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Abstract

When dealing with massive data sets, standard algorithms may easily “run out of
memory”. In this thesis, we design efficient algorithms in space-conscious mod-
els. In particular, in-place algorithms, multi-pass algorithms, read-only algorithms,
and stream-sort algorithms are studied, and the focus is on fundamental geometric
problems, such as 2D convex hulls, 3D convex hulls, Voronoi diagrams and nearest
neighbor queries, Klee’s measure problem, and low-dimensional linear program-
ming.

In-place algorithms only use O(1) extra space besides the input array. We
present a data structure for 2D nearest neighbor queries and algorithms for Klee’s
measure problem in this model.

Algorithms in the multi-pass model only make read-only sequential access to the
input, and use sublinear working space and small (usually a constant) number of
passes on the input. We present algorithms and lower bounds for many problems,
including low-dimensional linear programming and convex hulls, in this model.

Algorithms in the read-only model only make read-only random access to the
input array, and use sublinear working space. We present algorithms for Klee’s
measure problem and 2D convex hulls in this model.

Algorithms in the stream-sort model use sorting as a primitive operation. Each
pass can either sort the data or make sequential access to the data. As in the
multi-pass model, these algorithms can only use sublinear working space and a
small (usually a constant) number of passes on the data. We present algorithms
for constructing convex hulls and polygon triangulation in this model.
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Chapter 1

Introduction

Traditionally, the study of algorithms mainly focuses on running-time performance.
When handling massive datasets, those “good” algorithms can easily “run out of
memory”. One way researchers have dealt with this issue is to consider algorithms
and data structures in external memory. Here, we examine this issue from another
direction—designing algorithms and data structures that consume little processing
space. To define the space constraints formally, different space-conscious computa-
tional models have been proposed, for example, in-place algorithms, the multi-pass
model, and the streaming model.

Massive datasets arise in different fields, such as in geographic information sys-
tems, sensor networks, internet applications, bioinformatics, robotics, and elec-
tronic circuit designs. Many problems in these applications may be abstracted as
geometric problems. In this thesis, we will study fundamental geometric problems
in these space-conscious models.

1.1 Computational Geometry

In computational geometry, we focus on finding asymptotically fast algorithms and
data structures for solving geometric problems. This research topic was established
in the 70’s [61], when some fundamental geometric problems were investigated, for
example, convex hulls, Voronoi diagrams, triangulation, and point location.

1.1.1 Convex Hulls

For a set of points, its convex hull is the smallest convex polytope containing all
points. In 2D, the convex hull is a convex polygon; in 3D, it is a convex polyhedron.
Convex hulls are also discussed in dual space. By this transformation, in 2D, each
point (a, b) in primal space is mapped to a line y = ax − b in dual space, and the
convex hull of a set of points corresponds to the lower envelope of a set of lines. In
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3D, a point is mapped to a plane in dual space, and the convex hull corresponds
to the lower envelope of a set of planes. In higher dimensions, a point is mapped
to a hyperplane, and the convex hull corresponds to the lower envelope of a set of
hyperplanes.

Constructing convex hulls can be viewed as an extension of the sorting problem
to higher dimensions. Some well-known convex hull algorithms use a sorting algo-
rithm as a subroutine, such as Graham’s scan [61]. Some other algorithms share
similar divide-and-conquer strategies with mergesort or quicksort. It is also known
that the sorting problem can be reduced to the convex hull problem in 2D. Indeed,
in comparison-based models, where fixed-degree algebraic predicates over the input
points can be evaluated in O(1) time, constructing the convex hull of n points in
both 2D and 3D requires Θ(n log n) time [40, 87].

However, we can still aim for convex hull algorithms with better performance
by taking the size of the output into account. The concept of output-sensitive
algorithms has been proposed for this reason. These algorithms only take O(n log h)
time [20, 71], where h is the number of points on the convex hull.

In computational geometry, the convex hull plays an important role. It has con-
nections to many geometric problems, for example, the linear programming problem,
where the goal is to optimize a linear objective function, subject to a set of linear
inequality constraints. Geometrically, each linear constraint can be viewed as a
hyperplane. Solving the linear programming problem is equivalent to finding the
extreme point on the lower envelope of a set of hyperplanes in a direction deter-
mined by the objective function.

1.1.2 Voronoi Diagrams

The Voronoi diagram is related to the “post office” problem. Given a set of n points
on the plane, we can divide the plane into n regions, such that all points in the
same region share the same nearest post office, measured in Euclidean distance.
This partition is known as the Voronoi diagram. These post offices are called sites.
Each site corresponds to exactly one region (called the Voronoi cell) in the partition.
One edge of the Voronoi cell is defined by two sites, which is a part of the bisector
line of these two sites.

The Delaunay triangulation is another well-known geometric structure. In the
Delaunay triangulation of a set of 2D points, the circumcircle of any triangle does
not contain any points in the point set, other than the three vertices of the triangle.

For a set of points, its Voronoi diagram and Delaunay triangulation can be
transformed into one another in linear time. Each vertex in the Delaunay triangu-
lation maps to a Voronoi cell; each edge in the Delaunay triangulation maps to a
Voronoi edge. Therefore, the Delaunay triangulation is referred to as the dual of
the Voronoi diagram.
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2D Voronoi diagrams/Delaunay triangulations can be constructed in Θ(n log n)
time [40, 80, 87]. They can be constructed directly, for example, by Fortune’s
sweeping algorithm [40], or by randomized incremental algorithms [80]. It can
also be reduced to a 3D convex hull problem and be constructed by a 3D convex-
hull algorithm. In this reduction, each 2D point (x, y) is lifted to a 3D point
(x, y, x2 + y2). The projection of the 3D convex hull of the generated point set in
the xy plane is the Delaunay triangulation of the original point set [87].

One main application of Voronoi diagrams is to answer nearest neighbor queries.
After the Voronoi diagram is obtained, answering nearest neighbor queries becomes
locating the Voronoi cell containing the query point—a point location query in a
planar subdivision.

1.1.3 Point Location and Other Planar Subdivisions

Given a planar subdivision and a query point, the point location problem is to
locate the region containing the query point. With additional data structures, a
query can be answered in O(log n) time, where n is the number of vertices in the
subdivision. Several well-known structures have been proposed since the late 80’s,
such as the Kirkpatrick’s hierarchical method [87], the persistent search tree [91],
the chain method [48], and a randomized incremental method [80].

Besides Voronoi diagrams and Delaunay triangulations, other geometric struc-
tures are also widely used, for example, the trapezoidal decomposition [40]: given a
set of n disjoint line segments in 2D, we divide the plane into a set of trapezoids.
For every trapezoid, its upper and lower edges are parts of the given line segments.
The left and right walls pass through the endpoints of the line segments. None of
the trapezoids intersects any of the line segments. The trapezoidal decomposition
of a set of n disjoint line segments can be computed in O(n log n) time. By answer-
ing a point location query in this planar subdivision, we can locate the line segment
right above or below the query point.

Trapezoidal decompositions can also be used to support other queries. By con-
sidering a simple polygon as a set of disjoint line segments and answering point
location queries on its trapezoidal decomposition, we can answer a membership
query—deciding whether a query point is contained in the given polygon. Alterna-
tively, we can also answer membership queries by point location in a triangulation
of the polygon. Since it is also known that the trapezoidal decomposition and the
triangulation of a set of line segments can be transformed into one another in O(n)
time [40], we can build both the trapezoidal decomposition and the triangulation
of a polygon in O(n log n) time, by computing the trapezoidal decomposition of a
set of line segments. In fact, for a simple polygon, both of these structures can be
computed faster in O(n) time [29].

All geometric problems mentioned are usually studied in traditional compu-
tational models: the working space can be randomly accessed, and the size of
the working space is unlimited. The main measurement of algorithms and data
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structures is their running time. In this proposed research, we will consider space
constraints. In the rest of this chapter, we will introduce various space-conscious
models, and also summarize the new results in the thesis.

1.2 Space-Conscious Models

In this section, we introduce several space-conscious model. For in-place algorithms
and in the read-only model, input data are loaded in memory, and the extra work-
ing space is sublinear. In the multi-pass model and the stream-sort model, input
data are in some special device with restrictive access, and the working memory is
sublinear.

1.2.1 In-Place Algorithms and Implicit Data Structures

For in-place algorithms, besides the space storing the given input (as an array of
data elements), algorithms and data structures can only take O(1) extra working
space.1 For example, heapsort is in-place.

Most other well-known optimal sorting algorithms need Ω(n) extra space. In
the 80’s and 90’s, stable sorting algorithms [39] were studied and several in-place
merging algorithms were developed [45, 76]. Based on those results, mergesort
can also be made to run in O(n log n) time with O(1) extra space. Later, two
research groups independently found O(n log n)-time stable mergesort algorithms
taking O(

√
n) extra space [44, 95]. An in-place stable mergesort algorithm was

finally discovered in 1995 [104].

In the same period, stable partitioning algorithms have also been studied. With
those partitioning algorithms, Munro et al. gave a stable quicksort running in
O(n polylogn) time with O(1) extra space [85]. Later, Katajainen and Passanen
gave a linear-time stable partitioning algorithm using O(1) extra space, resulting
in an optimal stable quicksort [69]. Recently, in-place sorting algorithms with
O(n log n) comparisons and O(n) moves have been studied [55, 54]. In 2007, an
optimal stable in-place sorting algorithm with O(n) moves has been obtained [54]
by Franceschini.

Researchers also studied the related selection problem. Lai and Wood gave a
solution to select the k-th largest element running in O(n) time with O(1) words
or O(log n) bits of extra space [73].

We can also consider data structures taking sublinear extra space. In implicit
data structures, all data are kept in an array of n units, and only O(polylog n) ex-
tra space is used. Implicit dictionary structures supporting dynamic updates have
been studied since the 80’s. Munro [81] proposed an efficient dynamic structure

1In this thesis, the space is counted in the number of words or data units, unless specified
otherwise
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supporting updates and predecessor search in O(polylogn) time with O(polylog n)
extra space. In this paper, an interesting bit-encoding trick is introduced. Given a
pair of elements, if the first element is smaller than the second one, 0 is encoded,
otherwise 1 is encoded. Based on this idea, pointers and other additional informa-
tion can be stored without using extra space. For example, by grouping O(log n)
pairs of data together, a pointer of size O(log n) can be encoded. Roughly speak-
ing, this is why we only need a very small amount of extra space but have an extra
O(log n) factor in the running time. After a sequence of improvement [56, 58] (over
almost 20 years), Franceschini and Grossi finally proposed a structure obtaining
O(log n) running time for both predecessor queries and updates, with only O(1)
extra space [57].

In computational geometry. In the early stage, some implicit data structures
for database queries have been proposed, which can also be considered as data
structures for geometric problems [51]. After 2000, research on in-place geometric
algorithms and data structures became active [15, 17, 18, 19, 27, 33, 34, 105, 106].
Convex hulls in 2D can be constructed in the optimal O(n log n) time with only
O(1) extra space [19]. If the input is represented as a polygonal chain with no
self intersections, the 2D convex hull can be constructed in O(n) time with O(1)
space [17]. With Brönnimann and Chan [18, 31], we gave an in-place algorithm to
construct 3D convex hulls in O(n log3 n) time, which implies that 2D Voronoi dia-
grams/Delaunay triangulations can also be constructed in the same time and space
complexity if the output is written to a write-only stream. In the same paper, we
also showed that off-line nearest neighbor queries can be done in O(n log2 n) time,
with O(log2 n) extra space. These results appeared in the author’s Master’s thesis.
Meanwhile, computing the closest pair in a set of 2D points has been solved by
Bose et al. in optimal O(n log n) time with O(1) extra space [15]. Intersections be-
tween axis-aligned line segments can be reported in O(k + n log n) time with O(1)
extra space [15]. Intersections between general line segments can be reported in
O((n+k) log2 n) time, with O(log2 n) extra space [33], which has recently been im-
proved to O(k +n log2 n) time with O(1) extra space by Vahrenhold [106]. Implicit
geometric data structures have also been studied, such as kd-trees and partition
trees [18].

