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Solving Geometric Constraint Systems

II. A Symbolic Approach and Decision of

Rc-constructibility1)

Xiao-Shan Gao2) and Shang-Ching Chou3)

Abstract. This paper reports a geometric constraint solving approach based on sym-
bolic computation. With this approach, we can compute robust numerical solutions for
a set of equations. We give complete methods of deciding whether the constraints are
independent and whether a constraint system is over-constraint. Also, over-constrainted
systems can be handled naturally. Based on symbolic computation, we also give a de-
cision procedure for the problem of deciding whether a constrainted diagram can be
constructed with ruler and compass (rc-constructibility).

1. Introduction

In Part I of this paper [10], we use a construction approach to solve geometric constraint
systems. More precisely, the algorithm tries to find a drawing procedure for a constrainted
diagram with ruler and compass. The advantage of this approach and all the other con-
struction approaches [11, 15, 20] is that once a solution is found, the remaining steps of
drawing this diagram becomes easy. Unfortunately, construction approaches are generally
not complete, that is, the methods can not find drawing procedures for some of the diagrams
that can be drawn with ruler and compass. In this paper, we study two complete approaches
of solving geometric constraint systems: the symbolic approach and a decision method for
ruler and compass constructibility based on symbolic computation.

The symbolic approach is quite similar to the numerical approach [16, 19]. In the sym-
bolic approach, we also first transform the geometric constraints into algebraic equations
by assigning each point its coordinates. After that, instead of using numerical methods to
solve the algebraic equation set, we will use general symbolic methods such as Ritt-Wu’s
decomposition algorithm [23, 25] or the Groebner basis method [1] to change the equation
set to new forms which are easy to solve. Finally, we solve these new equations numerically.
The most often used easy-solving equation form is the triangular form (see Section 2 for
precise definition). The advantage of the symbolic approach is that once an equation set of
triangular form is obtained, the solution of these equations is much easier than that of the
equation set in general form. In some of the numerical approaches [16, 19], the equations
are also simplified, while triangulation could be considered the ultimate simplification.
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In this paper, we use Ritt-Wu’s decomposition algorithm [25, 23] to solve geometric
constraint systems. We will discuss the problem of using special coordinates to simplify the
triangular sets and how to transform the solutions of a triangular set with special coordinates
to the general position.

Distinctive feature of this approach includes. (1) We can compute robust numerical
solutions from an equation set of triangular form. (2) We give complete methods of deciding
whether the constraints are independent and whether a constraint system is over-constraint.
(3) Different from the construction approach [11, 15, 20, 10], both the numerical and the
symbolic approaches can be used to solve constraint systems in 2D and 3D uniformly, since
both approaches are capable of handling equations with any number of variables.

Our program based on Ritt-Wu’s decomposition method is quite efficient. All of the
134 constraint systems reported in [10] can be solved within seconds. For more complicated
problems like the regular pentagon problem (Example 2.1), the program can give a much
clearer picture than the numerical approach and can lead to efficient and robust solutions.

Related to the symbolic approach, Hoffmann used the Grobner basis method to solve some
special constraint systems [11]. Kondo used the Groebner basis method to test whether two
dimensional constraints are independent, and if not, to find the relation between them [14].
In [4], Ritt-Wu’s method and the Grobner basis method were used to find relations among
any geometry quantities.

By transforming the constraint system into algebraic form, we can give a decision proce-
dure for the problem of deciding whether a diagram can be constructed with ruler and com-
pass (rc-constructibility). The problem of rc-constructibility is reduced to decide whether
the roots of a univariate equation of degree 2k(k > 1) and with rational functions of para-
meters as coefficients can be solved in terms of square roots. Our decision procedure is quite
efficient for the special case of quartic equation. Most geometric problems give equations
of degree either two or four. For instance, 90% of the 134 problem reported in [10] give
equations of degree one or two and all the remaining problems give equations of degree four.

In [20], Owen proved that his algorithm of solving constraint systems is complete if the
constraint system uses only one predicate – distance between two points – and the distances
used are algebraiclly independent. Of course, Owen’s approach is not based on symbolic
computation. It is still very desirable to develop a complete rc-constructibility method
without using symbolic computations. A challenge problem is to find a set of construction
rules which can be used to draw regular polygons with five or seventeen sides.

The rest of the paper is organized as follows. In Section 2., we describe how to solve con-
straint system with Ritt-Wu’s decomposition algorithm. In Section 3., we give the decision
procedure for the rc-constructibility.

2. Solving Geometric Constraint Systems with Ritt-Wu’s Decomposition Algo-
rithm

2.1. Basic Results of Ritt-Wu’s Decomposition Algorithm. We only introduce the
results needed in this paper. For more discussions about the method, see [23, 25, 3]. Let
Q be the field of rational numbers, and Q[x1, ..., xn] or Q[X] the set of polynomials in
variables x1, ..., xn. For P ∈ Q[X] − Q, we can write P = cdx

d
p + ... + c1xp + c0, where
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ci ∈ B[x1, ..., xp−1], p > 0, and cd 6= 0. We call p the class, cd the initial, and xp the leading
variable of P , or class(P ) = p, init(P ) = cd, and lv(P ) = xp.

A sequence of polynomials ASC = A1, ..., Ap in Q[X] is said to be in triangular form, if
either p = 1 and A1 6= 0 or 0 < class(Ai) < class(Aj) for 1 ≤ i < j.

Let PS be a polynomial set in Q[X]. For an extension field E of Q, like the complex
number field, let

Zero(PS) = {a ∈ En | ∀P ∈ PS, P (a) = 0}

For a polynomial set PS and a polynomial D in Q[X], we define

Zero(PS/D) = Zero(PS)− Zero(D).

