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Abstract. The synthesis of reactive systems requires the solution of
two-player games on graphs with ω-regular objectives. When the objec-
tive is specified by a linear temporal logic formula or nondeterministic
Büchi automaton, then previous algorithms for solving the game require
the construction of an equivalent deterministic automaton. However, de-
terminization for automata on infinite words is extremely complicated,
and current implementations fail to produce deterministic automata even
for relatively small inputs. We show how to construct, from a given non-
deterministic Büchi automaton, an equivalent nondeterministic parity
automaton P that is good for solving games with objective P. The main
insight is that a nondeterministic automaton is good for solving games
if it fairly simulates the equivalent deterministic automaton. In this way,
we omit the determinization step in game solving and reactive synthe-
sis. The fact that our automata are nondeterministic makes them sur-
prisingly simple, amenable to symbolic implementation, and allows an
incremental search for winning strategies.

1 Introduction

One of the most ambitious goals in formal methods is to automatically pro-
duce designs from specifications, a process called synthesis. We are interested in
reactive systems, i.e., systems that continuously interact with other programs,
users, or their environment (like operating systems or CPUs). The complexity
of a reactive system does not arise from computing a complicated function but
rather from the fact that it has to be able to react to all possible inputs and
maintain its behavior forever. There are two (essentially equivalent) approaches
to solving the synthesis problem. The first is by reducing it to the emptiness
problem of tree automata [Rab72], and the second, by reducing it to solving
infinite-duration two-player games [BL69]. We consider the second view. The
two players in the game are the system and its environment. The environment
tries to violate the specification and the system tries to satisfy it. The system
wins the game if it has a strategy such that all infinite outcomes satisfy the
specification. The winning strategy, the way in which the system updates its
internal variables, is then translated into an implementation that satisfies the
specification when interacting with any possible environment.

More formally, a game is a directed graph where the vertices are partitioned
between player 0 (system) and player 1 (environment). A play proceeds by mov-
ing a token along the edges of the graph. If the token is on a vertex of player
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0, she gets to choose to which successor to move the token. If the token is on a
vertex of player 1, she chooses the successor. When they continue in this fashion
ad infinitum, the token passes an infinite sequence of vertices. We determine who
wins the play by looking at this infinite outcome. We define winning plays either
by conditions (such as parity or Rabin conditions) on the locations that occur
infinitely often along a play, or by recognizers (such as linear temporal logic
formulas or Büchi automata) of infinite words over the alphabet of locations. In
either case, we are interested in solving the game. That is, we wish to determine
from which locations of the game, player 0 has a winning strategy, i.e., a way to
resolve her decisions so that the resulting plays are winning. For example, when
the winning condition is a parity condition [EJ91], the problem of solving the
game is in NP∩co-NP [EJS93] and the current best complexity for solving such

games is O(t·gb k

2
c), where g, t, and k are the number of locations and transitions

in the game and priorities in the parity condition, respectively [Jur00,JV00].

In the context of synthesis, we consider an interaction of the system and the
environment as winning for the system if it satisfies the specification. Thus, it
makes more sense to consider games where the winning condition is given as a
linear temporal logic (LTL) formula or nondeterministic Büchi word automaton

(NBW). The way to solve such games is by reducing the problem to the solution
of simpler games such as parity or Rabin. As part of this reduction, before taking
the product of the game with the winning condition, we have to construct a de-
terministic automaton for the winning condition. This is because every sequence
of choices made in the game has to satisfy the specification.

The first problem we encounter when we come to determinize automata on in-
finite words is that the Büchi acceptance condition is not strong enough [Lan69].
We have to use stronger acceptance conditions like parity or Rabin. Indeed, Safra
suggested a determinization construction that takes an NBW and constructs a
deterministic Rabin automaton [Saf88]. Recently, Piterman suggested a variant
of this construction with a smaller number of states that results in a deter-
ministic parity automaton [Pit06]. Specifically, starting from an NBW with n
states, he constructs a deterministic parity automaton with n2n+2 states and
2n priorities. When we combine the game with the deterministic automaton,
we get a game with g·n2n+2 locations and t·n2n+2 transitions, where g and t
are the number of locations and transitions in the original game. The over-
all complexity of solving this game, therefore, is O(t·n2n+2·(g·n2n+2)n). This
theory is not applicable in practice, because determinization is extremely com-
plex. Every state of the deterministic automaton is a tree of subsets of states
of the original automaton. A transition moves states between different nodes
of the tree, adds and removes nodes, and changes the names of the nodes.
Only recently, 16 years after the publications of Safra’s construction, it was
finally implemented [THB95,KB05,ATW05]. These implementations are lim-
ited to determinize automata with approximately 10 states1. One possible solu-
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the price of giving the nodes dynamic names, which may prove hard to implement.



tion is to consider restricted specifications that can be handled more efficiently
(cf. [RW89,RA03,KPP05]). Another possible solution is to use nondetermin-
istic specification automata, which make the approach sound but incomplete
[HRS05,JGB05].