From the view of methodology, these papers mainly follow two trends. The
first trend is by extending sorting algorithms. The general strategy is by divide-
and-conquer. In the combination step, an in-place (or nearly in-place) merging
procedure is designed for each problem or adapted from in-place merging algo-
rithm. The results in [15, 18, 19, 106] belong to this category. The other trend is
by building complicated implicit data structures. Sweeping is a well-known tech-
nique in computational geometry, which simulates a vertical line sweeping through
the plane [40]. This technique is normally supported by maintaining a 1D dy-
namic searching structure and a priority queue simultaneously. With implicit data
structures, we can combine a priority queue and a searching structure together.
In Munro’s implicit structure [81], data are stored in blocks, and an AVL tree on
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blocks is built. We can build a second AVL tree on the same blocks. In the second
tree, the blocks are indexed by the order of priority values. Each block maintains
a pointer to the data with the highest priority value. Whenever the priority value
is updated, the corresponding block and the second AVL tree are updated. Several
recent results are based on this type of data structures [31, 33, 34].

We normally see an O(log n) slow-down factor in the algorithms using implicit
data structures [33, 34, 105], since all extra pointers are encoded. However, this
encoding technique does not always introduce the O(log n) factor. Indeed, the 2D
convex hull of a simple polygon is computed using implicit data structures in the
optimal O(n) time with O(1) extra space [17]. The reason is that only a doubly
linked list, which is much simpler than a tree, is encoded in that algorithm.

New results. We have two main results for in-place algorithms and implicit
data structures in this thesis. One is an improved static implicit structure for 2D
nearest neighbor queries. Previously, we have obtained a data structure to answer
2D nearest neighbor queries with no extra space [18]. In the initial version of that
paper, the query time is O(nε) for any fixed constant ε > 0; in the full version of
the paper, the query time is lowered to O(log2 n). Due to the encoding/decoding
operations for implicit data structures, the extra O(log n) slow down factor was
introduced. That data structure can be viewed as a modification of standard data
structures for 2D nearest neighbor queries, described in section 1.1.3.

The new implicit data structure presented in this thesis is different from any
well-known data structures for nearest neighbor queries and does not store the
Voronoi diagrams explicitly. It may be viewed as an extension of the van Emde Boas
layout [41, 56, 92] to 2D. With such a highly recursive data structure, we can control
the size of pointers better, and reduce the query time to O(loglog3/2 2 n log log n)
(roughly O(log1.71 n)). This data structure will be shown in section 2.3.

The other main result is about Klee’s measure problem in 2D: given a set of
axis-aligned rectangles, the goal is to compute the area/perimeter of the union of
the rectangles. In an earlier paper [34], we solved it in O(n3/2 log n) time with
O(
√

n) extra space. That was improved to O(n3/2 log n) time with O(1) space by
Vahrenhold [105]. In this thesis, we give a further improved algorithm that runs
in O(n log2 n) time with O(1) space, if the coordinates are O(log n)-bit integers.
These algorithms will be shown in section 2.4.

1.2.2 Multi-Pass Model

In the multi-pass model, input data are stored in a device, for example, on tapes. An
algorithm can only sequentially access the input by several passes. The input must
remain unchanged after each pass. Depending on the problem, the answer may be
sent to a write-only output stream or kept in memory. The goal is to minimize the
amount of working space (measured in words), while keeping the number of passes
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small. Munro and Paterson defined this model in the early 80’s and studied the
classical sorting and selection problems [82]. They gave a selection algorithm that
requires only d1/δe passes and O(nδ log2−2δ n) space for any fixed constant δ > 0
and provided an almost matching lower bound in comparison-based models.

To prove the lower bound, they presented an adversary argument. Given that
only b units can be kept in memory, any program must discard one unit of the
data, before it can access the (b + 1)-st datum. Therefore, any program cannot
know the relationship between the discarded datum and the newly arrived datum.
Based on this observation, we can divide the data into roughly n/b groups. In one
pass, no algorithm can tell the difference between any two data in the same group.
By this adversary strategy, they can force any selection algorithm to make many
comparisons [82].

Some variations of the multi-pass model have been proposed recently. For ex-
ample, a so-called W-stream model is proposed by Ruhl [94], where intermediate
temporary streams of size O(n) between passes are allowed. Demetrescu et al. have
studied several graph problems in this model [42]. They have shown that single-
source shortest paths in directed graphs can be solved in O((n log3/2 n)/

√
s) passes

and the connected components in undirected graphs can be found in O((n log n)/s)
passes, where s is the number of bits kept in memory. They have also proved an
Ω(n/s) lower bound on the number of passes for both of these problems.

The original streaming model is more restrictive, where only a single pass on
the data is allowed. Many approximation algorithms have been proposed in this
model, such as for the problems of selection, clustering [64], and constructing his-
tograms [52]. A more comprehensive survey of the work in this model can be found
in [86].

The stream-sort model is another variation of the multi-pass model, which will
be discussed in more detail later in this section.

In contrast to in-place algorithms, there has not been much work on multi-pass
algorithms in computational geometry. In fact, this thesis contains the first set of
results along this direction.

New results. In the multi-pass model, we obtain a variety of results for some
fundamental geometric problems. For example, we show that low-dimensional linear
programming problems can be solved with O(nε) space in a constant number of
passes, and we also provide nearly matching lower bounds [26]; with O(s) space,
convex hulls in 2D can be computed in O(n/s) passes, which also has a matching
lower bound. These results will be shown in chapter 3.

1.2.3 Read-Only Model

In the read-only model, all data are given in a read-only array (not by a particular
permutation defined by the program), and the algorithm can only take a small
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amount of working space besides the input. This model is “between” the in-place
model and the multi-pass model, since the read-only array can still be randomly
accessed. For example, the standard sorting problem has been considered in this
model. Here, the goal is to minimize the time-space product. Frederickson gave
an algorithm, where the time-space product is O(n2 log n) [59] (space is counted
in bits). An Ω(n2) lower bound was later shown by Beame [12]. Then Pagter and
Rauhe proposed an algorithm achieving this time-space lower bound [90]. Their
algorithm can be viewed as an extension of heapsort. They divide the input array
into blocks and build a heap-like navigational structure on it. In this new heap,
the number of branches depends on the depth in the heap. At the bottom level,
extra information is maintained for each block. When running in O(n log n) time,
this algorithm only needs O(n/ log n) bits of extra space.

Selection is another well-studied problem in the model. Frederickson gave a
selection algorithm taking O((n log n)/ log s + n log∗ s), where s is the number of
registers and s is Ω(log2 n) [59]. With less space, Munro and Raman’s algorithm
takes O(2ss!n1+1/s) time with 1 ≤ s ≤

√
log n/ log log n extra space [83]. Fur-

ther improvement has been made by Raman and Ramnath, if s is Ω(log n) and
o(log2 n) [107].

Along with the multi-pass results, we are also the first to study geometric prob-
lems in the read-only model.

New results. In contrast with our multi-pass results, we show that we can con-
struct 2D convex hulls for sorted point sets and solve the low-dimensional linear
programming problems with less extra space [26]. For example, with O((1/δ)nδ)
space, we can compute the convex hull from sorted points in linear time, which
beats the lower bound of this problem in the multi-pass model. This result will be
shown in sections 4.2 and 4.3.

We also propose an algorithm solving Klee’s measure problem in O(n3/s2) time,
where s is the memory space counted in words. This algorithm will be shown in
section 4.4.

1.2.4 Stream-Sort Model

Another model proposed in the literature is Ruhl et al.’s stream-sort model [94].
Since sorting is a well-studied problem, it is fully optimized in many systems. In
this model, the input data are still given as a stream, but now we have two ways to
access them. One is by a scan pass: input stream is scanned sequentially, and one
output stream is generated. The other is by a sorting pass: the data in the input
stream are sorted based on a user-defined comparator, and the data are placed in
the sorted order in the output stream. The generated output stream is called an
intermediate stream. In the next pass, this intermediate stream becomes the input
stream. All intermediate streams must be of size O(n). At the end, we count how
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many passes are used in total, and how much working space is used in the scan
passes.

Much of the back-end data processing in Google is based on a so-called map-
reduce framework. The stream-sort model is highly related to the abstraction of
this framework. In practice, this framework has some advantages. For example,
applications implemented in the model can be easily distributed or parallelized; the
load balancing of tasks can be easily achieved in distributed systems.

In computational geometry. Ruhl et al. [5, 94] showed how to compute in-
tersections between two disjoint sets of 2D line segments, with O(1) space and
O(polylogn) passes. Lammersen and Sohler [74] solved some other geometric prob-
lems, such as computing 2D convex hulls with O(1) space and O(polylogn) passes.

Note that as Ruhl et al. [5, 94] have shown, many parallel circuits, and conse-
quently many parallel algorithms, can be simulated in the streaming model aug-
mented with a sorting primitive. Several known geometric algorithms [4] can be
simulated in O(polylog n) passes directly. Therefore, we mainly focus on results
where only O(1) passes are allowed.

New results. We solve two fundamental geometric problems with only O(1)
passes. One is the convex hull problem in 2D and 3D. The other is polygon tri-
angulation in 2D. With O(nε) memory space, we can solve all these problems in a
constant number of passes. These results will be shown in section 5.3, 5.4, and 5.5.

We also introduce a new model. Since the sorting pass is the most expensive
part, we define a simpler model in which the sorting pass is not allowed, but we can
only choose a direction to scan the stream (forward or backward). This model is
weaker than the stream-sort model. It can also be viewed as relaxation of the multi-
pass model. This model is interesting, because we can construct the 2D convex hull
from a set of sorted points in O(1) passes with o(

√
n) space, which surpasses the

lower bound in the multi-pass model. This algorithm will be shown in section 5.6.

1.2.5 Other Models

There are other space-conscious models studied in the literature which will not be
considered in this thesis. For instance:

• Cache-oblivious algorithms: similar to the external memory model, data are
stored in a hierarchical memory structure. The CPU only has direct access
to data stored in cache. When the required data are missed, we have to fetch
them from the storage in the next level. Unlike in the external memory model,
the page size is unknown to the algorithm. In the cache oblivious model, the
running time of algorithms automatically adapts to different page sizes. A
more comprehensive survey can be found in [41].
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• The streaming model: Algorithms can only make a single pass over the input
and work with a small amount of space. This is a more restrictive model than
the multi-pass model studied in this thesis. A more comprehensive survey can
be found in [86].

• Succinct data structures: Some fundamental topological structures can be
stored in only O(n) bits. With these data structures, we can perform traver-
sal operations on trees and graphs [68]. For example, given the pointer to a
vertex, we can move the pointer to its parent or children in trees, or move the
pointer to an adjacent vertex in graphs. Succinct data structures have also
been studied for string matching, for example, suffix trees [35]. In computa-
tional geometry, triangulations have been studied [6, 7, 8]. Given a finger to
a triangle in a triangulation, we can move the finger to its adjacent triangles.
This is different from in-place algorithms, where only O(1) extra words are
allowed.
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Chapter 2

In-Place Algorithms and Implicit
Data Structures

2.1 Our Results

In this chapter, the following in-place algorithms and implicit data structures will
be presented.

• Given a set of 2D points, a static data structure is built with O(1) extra
space, such that the nearest-neighbor queries can be answered in
O(loglog3/2 2 n log log n) = O(log1.71 n) time with O(1) space. This result has
been published in SODA’08 [27].

• Given a set of axis-aligned rectangles, the area/perimeter of the union of the
rectangles (Klee’s measure problem in 2D) can be computed in O(n3/2 log n)
time with O(

√
n) space. This result has been published in CCCG’05 [34].

• If the coordinates of rectangles are O(log n)-bit integers, we can improve our
result on Klee’s measure problem to O(n log2 n) time with O(1) space.

• Given a set of axis-aligned rectangles, a point covered by the largest number
of rectangles (a.k.a. the depth problem) can be found in O(n log2 n) time with
O(1) space.

2.2 The Permutation+Bits Model

To simplify the presentation of our implicit data structures and in-place algorithms,
we will work mostly in an intermediate model. Here, in addition to the input array
holding a permutation of the given elements, we also have an extra array of bits.
The content of this extra space can only be accessed through bit probes, with
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each bit access costing unit time. For lack of a better name, we call this the
permutation+bits model.

Curiously, even if we are allowed to use a huge number of extra bits (quadratic
or worse), many problems remain nontrivial in this model. For example, consider
one of the most naive solutions to nearest neighbor queries: the slab method [91].
We draw vertical lines at every vertex of the Voronoi diagram, and store the line
segments of the subdivision at each of the O(n) vertical slabs in sorted y-order. To
answer a query, we first perform a binary search in x to find the slab containing the
query point q, and perform another binary search in y to find segment immediately
above q. This method uses near-quadratic space but has asymptotically the best
query time possible, O(log n), in the standard model. However, to support binary
search, we need to store each of the O(n) sorted lists in subarrays. In the permuta-
tion+bits model, one list can be represented within the input array itself, but with
multiple lists sharing common elements, in general one needs to tap into the extra
array of bits. Each occurrence of a point beyond its first can only be represented
implicitly through pointers. (We assume that points are indivisible data types—
think of them as infinite-precision real numbers.) With the bit probe restriction,
each access to a point would require logarithmic cost, so the binary search would
now cost O(log2 n)!