For a polynomial set PS in Q[X], Ritt–Wu’s zero decomposition algorithm can be used
to represent the zero set of PS as the union of the zero sets of polynomial sets in triangular
form. More precisely, we have [25, 3]

(2.1) Zero(PS) =
⋃

1≤i≤k

Zero(TSi/Ii)

where each TSi is a polynomial set in triangular form and Ii is the production of the initials
of the polynomials in TSi.

Let TS = {P1, ..., Pp} be a polynomial set in triangular form. We rename the leading
variables of Pi as yi and the remaining variables as u1, ..., uq(p + q = n). Then TS can be
written as

(2.2) P1(U, y1), P2(U, y1, y2), · · · , Pp(U, y1, y2, ..., yp)

where U = u1, ..., uq.
In Section 3., we need the following result [23, 9]. For each triangular set TS of the form

(2.2), let I be the production of the initials of its polynomials. Then we can find a new
variable w such that Zero(TS/I) can be obtained as follows.

(2.3) R(U,w) = 0, yi = Mi(U,w)/Ni(U,w), (i = 1, ..., p)

where R,Mi, and Ni are polynomials in Q[U,w]. In other words, the solutions of a polynomial
set in triangular form can be reduced to the roots of a univariate polynomial equation.

The reason we use triangular form is that the solution of a set of polynomial equations in
triangular form is easy to compute. Take TS in (2.2) as an example. For a set of numerical
values for the ui, P1 = 0 becomes a univariate equation. We can find the solutions for
y1 from this univariate equation. Next, by substituting the numerical solution for y1 into
equation P2, P2 = 0 becomes a univariate equation. We now solve y2 from this univariate
equation, and so on. According to (2.1), we need to find the zero set Zero(TSi/Ii). Since
Ii 6= 0, we can discard any solutions that vanishes Ii. Thus for each set of values for the ui,
either Zero(TSi/Ii) is empty or we can find solutions for all the yi according to the above
procedure.
2.2. A Non-trivial Example. Let us first give an example. We will use this example in
the following sections whenever it is needed.
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Example 2.1 (Regular Pentagon) Draw a regular pentagon ABCDE whose edge is r.

We first assign the following coordinates to the five points: A = (0, 0), B = (r, 0), C =
(x2, y2), D = (x3, y3), E = (x4, y4). Since there are five points in the diagram, we need
2 ∗ 5− 3 = 7 constraints to determine the shape of the diagram. The constraint |AB| = r is
already satisfied automatically. We need six other constraints to determine the six variables
x2, y2, x3, y3, x4, y4. The following are these constraints and their corresponding algebraic
equations.

|AB| = |AE|: h1 = y2
4 + x2

4 − r2 = 0
|AB| = |BC|: h2 = y2

2 + x2
2 − 2rx2 = 0

|AB| = |CD|: h3 = y2
3 − 2y2y3 + x2

3 − 2x2x3 + y2
2 + x2

2 − r2 = 0
|AB| = |DE|: h4 = y2

4 − 2y3y4 + x2
4 − 2x3x4 + y2

3 + x2
3 − r2 = 0

|AD| = |DB|: h5 = 2rx3 − r2 = 0
|AC| = |CE|: h6 = y2

4 − 2y2y4 + x2
4 − 2x2x4 = 0

Using Rit–Wu’s decomposition algorithm, we have

(2.4) Zero({h1, ..., h6}) = ∪4
i=1Zero(TSi/Ii)

where TSi are given below.
TS1 = TS2 = TS3 = TS4 =
y4 − y2 ry4 + (2x2 − 2r)y2 y4 − y2 y4

x4 + x2 − r 2x4 − 2x2 + r x4 + x2 − r x4 + r
ry3 + (−2x2 + r)y2 ry3 + (2x2 − 3r)y2 ry3 + (2x2 − 3r)y2 y3 − y2

2x3 − r 2x3 − r 2x3 − r 2x3 − r
4y2

2 − 2rx2 − r2 4y2
2 − 2rx2 − r2 4y2

2 − 2rx2 − r2 4y2
2 + 5r2

4x2
2 − 6rx2 + r2 4x2

2 − 6rx2 + r2 4x2
2 − 6rx2 + r2 2x2 + r

TS4 does not have non-zero real zeros, since there is a polynomial 4y2
2 + 5r2. Each of

TS1, TS2, and TS3 contains six polynomials and has total degree four, i.e., for a non-zero
value of r, each of TS1, TS2, and TS3 gives four solutions to the problem (see Figures 1 and
2).
2.3. Coordinate Transformation. In this section, we will discuss the problem of how
to draw the constrainted diagram on a window system after a triangular decomposition like
(2.1) has been given.

To improve the efficiency of Ritt-Wu’s decomposition algorithm, we always use special
coordinates for some points. In the pentagon example, points A = (0, 0), B = (r, 0) have
special coordinates. This example actually gives some insight into the general case. If a
plane geometric constraint system involves n points, we generally need 2n − 3 independent
(i.e., no redundancies) constraints to determine the shape of the corresponding diagram.
Such a constraint system or its corresponding diagram is called well-defined. There are three
free parameters in a well-defined diagram: the coordinates of a point P0 and the direction
of a line P0P1. When using Ritt-Wu’s decomposition algorithm, we always assume that
the coordinates of P0 are (0, 0) and the coordinates of P1 are (r, 0) where r is a variable
representing the length of P0P1. This will make the decomposition much faster.