Here we do pursue complete solutions for general ω-regular specifications.
While we cannot improve the worst-case complexity of synthesis, it is desirable
to have an algorithm that performs well in many cases that occur in practice,
even if they involve a large number of states. In particular, we wish to use
two heuristics that have had great success in formal verification, but cannot be
used when applying determinization. The first is to reason symbolically about
sets of states, rather than explicitly about individual states [McM93]. Using a
symbolic state representation in Safra’s construction seems difficult. Second, we
wish to be able to find a winning strategy in a game that uses a small amount of
memory, if such a strategy exists. The memory used by a strategy corresponds to
the number of states of a parity or Rabin specification automaton. Thus, small
memory is not possible if we construct the deterministic automaton as the first
step of the synthesis algorithm. Instead, we want to incrementally increase, as
much as necessary, the memory provided to strategies.

For this purpose we propose a general solution that does not involve deter-
minization. We define good for games automata (GFG, for short), which are the
class of nondeterministic automata that can be used in the context of games. The
main idea is that if an automaton can resolve its nondeterminism in a stepwise
fashion, then it is good enough for reasoning about games. The formal definition
of a GFG automaton considers a game played on the structure of the automaton
in which the opponent chooses input letters, one at a time, and the automa-
ton resolves its nondeterminism for each input letter. The automaton wins if
whenever the infinite word chosen by the opponent is in the language of the au-
tomaton, then the run chosen by the automaton is accepting. The automaton is
GFG if it has a winning strategy in this game. We show that a nondeterministic
specification automaton with this property can indeed be used for solving games
without prior determinization. That is, in the product of a game with a GFG
automaton, the winning states correspond to the winning states of the original
game. In order to check if an automaton is GFG, we give an alternative charac-
terization: an automaton is GFG iff it fairly simulates [HKR97] a deterministic
automaton for the same language.

Our main contribution is a construction that takes an NBW and produces a
GFG automaton for the same language. Given an NBW with n states, we con-
struct a nondeterministic parity automaton with 2n·n2n states and 2n priorities.
The resulting overall complexity is O(t·(2n·n2n)2·(g·2n·n2n)n) for synthesis. We
generalize the n! lower bound on determinization [Mic88] to the size of GFG
automata, establishing that our construction is essentially optimal.

The most important feature of our nondeterministic GFG automaton is its
simplicity. The automaton basically follows n different sets of subsets of the orig-
inal automaton. This leads to a simple structure and even simpler transitions,
which are amenable to symbolic implementations. Another attractive advantage



of this approach is that it offers a natural hierarchy of nondeterministic au-
tomata of increasing complexity that converge to the full GFG solution. That
is, given a game and an NBW specification automaton, we can try first solving
the game with a small automaton for the winning condition. If we succeed, we
are done, having found a winning strategy with small memory for the particu-
lar game we are solving. If we fail, we increase the size of the automaton (and
thus the memory size we consider), and try again. In the worst case, we get
to the full GFG construction, whose memory suffices to win every game with
that winning condition. If the GFG automaton fails, then we know that the
original specification is not realizable. In Section 6, we give a family of game
graphs and winning conditions for which this incremental approach indeed leads
to considerable savings.

In addition, simple modifications of our construction lead to nondeterminis-
tic parity automata whose number of states ranges between n2n and n3n. Us-
ing the smallest possible automaton, the theoretical upper bound reduces to
O(t·(n2n)2·(g·n2n)n), which almost matches the upper bound using the deter-
ministic automaton. Recall that our automata are intended for symbolic imple-
mentation. Thus, it makes no sense to count the exact upper bound but rather
to check which variant of the construction works best in practice. In addition,
our hope for synthesis is that in many practical cases it would perform better
than the worst-case theoretical upper bound. Using our construction it is possi-
ble to search for smaller strategies. Indeed, even for small values of n the time
complexity O(n2n2

) is impossible.
Recently, Kupferman and Vardi suggested another construction that avoids

determinization in certain situations [KV05]. Their algorithm shows how to solve
the emptiness problem of alternating parity tree automata through a reduction
to the emptiness problem of nondeterministic Büchi tree automata. In order to
use their construction to solve games, one has to be able to express the winning
condition of the opponent by an NBW. Thus, their algorithm can be applied to
synthesis for LTL specifications, because given an LTL winning condition, we
negate the LTL formula to get the winning condition of the opponent. On the
other hand, when the winning condition is given as an NBW, there is no easy
way to complement it, and their algorithm cannot be applied. Furthermore, the
worst-case complexity of their algorithm may be quadratically worse, and the
size of the produced strategy may be exponentially larger than our algorithm.

2 Preliminaries

Nondeterministic Automata. A nondeterministic automaton is N = 〈Σ, S, δ, s0, α〉,
where Σ is a finite alphabet, S is a finite set of states, δ : S ×Σ → 2S is a tran-
sition function, s0 ∈ S is an initial state, and α is an acceptance condition to
be defined below. A run of N on a word w = w0w1 . . . is an infinite sequence of
states t0t1 . . . ∈ Sω such that t0 = s0 and for all i ≥ 0, we have ti+1 ∈ δ(ti, wi).
For a run r = t0t1 . . ., let inf (r) = {s ∈ S | s = ti for infinitely many i’s} be the
set of all states occurring infinitely often in the run. We consider two acceptance