Nevertheless, by storing the data set in a carefully arranged order, we can adapt
the results in this model to in-place algorithms and implicit data structures, if the
number of extra bits is O(n), by a well-known encoding trick [81].

2.3 In-Place 2D Nearest Neighbor Search

In this section, we describe a new data structure for 2D exact nearest neighbor
queries that uses no extra storage other than the input array. Our query time
is O(logγ n log log n), where γ = log3/2 2 < 1.71. This new algorithm for point
location in the Voronoi diagram is based on using planar graph separators in a
recursive fashion. Although this is hardly the first time separators are used in
computational geometry (or in point location algorithms for that matter), the way
recursion is used is different and, in our opinion, quite fascinating (as one might
suspect from the relative unusualness of our time bound).

The techniques underlying our new method also bear connections with known
data structuring techniques: our organization of the input array can be viewed as a
more sophisticated extension of the “van Emde Boas layout” [41, 92], popular in the
context of cache-oblivious data structures. We perform nβ-way divide-and-conquer,
for some constant β, to ensure that the logarithm of the input size—hence, the size
of pointers—decreases exponentially, thus mitigating the effect of the logarithmic-
factor slow-down.

The rest of the section has a simple organization. After some preliminaries
in the next subsection, the data structure and query algorithm are described in
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subsection 2.3.2 (with 3 interdependent subroutines), which are then analyzed in
subsection 2.3.3.

2.3.1 A Permutation from Voronoi Diagrams and Separa-
tors

We now specify the order for the input array. For this, we apply a standard,
multiple-clusters version of the planar separator theorem [75] to the dual of the
Voronoi diagram, where the removal of a set of separator Voronoi cells produces
O(b) clusters of O(n/b) Voronoi cells. Let Vor(P ) denote the Voronoi diagram of a
point set P and Vor(p, P ) denote the Voronoi cell (a convex polygon) of the point
p ∈ P in Vor(P ). The theorem implies:

Lemma 2.3.1 (Separator Theorem) Given a set P of n points in the plane and
a parameter 1 ≤ b ≤ n, we can partition P into a subset PS (the separator) of
O(
√

bn) points and O(b) subsets P1, P2 . . . (the clusters) each of O(n/b) points, so
that:

For every two points p, p′ ∈ P − PS, if Vor(p, P ) is adjacent to Vor(p′, P ), then
p and p′ belong to the same cluster.

To generate the permutation for P , we simply generate the permutations for the
subsets PS, P1, P2,. . . recursively and concatenate these permutations. The choice
of the parameter b will be specified later.

Applying this recursive procedure to the input point set P0, we implicitly obtain
a tree T of subsets, where the root holds the global set P0, and each generated subset
P resides in a contiguous subarray of the input array. It is important to note that
we are working not with one global Voronoi diagram but with Voronoi diagrams
of subsets. Understanding the relationship between Voronoi diagrams of different
subsets will be vital (see Observations 2.3.2 and 2.3.3 to come). We will make use of
the fortunate fact that nearest neighbor search is a “decomposable” problem—the
nearest neighbor of a point in a union of two subsets can be obtained from the
nearest neighbor in each of the two subsets trivially.

Once the permutation is fixed, our subsequent data structures cannot change
the order of the input array but can only append to the extra array of bits. Note
the resemblance to the van Emde Boas layout [41] (PS is the “top” structure and
P1, P2, . . . are the “bottom” structures—in a query, the top structure helps us de-
termine which bottom structure to recurse in).

In this and the next subsection, we use N to denote the size of the global point
set P0, and reserve the symbol n for the size of an arbitrary subset P in the tree T .
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(Left) A cell Vor(p, P ) (p ∈ PS) drawn with a ray
−→
pq ; the separator cells are shaded.

(Right) The same cell Vor(p, P ) drawn inside the larger cell Vor(p, PS).

Figure 2.1: Ray shooting in Voronoi diagrams

2.3.2 The Query Algorithm

Nearest neighbor queries. With the tree structure T defined in subsection 2.3.1,
the following query algorithm is natural to think of. To find the nearest neighbor of
q in a given subset P in T , we first find the nearest neighbor p of q in the separator
subset PS recursively. If the actual nearest neighbor is not in PS, we deduce which
cluster Pi it belongs to and make a second recursive call to find the nearest neighbor
of q in Pi.

To determine the right cluster to recurse in, we find the edge of Vor(p, P ) hit by

the ray
−→
pq and let Pi be the cluster containing the point in P−{p} that defines this

edge. See figure 2.1 (left). Finding this edge is simply a “one-dimensional” problem
along the boundary of the convex polygon Vor(p, P ) and is doable by binary search.

To see correctness, observe that all points on the line segment pq have the
same nearest neighbor in PS, namely p, by convexity of Vor(p, PS). Thus, all cells
Vor(p′, P ) hit by pq, with the exception of Vor(p, P ), must have p′ 6∈ PS. So, all
such points p′, including the nearest neighbor of q in P , must belong to the same
cluster.

Unfortunately, the above approach has one major flaw: the binary search is
trivially implementable in the traditional model, but not so in the permutation+bits
model. To form the one-dimensional lists for all the convex polygons Vor(p, P ), we
need pointers with logarithmic number of bits, but this would slow down search
to O(log2 n) time, for the same reason mentioned in section 2.2. (If all convex
polygons have constant size, this issue goes away, but there could be many points
with many Voronoi neighbors.) Secondly, the number of extra bits used would be
slightly superlinear.

At least the second issue can be resolved, by the following observation: to
find the cluster Pi, it suffices to search in Vor(p, PS) instead of Vor(p, P ). This
observation is helpful, as |PS| is much smaller than |P | (though not small enough to

14



make the problem trivial, as |PS| À
√
|P | in the separator theorem). Throughout

the section, the Õ notation hides polylogarithmic factor.

Observation 2.3.2 We can preprocess a subset P in T into a data structure with
Õ(|PS|) bits so that:

Given a query ray
−→
pq with p ∈ PS and given the point p′ ∈ PS−{p} that defines

the edge e of Vor(p, PS) hit by
−→
pq , we can determine the cluster Pi containing the

point in P − {p} that defines the edge of Vor(p, P ) hit by
−→
pq in O(log |P |) time.

Proof: Consider the boundary of the convex polygon Vor(p, P ). Blacken those
edges that are adjacent to separator cells Vor(p′, P ) with p′ ∈ PS − {p}; color the
remaining subchains white. Since the points in P − {p} that define edges in the
same white subchain lie in the same cluster, it suffices to determine which white
subchain is hit by the query ray.

Consider the relationship between the two convex polygons Vor(p, PS) and
Vor(p, P ). The former contains the latter. Furthermore, the black edges of Vor(p, P )
remain on the Voronoi diagram of PS and thus lie on the boundary of Vor(p, PS).
See figure 2.1 (right). Determining which white subchain of Vor(p, P ) is hit by a
ray reduces to determining which cap—i.e., connected component of Vor(p, PS) −
Vor(p, P )—is hit by the ray.

If we know the edge e of Vor(p, PS) hit by the ray, there are one or two caps
that involve e; these are the only caps that may be hit by the ray. If there are
two, we can deduce which of the two is the answer by comparing the ray with an
arbitrary vertex v on e ∩ Vor(p, P ).

During preprocessing, we simply precompute all answers in a table: for each
pair p and p′ defining a Voronoi edge e of Vor(PS), we store the cluster index for
each of the at most two caps, and also the vertex v if necessary. Since the number of
edges in a 2D Voronoi diagram is linear, the table can be stored within the array of
extra bits of size Õ(|PS|) by using perfect hashing [60]; the parameters associated
with the required hash functions take O(1) space, which can be stored as well.
The normal O(1)-time worst-case query algorithm for perfect hashing now takes
O(log |P |) time, since each entry of the table (and parameter of the hash functions)
requires logarithmic number of bits. ¤

To summarize, the main bottleneck is the following subproblem:

The Ray Problem. Preprocess a subset P in the tree T so that given a query ray
−→
pq originating from a point p ∈ P , we can quickly find the point p′ ∈ P − {p}
that defines the edge of Vor(p, P ) hit by

−→
pq . Equivalently, we want to find the

first line `(p, p′) hit by
−→
pq over all p′ ∈ P − {p}, where `(p, p′) denotes the

bisector between p and p′.
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If there is an efficient solution to this ray problem, called Ray-Query(P ,
−→
pq ),

then we can answer nearest neighbor queries by the following pseudocode NN-
Query() (omitting obvious base cases).

Algorithm NN-Query(P , q):

1. p = NN-Query(PS, q)

2. p′ = Ray-Query(PS,
−→
pq )

3. determine i from p and p′ by Observation 2.3.2
4. p′′ = NN-Query(Pi, q)
5. if q is closer to p′′ than p then return p′′

else return p

A remark on implementation: We assume that the sizes of PS and the Pi’s have
been stored as part of the data structure (which requires only Õ(b) extra space,
which is smaller than |PS| = O(

√
bn)). A point is represented by its location in

the current input subarray. We have ignored issues surrounding standard address
calculations in both the input array and the extra bit array, which are doable via
offsets. These calculations are essential to ensure pointer costs (O(log n)) indeed
decrease as the number of points n in the subarray decreases.

Let S(n) and Sray(n) denote the number of bits required by a data structure
for the nearest neighbor and the ray problem for |P | = n respectively. Let Q(n)
and Qray(n) denote the query time for these two problems. Then we have the
recurrences:

S(n) = S(nS) +
∑

i S(ni) + Sray(nS) + Õ(nS) (2.1)

Q(n) = Q(nS) + maxi Q(ni) + Qray(nS) + O(log n), (2.2)

where nS = |PS| = O(
√

bn), ni = |Pi| = O(n/b), and nS +
∑

i ni = n.

Ray queries. Although the ray problem appears easier (more “one-dimensional”)
than the original problem, for some time we were not able to come up with an
efficient algorithm under the permutation+bits model, until we gave up on the
binary search approach altogether. Our new idea is simple: why not exploit the
2D tree structure T that we already have to solve this one-dimensional problem as
well? The query time will not be logarithmic (but will be o(log2 n)), and we will
need significantly more than linear space, but fortunately the ray problem is only
required for small (separator) subsets anyway (as we have used Observation 2.3.2).

Again we are unable to solve the problem directly but need a subroutine for
another subproblem, a bichromatic version of the ray subproblem. This version has
two main differences: the source of a ray is not from the same given subset P but
is from another subset Q, and the Voronoi diagram of interest is not Vor(P ) but
Vor(P ∪ {p}) for a query point p ∈ Q.
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The Bichromatic Ray Problem. Preprocess two disjoint subsets P (the “red”

points) and Q (the “blue” points) in the tree T so that given a query ray
−→
pq

originating from a point p ∈ Q, we can quickly find the point p′ ∈ P that defines
the edges of Vor(p, P ∪ {p}) hit by

−→
pq . Equivalently, we want to find the first

bisector line `(p, p′) hit by
−→
pq over all p′ ∈ P .

If there is an efficient solution to the above subproblem, called Bichromatic-Ray-
Query(P , Q,

−→
pq ), then we can solve the ray problem by the following pseudocode:

Algorithm Ray-Query(P ,
−→
pq ), where p ∈ P :

1. if p ∈ PS then

2. p′ = Ray-Query(PS,
−→
pq )

3. determine i from p and p′ by Observation 2.3.2

4. p′′ = Bichromatic-Ray-Query(Pi, PS,
−→
pq )

5. else
6. determine i with p ∈ Pi

7. p′ = Bichromatic-Ray-Query(PS, Pi,
−→
pq )

8. p′′ = Ray-Query(Pi,
−→
pq )

9. if
−→
pq hits `(p, p′′) before `(p, p′) then return p′′

else return p′

The correctness immediately follows from the same Observation 2.3.2 and the
“decomposability” of the ray problem. Note that line 6 takes O(1) time.

Let Sbi(n,m) and Qbi(n,m) denote the number of bits and query time required
by a data structure for the bichromatic ray problem for |P | = n and |Q| = m
respectively. Then we have the recurrences:

Sray(n) = Sray(nS) +
∑

i Sray(ni) +
∑

i(Sbi(ni, nS) + Sbi(nS, ni)) + Õ(nS) (2.3)

Qray(n) = max {Qray(nS) + maxi Qbi(ni, nS), maxi(Qray(ni) + Qbi(nS, ni))}
+O(log n). (2.4)

Bichromatic ray queries. To complete the solution, we need to present an algo-
rithm for the bichromatic ray problem. For this, we use the same recursive approach
for a third (and final!) time. This time, we need a variant of Observation 2.3.2 given
below, where the space usage might at first appear too large but turns out not to
be a problem if parameters are chosen carefully enough.