When drawing the constrainted diagram on a window, coordinates of point A are usually
not (0, 0) and line P0P1 is usually not horizontal. We thus need to do certain coordinate
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transforms before we can use the triangular equations to find the coordinates of a diagram in
the general position. Before we can do that, let us consider three basic transformations for
a well-defined diagram. For a well-defined constraint system, let P0 be the point with free
position and P0P1 the line with free direction. Then we usually can perform the following
transformations.

1. Translate point P0.

2. Rotate line P0P1 around point P0 with the length of P0P1 fixed.

3. If the length of a segment or the value of an angle is given as a parameter, we can
change the segment length or the angle value.

The coordinate transformations for the three transformations are well known. We will
show that in our case what modifications can be made. For case (1), let the original and the
new coordinates of point P0 be (x0, y0) and (x′0, y

′
0). The new coordinates for other points

can be obtained with the following transformation

(2.5) x′ = x + (x′0 − x0), y′ = y + (x′0 − x0).

For case (2), let the old coordinates of P0 and P1 be (x0, y0) and (x1, y1). Suppose, the
new direction of P0P1 is determined by P0Q where Q is a new point Q = (x2, y2). The new
coordinates for all points can be obtained with the following transformation

(2.6) x′ = x0 + cosθ ∗ (x− x0) + sinθ ∗ (y − y0), y′ = y0 − sinθ ∗ (x− x0) + cosθ ∗ (y − y0)

where θ = arctan( (y2−y0)(x1−x0)−(y1−y0)(x2−x0)
(x1−x0)(x2−x0)+(y2−y0)(y1−y0)) is between −π/2 and π/2. To avoid the

computation of trigonometric functions, the new position of point P1 can be obtained as
the intersection of the line P0Q and the circle with center P0 and radius P0P1. Of the two
intersections, we choose the one which is near P1. For case (3), since the parameters are in
the equations explicitly, the solution is straightforward.

Now we can give the procedure of computing the coordinates of the points in a diagram.

1. For a given set of numerical values for the segment lengths and angles, we can use the
original triangular set TS to obtain a set of solutions for the coordinates of the points.

2. For each given new position of P0 and a new direction of line P0P1, we can use trans-
formations (2.5) and (2.6) to find the new coordinates for all other points.

For the complexity of the above procedure, the second step is clearly linear in the number
of involving coordinates or the number of points in the diagram. In the first step, we need
to solve a fixed number of univariate polynomial equations. We can use Newton’s iteration
method to do that [7]. To find all the real roots of a univariate equation, we can first use
the algorithm reported in [5] to separate the roots of the equations and then use Newton’s
method to compute each of the root. More discussions about numerical methods of solving
constraint systems can be found in [16, 19].

Comparing to the previous approaches, our approach has clear advantages. First, instead
of solving equations in general form, we need only solve univariate equations due to the fact
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that the equations are in triangular form. As a consequence, we can find all the solutions
if needed. This makes the selection of the so-called “robust” solutions possible. Second,
for each set of segment lengths and angle values, we need only to solve a fixed number of
univariate equations for one time. After a set of solutions is obtained, for each new position of
P0 and each new direction of P0P1 we need only to do a linear transformation to obtain their
positions. Of course, in our approach, we need first to find a triangular decomposition, which
might be time consuming. Fortunately, we need only to do that once for each constraint
system. So we may adopt the following strategy: if in a fixed period of time, say five minutes,
the program still cannot find the triangular decomposition then we will abandon the process
and use the general numerical approach.
2.4. Over-Constrainted Systems. In many papers including Part I of this paper [11,
20, 10], a constraint system is called well-defined if it has n characteristic points and lines
and 2 ∗ n − 3 independent constraints. As we will show below, though good enough for
the construction and AI approach to constraint solving, this definition does not give the
whole picture. Generally, let us define a constraint system to be well-defined if the shape
of the corresponding diagram has only a finite number of cases. We will show later that a
well-defined constraint system of n points may have more than 2 ∗ n− 3 constraints.

Using algebraic languages, we can give a criteria for well-defineness. From the discussion
in the last paragraph in Section 2.1, the following result is easy to prove.

Theorem 2.2 Let P0 and P1 be any two points in the constraint system such that length of
P0P1 is r. Let P0 = (0, 0), P1 = (r, 0). Then the constraint system with n points is well-
defined iff in a decomposition like (2.1) each triangular set TS contains 2n− 4 polynomials.

We use the pentagon example to show that sometimes we need more than 2n − 3 con-
straints to define a constraint system with n points. The following table gives the result of
checking three more geometric conditions on the three diagrams defined by TS1, TS2, and
TS3 using the automated theorem proving methods given in [25, 3].

TS1 TS2 TS3

|AD| = |AC| true false false
|BD| = |BE| true true false
|EB| = |EC| true false true

By Theorem 2.2, the pentagon problem in Section 2.2 is well-defined. But the seven
independent constraints do not properly define a pentagon. From the above table, we see
that only TS1 defines a pentagon (Figure 1a). The solutions for TS2 and TS3 are not
pentagons (Figures 1b and 1c). To define a proper pentagon, we need to add at least
another constraint
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|AD| = |AC|: h7 = y2
3 + x2

3 − y2
2 − x2

2.
Now there is only one useful triangular set TS1 in the decomposition:

(2.7) Zero({h1, ..., h7}) = Zero(TS1/I1) ∪ Zero(TS4/I4).

But this constraint system is over-constraint in the sense that there are five points but eight
constraints. Note that the last constrain h7 = 0 does not reduce the dimension of freedom
of the problem; it only eliminates eight of the twelve solutions of the original problem.