conditions. A parity condition α is a partition {F0, . . . , Fk} of S. We call k the
index of the parity condition. The run r is accepting according to the parity
condition α if for some even i we have inf (r)∩Fi 6= ∅, and for all j < i, we have
inf (r)∩Fj = ∅. That is, the minimal set that is visited infinitely often is even. A
Büchi condition is a set F ⊆ S of states. The run r is accepting according to the
Büchi condition F if inf (r)∩F 6= ∅. That is, the run visits infinitely often states
from F . A word w is accepted by N if there exists some accepting run of N over
w. The language of L(N ) is the set of words accepted by N . Two automata N1

and N2 are equivalent if they have the same language, i.e., L(N1) = L(N2).
Given a set S′ ⊆ S of states and a letter σ ∈ Σ, we denote by δ(S ′, σ) the

set
⋃

s∈S′ δ(s, σ). The automaton N is deterministic if for every state s ∈ S and
letter σ ∈ Σ, we have |δ(s, σ)| = 1. In that case we write δ : S × Σ → S.

We use the acronyms NBW, DPW, and NPW to denote automata. NBW
stands for nondeterministic Büchi word automaton, DPW for deterministic par-
ity word automaton, and NPW for nondeterministic parity word automaton.

Games. A game is G = 〈V, V0, V1, ρ, W 〉, where V is a finite set of locations, V0

and V1 are a partition of V into locations of player 0 and player 1, respectively,
ρ ⊆ V × V is a transition relation, and W ⊆ V ω is a winning condition.

A play in G is a maximal sequence π = v0v1 . . . of locations such that for all
i ≥ 0, we have (vi, vi+1) ∈ ρ. The play π is winning for player 0 if π ∈ W , or π
is finite and the last location of π is in V1 (i.e., player 1 cannot move from the
last location in π). Otherwise, player 1 wins.

A strategy for player 0 is a partial function f : V ∗×V0 → V such that if f(π·v)
is defined, then (v, f(π·v)) ∈ ρ. A play π = v0v1 . . . is f -conform if whenever
vi ∈ V0, we have vi+1 = f(v0 . . . vi). The strategy f is winning from a location
v ∈ V if every f -conform play that starts in v is winning for player 0. We say
that player 0 wins from v if she has a winning strategy from v. The winning

region of player 0 is the set of locations from which player 0 wins. We denote the
winning region of player 0 by W0. Strategies, winning strategies, winning, and
winning regions are defined dually for player 1. We solve a game by computing
the winning regions W0 and W1. For the kind of games considered in this paper,
W0 and W1 form a partition of V [Mar75].

We consider parity winning conditions. A parity condition α is a partition
{F0, . . . , Fk} of V . The parity condition α defines the set W of infinite plays in
G such that the minimal set that is visited infinitely often is even, i.e., π ∈ W
if there exists an even i such that inf (π) ∩ Fi 6= ∅, and for all j < i, we have
inf (π) ∩ Fj = ∅. The complexity of solving parity games is as follows:

Theorem 1. [Jur00] Given a parity game G with g locations, t transitions, and

index k, we can solve G in time O(t·gb k

2
c).

We are also interested in more general winning conditions. We define W
using an NBW over the alphabet V (or some function of V ). Consider a game
G = 〈V, V0, V1, ρ, W 〉 and an NBW N over the alphabet V such that W =
L(N ). We abuse notation and write G = 〈V, V0, V1, ρ,N〉, or just G = 〈V, ρ,N〉.
The common approach to solving such games is by reducing them to parity



games. Consider a game G = 〈V, V0, V1, ρ, W 〉 and a deterministic automaton
D = 〈V, S, δ, s0, α〉, whose alphabet is V such that L(D) = W . We define the
product of G and D to be the game G × D = 〈V × S, V0 × S, V1 × S, ρ′, W ′〉
where ((v, s), (v′, s′)) ∈ ρ′ iff (v, v′) ∈ ρ and s′ = δ(s, v) and W ′ contains all
plays whose projections onto the second component are accepting according to
α. A monitor for G is a deterministic automaton D such that for all locations v
of G, player 0 wins from v in G iff player 0 wins from (v, s0) in G ×D.

The common way to solve a game G = 〈V, ρ,N〉 where N is an NBW, is by
constructing an equivalent DPW D [Pit06] and solving the product game G×D.
Unfortunately, determinization has defied implementation until recently, and it
cannot be implemented symbolically [THB95,ATW05,KB05]. This means that
theoretically we know very well how to solve such games, however, practically
we find it very difficult to do so. Formally, we have the following.

Theorem 2. Consider a game G whose winning condition N is an NBW with

n states. We can construct a DPW D equivalent to N with n2n+2 states and

index 2n. The parity game G ×D can be solved in time O(t·n2n+2·(g·n2n+2)n),
where g and t are the number of locations and transitions of G.

It is common wisdom that nondeterministic automata cannot be used for
game monitoring. In this paper we show that this claim is false. We define
nondeterministic automata that can be used for game monitoring; we call such
automata good for games (GFG). Our main result is a construction that takes
an NBW and produces a GFG NPW. Though our NPW may be slightly bigger
than the equivalent DPW (see Section 5), it is much simpler, amenable to sym-
bolic implementation, and suggests a natural hierarchy of automata of increasing
complexity that lead to the full solution.