Observation 2.3.3 We can preprocess two subsets P and Q of T into a data
structure with Õ(|PS| · |Q|) bits so that:

Given a ray
−→
pq with p ∈ Q and a point p′ ∈ PS that defines the edge of

Vor(p, PS ∪ {p}) hit by
−→
pq , we can determine the index i of the cluster contain-

ing the point in P that defines the edge of Vor(p, P ∪ {p}) hit by
−→
pq in O(log |P |)

time.
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Proof: We modify the proof of Observation 2.3.2, considering Vor(p, P ∪ {p})
instead of Vor(p, P ). We blacken those edges that are adjacent to Vor(p′, P ∪ {p})
with p′ ∈ PS. We add one easy fact: for any two points p1, p2 ∈ P , if Vor(p1, P∪{p})
and Vor(p2, P ∪{p}) are adjacent, then Vor(p1, P ) and Vor(p2, P ) are also adjacent.
Thus, points in P that define edges in the same white subchain still lie in the same
cluster.

By the same reasoning as before, for each pair p ∈ Q and p′ ∈ PS, we can
generate at most two possible answers. We store them all in a table as before,
except that this time we don’t need hashing. The size of the two-dimensional table
is trivially Õ(|PS| · |Q|). Note that the query time O(log |P |) does not depend on
Q, since each entry of the table has O(log |P |) bits. ¤

The pseudocode for bichromatic ray queries is as follows:

Algorithm Bichromatic-Ray-Query(P , Q,
−→
pq ),

where p ∈ Q:

1. p′ = Bichromatic-Ray-Query(PS, Q,
−→
pq )

2. determine i from p and p′ by Observation 2.3.3

3. p′′ = Bichromatic-Ray-Query(Pi, Q,
−→
pq )

4. if
−→
pq hits `(p, p′′) before `(p, p′) then return p′′

else return p′

Correctness is self-evident. We have these recurrences:

Sbi(n,m) = Sbi(nS,m) +
∑

i Sbi(ni,m) + Õ(nSm) (2.5)

Qbi(n,m) = Qbi(nS,m) + Qbi(ni,m) + O(log n). (2.6)

2.3.3 Analysis

First version. For the analysis, we first describe a simple choice of b that leads to
an o(log2 n) query time bound with linear space: namely, we set b = n0.22 for each
subset P of size n in the tree T . Here, nS = O(

√
bn) = O(n0.61) and ni = O(n/b) =

O(n0.78). The solutions to the recurrences, while technically straightforward, are
delicate and rely on two numerical facts: 0.611.95 + 0.781.95 < 1 and 0.61 · 1.61 < 1.
Below, c is some constant and ε > 0 is any sufficiently small constant.
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by (2.6): Qbi(n,m) = Qbi(cn
0.61,m)+Qbi(cn

0.78,m) + O(log n)
=⇒ Qbi(n,m) = O(log1.95−ε n)

by (2.4): Qray(n) = Qray(cn
0.78) + O(log1.95−ε n)

=⇒ Qray(n) = O(log1.95 n)

by (2.2): Q(n) = Q(cn0.61) + Q(cn0.78) + O(log1.95−ε n)
=⇒ Q(n) = O(log1.95 n)

by (2.5): Sbi(n,m) = Õ(nm)

by (2.3): Sray(n) = Õ(n1.61)

by (2.1): S(n) = S(nS) +
∑

i S(ni) + Õ((n0.61)1.61)
=⇒ S(n) = O(n).

Second version. Now, to improve upon the O(log1.95 n) query bound, we use a
more clever choice of b, switching between two cases. We first mark subsets in the
tree T as ordinary or special according to the following rules:

The global set P0 is ordinary. If P is ordinary, then PS is special but P1, P2, . . .
are ordinary. If P is special, then PS, P1, P2, . . . are all special.

For each special subset P of size n, we set b = n1/3, so that nS = O(
√

bn) =
O(n2/3) and ni = O(n/b) = O(n2/3). For each ordinary subset P of size n, we set
b = n2ε, so that nS = O(n1/2+ε) and ni = O(n1−2ε).

The solution to the recurrences becomes as follows, where γ := log3/2 2 < 1.71,
and functions Q(·), S(·), . . . marked with superscripts ∗ represent the specified
time/space requirement for special subsets P , while functions without superscripts
are for ordinary subsets P :

by (2.6): Q∗
bi(n,m) = 2Q∗

bi(cn
2/3,m) + O(log n)

=⇒ Q∗
bi(n,m) = O(logγ n)

by (2.4): Q∗
ray(n) = Q∗

ray(cn
2/3) + O(logγ n)

=⇒ Q∗
ray(n) = O(logγ n)

by (2.2): Q∗(n) = 2Q∗(cn2/3) + O(logγ n)
=⇒ Q∗(n) = O(logγ n log log n)

Q(n) = Q∗(cn1/2+ε) + Q(cn1−2ε) + O(logγ n)
= Q(cn1−2ε) + O(logγ n log log n)

=⇒ Q(n) = O(logγ n log log n)

by (2.5): S∗bi(n, m) = Õ(nm)

by (2.3): S∗ray(n) = Õ(n5/3)

by (2.1): S∗(n) = Õ((n2/3)5/3) = Õ(n10/9)

S(n) = S∗(cn1/2+ε) +
∑

i S(ni) + Õ((n1/2+ε)5/3)
=

∑
i S(ni) + o(n1−ε)

=⇒ S(n) = O(n).
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We can in fact make the space bound at most δN for an arbitrarily small
constant δ > 0: just terminate the recursion when |P | = n drops below a sufficiently
large constant. The solution to the S(n) recurrence now yields at most δn. All three
types of queries can be handled trivially in O(1) time in the base cases when the
subset P has constant size, and so the overall query time is still O(logγ N log log N).

2.3.4 In-Place Version

Finally, we convert our data structure in the permutation+bits model into an in-
place data structure with no extra space at all.

We apply the following well-known bit-encoding trick, used in many previous
work on in-place algorithms (e.g., [81]): Divide the input array into consecutive
pairs. For each pair (p, q), we compare p and q lexicographically, and permute the
pair in the array to encode a bit so that if the bit is 0, the smaller point appears first,
else the larger point appears first. (We may assume no two points are identical, by
removing duplicates.) As long as δ < 1/2, this scheme can encode the entire data
structure within the array.

We argue that our data structure remains valid after such pairs are permuted.
First, in the application of the separator theorem, assuming the given set has even
size, we may ensure that all subsets have even size. Indeed, if a cluster Pi has
odd size, we can move a point over to PS; the separator size |PS| would still be
O(
√

bn + b) = O(
√

bn). Thus, subsets in our tree T still reside in contiguous input
subarrays. When the data structure refers to a point p, the actual location i of p
may now be off by 1. We use a different representation of p that is unaffected by
permutations of pairs: namely, we take the index bi/2c together with an extra bit
indicating whether p is the smaller or the larger point of the bi/2c-th pair in the
input array. Given the index and the bit, we can recover the actual location of p.

We conclude:

Theorem 2.3.4 Given an array of N points in the plane, we can permute the
array without using extra storage so that given any query point, its nearest neighbor
can be found in O(log1.71 N) time.

We have omitted preprocessing cost in the analysis, but it is possible to show
that our data structure can be built in O(n polylogn) deterministic time by a
non-in-place algorithm (using a known efficient deterministic hashing scheme such
as [65]).

2.4 Klee’s Measure Problem

In this section, we give in-place algorithms for three related problems. Klee’s mea-
sure problem in 2D is to compute the area/perimeter of the union of a set of axis-
aligned rectangles. In the traditional model, it can be solved in O(n log n) time
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with O(n) space [91]. Given a set of n axis-aligned rectangles in an input array, we
can solve Klee’s measure problem in O(n3/2 log n) time using O(

√
n) extra space.

If coordinates are O(log n)-bit integers, we improve the time bound to O(n log2 n)
and the space bound to O(1). Given a set of axis-aligned rectangles, the point
covered by the maximum number of rectangles can be located in O(n log2 n) time
with O(1) space. Given a set of n points in the plane, we can find the axis-aligned
unit square that covers the maximum number of points in O(n log2 n) time with
O(1) extra space. In this section, if not specified, all rectangles are axis-aligned.

2.4.1 The Sweep-Line Algorithm

We follow the traditional sweep-line idea to solve Klee’s problem [91]. To perform
the sweep over the plane from left to right, we need a priority queue Q to record the
events to process, and also need a structure T to maintain the rectangles intersecting
the vertical sweep line. The structure T should be able to maintain the total length
cover(T) of the portion of the sweep line covered by intersecting rectangles and
should also support insertion and deletion of rectangles. With Q and T , we can
solve Klee’s problem as follows, where x(e) returns the x-coordinate of an event e:

Algorithm Klee(R), where R is the set of given rectangles:
Set Q and T to empty
For each left x-coordinate of the rectangle

Add a “left-end” event into Q
For each right x-coordinate of the rectangle

Add a “right-end” event into Q
Set area = 0
Set xpre = −∞
While Q is not empty

area = area + cover(T )× (x(e)− xpre) (*)
Case: left-end event

Add the corresponding rectangle into T
Case: right-end event

Remove the corresponding rectangle from T
xpre = x(e)

Return area

The perimeter of the rectangles can be computed in a similar way, by replacing line
(*) in the algorithm with the proper calculation.

2.4.2 An O(n3/2 log n) Solution

In this subsection, we present an algorithm running in O(n3/2 log n) time with
O(
√

n) space.
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Kd-trees are widely used to index points in high dimensions [40]. We use kd-
trees in a new way. For each rectangle (x1, x2)× (y1, y2), we map it to a 2D point
(y1, y2). By using this idea, we can maintain both Q and T within O(

√
n) extra

space as follows.

Our kd-tree Qkd can be stored in the input array without using any extra space,
as noted in [18]. When we initialize the structure, the median is picked by an
in-place selection algorithm [73].

For a given horizontal slab I = (−∞, +∞)× (yb, yt), we say an interval (y1, y2)
spans over I if it contains I, and say that it crosses I if it intersects I but does not
span over I. We also say a rectangle spans over I if its y-interval spans over I, and
say a rectangle crosses I if its y-interval crosses I.

To report all rectangles crossing (yb, yt), we query Qkd to find all rectangles
crossing (y1, y2) such that yb ≤ y1 ≤ yt or yb ≤ y2 ≤ yt, and report all qualified
rectangles. We can query Qkd in O(

√
n + m) time [40], where n is the number of

rectangles and m is the number of rectangles crossing (yb, yt).

Before we initialize Qkd in the array, we horizontally divide the plane into O(
√

n)
strips, such that each strip contains

√
n y-coordinates of rectangles. With

√
n extra

space, this can be done by O(
√

n) linear scans through the array. For each slab σ,
we store three pieces of information:

• the boundary of the slab rσ = (yb, yt);

• the length lσ of the sweep line covered by rectangles crossing rσ;

• the number cσ of rectangles spanning over rσ.

All this additional information about the slabs are stored in a structure called
Tv1 using O(

√
n) space, sorted by the the boundaries of slabs top-down. When a

new rectangle is added into or removed from Tv1, we (i) recalculate lσ of at most
two slabs σ crossed by this new rectangle; (ii) update cσ of the strips over which
this new rectangles spans; and (iii) add up the total covered length from all strips.
Step (i) takes O(

√
n log n) time with O(

√
n) space, by doing a bottom-to-top scan

over all rectangles crossing this slab. Step (ii) takes O(
√

n) time with O(1) space,
by checking each slab σ spanned by the new rectangle and updating each cσ. Step
(iii) takes O(

√
n) time with O(1) space.

To maintain the priority queue, knowing the value of current event, we find the
next

√
n events by scanning the input array once, and store them using O(

√
n) space

in a sorted list, called Qv1. The amortized time cost for each event is O(
√

n log n).

To perform the sweep-line algorithm in subsection 2.4.1, we use Tv1 to replace
T , and use Qv1 to replace Q. Because one update in Tv1 takes O(

√
n log n) time,

and there are O(n) events, the resulting algorithm takes O(n3/2 log n) time with
only O(

√
n) extra space.

Therefore, we have
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Theorem 2.4.1 Given an array of n axis-aligned rectangles in R2, the area/perimeter
of the union of rectangles can be computed in O(n3/2 log n) time with O(

√
n) extra

space.