We have observed that for some constraint systems, we must use more than 2n − 3
consistent constraints to properly determine the shape of the corresponding diagram. It
is difficult for iteration numerical methods to deal with this kind of problems [16]. In the
symbolic approach, this kind of “over-constraint” can be solved naturally. Furthermore, the
triangular set of equations generally becomes simpler when more consistent constraints are
added.
2.5. Robustness of Numerical Solving. It is well known (see e.g., [16]) that the Newton
iteration method is unreliable, especially when the number of constraints are larger than
the number of variables. From the symbolic viewpoint, this unreliability can be divided into
two cases. (1) The first case occurs when a triangular set TS has more than one solutions.
When changing the shape of the diagram continuously, the solver may “jump” from one
branch of solutions to another branch. For instance, TS1 for the pentagon has four branches
of solutions. The two solutions given from the quadratic equation about y2 are easy to
understand: if P is a solution pentagon then the reflection of P with the x-axis, obtained by
changing yi to −yi, is also a solution. Now we need only to consider the two solutions given
by the quadratic equation about x2. The two solutions are two regular pentagons, one with
r as an edge another with r as a diagonal (Figure 2).

In our case, this problem can be solved due to the way of solving
equations. As we mentioned in the preceding section, for each set of segment length and
angle values, we only solve a fixed number of non-linear univariate equations once and the
coordinates for other new positions are given by linear transformations.

Another method is to reduce the branches of solutions by introducing more constraints.
For the pentagon example, we can assume that ABCDE is a concave pentagon by intro-
ducing a condition θ1 = (|AD|2 > |AB|2) which means that the diagonal AD is longer than
the edge AB. When a set of solutions are found, we check if θ1 is true. If it is not true,
we discard it. Similarly, we can assume that A − B − C is in counterclockwise direction
by introducing anther condition θ2 = (y2 > 0). Now the pentagon problem has a unique
solution and the solution will always be robust. In summary, the numerical method works
as follows. Let us assume that the current value for a variable x is x0. When we drag a
diagram, the next solution for x is near x0. Thus, we can use x0 as an initial value to find
the new value for x. We then check whether the constraints θ1 and θ2 are valid for these
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new values. If they are valid, we have found a set of solution. Otherwise, most probably we
are near a “critical point” where more than one branches of solutions meet. Now we need to
find all the solutions and to select one satisfying θ1 and θ2.

(2) The second case occurs if the problem is reducible, i.e., its solutions can be written as
the union of the solutions of more than one triangular equation sets. If h7 = 0 is not added,
the pentagon problem has three group of solutions, and hence is reducible. In a reducible
problem, when changing the shape of the diagram continuously, the solver may “jump” from
the solutions of one triangular set to that of another triangular set. This problem can be
solved trivially if a triangular decomposition is already given: different solutions are given
by different triangular sets and will not be mixed.
2.6. Independent and Conflict Constraints. Recall that a set of constraints are said
to be independent if no one of them can be removed and the new constraint system still
defines the same diagram. A set of constraints are said to be conflict if no diagram in the
Euclidean plane satisfying this constraint system.

Many results about the independence and conflict of constraints are reported in [21, 24].
One of the interesting result is as follows. If the only type of constraints is distance between
two points and all the distances do not have algebraic relations, a constraint system is
independent and non-conflict4) if in any subsystem of n points, the number of constraints
e ≤ 2n − 3. This and other results reported in [21], though important, have the following
limitation. The distances and angles have to be algebraic independent which means that
we can not deal with problems involving two points on the same circle or regular polygons
let along constraint systems using the implicit constraints like “two segment are equal” and
“two angles are equal”. On the other hand, the symbolic approach can provide complete
solution to the problem of independency and conflict in the general case.

Let us first comment that in the general case there is no connection between the concept
of independency and conflict and the critical number 2n − 3. Actually, there are conflict
and/or non-independent systems which have less than 2n − 3 constraints, as well as non-
conflict and/or independent systems with more than 2n − 3 constraints. For instance, the
regular pentagon is a non-conflict and independent system with more than 2n−3 constraints.
Also, almost every geometry theorem provides an example for non-independent systems with
less than 2n− 3 constraints.
2.6.1. Decision of Conflict Constraints. For a constraint system CS, let PS be the
corresponding algebraic equations of the constraints. The conflict of CS means that PS
does not have solutions. In the case of complex number field, this can be decided with
the following result. For the case of real numbers, a complete algorithm is provided by the
quantifier elimination algorithm [6].

Theorem 2.3 ([25]) A set of polynomial equations PS does not have solutions over the
field of complex numbers iff k = 0 in decomposition5) (2.1).

If k = 0 in decomposition (2.1), the constraint system is also conflict over the field of
real numbers.

4)Here the concept of conflict is over the complex numbers. That is, a constraint system is non-conflict if
there is a diagram over the field of complex numbers satisfying all the constraints.

5)Here we assume that the triangular sets are irreducible. For the definition of irreducible triangular sets,
see [23, 25].
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In the pentagon example, if we want to draw a regular pentagon with edge 1 and diagonal 2,
we will get a conflict constraint system. In other words, Zero(PS) = ∅ where PS consists of
equations for |AB| = |BC| = |CD| = |DE| = |EA| = 1 and |AD| = |DB| = |BE| = |EC| =
2.