3 Good for Games Automata

In this section we define when an automaton can be used as a monitor for
games. In order to define GFG automata, we consider the following game. Let
N = 〈Σ, S, δ, s0, α〉 be an automaton. The monitor game for N is a game played
on the set S of states. The game proceeds in rounds in which player 1 chooses a
letter, and player 0 answers with a successor state reading that letter. Formally,
a play is a maximal sequence π = t0σ0t1σ1 . . . such that t0 = s0 and for all
i ≥ 0, we have ti+1 ∈ δ(ti, σi). That is, an infinite play produces an infinite word
w(π) = σ0σ1 . . ., and a run r(π) = t0t1 . . . of N on w(π). A play π is winning for
player 0 if π is infinite and, in addition, either w(π) is not in L(N ) or r(π) is an
accepting run of N on w(π). Otherwise, player 1 wins. That is, player 0 wins if
she never gets stuck and, in addition, either the resulting word constructed by
player 1 is not in the language or (the word is in the language and) the resulting
run of N is accepting.

A strategy for player 0 is a partial function f : (S×Σ)+→S such that if
f(π·(s, σ)) is defined, then f(π·(s, σ)) ∈ δ(s, σ). A play π = t0σ0t1σ1 . . . is f -

conform if for all i ≥ 0, we have ti+1 = f(t0 . . . σi). The strategy f is winning



from a state s ∈ S if every f -conform play that starts in s is winning for player
0. We say that player 0 wins from s if she has a winning strategy from s. The
automaton N is good for games (GFG) if player 0 wins from the initial state s0.

We show how to use GFG automata for game monitoring. Consider a GFG
automaton N = 〈V, S, δ, s0, α〉 and a game G = 〈V, V0, V1, E,N〉. We construct
the following extended product game. Let G⊗M = 〈V ′, V ′

0 , V ′
1 , E′, W ′〉, where

the components of G⊗N are as follows:

– V ′ = V × S × {0, 1}, where V ′
0 = (V × S × {0}) ∪ (V0 × S × {1}) and

V ′
1 = V1 × S × {1}.

Given a location (v, s, i) ∈ V ′, let v ⇓
S
= s be the projection onto the state

in S. We extend ⇓
S

to sequences of locations in the natural way.
– E′={((v, s, 0), (v, s′, 1)) | s′ ∈ δ(s, v)} ∪ {((v, s, 1), (v′, s, 0)) | (v, v′) ∈ E}.
– W ′ = {π ∈ V ′ω | π ⇓

S
is accepting according to α}.

W.l.o.g., we assume that the acceptance condition of N is closed under finite
stuttering (which is true for Büchi and parity). When N is GFG, we can use
G⊗N to solve G.

Theorem 3. Player 0 wins from location v in the game G iff she wins from

location (v, s0, 0) in the game G⊗N , where s0 is the initial state of N .

A win in G⊗N is easily translated into a win in G by forgetting the N
component. In the other direction, a winning strategy in G is combined with a
winning strategy in the monitor game for N to produce a strategy in G⊗N . As
the strategy in G is winning, the projection of a resulting play onto the locations
of G is a word accepted by N . As the strategy in the monitor game is winning,
the projection of the play onto the states of N is an accepting run of N .

4 Checking the GFG Property

In this section we suggest one possible way of establishing that an automaton is
GFG. We prove that an automaton is GFG by showing that it fairly simulates
another GFG automaton for the same language. By definition, every determin-
istic automaton is GFG. This follows from the fact that player 0 does not have
any choices in the monitor component of the game. Hence, if an automaton fairly
simulates the deterministic automaton for the same language, it is GFG.

4.1 Fair Simulation

We define fair simulation [HKR97]. Consider two automata N=〈Σ, S, δ, s0, α〉
and R=〈Σ, T, η, t0, β〉 with the same alphabet. In order to define fair simulation,
we define the fair-simulation game. Let GN ,R=〈V, V0, V1, ρ, W 〉 be the game with
the following components:

– V = (S × T ) ∪ (S × T × Σ), where V0 = S × T × Σ and V1 = S × T .
– ρ = {((s, t), (s′, t, σ)) | s′ ∈ δ(s, σ)} ∪ {((s, t, σ), (s, t′)) | t′ ∈ η(t, σ)}.



Given an infinite play π of GN ,R we define π1 to be the projection of π onto
the states in S and π2 the projection of π onto the states in T . Player 0 wins

a play π if π is infinite and whenever π1 is an accepting run of N , then π2 is
an accepting run of R (w.l.o.g., the acceptance conditions α and β are closed
under finite stuttering). If player 0 wins the fair-simulation game from a location
(s, t), then the state t of R fairly simulates the state s of N , denoted by s ≤f t.
If s0 ≤f t0 for the initial states s0 and t0, then R fairly simulates N , denoted
N ≤f R.

4.2 Proving an Automaton GFG

Here we show that if an automaton N fairly simulates a GFG automaton D for
the same language, then N is a GFG automaton as well.

Theorem 4. Let N be a nondeterministic automaton and D a GFG automaton

equivalent to N . Then D ≤f N implies N is GFG.