2.4.3 An O(n log2 n) Solution

We now describe an improved algorithm, which only takes O(n log2 n) time with
O(1) extra space. Similar to the implicit data structure for nearest neighbor queries,
we will first show an algorithm using O(n) bits in the permutation+bits model, and
then make it in-place. In this subsection, we assume all coordinates are O(log n)-bit
integers.

Solving Klee’s measure problem in a slab. We consider an extension of the
problem: given a set of rectangles and a horizontal slab, computing the area/perimeter
of the region covered by the union of rectangles inside the slab.

Given a set of n rectangles spanning over a slab, computing the area/perimeter
covered by the rectangles may be viewed as a 1D version Klee’s measure problem.
Each rectangle may be viewed as a line segment in the x-direction. With Klee’s
algorithm [72], we can compute the length of the union of the line segments. As
suggested by Vahrenhold [105], this problem can be solved in-place by modifying
the heapsort algorithm in O(n log n) time. Consequently, we can compute the
area/perimeter covered by the rectangles.

The area/perimeter covered by the rectangles crossing the slab can be computed
by the sweep-line algorithm presented in subsection 2.4.1. Here, we only describe
the data structure of T and Q in detail.

We maintain T using a segment tree TP and a priority queue Q using an AVL
tree QP . These two data structures are stored as extra bits in the permutation+bits
model.

The segment tree is represented as an AVL tree [40]. Each node represents a
slab, and the root node represents the given slab in the problem. At each internal
node, its slab is divided into two sub-slabs, and the sub-slabs are stored in its child
nodes. To support the “cover” operation of TP , in each node, we store (1) the
number of segments spanning over this slab, and (2) the length covered by the
segments crossing this slab. This information can be represented with O(log n)
bits, because the coordinates are O(log n)-bit integers. The boundaries and the
splitting point of the slab are represented with pointers to the rectangles defining
them, which takes O(log n) bits in each node.

As the sweep line intersects a rectangle, the corresponding line segment is in-
serted in the segment tree. We update the information in all nodes along the path
to the leaf, create a new node at the leaf level, and then balance the tree. Similarly,
as the sweep line leaves a rectangle, the corresponding line segment is removed from
the tree.

23



The priority queue is maintained in an AVL tree. Each node stores a pointer of
O(log n) bits, pointing to the rectangle attached to it. The priority value of a node
can be computed from x-coordinates of the rectangle and the current position of
the sweep line in O(1) time with O(1) space. The query and update operations on
the AVL tree are standard.

Given a set RS of rectangles spanning over the slab S and a set RC of rect-
angles crossing S, we now compute the area/perimeter covered by RS ∪ RC . We
first partition the array into two chunks, one for RS and one for RC . This step
takes O(n) time with O(1) space. Then we combine the previous two sweeping
algorithms together. As the sweep line goes from left to right, we maintain the
portion of the sweep line covered by RS and RI separately. As a side of a rectangle
is touched (an event occurs), we update the corresponding data structures, com-
pute the area/perimeter covered by rectangles between the current position and the
previous position of the sweep line, and then update the position of the sweep line.

In the permutation+bits model, when an event caused by a rectangle in RS,
updating the corresponding data structures takes O(log2 n) time; when an event
caused by a rectangle in RC , it takes O(log n) time. We also note that the size
of the extra space is only related to the number of rectangles crossing the slab.
Therefore, we have:

Lemma 2.4.2 Given a set of n axis-aligned rectangles and a slab in R2, the area/
perimeter of the union of the rectangles in the slab can be computed in O(nS log n+
nC log2 n) time with O(nC log n) bits of extra space in the permutation+bits model,
where nS is the number of rectangles spanning over the slab and nC is the number
of rectangles crossing the slab.

Solving Klee’s measure problem in the permutation+bits model. We
divide the plane into O(log n) horizontal slabs such that each slab is crossed by
O(n/ log n) rectangles, and then run the above procedure on each slab.

The boundary of the i-th slab can be identified by solving a selection problem
over the y-coordinates of the rectangles. Naively, by modifying the heapsort al-
gorithm, this takes in O(n log n) time with O(1) space. By lemma 2.4.2, Klee’s
problem can be solved in O(n log n) time with O(n) bits of space in the permuta-
tion+bits model, since nS = O(n/ log n) and nI = O(n).

By processing all O(log n) slabs one by one, we have:

Lemma 2.4.3 Given a set of n axis-aligned rectangles in R2, the area/perimeter
of the union of rectangles can be computed in O(n log2 n) time with O(n) bits of
extra space in the permutation+bits model.

Solving Klee’s measure problem in-place. Since the sorting algorithm is
already in-place, the only data structures maintained in the extra bits are TP and
QP for the rectangles crossing the slab.
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Again, we apply the bit-encoding technique: we group rectangles into pairs,
and encode one bit per pair. We must ensure the data structure is still valid after
permuting each pair of rectangles.

Recall that the rectangles have been partitioned into two groups. We assume
the rectangles crossing the slab is stored in a prefix of the array, and all other
rectangles are stored the second part. Before encoding data structures, we put
each pair of the data in its lexicographical order. For example, we can insist that
the upper side of the first rectangle is higher than the upper side of the second
rectangle in each pair. We also ensure the number of rectangles crossing the slab
is even, so that all pairs can be permuted.

We first build the heap for the second part of the array. In the heap, each pair
of rectangles is considered as a single data unit. With the position of the sweep
line and the slab, we can identify the coordinate defining the priority of the pair.
The heap is only a rearrangement of pairs in the second part of the array. We still
can encode bits in every pair of rectangles.

Then, we build the priority queue QP and the segment tree TP for the rectangles
crossing the slab. By adjusting the number of rectangles crossing a slab, we ensure
the total number of extra bits is less than n/2 bits, then encode both data structure
into the array.

Recall that in both data structures, the indices of rectangles are stored, and the
array position of all rectangles crossing the slab should remain unchanged during the
sweeping procedure. After the data structure is encoded into the array, the indices
can be changed. We thus store the indices before encoding. When retrieving a
rectangle, we locate the pair, restore them in the lexicographical order, and retrieve
the rectangle by the index.

As we perform the sweeping algorithm, in the second part of the array, a pair of
rectangles may change its position in the heap. This may also affect the encoded
data structures. When two pairs are swapped in the heap, we can ensure the
bit encoded in that array position is unchanged, which can be preserved by re-
permuting each pair of rectangles in its new array position. This adjustment only
brings a constant number of extra steps per swap in the heap. This will not change
the running time asymptotically. Therefore, we have:

Theorem 2.4.4 Given a set of n axis-aligned rectangles in R2, the area/perimeter
of the union of the rectangles can be computed in O(n log2 n) time with O(1) extra
space, if the coordinates are O(log n)-bit integers.

2.4.4 The Depth Problem

Given a set of n rectangles in the plane, the depth of a point is the number of
rectangles covering it and the depth problem is to find a point with the maximum
depth. This problem is related to Klee’s measure problem, in the sense that both
problems can be solved by similar techniques.
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To solve this problem, we modify the information stored in the segment tree.
Considering the segments corresponding to the rectangles intersecting the sweep
line, we store three pieces of information in each node: (1) the maximum depth
from segments crossing the slab; (2) the index of the rectangle defining the point
with the above depth; (3) the number of segments spanning over this slab but
not the slab in its parent node. As segments are inserted or deleted, the above
information in the segment tree is updated. Since the number of extra bits in each
node is still O(log n) bits, the size of the segment tree is still O(n). By adjusting
the size of the slab, we ensure the total size of additional data structures is no more
than n/2 bits, then encode them in the input array as before. Therefore, we have:

Corollary 2.4.5 Given a set of n axis-aligned rectangles in R2, the point covered
by the maximum number of rectangles can be found in O(n log2 n) time with O(1)
extra space.

Another variation is the unit-square covering problem: given a set of points,
locate an axis-aligned unit square covering the maximum number of points. By
transforming each point to a unit square, the unit-square covering problem can be
viewed as the depth problem on a set of unit squares. Therefore, we have:

Corollary 2.4.6 Given a set of n points in R2, the unit-square covering the max-
imum number of points can be found in O(n log2 n) time with O(1) extra space.

2.5 Final Remarks

In-place data structure for nearest neighbor queries. Our algorithm in
section 2.3 uses only limited properties about Euclidean Voronoi diagrams and so
is likely generalizable to solve other problems. For instance, by the same approach,
we can answer point location queries in the xy-projection of the 3D lower envelope
of n planes tangent to a given convex algebraic surface of constant degree. The
2D Euclidean nearest neighbor problem corresponds to the special case where the
surface is the unit paraboloid [40]. In the dual, we can answer extreme point queries
(finding the minimal point along a given direction) for a 3D lower hull where all
vertices lie on a convex surface of constant complexity. It is unclear at the moment
how to obtain o(log2 n) query time for certain related problems, such as point
location in the 2D Delaunay triangulation (or projection of a 3D lower hull), as
these problems are not directly decomposable.

The most obvious open problem is to improve the O(log1.71 n) bound for 2D
nearest neighbor search. This might be difficult and require significant new ideas,
as we have already attained the seemingly best recurrence one can hope for with
the separator approach (Q(n) ≈ 2Q(n2/3)).

Some of the most intriguing open questions for us concern the permutation+bits
model. As noted in section 2.2, even if we allow potentially huge amount of extra
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space, it is not clear how one can answer nearest neighbor queries in O(log n) time
here. It would be exciting if a superlogarithmic lower bound could be proved in
this model, for 2D nearest neighbor search or some other natural problem. The
model is appealing in that it contains features of the bit-probe model but is still
“compatible” with traditional computational geometry thinking (that input points
form an abstract data type accessible only through comparisons of certain constant-
degree algebraic functions).

Finally, while we do not claim that our in-place data structure is directly prac-
tical (constant factors might be large due to the repeated usage of planar graph
separators), some of the ideas here could still have an impact on implementa-
tions. For instance, without using the bit-encoding trick, our method can still be
implemented using sublinear extra space. Also, our data structure is automati-
cally cache-oblivious, with O(log1.71

B n) query cost for cache size B (although better
cache-oblivious, non-in-place results were known).

Klee’s measure problem. Compared to the previous results [34, 105], our al-
gorithm for Klee’s problem is the first in-place algorithm running in O(n polylogn)
time. If the coordinates are O(log n)-bit integers, in [34], we could only give an
algorithm running in O(n log2 n) time with O(log2 n) extra space if we are allowed
to destroy the input. Even without destroying the input, our new algorithm can
solve Klee’s measure problem taking the same running time but only using O(1)
extra space.

In [34], we could only solve the unit square covering problem in O(n log3 n) time
with O(log2 n) extra space, which can be viewed as the depth problem on a set of
axis-aligned unit squares. Our new algorithm can solve the depth problem on a
set of axis-aligned rectangles, and it only takes O(n log2 n) time with O(1) extra
space.
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Chapter 3

Multi-Pass Algorithms

In this chapter, we examine the multi-pass model, where algorithms are allowed to
make multiple passes over the input. Multi-pass algorithms have only been briefly
touched upon in some of the previous streaming papers in geometry (e.g., [2, 103]),
but have gained more attention recently for other problems, such as clustering
and graph problems statistic (e.g., [11, 43, 49, 50, 67]). The history of multi-
pass algorithms can be traced back to much earlier times (in compiler design and
automata theory). Munro and Paterson’s seminal paper [82] in 1980 defined the
model and studied the classical sorting and selection problems. The results in this
chapter can be seen as a (belated) continuation of Munro and Paterson’s work for
sorting and searching problems in dimension beyond one.

3.1 Our Results

All results in this section have been announced in SoCG’05 [26]. We present:

• an O(n)-time randomized algorithm for linear programming (or any LP-type
problem) in fixed dimensions, using a constant number of passes and O(nδ)
space for any fixed constant δ > 0;

• an O(n)-time algorithm for computing the convex hull of n sorted points in
2D, using a constant number of passes and O(n1/2+δ) space;

• an O(n log n)-time algorithm for computing the convex hull of n arbitrary
points in 2D, using a constant number of passes and O(hnδ) space, where h
denotes the output size;

• a lower bound proof to show that any b1/δc-pass algorithm that solves the
linear programming problem in R2 must require a storage of Ω(nδ) points;

• a lower bound proof to show that any O(1)-pass algorithm that can generate
(and print out) the vertices of the upper hull (in any order), given n points in
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R2 sorted from left to right, must require Ω(
√

n/ log n) units of storage, where
a “unit” refers to a point or log n bits of information. Here, it is assumed
that to print a point to the output stream, the point must currently reside in
memory1.