If two dimensional constrains are conflict, we can find the relation between the two
dimensions. In [14], this is done with the Groebner basis. In [4], both the Groebner basis
and Ritt-Wu’s method are used to find such relations. In the regular pentagon problem, we
just showed that the edge r and the diagonal d are two conflict dimensions. To find a relation
between them, let PS be the set of equations for the constraints |AB| = |BC| = |CD| =
|DE| = |EA| = r and |AD| = |DB| = |BE| = |EC| = d. Using Ritt-Wu’s decomposition
algorithm, we have

Zero(PS) = Zero(TS5/I5) ∪ Zero(TS6/I6)

where TS5 and TS6 are polynomial sets in triangular form and I5 and I6 are the product of
the corresponding initials. The first polynomials in TS5 and TS6 are

d2 + rd− r2 = 0 and d2 − rd− r2 = 0.

Since d and r are positive, the two reasonable solutions are d = 1+
√

5
2 r and d = −1+

√
5

2 r.
The first one represents the case that r is the edge and d is the diagonal. The second one
represents the case that r is the diagonal and d is the edge.
2.6.2. Decision of Independency. Let PS be the equation set of a constraint system.
This system is not independent iff there is a polynomial P in PS such that

(2.8) Zero(PS − {P}) ⊂ Zero(P ) or Zero(PS − {P}) = Zero(PS).

Theorem 2.4 If |PS| ≤ 2n − 3, the constraints are independent iff in decomposition (2.1)
there is at least one irredundant triangular set TSi containing |PS| polynomials.

To prove this theorem, we need a theorem from algebraic geometry which says that the
triangular set representing an irredundant component of Zero(PS) cannot contain more
than |PS| polynomials [8]. If the constraints are not independent, Zero(PS) = Zero(PS −
{P}). According to above theorem, an irredundant triangular set contains less than |PS|
polynomials. This is contradict to the hypothesis of the theorem.

In the general case, we need to check whether there is a polynomial in PS such that (2.8)
is valid. Note that to check (2.8) is actually to prove a geometry theorem. Let CP be the
geometric constraint of P = 0 and C1, ..., Cn the geometric constraints for other equations
in PS. Then (2.8) is equivalent to the following geometry theorem

∀ points[(C1 ∧ C2 · · · ∧ Cn) ⇒ CP ].

The problem of automated geometry theorem proving has been studies extensively [25, 3].
We may use these efficient algorithms to prove whether (2.8) is true.

Let us use the pentagon problem to show how Ritt-Wu’s method is used to check the inde-
pendency. Applying Theorem 2.4 to (2.4), we know that the seven constrains given in Section
2.2 are independent. Since adding constraint |AD| = |AC| eliminates two components from
(2.5) (see (2.7)), this new constraint is also independent to the seven constraints. Let us check



Solving Geometric Constraints 17

whether a new constraint |BD| = |BE| (with equation h8 = y2
3 +x2

3− 2rx3− y2
2 −x2

2 +2rx2)
is independent to the eight constraints in (2.7). Equivalently, we want to know whether the
new constraint is valid on Zero({h1, ..., h7}) = Zero(TS1/I1) ∪ Zero(TS4/I4). This can be
done by computing the remainder of the pseudo division of polynomial h8 with respect to
TS1 [23, 25]. This remainder is zero iff h8 = 0 is valid on Zero(TS1/I1). Following this
procedure, we can show that h8 = 0 is valid on Zero(TS1/I1) but not on Zero(TS4/I4).
Since TS4 does not has solutions in the field of real zeros, h8 = 0 is not independent to
h1 = 0, ..., h7 = 0 over the field of real number.

3. A Decision Procedure for Rc-constructibility

3..1. Basic Results on Rc-constructions. Let Q be the field of rational numbers.
Using the symbolic approach mentioned before, solving a geometric constraint system can
be reduced to solving a set of algebraic equations. We thus allow us to abuse terms by saying
that the numerical solutions of the equations can be constructed with ruler and compass if
the corresponding diagram can be constructed with ruler and compass.

It is well-known [13] that a number η can be constructed with ruler and compass iff there
exist n real numbers η1, η2, ..., ηn = η and n quadratic equations

Q1(x1) = x2
1 + b1x1 + c1 = 0

Q2(x1x2) = x2
2 + b2(x1)x2 + c2(x1) = 0

...
Qn(x1, x2, ..., xn) = x2

n + bn(x1, ..., xn−1)xn + cn(x1, ..., xn−1) = 0
such that Qi(η1, η2, ..., ηi) = 0, (i = 1, ..., n). Since Qi is of degree two, we can further
assume that the bi and ci are linear in the variables x1, ..., xi−1. We assume that xn−1

occurs in Qn. Otherwise, ηn−1 is not needed to define η. Since Qn is linear in xn−1, from
Qn(η1, η2, ..., ηn) = 0, we have

ηn−1 =
η2

n + en−1(η1, ..., ηn−2)ηn + fn−1(η1, ..., ηn−2)
mn−1(η1, ..., ηn−2)ηn + nn−1(η1, ..., ηn−2)

.

Substituting ηn−1 into Qn−1 and taking the numerator, we have

η4
n + g3η

3
n + g2η

2
n + g1η1 + g0 = 0

where gi are polynomials of η1, ..., ηn−2. Since Qi is of degree two in ηi, we can assume that
gi are linear in η1, ..., ηn−2. Then

ηn−2 =
η4

n + Pn−2(η1, ..., ηn−3, ηn)
Qn−2(η1, ..., ηn−3, ηn)

where Pn−2 and Qn−2 are polynomials with degree three in ηn. Repeat this process, we have

(3.1) η1 =
η2n−1

n + P1(ηn)
Q1(ηn)

where P1 and Q1 are polynomials of degree 2n−1 − 1. Substituting (3.1) into Q1(η1) =
η2
1 + b1η1 + c1 = 0 and taking the numerator, we have

(3.2) η2n

n + h2n−1η
2n−1
n + ... + h0 = 0.
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As a consequence, we have the well known result: an rc-constructible number is the root of
an equation of degree 2k for some k > 0. Therefore, if the roots of an irreducible polynomial
equation P (x) = 0 (P (x)) ∈ Q[x]) can be constructed by ruler and compass, its degree must
be a power of two. Thus the root of a cubic polynomial equation is rc-constructible iff the
polynomial is reducible.