Proof. Let N=〈Σ, N, δ, n0, α〉 and D=〈Σ, D, η, d0, β〉. Assume that D ≤f N .
Let GD,N = 〈V, V0, V1, ρ, W 〉 be the fair-simulation game between D and N .
Let f : V ∗ × V0 → V be a winning strategy for player 0 in GD,N . We denote
the monitor game for D by G1, and the monitor game for N by G2. Let h :
(D × Σ)+ → D be the winning strategy of player 0 in G1. We compose f and
h to resolve the choices of player 0 in G2: we use the choices of player 1 in G2

to simulate choices of player 1 in G1, and then h instructs us how to simulate
player 1 in GD,N , and the choice of f in GD,N translates to the choice of player
0 in G2. Accordingly, we construct plays in the three games that adhere to the
following invariants:
– The plays in GD,N and G1 are f -conform and h-conform, respectively.
– The projection of the play in G2 onto Σ is the projection onto Σ of the plays

in G1 and GD,N .
– The projection of the play in G1 onto the states of D is the projection of the

play in GD,N onto the states of D.
– The projection of the play in GD,N onto the states of N is the projection of

the play in G2 onto the states of N .
We call such plays matching. Consider the following plays of length one. The
initial position in G1 is d0, The initial position in G2 is n0, and the initial
position in GD,N is (d0, n0). Obviously, these are matching plays.

Let π2= n0σ0 n1σ1 . . . ni be a play in G2, let π1= d0σ0 d1σ1 . . . di be
a play in G1, and let πs= (d0, n0) (d1, n0, σ0) (d1, n1) . . . (di, ni) be a play
in GD,N . Assume that π1, π2, and πs are matching. Let σi be the choice of
player 1 in G2. We set di+1 to h(π1σi), and set π′

1 = π1σidi+1. Let (di+1, ni+1)
be f(πs(di+1, ni, σi)), and set π′

s = πs(di+1, ni, σi)(di+1, ni+1). Finally, we play
ni+1 in G2. By definition of GD,N , it follows that ni+1 ∈ δ(ni, σi). The plays
π′

1, π′
s, and π′

2 are matching. Clearly, we can extend the plays according to this
strategy to infinite plays.

Let π1, πs, and π2 be some infinite plays constructed according to the above
strategy. Let w be the projection of π2 onto Σ. If w /∈ L(N ), then player 0 wins



in G2. Assume that w ∈ L(N ). As h is a winning strategy in G1, we conclude
that the projection of π1 onto D is an accepting run of D. As f is a winning
strategy in GD,N , we conclude that the projection of πs onto N is also accepting.
As the projections of π2 and πs onto N are equivalent, we are done.

The above condition is not only sufficient, but also necessary. Given two
equivalent GFG automata, we can use the strategies in the respective monitor
games to construct a winning strategy in the fair-simulation game. In fact, all
GFG automata that recognize the same language fairly simulate each other.

5 Constructing GFG Automata

In this section we describe our main contribution, a construction of a GFG
automaton for a given language. We start with an NBW and end up with a
GFG NPW. In order to prove that our NPW is indeed a GFG, we prove that it
fairly simulates the DPW for the same language.

5.1 From NBW to NPW

The idea behind the construction of the NPW is to mimic the determinization
construction [Pit06]. We replace the tree structure by nondeterminism. We sim-
ply follow the sets maintained by the Safra trees without maintaining the tree
structure. In addition we have to treat acceptance. This is similar to the conver-
sion of alternating Büchi word automata to NBW [MH84]: a subset is marked
accepting when all the paths it follows visit the acceptance set at least once;
when this happens we start again. The result is a simple GFG NPW.

Let N = 〈Σ, S, δ, s0, α〉 be an NBW such that |S| = n. We construct a GFG
NPW P = 〈Σ, Q, η, q0, α

′〉 with the following components.

– The set Q of states is an n-tuple of annotated subsets of S.
Every state in a subset is annotated by 0 or 1. The annotation 1 signifies
that this state is reachable along a path that visited the acceptance set α
of N recently. When a state s is annotated 1, we say that it is marked, and
when it is annotated 0, we say that it is unmarked. Such an annotated subset
can be represented by an element C ∈ {0, 1, 2}S, where C(s) = 0 means that
s is not in the set, C(s) = 1 means that s is in the set and is unmarked, and
C(s) = 2 means that s is in the set and is marked. For simplicity of notation,
we represent such an annotated set C by a pair (A, B) ∈ 2S ×2S of sets with
B ⊆ A, such that s ∈ B means C(s) = 2, s ∈ A − B means C(s) = 1, and
s /∈ A means C(s) = 0. We abuse notation and write (A, B) ∈ {0, 1, 2}S. We
write (A, B) ⊆ (C, D) to denote A ⊆ C and B ⊆ D. We sometimes refer to
an annotated set as a set.
In addition, we demand that a set is contained in the B part of some previous
set and disjoint from all sets between the two. If some set is empty, then all
sets after it are empty as well. Formally,
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– q0 = 〈({s0}, {s0} ∩ α), (∅, ∅), . . . , (∅, ∅)〉.
That is , the first set is initialized to the set that contains the initial state
of N . All other sets are initialized to the empty set.

