solve the game using a small number of refinements. The FINDCAND procedure
plays the key role in achieving this. We use the following criterion to find potentially
winning candidates efficiently: we search for a partial strategy such that after playing
the strategy from the root to any of the leaves of the abstract game tree, we can choose
a sequence of follow-up moves for both players taking the game into the goal region.



Effectively, we try to win the game under the assumption that the players cooperate
to reach the goal rather than competing with each other. If such an optimistic partial
strategy does not exist, then we cannot win the abstract game. On the other hand, if we
do find such a strategy, it is likely to either be a winning one or to produce a useful
counterexample that will speed up the search for a winning strategy. This is based on
the observation that in industrial synthesis problems the environment typically repre-
sents a hardware or software system designed to allow efficient control. Environment
actions model responses to control signals, which require appropriate reaction from the
controller, but are not aimed to deliberately counteract the controller. Unlike in truly
competitive games like chess, a straightforward path to the goal is likely to be a good
first approximation of a correct winning strategy.

We find a candidate partial strategy that satisfies the above criterion using a SAT
solver, as shown by the FINDCAND function. We unroll the transition relation § into
a formula ¢ that encodes a winning run of the game starting from the ¢th round. For
each leaf [ of the abstract game tree with the path from the root to the leaf labelled
with environment actions (e;,...,e,), we construct a formula ¢; describing a win-
ning run through the leaf. The formula consists of three conjuncts. The first conjunct
rename(¢,l) renames variables in ¢ so that the resulting formulas for leaves sharing a
common edge of the abstract game tree share the corresponding action and state vari-
ables, while using separate copies of all other variables. The second and third conjuncts
fix initial state and environment actions along the path from the root to the leaf. We
invoke a SAT solver to find assignments to state and action variables simultaneously
satisfying all leaf formulas ¢;. If this formula is unsatisfiable, then state (s, ) is losing
and the algorithm returns {); otherwise, it constructs a spoiling strategy by extracting
values of controllable moves in nodes of the abstract game tree from the solution re-
turned by the SAT solver.

Correctness of EVASOLVER follows from the following properties of the algorithm:
(1) the counterexample-guided search strategy is complete, i.e., it is guaranteed to find
a winning strategy, if one exists, possibly after exploring all possible runs of the game,
and (2) our SAT encoding of the game is sound, i.e., if the SAT formula generated by
FINDCAND is unsatisfiable then there does not exist a winning strategy from state (s, ).

Memoising losing states Our implementation of EVASOLVER uses an important opti-
misation. Whenever the SAT solver invocation in FINDCAND returns unsat, we obtain
a proof that s is a losing state for the controller. We generalise this fact by extracting a
minimal unsatisfiable core from the SAT solver and projecting it on state variables x.
This gives us a cube of states losing for the controller. We modify the winning run for-
mula ¢ to exclude this cube from a winning run. This guarantees that candidate partial
strategies generated by the algorithm avoid previously discovered losing states.

6 Evaluation

We evaluate our algorithm on four families of benchmarks derived from driver synthesis
problems. These benchmarks model the data path of four I/O devices in the abstracted
form. In particular, we model the transmit buffer of an Ethernet adapter, the send queue
of a UART serial controller, the command queue of an SPI Flash controller, and the
IDE hard disk DMA descriptor list. Models are parameterised by the size of the cor-
responding data structure. Specifications are written in a simple input language based
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Fig. 3: Performance of different solvers on four parameterised benchmarks. The X -axis
shows the number of state vars in the game (determined by the benchmark parameter).

on the NuSMYV syntax [8]. The transition relation of the game is given in the form of
variable update functions z := f(X,Y.,Y,), one for each state variable z € X.

We compare our solver against two existing approaches to solving games. First,
we encode input specifications as QBF instances and solve them using two state-of-
the-art QBF solvers: RAReQS [10] and depgbf [12], having first run them through
the bloqqer [3] preprocessor. Second, we solve our benchmarks using the Termite [17]
BDD-based solver that uses dynamic variable reordering, variable grouping, transition
relation partitioning, and other optimisations.

Our experiments, summarised in Figure 3, show that off-the-shelf QBF solvers are
not well-suited for solving games. Although our algorithm is inspired by RAReQS, we
achieve much better performance, since our solver takes into account the structure of
the game, rather than treating it as a generic QBF problem.

All four benchmarks have very large sets of winning states. Nevertheless, in the
UART and IDE benchmarks, Termite is able to represent winning states compactly with
only a few thousand BDD nodes. It scales well and outperforms EVASOLVER on these
benchmarks. However, in the two other benchmarks, Termite does not find a compact
BDD-based representation of the winning set. EVASOLVER outperforms Termite on
these benchmarks as it does not try to enumerate all winning states.

Detailed performance analysis shows that abstract game trees generated in our
benchmarks had average branching factors in the range between 1.03 and 1.2, with
the maximal depth of the trees ranging from 3 to 58. This confirms the the key premise
behind the design of EVASOLVER, namely, solving real-world synthesis problems re-
quires considering only a small number of opponent moves in every state of the game.

7 Conclusion

We presented a method for solving reachability games without constructing the game’s
winning set, and demonstrated that this method can be more efficient than conventional
approaches. Our ongoing work concentrates on further performance improvements as
well as on applying the new technique to a broader class of omega-regular games.

Our ongoing work focuses on further improving the performance of EVASOLVER
via optimised CNF encodings of abstract games, stronger memoisation techniques, and
additional domain-specific heuristics for computing candidate strategies.
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