Since we can efficiently factor polynomials with computer algebraic systems such as Maple
[2], the only remaining problem is to decide whether the roots of polynomial equations of
degree 2k are rc-constructible.
3..2. Quartic Equations. Let us first consider a special case: we will give an efficient
method of deciding whether the roots of a quartic equation are rc-constructible. Let a
quartic equation in K[x] be

(3.3) x4 + h3x
3 + h2x

2 + h1x + h0 = 0

where K is field. In our case, K could be the field of rational numbers Q or the field of
rational functions Q(u1, ..., um). If K = Q(u1, ..., um), we say that the roots of the equation
(3.3) are rc-constructible if for all possible rational numbers r1, ..., rm the roots of the quartic
equation obtained by substituting ri for ui are rc-constructible.

Let us assume that the quartic polynomial in (3.3) is irreducible. If a root y of (3.3) is
rc-constructible, y can be written as the solution of the following two equations

x2
1 + bx1 + c = 0

y2 + (−mx1 + f)y − nx1 + g = 0
The first equation can be simplified to x2

1 + d = 0. Since the roots are real numbers, we
can further assume that the first equation is x2

1 − 1 = 0. From the second equation we have
x1 = y2+fy+g

my+n . Substitute this into x2
1 − 1 = 0, the numerator is

(y2 + fy + g)2 − (my + n)2 = 0

Comparing the coefficients of this quartic equation with that of (3.3), we obtain a set of
equations

2f − h3 = 0
m2 − 2g − f2 + h2 = 0
2mn− 2fg + h1 = 0
n2 − g2 + h0 = 0

Eliminating f , m, and n, we have

(3.4) 8g3 − 4h2g
2 + (2h1h3 − 8h0)g − h0h

2
3 + 4h0h2 − h2

1 = 0

Let g1 be a root of equation (3.4), f1, m1 and n1 solutions for f , m and n with g substituted
by g1. Then all the roots of equation (3.3) can be obtained from the quadratic equations

y2 + f1y + g1 ± (m1y + n1) = 0.

Therefore, the roots of equation (3.3) can be obtained by successively solving several quadratic
and a cubic equations. By the discussion in the end of Section 3..1, roots of a cubic equation
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are rc-constructible iff the cubic polynomial is reducible, i.e., it has a linear factor. Then we
have a method of deciding whether the roots of a quartic equation can be constructed with
ruler and compass.

Since 2mn = 2fg−h1 is a constant for fixed values of f and g, for each nonzero value of m
there is a unique value for n. Furthermore, if m changes signs, n also changes its sign. From
this observation, one of the two quadratic equations, say (ax2+2bx+c+2ao)−(2mx+n) = 0
is enough to obtain all the roots of equation (3.3) if we take the positive and negative square
roots for m or n. Here is a summary of what we have proved.

Theorem 3.1 (1) Use the notations given above. The roots of equation (3.3) are rc-
constructible iff the cubic polynomial in (3.4) has a linear factor over the field K.

(2) Let g−g0 be a linear factor of the polynomial in (3.4). Then the four roots of equation
(3.3) are given by the following triangular set of linear and quadratic equations

y2 + fy + g − (my + n) = 0
2mn− 2fg + h1 = 0
m2 − 2g − f2 + h2 = 0 (or n2 − g2 + h0 = 0 if m = 0)
2f − h3 = 0
g − g0 = 0

Example 3.2 (Pappus’ Problem I) Given a fixed point P , a fixed angle AOB, and a
fixed length d, draw a line passing through point P and cutting lines OA and OB with a
segment of length d.

Let the segment be XY . Use the following coordinates O = (0, 0), A = (w, 0), P = (u, v), B =
(w, s), X = (x1, y1), Y = (x2, 0). The algebraic equations of the constraints are

f1 = wy1 − sx1 = 0 X, O, B are collinear
f2 = (y1 − v)x2 − uy1 + vx1 = 0 X, P, Y are collinear
f3 = x2

2 − 2x1x2 + y2
1 + x2

1 − d2
1 = 0 |XY | = d1

If considering w, u, v, and s as non-zero constants, with Ritt-Wu’s characteristic method,
the above equations can be reduced to the following triangular form.

f2 = (y1 − v)x2 − uy1 + vx1 = 0
f1 = wy1 − sx1 = 0
f4 = s2(s2+w2)x4

1−2ws2(vs+wu)x3
1+(v2+u2−d2

1)w
2s2x2

1+2d2
1w

3vsx1−d2
1w

4v2 = 0
With Theorem 3.1, we can calculate a cubic equation from the quartic equation f4 =

0. Using factorization algorithms from [22], we can show that this cubic polynomial is
irreducible. This means that the diagram cannot be drawn with ruler and compass.

Example 3.3 (Pappus’ Problem II) All requirements are the same as in Example 3.2
with an additional condition that point P is on the bisector of angle AOB.