– In order to define the transition function η we need a few definitions.
For (A, B) ∈ {0, 1, 2}S, σ ∈ Σ, and i ∈ {0, 1}, let succ((A, B), σ, i) denote
the set defined as follows:

succ((A, B), σ, i)=



































{

(A′, B′)

∣

∣

∣

∣

A′ ⊆ δ(A, σ) and
B′ ⊆ (δ(B, σ) ∩ A′) ∪ (A′ ∩ α)

}

If B 6=A
and i=0

{

(A′, B′)

∣

∣

∣

∣

A′ ⊆ δ(A, σ) and
B′ ⊆ A′ ∩ α

}

If B=A
and i=0

{

(A′, B′)

∣

∣

∣

∣

A′ ⊆ δ(A, σ) and
B′ ⊆ A′

}

If i=1

That is, given a set (A, B) ⊆ {0, 1, 2}S, the possible successors (A′, B′) are
subsets of the states reachable from (A, B). We add to the marked states all
visits to α, and if all states are marked (that is, if A=B), then we unmark
them.2 In the case that i = 1, we are completely free in the choice of B ′.
For (A, B), (C, D) ∈ {0, 1, 2}S and σ ∈ Σ, let trans((A, B), σ, (C, D)) be:

trans((A, B), σ, (C, D))=

{

succ((A, B), σ, 0) If A 6= ∅
succ((C, D), σ, 1) If A = ∅

That is, we may choose a successor of either (A, B) or (C, D). We may use
(C, D) only if (A, B) is empty. In this case, we may choose to initialize the
set of markings as we wish. As succ((A, B), σ, i) includes every subset of
ρ(A, σ), it is always possible to choose the empty set, and in the next step,
to choose a subset of (the successors of) (C, D).
The transition function η is defined for every state q ∈ Q and letter σ ∈ Σ
as follows. Let q = 〈(A1, B1), . . . , (An, Bn)〉. Then:

η(q, σ) = Q ∩
n

Π
i=1

trans((Ai, Bi), σ, (A1, B1))

Intuitively, (A1, B1) holds the set of states that are reachable from the initial
state. The other sets correspond to guesses as to which states from (A1, B1)

2 The decision to allow the set B to decrease nondeterministically may seem counter-
intuitive. This is equivalent to ‘forgetting’ that some of the followed paths visited α.
This is more convenient and allows more freedom. It also simplifies proofs.



to follow in order to ignore the non-accepting runs. Whenever one of the
sets becomes empty, it can be loaded by a set of successors of (A1, B1). It
follows that in order to change a guess, the automaton has to empty the
respective set and in the next move load a new set. Notice that emptying a
set forces the automaton to empty all the sets after it and load them again
from (A1, B1).

– Consider a state q = 〈(A1, B1), . . . , (An, Bn)〉. We define indE(q) to be the
minimal value k in [2..n] such that Ak = ∅, or n + 1 if no such value exists.
Formally, indE(q) = min{k, n + 1 | 1 < k ≤ n and Ak = ∅}. Similarly,
indF (q) is the minimal value k in [2..n] such that Ak = Bk and Ak 6= ∅, or
n + 1 if no such value exists. Formally, indF (q) = min{k, n + 1 | 1 < k ≤
n and Ak = Bk 6= ∅}.
The parity condition α′ is 〈F0, . . . , F2n−1〉, where
• F0={q ∈ Q | A1=B1 and A1 6=∅};
• F2i+1={q ∈ Q | indE(q)=i+2 and indF (q)≥i+2};
• F2i+2={q ∈ Q | indF (q)=i+2 and indE(q)>i+2}.

As all sets greater than indE(q) are empty, the odd sets require that for all
sets Ai 6= Bi or Ai = ∅. In these cases indF (q) = n + 1. Notice that we do
not consider the case that (A1, B1) is empty. This is a rejecting sink state.

This completes the definition of P .

We first show that N and P are equivalent. We show that L(P) contains
L(N ) by tracing the runs of N . For each run r of N , we use the first set in a
state of P to follow singletons from r. The proof that L(P) is contained in L(N )
is similar to the proof that the DPW constructed by Piterman is contained in
the language of N [Pit06].

Lemma 1. L(P) = L(N ).

Let D be the DPW constructed by Piterman [Pit06]. We show that P fairly
simulates D. The proof proceeds by showing how to choose a state of P that
maintains the same sets as labels of the nodes in Safra trees, but without main-
taining the parenthood function. In fact, D also fairly simulates P . This follows
immediately from the equivalence of the two and D being deterministic [HKR97].

Lemma 2. D ≤f P.

5.2 Complexity Analysis

We count the number of states of the GFG automaton P and analyze the com-
plexity of using it for solving games.

Theorem 5. Given an NBW N with n states, we can construct an equivalent

GFG NPW P with 2n·n2n states and index 2n.

Proof. We represent a state of P as a tree of subsets (or sometimes a forest). The
pair (Ai, Bi) is a son of the pair (Aj , Bj) such that Ai ⊆ Bj . This tree structure
is represented by the parenthood function p : [n] → [n] (here [n] is {1, . . . , n}).



We map every state of N to the minimal node in the tree (according to the
parenthood function) to which it belongs. Thus, the partition into A1, . . . , An is
represented by a function l : S → [n]. Every state of N that appears in a pair
(Aj , Bj) and also in some son (Ai, Bi) belongs to Bj . In addition, we have to
remember all states of N that appear in some set Ai, in no descendant of Ai,
and also appear in Bi. It suffices to remember the subset of all these states.