3.2 2D Convex Hulls

We warm up with the most basic geometric problem, 2D convex hulls. As Munro
and Paterson [82] observed, there is a simple algorithm for sorting n numbers using
O(s) space, O(n/s) passes, and O(n(log n+n/s)) total number of comparisons: the
algorithm simply finds the next s smallest elements in each pass. These bounds
were shown to be optimal asymptotically. Since 1D sorting reduces to 2D convex
hulls, we cannot hope for a better result for 2D convex hulls. Still, we show that
the same result can be attained in 2D by a similarly simple algorithm. It suffices
to consider just the upper part of the convex hull between the leftmost and the
rightmost vertices (known as the upper hull):

Theorem 3.2.1 Given n points in R2 and a parameter s, we can generate the
vertices of the upper hull from left to right (and print to an output stream), by an
O(n/s)-pass algorithm that uses O(s) space and runs in O(n(log n + n/s)) time.

Proof: We first present the pseudocode as a normal algorithm and afterwards
consider its efficiency as a multi-pass algorithm.

Algorithm CH2D:
0. v = the leftmost point
1. while v 6= the rightmost point:
2. find a vertical slab σ containing s points (if possible)

with its left wall through v
3. let 〈q0, . . . , qj〉 be the upper hull of the points inside σ
4. for each point p to the right of σ:

5. while p is above
←→

qj−1qj, j = j − 1
6. set j = j + 1 and qj = p
7. print out q0, . . . , qj and set v = qj

We prove correctness of the pseudocode. In each iteration of the main loop
(lines 1–7), we start with a known hull vertex v and compute the portion of the
upper hull from v up to and including the bridge (hull edge) at the right wall of
σ. This is accomplished by imitating Graham’s scan [91] (lines 4–6), except that
points are processed not necessarily in sorted order (although points inside σ are

1Note that a tighter bound, Ω(
√

n), has been proved by Guha and McGregor [63] recently.
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examined in line 3 before points to the right of σ). It is straightforward to verify
(for example, by induction) that at the end of the for loop, qj−1qj is indeed the
bridge at the right wall of σ. Thus, after at most dn/se iterations, the entire upper
hull is computed.

We now analyze the pseudocode as a multi-pass algorithm. Line 2 reduces to
finding the s leftmost points among those points to the right of v, and can be
carried out in one pass, since we can easily maintain the s smallest elements of a
stream with O(s) space. The running time is linear if we maintain the s smallest
elements by the following method: read in the next s elements, insert them to
the current buffer (but don’t sort the buffer), select the median in the buffer in
O(s) time, remove the s largest elements from the buffer, and repeat. Line 3 takes
O(s log s) time and O(s) space in main memory. Lines 4–6 require an additional
pass and takes O(n) time. The whole algorithm thus can be implemented with at
most 2dn/se passes, O(s) space, and O((n/s) · (n + s log s)) running time. ¤

Even in the more relaxed read-only model, no algorithm with substantially
better time-space product is possible, due to known lower bounds for sorting [13].
The situation is unfortunate, as many geometric problems (e.g., closest pair and
diameter) are at least as hard as sorting-like problems (e.g., element uniqueness)
and probably do not admit space-efficient algorithms with few passes. Still, we will
identify some geometric problems not threatened by the sorting lower bound in the
next sections.

3.3 Fixed-Dimensional Linear Programming

We consider linear programming in fixed dimensions, where a number of (determin-
istic and randomized) linear-time algorithms were known in the traditional model
of computation. We show that many of these algorithms can be modified to work
with little space (O(nδ)) using a constant number of passes, although some are
more time-efficient than others. Some of the modifications are not too difficult,
while some require new ideas. We also prove a nontrivial lower bound. (In the
bounds below, we suppress dependence on d but not δ.)

3.3.1 Prune-and-Search in 2D

We begin in 2D with the first published linear-time algorithm by Megiddo [77] and
Dyer [46], based on prune-and-search. There are two difficulties in turning this
algorithm into a multi-pass algorithm: First, since the original algorithm removes
a constant fraction of the input at each iteration and consequently requires at
least a logarithmic number of passes, we need to remove a larger fraction. This
is accomplished by changing some parameters (instead of pairing, we use grouping
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of a larger size). Second, since we cannot explicitly remove any element from the
input in the multi-pass model, we need to encode the current subset of surviving
elements using a small amount of information and be able to retrieve this subset
in a single pass whenever required. This task is accomplished by describing the
current subset as the outcome of a series of processes (“filters”) and retrieving the
subset using a nontrivial “pipelining” technique.

Theorem 3.3.1 Given n halfplanes in R2, we can compute the lowest point in
their intersection by an O(1/δ)-pass deterministic algorithm that uses O((1/δ2)nδ)
space and runs in O((1/δ)n1+δ) time.

Proof: We first define two subroutines: given a stream of halfplanes H, a param-
eter r, and a vertical slab σ, Listr,σ(H) outputs a stream of vertical lines, and
Filterr,σ(H) outputs a subset of halfplanes. (Throughout this chapter, “slabs”
are implicitly vertical slabs.)

Algorithm Listr,σ(H):
0. while there are remaining halfplanes in H:
1. read in the next r halfplanes h1, . . . , hr

2. compute the intersection I = h1 ∩ · · · ∩ hr

3. print out the vertical lines through the vertices of I inside σ

Algorithm Filterr,σ(H):
0. while there are remaining halfplanes in H:
1. read in the next r halfplanes h1, . . . , hr

2. compute the intersection I = h1 ∩ · · · ∩ hr

3. print out the halfplanes that are involved in the boundary of I ∩ σ

For an input stream of size n, both subroutines are one-pass algorithms and
require O(r) space and O((n/r) · r log r) = O(n log r) time.

Given a set H of n halfplanes, our algorithm follows the outline below, where
r0, r1, . . . is a sequence to be determined later. Here, we maintain the invariant
that at each iteration i, the solution lies in a vertical slab σi and is defined only by
halfplanes in a subset Hi.

Algorithm LP2D:
0. let σ0 be the whole plane and H0 = H
1. for i = 0, 1, . . .:
2. if |Hi| is below a constant then return solution for Hi directly
3. divide the slab σi into ri subslabs so that each subslab contains O(1/ri)-th

of the lines from Listri,σi
(Hi)

4. decide which subslab contains the solution, and let this subslab be σi+1

5. Hi+1 = Filterri,σi+1
(Hi)
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We first prove correctness. Assume that the invariant holds at iteration i. After
iteration i, since we know that the solution lies in σi+1, by design of Filter, only
halfplanes in Hi+1 = Filterri,σi+1

(Hi) can indeed affect the solution.

Let ni = |Hi|. We now show that ni decreases rapidly. Since Listri,σi
(Hi)

generates at most ni lines, at most O(ni/ri) of these lines are inside σi+1. Observe
that if h1 ∩ · · · ∩ hri

has j vertices inside σi+1, then at most j + 2 halfplanes are
involved in the boundary of h1 ∩ · · · ∩ hri

∩ σi+1. Thus, Filterri,σi+1
(Hi) generates

at most J +2dni/rie halfplanes, where J is the total number of vertices inside σi+1.
As J = O(ni/ri), we have ni+1 = O(ni/ri).

One issue needs to be addressed: in the multi-pass setting, we do not have
space to store the subset Hi explicitly. Instead, during each iteration, we need to
re-generate Hi from the original input H, by re-running the Filter operations
from scratch. In other words, we work with the following modified pseudocode:

Algorithm LP2D-Multi-Pass:
0′. let σ0 be the whole plane
1′. for i = 0, 1, . . .:
2′. if the size of Filterri−1,σi

(· · · (Filterr0,σ1(H)) · · · )) is below a constant
return solution for Filterri−1,σi

(· · · (Filterr0,σ1(H)) · · · )) directly
3′. divide the slab σi into ri subslabs so that each subslab contains

O(1/ri)-th of the lines from
Listri,σi

(Filterri−1,σi
(· · · (Filterr0,σ1(H)) · · · ))

4′. decide which subslab contains the solution, and let this subslab be σi+1

We briefly observe how in general one may combine a series of one-pass processes
P1, . . . , Pi (a pipeline) into a single one-pass algorithm in a space-efficient manner.
Each process Pi (i > 1) has a buffer that Pi reads from (and that Pi−1 writes into);
for theoretical purposes, we may take the buffer size to be 1. During each cycle,
if none of the buffers are full, we can execute the next step of P1. Otherwise, we
identify the process Pj with the largest j whose buffer is full and execute the next
step of Pj. (In this step, Pj may read from its buffer or write to Pj+1’s buffer, but
we know that Pj’s buffer is not empty and Pj+1’s buffer is not full.) The space
required for the pipeline is thus bounded by the sum of the space required for the
individual processes.

We can now analyze the cost of iteration i of our algorithm. The Filter
pipeline requires O(r0 + · · ·+ ri−1) space and O(n0 log r0 + · · ·+ ni−1 log ri−1) time.
For line 3′, we can pipe this output stream through List and then through an algo-
rithm for finding ri approximate quantiles in a stream of ni elements—i.e., finding
elements of ranks within an additive error O(ni/ri) from ni/ri, 2ni/ri, 3ni/ri, . . .
Munro and Paterson [82] provided a simple tree-based algorithm for this task that
requires one pass and O(ri log2 ni) space; it can be checked that the running time is
O(ni log(ri log ni)). (Munro and Paterson did not explicitly state the approximate
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quantiles problem in their paper but this subroutine was used as part of their exact,
multi-pass selection algorithm; see [62] for another algorithm.)

For line 4′, recall [46, 77] that deciding whether the solution is to the left or
right of a line ` reduces to computing the intersection of the halfplanes at `, which
reduces to computing the minimum or maximum of a 1D set. Thus, we can decide
which of the O(ri) subslabs contains the solution in one pass, by maintaining O(ri)
minima/maxima simultaneously, with O(ri) space and O(nri) time.

The simplest choice of parameters is r0 = r1 = · · · = r, with O(logr n) iterations.
The algorithm thus makes O(logr n) passes, uses O((1/δ)r + r log2 n) space, and
runs in O(nr logr n) time. The theorem follows, for example, by setting r = nδ/2

(and noting that log n = O((1/δ)nδ/4)). ¤

We can speed up the algorithm to run in almost linear time: this theorem gives
our best deterministic result. (A faster randomized algorithm will be given later.)

Theorem 3.3.2 The running time in theorem 3.3.1 can be improved to
O((1/δ)n log(c) n), where c is any fixed integer constant and log(c) denotes logarithm
iterated c times.

Proof: The algorithm is the same, but line 3′ (approximate quantiles) and line 4′

(the decision step) need to be done more efficiently, and the choice of parameters
is different.

For line 3′, we use a variant of Munro and Paterson’s algorithm where the tree
has degree b instead of 2. It is straightforward to check (see [82]) that the space
bound becomes O(bri log2

b ni) and the time bound becomes O(ni log(ri logb ni)). We
set b = nδ/2.

For line 4′, recall that this step reduces to computing the intersection of n half-
planes at each of O(ri) vertical lines. We speed up the naive O(nri)-time approach
by the following method: read in the next ri halfplanes, compute their intersection
I in O(ri log ri) time [91], compute the intersection of I with the O(ri) vertical lines
in an additional O(ri log ri) time (by binary searches), update the current answers
at the O(ri) vertical lines, and repeat. The space bound is still O(ri), but the
running time is improved to O((n/ri) · ri log ri) = O(n log ri).

This time bound can be further improved by applying the decision step only
to halfplanes in Hi = Filterri−1,σi

(· · · (Filterr0,σ1(H)) · · · )). Thus, line 4′ takes
only O(ni log ri) time, in addition to the cost of re-executing the Filter pipeline
in a new pass.

We choose r0 = log(c−1) n, r1 = log(c−2) n, . . . , rc−2 = log n, and rc−1 = rc =
· · · = nδ/2, with at most c − 1 + d2/δe iterations. Since nj+1 = O(nj/rj) for all j,
the running time of iteration i is now

O(n0 log r0 + · · ·+ ni log ri) = O

(
n log r0 +

c−1∑
i=1

n

ri−1

log ri

)
= O(n log(c) n).
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The upper bounds on the number of passes and space are unchanged. ¤

We will need the following generalization for later applications:

Theorem 3.3.3 Given n halfplanes in R2 and q directions, we can compute the
q extreme points along the given directions in the intersection of the halfplanes by
an O(1/δ)-pass deterministic algorithm that uses O((1/δ2)qnδ) space and runs in
O((1/δ)(n log(c) n + n log q)) time.