We need only to add a new constraint 6 AOP = 6 POB (with equation d3(v2−u2)+2d2uv =
0) to the constraint set of Example 3.2. Using Ritt-Wu’s characteristic set method, we still
get a quartic equation of x1. This time the corresponding cubic equation is reducible and
has the following linear factor of variable g

−12(u2 + v2)2g + 2(u2 − v2)(u4 − v4) + (u2 − v2)2d2
1 = 0.
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Then the quartic equation can be reduced to two quadratic equations and two linear equa-
tions as shown in Theorem 3.1 and the line can be drawn with ruler and compass.

Finally, let us comment that the above approach for quartic equations is similar to the
well-known techniques of solving quartic equations. What we demonstrate here is that how
this method can be obtained naturally in the context of solving rc-constructibility problems.
Also, in the next section, we will use the same idea to solve the rc-constructibility problem
in the general case.
3..3. The General Case. We want to know whether the roots of the following equation

(3.5) H(x) = x2n
+ h2n−1x

2n−1 + ... + h0 = 0

in K[x] are rc-constructible. Let us first assume that the polynomial in (3.5) is irreducible
which can be checked with the algorithm in [22].

If K = Q, there exists a polynomial time algorithm to decide whether H = 0 is solvable
using radicals [17]. But in the general case, K = Q(u1, ..., uq). The method presented in [17]
does not work in this case. One possibility is to give a probabilistic algorithm as follows. For
a given polynomial H involving parameters u1, ..., uq, we take q random numbers e1, ..., eq

from Q and substitute ui for ei in H to obtain a polynomial H ′ ∈ Q[x]. Then we can
use the algorithm in [17] to decide whether the roots of H ′ = 0 are rc-constructible or
equivalently whether they can be represented by square roots. If the roots of H ′ = 0 are not
rc-constructible then the original problem is not rc-constructible. In the following, we will
give a decision algorithm for the general case. However the algorithm has exponential time
complexity.

Similar to the quartic case, if a root y of equation (3.5) is rc-constructible, by (3.1) there
is a number x1 such that

x1 =
y2n−1

+ P (y)
Q(y)

and x2
1 − c = 0

where P and Q are polynomials of degree 2n−1− 1. Substituting x1 into x2
1− c = 0, we have

(y2n−1
+ P (y))2 − cQ(y)2 = 0.

Since an rc-constructible number is always a real number, we can assume c > 0. Then the
above equation becomes

(3.6) (y2n−1
+ P (y))2 − (

√
cQ(y))2 = (y2n−1

+ P (y))2 −R(y)2 = 0.

Let P = p2n−1x
2n−1 + ... + p0 and R(y) =

√
cQ = q2n−1x

2n−1 + ... + q0. Substituting them
into (3.6) and comparing coefficients with (3.5), we obtain a set of equations PS about pi and
qi. It is clear that the solutions of PS are in a one to one corresponding with the following
factorization of H

(3.7) H(x) = (y2n−1
+ P (y)−R(y)) ∗ (y2n−1

+ P (y) + R(y))

Lemma 3.4 Use the notations introduced above. The equation set PS has a finite number
of solutions over any extension filed of K.
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Proof. Suppose that H(x) has a factorization like

(3.8) H(x) = (y2n−1
+ s2n−1−1x

2n−1−1 + ... + s0)(y2n−1
+ t2n−1−1x

2n−1−1 + ... + t0).

Then by comparing the coefficients of equations (3.7) and (3.8), we have pi−qi = ti, pi+qi = si

or pi − qi = si, pi + qi = ti. In either case, we can determine pi and qi uniquely: pi =
(si + ti)/2, qi = (si − ti)/2 or pi = (si + ti)/2, qi = (ti − si)/2. Since polynomial H can have
only a finite number of factorizations like (3.8), there exist also a finite decompositions like
(3.7). Since each set of solution of PS will provide a decomposition (3.7), PS has only a
finite number of solutions over any extension field of K.

Now let us consider equation (3.6) more carefully. Let k = 2n−1. Considering the
coefficients of y2(k−1), y2k−3, ..., yk−1 in R(y)2, the corresponding equations in PS have the
form

R1 = q2
k−1 + f1(p0, ..., pk−1) = 0

R2 = 2qk−1qk−2 + f2(p0, ..., pk−1) = 0
R3 = 2qk−1qk−3 + f2(p0, ..., pk−1, qk−2) = 0
· · ·
Rk = 2qk−1q0 + fk(p0, ..., pk−1, qk−2, ..., q1) = 0.

If qk−1 6= 0, RS = {R1, ..., Rk} is in triangular form with leading variables qk−1, qk−2, ...q0.
Let P be a polynomial in PS but not in RS. If P contains variables qi, from equation (3.6)
we see that P = P1(p0, ..., pk−1) + P2(q0, ..., qk−2) and P2(q0, ..., qk−2) is a homogeneous
quadratic polynomial. Since qk−1 6= 0, P = 0 is the same as q2

k−1P = 0. Using R1, ..., Rk, we
can eliminate all the qi from P . Let PS1 be the set of polynomials obtained as above. We
have reached the following result.

Lemma 3.5 Use the notations introduced above. If qk−1 6= 0, the solutions of the equation
set PS can be obtained as follows. First we need to solve a polynomial equation PS1 for
the variables p0, ..., pk−1. Second q0, ..., qk−1 can be obtained with the triangular equations
R1 = 0, ..., Rk = 0. PS1 also has a finite number of solutions.