To summarize, there are at most nn parenthood functions, nn state labelings,
and 2n subsets of S. This gives a total of 2n·n2n states for P .

We note that the GFG NPW is larger than the DPW constructed in [Pit06]
by a factor of 2n. However, the NPW is much simpler than the DPW. Although
Piterman’s variant is slightly simpler than Safra’s construction, it still maintains
the tree structure that proved hard to implement. Existing implementations of
Safra’s construction [ATW05,KB05] enumerate the states. We believe that this
would be the case also with Piterman’s variant. The structure of the NPW above
is much simpler and amenable to symbolic methods. In order to represent a set
of NBW states, we associate a Boolean variable with every state of the NBW. A
BDD over n variables can represent a set of sets of states. In order to represent
tuples of n sets, we need a BDD over n2 variables.

We note that very simple modifications can be made to the NPW without
harming its GFG structure. We could remove the restrictions on the contain-
ment order between the labels in the sets, or tighten them to be closer to the
restrictions imposed on the trees in the DPW. This would result in increasing
or reducing the number of states between n2n and n3n. The best structure may
depend not on the final number of states, but rather on which structure is most
efficiently represented symbolically. It may be the case that looser structures
may have a better symbolic representation and work better in practice.

We compare the usage of our automata in the context of game solving to
other methods. Consider a game G = 〈V, V0, V1, ρ, W 〉, where W is given by an
NBW N = 〈V, S, δ, s0, α〉. Let |S| = n, and let g and t be the number of locations
and transitions of G, respectively. Using Piterman’s construction, we construct a
DPW P with n2n+2 states and index 2n. According to Theorem 1, we can solve
the resulting parity game in time O(t·n2n+2·(g·n2n+2)n). When we combine our
GFG NPW with the game G, the resulting structure may have t·(2n·n2n)2 tran-
sitions and g·2n·n2n states. That is, we can solve the resulting parity game in
time O(t·22n·n4n·(g·2n·n2n)n). Note also that the construction of Kupferman
and Vardi cannot be applied directly [KV05]. This is because Kupferman and
Vardi’s construction requires an NBW for the complement of the winning con-
dition. On the other hand, in the context of LTL games (i.e., games with LTL
winning conditions), Kupferman and Vardi’s construction can be applied. Their
construction leads to a time complexity of O(t·n2n+2·(g·n2n+2)2n), with 2n in the
exponent instead of n. The memory used by the extracted strategy is bounded
by 2O(n2) while it is bounded by 2n·n2n in our case.

We note that for checking the emptiness of alternating parity tree automata,
our GFG construction cannot be applied. The reason is similar to the reason
why Kupferman and Vardi’s method cannot be used for solving games with



NBW winning conditions. In this case, we have to construct a GFG NPW for
the complement language, which we do not know how to do.

We can use the lower bound on the memory needed for winning strategies
to show that our construction is in some sense optimal. For this purpose, we
generalize Michel’s lower bound on the size of determinization [Mic88,Löd98].
That is, we construct a game with an NBW acceptance condition whose winning
strategies require n! memory. Given that our GFG automaton can be used as
the memory of a winning strategy and that the resulting game is a parity game
that requires no additional memory, this proves that every GFG automaton for
the given language has at least n! states.

6 Incremental Construction

Our automata have a natural incremental structure. We simply choose how many
sets of states to follow in a state of the GFG automaton. Consider a game G =
〈V, ρ,N〉, where N is an NBW. Let N ′ be a nondeterministic automaton such
that L(N ) = L(N ′) and let s0 be the initial state of N ′. It is simple to see that
if player 0 wins from (v, s0, 0) in G⊗N ′, then player 0 wins from v in G. Indeed,
this is the basis of the incomplete approaches described in [HRS05,JGB05]. Using
this fact, we suggest the following incremental approach to solving games with
ω-regular winning conditions.

Let n be the number of states of N . We apply the construction from Section 5
on N but use only 2 sets (i.e., restrict the sets 3, . . . , n to the empty set), let
P1 denote this automaton. We then solve the game G⊗P1. It is simple to see
that P1 is equivalent to N . Thus, if (v, q0, 0) is winning for player 0 in G⊗P1

(where q0 is the initial state of P1), then v is winning for player 0 in G. It
follows, that by solving G⊗P1 we recognize a subset W ′

0 ⊆ W0 of the winning
region of player 0 in G. Sometimes, we are not interested in the full partition
of G to W0 and W1, we may be interested in a winning strategy from some
set of initial locations in G. If this set of locations is contained in W ′

0, then
we can stop here. Otherwise, we try a less restricted automaton with 3 sets,
then 4 sets, etc. For every number of sets used, the resulting automaton may
not be GFG, but it recognizes the language of N . A strategy winning in the
combination of G and such an automaton is winning also in the original game
G (with winning condition N ). If we increase the number of sets to n, and
still find that the states that interest us are losing, then we conclude that the
game is indeed lost. The result is a series of games of increasing complexity.
The first automaton has 2n·2n+2 states and index four, resulting in complexity
O(t·(2n·nn+2)2·(g·n2·nn+2)2), where g and t are the number of locations and
transitions in G, respectively. In general, the ith automaton has 2n·in+i states
and index 2i, resulting in complexity O(t·(2n·in+i)2·(g·2n·in+i)i).