Proof: We modify the algorithm so that σi is not a single slab but the union of
up to q (vertical) slabs. In line 3′, σi is divided into up to q + ri subslabs. In
line 4′, σi+1 is set to be the union of the subslabs containing the q solutions. In
the analysis, we now have ni+1 = O(qni/ri), so we need to increase all the ri’s by
a factor of q to keep the same number of iterations. ¤

3.3.2 Prune-and-Search in Higher Dimensions

Megiddo [78] extended his algorithm to higher dimensions, but the original algo-
rithm seems difficult to work with in the multi-pass setting (among other things, it
requires pairing of nonadjacent input elements). Nevertheless, with more modern
tools, namely, cuttings, we can obtain a multi-pass variant of the prune-and-search
algorithm. In fact, this version is more straightforward, because the current subset
of surviving elements can be encoded by just a simplex and can be retrieved easily
without any pipelining tricks. One helpful technique, of running several multi-pass
algorithms “simultaneously”, is illustrated.

Theorem 3.3.4 Given n halfspaces in Rd, we can compute the lowest point in their
intersection by an O(1/δd−1)-pass Las Vegas algorithm that uses O((1/δO(1))nδ)
space and runs in O((1/δO(1))n1+δ) time w.h.p.—i.e., with probability at least
1− 1/nc for any fixed constant c.

Proof: Let H be the set of n bounding hyperplanes. The outline of the algorithm
is simple:

Algorithm LP-Megiddo-Multi-Pass:
0. let ∆ be the whole space
1. repeat:
2. if |{h ∈ H | h intersects ∆}| ≤ r log n then

return the solution for {h ∈ H | h intersects ∆} directly
3. take a random sample R of expected size r log n

from {h ∈ H | h intersects ∆}
4. compute a triangulation T of the arrangement of R restricted inside ∆
5. decide which simplex in T contains the solution,

and set ∆ to be this simplex

34



Correctness is self-evident, since the solution is always contained in ∆ and is
defined only by hyperplanes that intersect ∆.

Let ∆i be the simplex ∆ at the beginning of the i-th iteration, let Hi = {h ∈
H | h intersects ∆i}, and let ni = |Hi|. It is well-known [36, 66, 80] that for a
random sample R ⊆ Hi of size r log n, w.h.p. a triangulation of the arrangement
of R forms an O(1/r)-cutting of Hi—i.e., a partition of Rd into simplices such that
each simplex intersects at most O(ni/r) hyperplanes of Hi. Since all hyperplanes
intersecting ∆i+1 must intersect ∆i, we have ni+1 = O(ni/r) w.h.p. The number of
iterations is thus O(logr n) w.h.p.

We can compute ni (line 2) easily in one pass. Line 3 can also be easily done in
another pass by Bernoulli sampling (for each hyperplane, if it intersects ∆i, put it
into R with probability (r log n)/ni). In line 4, a triangulation of size O((r log n)d)
can be found in O((r log n)d) time and space in main memory.

For line 5, recall [78] that deciding which side of a given hyperplane h contains
a solution reduces to solving a linear program restricted in h. Thus, line 5 can be
done by solving O((r log n)d) subproblems in d − 1 dimensions. We handle these
subproblems by making O((r log n)d) calls to a (d − 1)-dimensional algorithm not
in series but in parallel. In other words, in every pass, we execute one pass of
all invocations of the algorithms simultaneously; the space usage is multiplied by
(r log n)O(1) but not the number of passes.

Let Pd(n), Sd(n), and Td(n) be the number of passes, the space requirement,
and the running time of the d-dimensional algorithm. Then

Pd(n) = O((logr n)Pd−1(n)), P1(n) = 1

=⇒ Pd(n) = O(logd−1
r n)

Sd(n) = O((r log n)O(1)Sd−1(n)), S1(n) = O(1)
=⇒ Sd(n) = O((r log n)O(1))

Td(n) = O(((r log n)O(1)(logr n)Td−1(n)), T1(n) = O(n)

=⇒ Td(n) = O(nrO(1) logO(1) n).

The theorem follows by setting r = nΘ(δ) (and readjusting δ by a constant factor).
¤

We remark that some of the polylogarithmic factors may be improved, although
these are hidden under the nδ factors. For example, the size of the triangulation T
can be reduced to O((r log n)bd/2c), since only one cell of the arrangement needs to
be triangulated. Also, the extra log n factor in the sample size can be avoided via
known techniques on cuttings [30, 80], if we abandon high-probability bounds for
expected bounds. More significantly, the number of calls to the (d−1)-dimensional
algorithm in line 5 could be greatly reduced while increasing the number of passes
by only a constant factor, by following an approach from the prune-and-search
linear programming algorithm by Dyer and Frieze [47].

35



The above algorithm can be derandomized, luckily, because of a recent result on
derandomization for data streams. The running time is not as good as our earlier
2D result, however:

Theorem 3.3.5 The algorithm in theorem 3.3.4 can be made deterministic with
the same performance.

Proof: We replace the random sample R (line 3) with a (1/r)-approximation of Hi

in a suitable range space [100]. Bagchi et al. [9] have recently described a tree-based
algorithm for computing a (1/r)-approximation of size O(r2 log r) that requires one
pass, uses O(rO(1) logO(1) n) space, and runs in O(nrO(1) logO(1) n) time.

The triangulation T (line 4) still forms an O(1/r)-cutting of Hi, although its
size is now O((r2 log r)d). (Alternatively, we can replace T with an O(1/r)-cutting
of R, which has size O(rd) and can be computed by an internal-memory algorithm.)
Again we can set r = nΘ(δ). ¤

The same approach can be applied to the ham-sandwich cut problem in the 2D
separable case [79]. (The decision step here requires an exact multi-pass algorithm
for selection, which was provided by Munro and Paterson [82].)

Theorem 3.3.6 Given two n-point sets A and B that are separable by a line in
R2, we can find a line ` such that each side of ` contains bn/2c points of A and
bn/2c points of B, by an O(1/δ2)-pass algorithm using O((1/δ)O(1)nδ) space.

3.3.3 Clarkson’s Algorithm

Another linear programming algorithm that can be made to work in the multi-pass
model is Clarkson’s randomized algorithm [37]. His approach, without any major
modification, already yields a result with few passes and sublinear space.

Theorem 3.3.7 Given n halfspaces in Rd, we can compute the lowest point in the
intersection by a (d + 1)-pass Las Vegas algorithm that uses O(

√
n log n) space and

runs in O(n) time w.h.p.

Proof: Let H be the given set of halfspaces. The nonrecursive version of Clarkson’s
algorithm can be paraphrased as follows:

Algorithm LP-Clarkson:
0. take a random sample R of expected size r log n
1. for i = 0, . . . , d:
2. let vi be the solution for {h ∈ H | h ∈ R or ∃j < i, vj violates h}
3. return vd
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Let Hi = {h ∈ H | h ∈ R or ∃j < i, vj violates h}. It can be shown [37] that at
least i of the halfspaces defining the optimal solution is in Hi, and thus vd is indeed
the optimal solution.

It is well-known [80] that w.h.p., a random sample R of size r log n is an O(1/r)-
net—a subset R ⊆ H with the property that any point violating no halfspaces in
R violates at most O(n/r) halfspaces in H. Thus, |Hi| = r log n + O(n/r) w.h.p.

Line 0 can be easily done in one pass. In each iteration of line 1, the subset Hi

can be found in one pass, and vi can be computed by an internal-memory linear
programming algorithm in O(|Hi|) time and space. Note that iteration 0 does not
require a new pass (since H0 = R). The theorem follows by setting r =

√
n/ log n.

Note that if the problem could be infeasible, an additional pass is required to verify
the solution. ¤

We can combine Clarkson’s algorithm with our previous prune-and-search method
and thereby improve the expected running time of theorem 3.3.4 to linear:

Theorem 3.3.8 Given n halfspaces in Rd, we can compute the lowest point in their
intersection by an O(1/δd−1)-pass Las Vegas algorithm that uses O((1/δO(1))nδ)
space and runs in O((1/δO(1))n) time w.h.p.

Proof: We use the same algorithm from the proof of theorem 3.3.7, except that
line 2 is now done by feeding Hi into the algorithm in theorem 3.3.4. In other
words, in every pass, we only read in a halfspace if it is in R or is violated by
vj for some j < i. (Note that Hi cannot be explicitly stored.) Compared to
theorem 3.3.4, the number of passes is increased by a d + 1 factor, and the space
requirement is increased by an O(r log n) term. The expected running time becomes
O((1/δd−1)n + (1/δO(1))(r log n + n/r)1+δ). The theorem follows by setting r = nδ.

¤

We can also obtain a multi-pass algorithm purely from Clarkson’s recursive
algorithm. Here, the intermediate subsets are a little harder to describe but still
do not require pipelining.

Theorem 3.3.9 Given n halfspaces in Rd, we can compute the lowest point in
their intersection by a 2O(1/δ)-pass Las Vegas algorithm that uses O((1/δO(1))nδ)
space and runs in O(2O(1/δ)n) time w.h.p.

Proof: The recursive version of Clarkson’s algorithm can be rewritten as follows,
where the argument C is a small collection of pairs of the form (R, V ) with a subset
R ⊆ H and a set V of at most d + 1 points. (In the initial call, C = ∅.)
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Algorithm Clarkson(C):
0. if |{h ∈ H | ∀(R, V ) ∈ C, (h ∈ R or ∃v ∈ V , v violates h)}| ≤ 2r log n then

return the solution for
{h ∈ H | ∀(R, V ) ∈ C, (h ∈ R or ∃v ∈ V , v violates h)}

1. take a random sample R′ of expected size r log n from
{h ∈ H | ∀(R, V ) ∈ C, (h ∈ R or ∃v ∈ V , v violates h)}

2. for i = 0, . . . , d:
3. vi = Clarkson(C ∪ {(R′, {v0, . . . , vi−1})})
4. return vd

Let HC = {h ∈ H | ∀(R, V ) ∈ C, (h ∈ R or ∃v ∈ V , v violates h)}. The same
analysis shows that |HC∪{(R′,{v0,...,vi−1})}| ≤ r log n + O(|HC|/r) w.h.p. Thus, the
depth of the recursion is O(logr n) and the number of recursive calls is (d+1)O(logr n)

w.h.p., since (d + 1)O(logr n) is polynomial in n. In particular, |C| = O(logr n).

We can compute |HC| (line 0) easily in one pass in O(n|C|) time. Line 1 can
also be done in another pass within the same time bound. The algorithm thus
takes (d + 1)O(logr n) passes, requires O(r log n logr n) space, and runs in O((d +
1)O(logr n)n logr n) time w.h.p. Setting r = nΘ(δ) (and readjusting δ) yields the
theorem. ¤

The algorithm can be derandomized with O(2O(1/δ)n1+δ) running time, like in
theorem 3.3.5 (because (1/r)-approximations are special cases of (1/r)-nets).

The above theorem appears weaker than theorem 3.3.8 in terms of the depen-
dence on δ, but Clarkson’s recursive algorithm has a few advantages. First, the
number of passes is polynomial in d for a fixed δ. Second, the randomized ver-
sion can be applied to the entire class of LP-type problems [101] (including convex
programming [1]).

3.3.4 A Lower Bound

We now establish a lower bound for linear programming in 2D (and consequently
in higher dimensions). We show that the algorithm in theorem 3.3.1 is nearly
optimal (up to a constant factor in the number of passes, and ignoring the 1/δO(1)

factor in the space). Our proof is based on an adversary argument by Munro and
Paterson [82] that established a similar lower bound for selection. Our proof is not
a straightforward adaptation, however, because (i) linear programming is different
from selection (needless to say), and (ii) Munro and Paterson’s proof assumes a
comparison-based model of computation where the only allowable operations on
the input elements are comparisons of two elements. This model is not sufficient
to solve geometric problems.

Our proof works under a very general decision-tree computation model: input
coefficients are real numbers of unlimited precision, and the only allowable oper-
ations on the input halfplanes are testing the sign of a function evaluated at the
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coefficients of a subset of halfplanes currently in memory. The test function can be
any continuous function (typically but not necessarily multi-variate polynomials).

Theorem 3.3.10 Any b1/δc-pass algorithm that can find the lowest point in the
intersection of n upper halfplanes in R2 must require a storage of Ω(nδ) points.