We need only to show that PS1 has a finite number of solutions. To prove this, we need only
to show that each set of solutions of PS1 will lead to a set of solutions for PS. For a set of
solutions of PS1, if qk−1 6= 0 then we can obtain a set of of solutions for the qi via Ri = 0.
If qk−1 = 0, let l be the largest index such that ql−1 6= 0. Then we can obtain a similar set
of equations R1, ..., Rl from which the rest of the qi can be obtained.

Lemma 3.6 Use the notations introduced above. (1) Equation (3.5) has a decomposition
like (3.6) iff PS1 has a set of solutions in K.

(2) Let a set of solutions of PS1 be (e0, ..., ek−1), ei ∈ K. Then all roots y of (3.5) can
be obtained as follows

yk + ek−1y
k−1 + ... + e0 − (qk−1y

k−1 + ... + q0) = 0
R1 = q2

k−1 + f1(p0, ..., pk−1) = 0 (qk−1 6= 0)
R2 = 2qk−1qk−2 + f2(e0, ..., ek−1) = 0
R3 = 2qk−1qk−3 + f2(e0, ..., ek−1, qk−2) = 0
· · ·
Rk = 2qk−1q0 + fk(e0, ..., ek−1, qk−2, ..., q1) = 0.
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If qk−1 = 0, we can use the largest l such that ql 6= 0 as the leading coefficient for R to find
a similar set of equations.

Proof. The proof is similar to that of Theorem 3.1. For the first part, we already proved
that each set of solutions of PS1 can be extended to a set of solutions for PS. This means
that each solutions of PS1 will lead to a decomposition (3.6). Noting that in decomposition
(3.6) P (y) and Q(y) are polynomials in K[y]. Then decomposition (3.6) exists iff PS1 has a
set of solutions in K.

For the second part, similar to the proof of Lemma 3.5, if qk−1 6= 0 we can eliminate the
variables qi−2, qi−3, ..., q1 from Ri for i ≥ 2.

R′
2 = 2qk−1qk−2 + g2(p0, ..., pk−1) = 0

R′
3 = 2qk−1qk−3 + g2(p0, ..., pk−1) = 0

· · ·
R′

k = 2qk−1q0 + gk(p0, ..., pk−1) = 0.
Therefore, for any values of p0, ..., pk−1, qk−1qi is a constant. When qk−1 changes signs,

qi (i = 0, ..., k − 2) will also change signs. Since R1 = 0 will give raise to a positive and
a negative values for qk−1, choosing one of the two equations y2n−1

+ P (y) − R(y) = 0 or
y2n−1

+ P (y) + R(y) = 0 is sufficient to find all the solutions of (3.5).
Before giving the algorithm, let us note that if a polynomial equation system PS1 has

a finite number of solutions over any extension field of K. Then the problem of deciding
whether PS1 has a set of solutions over K is easy. This is equivalent to the fact that in a
decomposition like (2.2) there exists a triangular set consisting of linear polynomials only.

Algorithm 3.7 The algorithm will decide whether a geometric constraint system is rc-
constructible, and if it is, represents the coordinates of the points in the geometric problems
as solutions of linear and quadratic equations.

Step 1. Choose a coordinate system. Let PS be the algebraic equations of the geometric
constraints.
Step 2. Using Ritt-Wu’s decomposition algorithm, we can represent the solutions of PS as
solutions of polynomial sets in triangular form.

Zero(PS) =
⋃
i

Zero(TSi/Ii)

where Ii is the product of the initials of the polynomials in TSi.
Step 3. Let TSi = {p1(U, x1), p2(U, x1, x2), ..., pk(U, x1, ..., xk)} where U = u1, ..., um are
the segment length and angle value parameters. If all the pi are linear and quadratic, then
the diagram defined by TSi is rc-constructible. Otherwise, by (2.3), Zero(TSi/Ii) can be
represented in the following form6)

Ri(U,w) = 0, xj = Mj(U,w)/Nj(U,w), (j = 1, ..., k)

where w is a new variable and R,Mi, Ni, are polynomials in K[U,w].

6)A more efficient way is to allow quadratic equations of xi and we need only to change those pi with degree
higher than two. Now, Zero(TSi/Ii) can be represented as Ri(U, w) = 0, Qj(U, w, xj) = 0, (j = 1, ..., k) where
Qj is either a linear or a quadratic polynomial in xj .
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Step 4. Now it is clear that the constraint system is rc-constructible iff the solution of each
Ri(U,w) is rc-constructible. We assume that Ri(U,w) is irreducible, since otherwise we can
factor it with the efficient algorithms in [22]. If the degree of Ri in w is not a power of two,
the roots of Ri are not rc-constructible. If it is, do Step 5.
Step 5. Let Ri be of degree 2m. Using Lemma 3.6, we can decide whether the roots of
Ri = 0 can be written as the roots of a set of linear and quadratic equations and the roots of
an equation of degree 2m−1. Using this process repeatedly, we can decide whether the roots
of Ri can be written as the solutions of a set of linear and quadratic equations. If the answer
is positive, the geometric problem is rc-constructible; otherwise, the geometric problem is
not rc-constructible.

Although this decision procedure is an extension of the efficient algorithm for quartic
equations, it is not efficient. This is because, in the case of quartic equations, the rc-
constructibility is reduced to the reducibility of a cubic equation. For higher degree poly-
nomials, the rc-constructibility is reduced to the solution of a set of quadratic equations
PS1. It is known that solving zero dimensional equations is single exponential in the num-
ber of variables [18]. Then our algorithm should also be of single exponential of the degree
of the polynomial equation. Nevertheless, this seems to be first decision procedure for the
rc-constructibility problem. Also, in practice equations with degree greater than four are
rarely encountered.
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