We give a family of games and automata that require almost the full power
of our construction. Furthermore, we identify several sets of edges in each game
such that removing one set of edges allows to remove one set from the GFG
automaton and identify the winning regions correctly.



We give a recursive definition of the game Gi. Let G0 be 〈V 0, ∅, V 0, ρ0,N 0〉,
where V 0 = S0 = {s0

0} and ρ0 = {(s0
0, s

0
0)}. The acceptance condition is given

with respect to a labeling of the states of the game, to be defined below. The game
Gi is 〈V i, ∅, V i, ρi,N i〉, where V i = V i−1 ∪ Si, and Si = {si

1, s
i
2, s

i
3}, and ρi =

ρi−1 ∪T i ∪Ri, and T i = {(si
1, s

i
2), (s

i
1, s

i
3), (s

i
2, s

i
2), (s

i
3, s

i
3)}∪ ((

⋃

j<i Sj)×{si
1}),

and Ri = {si
3}× (

⋃

j<i Sj). The labeling on the states of the game is defined as

follows. We set L(s0
0) = 0 and for all i ≥ 1, we set L(si

1) = 2i−1, L(si
2) = 2i−2,

and L(si
3) = 2i. The graph depicted in Figure 1 is G3. An edge from a rectangle

to a state s is a shorthand for edges from all states in the rectangle to s, and
similarly for edges from states to rectangles. Note that Gi−1 is contained in Gi.

The winning condition is the NBW N i = 〈[2i + 2], [2i + 2], η, 2i + 2, [2i + 2]
even

〉

where [n] is {1, . . . , n}, and [n]
even

= {i ∈ [n] | i is even}, and η is as follows:

η(2k, j) =















∅ j>2k
{2k} j=2k
{j, j+1, j+3, . . . , 2k−1} j<2k even
{j, j+2, . . . , 2k − 1} j<2k odd

η(2k + 1, j) =















∅ j>2k+2
{2k+2} j=2k+2
{j, j+1, j+3, . . . , 2k+1} j<2k+2 is even
{j, j+2, . . . , 2k+1} j<2k+2 is odd

It is also the case that Ni−1 is contained in Ni.

2 4

230 45

6

0

1

Fig. 1. The game G3.

We show that for all i ≥ 0, player 0 wins from every state in Gi. Furthermore,
in order to use our GFG construction from Section 5, we have to use i+1 sets.
That is, if we take the product of the graph Gi with the GFG that uses i+1 sets
(denoted Pi), then player 0 wins form every state in the resulting parity game.
We further show that this does not hold for the GFG with i sets. That is, player
1 wins from some of the states in the product of Gi and Pi−1. Finally, the edges
in Gi are ρ0 ∪

⋃

j≤i T j ∪Rj . Consider a set of edges Rj for j < i. We show that

if we remove Rj from Gi, then we can remove one set from the GFG. If we now



remove Rk for k < i, then we can remove another set from the GFG, and so on.
This is summarized in the following lemmata.

Lemma 3. For all i ≥ 0, the following are true:

– player 0 wins from every location in Gi,

– player 0 wins the parity game Gi⊗Pi, and

– if i ≥ 1, then player 1 wins from (s0
0, q0, 0) in Gi⊗Pi−1.

Consider some set I ⊆ [i] such that i ∈ I . Let G
I

i denote the game with

locations Si and transitions (
⋃

i′≤i T i) ∪ (
⋃

i′∈I Ri′). That is, G
I

i includes only

the transitions in Ri′ for i′ ∈ I .

Lemma 4. For all I ⊆ [i] such that i ∈ I and |I | = j the following are true:

– player 0 wins the parity game G
I

i⊗Pj , and

– player 1 wins from (s0
0, q0, 0) in GI

i ×Pj−1.

7 Conclusion and Future Work

We introduced a definition of nondeterministic automata that can be used for
game monitoring. Our main contribution is a construction that takes an NBW
and constructs a GFG NPW with 2n·n2n states. In comparison, the DPW con-
structed by Piterman has n2n+2 states. However, the structure of the NPW is
much simpler, and we suggest that it be implemented symbolically.

We also suggest an incremental approach to solving games. The algorithm of
Kupferman and Vardi also shares this property [KV05] (though it cannot be used
directly for games with NBW winning conditions). In addition, their algorithm
allows to reuse the work done in the earlier stages of the incremental search. We
believe that the symmetric structure of our automata will allow similar savings.
Another interesting problem is to find a property of game graphs that determines
the number of sets required in the GFG construction.

Starting from a Rabin or a parity automaton, it is easy to construct an
equivalent Büchi automaton. This suggests that we can apply our construction
to Rabin and parity automata as well. Recently, it has been shown that tailored
determinization constructions for these types of automata can lead to great
savings in the number of states. A similar question is open for GFG automata,
as well as for Streett automata.

Finally, we mention that our GFG automaton cannot be used for applications
like emptiness of alternating tree automata. The reason is that emptiness of al-
ternating tree automata requires co-determinization, i.e., producing a determin-
istic automaton for the complement of the original language. We are searching
for ways to construct a GFG automaton for the complement language.
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