For the proof of the above theorem, it is more convenient to work in dual space,
where the problem is as follows: given two n-point sets P1 and P2 separated by the
y-axis, find the bridge, i.e., the edge of the upper hull of P1 ∪ P2 at the y-axis. We
need the lemma below, which roughly states that after one pass, a problem on 2n
points (P1 ∪ P2) remains as difficult as a problem of about 2n/s points (X1 ∪X2):

Lemma 3.3.11 Given two open disks D1, D2 ⊂ R2 separated by the y-axis, and an
algorithm that can store less than s points, there exists a sequence Pj of n points
inside Dj, a subset Xj ⊆ Pj, and an open disk D′′

j ⊂ Dj, for each j ∈ {1, 2}, such
that after we run the first pass of the algorithm on the concatenation of P1 and P2,

(i) no point of X1 ∪X2 is in memory;

(ii) the result of the pass would be identical if we move the points of X1 to arbitrary
points in D′′

1 and the points of X2 to arbitrary points in D′′
2 ;

(iii) the bridge for P1 ∪ P2 is equal to the bridge for X1 ∪X2 at the y-axis, even if
we move the points of X1 and X2 as in (ii);

(iv) |X1| = |X2| = dn/se − 1.

Proof: The adversary builds the first half of the input P1 entirely using copies of
s points p1, . . . , ps, whose coordinates (x1, y1, . . . , xs, ys) are chosen from an open
set U ⊂ R2s to be specified later. At every step, the adversary identifies a point pi

that is currently not in memory and chooses as the next input point a new copy
of pi. When a point pk is about to be chosen for the dn/se-th time, the adversary
stops this process, chooses copies of any point other than pk to fill in the rest of
P1, and sets X1 to contain all dn/se − 1 existing copies of pk. Observe that no two
copies of pk can reside in memory at any time, and at the end of the pass over P1,
no copy of pk is in memory.

Initially, we set U to contain all tuples (x1, y1, . . . , xs, ys) such that the points
p1 = (x1, y1), . . . , ps = (xs, ys) form a strictly concave chain inside D1, and for each
i, there is a tangent line `i that touches the chain only at pi and intersects D2. This
set U is indeed nonempty and open. Whenever the algorithm performs a test, we
consider the sign of the test function for each choice (x1, y1, . . . , xs, ys) ∈ U ; if not
all choices yield the same sign, we refine U to a smaller open subset in which they
do. At the end of the pass over P1, since U is open, we can fix the coordinates
of p1, . . . , ps and find a neighborhood D̂1 of pk so that moving pk to any point in
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Figure 3.1: Proof of lemma 3.3.11

D̂1 would produce the same outcome. In fact, each copy of pk can be moved to a
different point in D̂1, since no two copies of pk can participate in the same test.

We now take a point q ∈ D2 on a tangent line `k at pk. We can find a sufficiently
small neighborhood D′

1 ⊂ D̂1 at pk and a sufficiently small neighborhood D′
2 ⊂ D2

at q, such that any line intersecting D′
1 and D′

2 is above every pi (i 6= k). (See
figure 3.1.) Thus, the bridge between P1 and any point set inside D′

2 is defined by
a point in X1, even if each copy of pk is moved to an arbitrary point in D′

1.

In a similar fashion, the adversary proceeds to build the second half of the input
P2 and the subset X2 during the remainder of the first pass, using copies of s points
that form a concave chain inside D′

2, with tangents intersecting D′
1. The disks D′

1

and D′
2 are similarly refined to D′′

1 and D′′
2 , so that the bridge between P1 and P2

is defined by a point in X1 and a point in X2, even if the points in X1 and X2 are
moved to arbitrary points in D′′

1 and D′′
2 respectively. The construction is complete.

¤

Proof of theorem 3.3.10: We apply the lemma to obtain the sequences P1 and
P2, together with subsets X1 and X2 (of size about n/s). The points of P1−X1 and
P2−X2 are considered fixed, while the points of X1 and X2 will later be perturbed;
such a perturbation will not change the execution of the first pass by (ii). By (iii),
the answer is not yet determined after the first pass, if |X1| = |X2| ≥ 2. In the
second pass, we apply the lemma again, to obtain perturbations of the subsequences
of the points in X1 and X2 only (skipping over all other points); this process yields
its own versions of the subsets X1 and X2 (of size about n/s2) and fixes more points.
We can repeat the same process for about logs n passes, until |X1| = |X2| drops
below a constant and the answer is determined. The theorem follows by setting
s ≈ nδ. ¤
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3.4 2D Convex Hulls for Sorted Point Sets

We next examine special cases of the 2D convex hull problem where more efficient
multi-pass algorithms are possible. In this section, we consider the case when the
input points are given in sorted order according to their x-coordinates. Here, the
best traditional algorithm is Graham’s scan, which takes linear time [91]; however,
this algorithm requires Ω(n) space in the worst case. We give different strategies
with sublinear space. (Similar strategies might work also for input that is prepro-
cessed and stored in other “natural” orders.)

We first introduce some terminology: a partial hull H of a point set refers to
a subset of the edges of the upper hull; a gap of H refers to a maximal closed
(vertical) slab whose interior does not intersect any edges of H; the gap size of H
refers to the maximum number of points in a gap.

3.4.1 Two Algorithms

Our first algorithm is simple but not time-optimal.

Theorem 3.4.1 Given n points in R2 sorted from left to right, we can generate
the vertices of the upper hull from left to right by an O(1/δ)-pass algorithm that
uses O((1/δ2)n1/2+δ) space and runs in O((1/δ)n log n) time.

Proof: We first build a partial hull H with gap size at most
√

n, as follows: just
divide the plane into

√
n (vertical) slabs each with

√
n points, and take the bridges

at the walls of these slabs. Computing these
√

n bridges reduces to solving q =
√

n
linear programs on a common set of constraints in 2D, by duality, and can be done
using theorem 3.3.3.

Once H is constructed, we can finish in a single pass by examining each gap σ of
H from left to right and computing the portion of the hull within σ, by applying an
internal-memory algorithm (Graham’s scan) to the points within σ. With O(

√
n)

space, the final pass takes linear time. ¤

We now present a more complicated linear-time method by adapting the stan-
dard “merge-hull” algorithm [91] based on bottom-up divide-and-conquer. To min-
imize the number of passes, we implement the divide-and-conquer in a breadth-first
rather than depth-first manner, and we replace binary merges with r-way merges.
We also need to generalize merging of convex hulls to merging of partial hulls,
accomplished by the following lemma:

Lemma 3.4.2 Given two vertically separated point sets in R2, and given their
partial hulls with gap size g stored in main memory, we can find the bridge between
the two point sets by a 2-pass algorithm that uses O(g) extra space and runs in time
linear in the number of points. Moreover, at the end of each pass, the extra space
usage is reduced to O(1).
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Proof: We apply the binary-search algorithm by Overmars and van Leeuwen [89,
91] to the two partial hulls HA and HB of the two point sets A and B. In each
iteration of this algorithm, we examine the median edges of HA and HB, perform
some constant-time operations, and throw away half of one of the two partial hulls.
After O(log n) iterations, one of the partial hulls, say HA, has no edge remaining.
In this case, we have identified a gap σA of HA that contains a vertex defining the
solution. In one pass, we read in the O(g) points of A inside σA, compute the hull
H ′

A of these points, and apply the binary-search algorithm to H ′
A and HB. After

O(log n) iterations, HB has no edge remaining and we have identified a gap σB

of HB that contains the other vertex defining the solution. We release H ′
A from

memory. In a second pass, we read in the O(g) points of A in σA and the O(g)
points of B in σB and return their bridge. ¤

Theorem 3.4.3 The running time in theorem 3.4.1 can be improved to O((1/δ)n).

Proof: We use a different method based on bottom-up merging, outlined below,
to compute a partial hull H of the input point set with gap size at most

√
n. As

in the proof of theorem 3.4.1, once H has been computed, we can fill in the gaps
in a final pass in linear time.

Algorithm CH2D-Sorted-Points:
0. divide the plane into

√
n vertical slabs each with

√
n points

1. for each slab σ, create a partial hull of the points inside σ with 0 edges
2. while there is more than one partial hull in existence:
3. divide the current partial hulls into groups of r members each,

from left to right
4. for each group G:
5. compute the bridge between every pair of partial hulls in G
6. merge the r partial hulls in G into a single partial hull

All partial hulls here have gap size at most
√

n and they have total size O(
√

n)
at every iteration. After O(logr n) iterations, we arrive at one partial hull of the
whole point set, as desired. Line 5 takes O(r2) calls per group to the subroutine in
lemma 3.4.2. The key idea is to perform these calls simultaneously over all groups:
the number of passes is still two, the extra space usage is O(r2

√
n), and the running

time is O(rn). (It should be noted that during a pass, as we go from one group to
another, we only need to retain O(r2) amount of information per group due to the
last part of lemma 3.4.2.) Once the bridges have been identified in line 5, line 6 can
be done easily by using the highest bridge at each of the r − 1 vertical separating
lines. The algorithm thus makes a total of O(logr n) passes, uses O(r2

√
n) space,

and runs in O(rn logr n) time. Setting r = nδ/2 yields the theorem. ¤
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3.4.2 A Lower Bound

We now show that the near-
√

n space complexity is actually close to optimal. Our
lower-bound proof this time is information-theoretic rather than adversary-based.

Theorem 3.4.4 Any O(1)-pass algorithm that can generate (and print out) the
vertices of the upper hull (in any order), given n points in R2 sorted from left to
right, must require Ω(

√
n/ log n) units of storage, where a “unit” refers to a point

or log n bits of information. Here, it is assumed that to print a point to the output
stream, the point must currently reside in memory.

Proof: Set r = 2
√

n log n. Create a point set P as follows: take r uniformly spaced
arcs of length εε′ on the upper part of the unit circle and place a group Gi of n/r
points on the i-th arc (indexed from left to right); also place an extra point at the
leftmost point of the circle. Let vi be the rightmost point in Gi. Given a string
z ∈ {0, 1}r, define a modified point set P (z), obtained by moving vi upward by a
distance of ε whenever the i-th bit of z is 1. By making ε and ε′ sufficiently small,
P (z) obeys the following property: if the i-th bit of z is 0, all points in Gi are
extreme; otherwise, no point in Gi is extreme except for vi.

Suppose the algorithm makes p passes and at any time stores at most s units of
space. Assume that ps <

√
n/ log n. For a given input, define the exit configuration

to be the concatenation of the memory content after each of the p passes. (Here,
for a point, its “content” comprises its index, together with an extra bit indicating
whether it has been moved upward.) The number of different exit configurations is
2ps(log n+O(1)) < 2r. By the pigeonhole principle, there exist two strings z, z′ ∈ {0, 1}r

such that P (z) and P (z′) have the same exit configuration.

Suppose that z and z′ agree in the first i − 1 bits, but the i-th bit of z is 0
and the i-th bit of z′ is 1. Consider each pass made by the algorithm on the two
inputs P (z) and P (z′). Since the memory content at the end of the previous pass
is identical and the inputs are identical up to vi, the algorithm behaves identically
before vi is read during the pass; so, no points in Gi can be printed until vi is read.
At most s points are stored at this time; so at most s points in Gi can be printed
in the rest of the pass. On input P (z), the algorithm is supposed to print all n/r
points in Gi in p passes. Thus, ps ≥ n/r = Ω(

√
n/ log n). ¤

We comment that the assumption made in the above theorem seems reasonable,
but a stronger lower bound without the assumption would be desirable. Our proof
does not work, for example, if we can print just the indices (relative to the sorted
input order) of the points on the hull, or if we just want to count the overall number
of hull vertices.
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3.5 2D Output-Sensitive Convex Hulls

For unsorted point sets, results better than theorem 3.2.1 are still possible if the
output size h is small. For example, for points distributed uniformly in a square, it
is known that the expected value of h is logarithmic [91] (although for this special
case there is actually a simple one-pass algorithm).

We prove the following theorem by mimicking Kirkpatrick and Seidel’s output-
sensitive algorithm [71] based on top-down divide-and-conquer. Again, the divide-
and-conquer is executed breadth-first and with a larger branching factor. (It is
interesting to note that Kirkpatrick and Seidel’s algorithm was originally designed
to make the running time output-sensitive, not the space; other output-sensitive
convex hull algorithms do not seem to work as well in the multi-pass model.)

Theorem 3.5.1 Given n points in R2, we can generate the h vertices of the upper
hull from left to right, by an O(1/δ2)-pass algorithm that uses O((1/δ2)hnδ) space
and runs in O((1/δ2)n log n) time.

Proof: The “unfolded” version of Kirkpatrick and Seidel’s algorithm is outlined
below. Here, we repeatedly insert edges to a partial hull H until it becomes the
complete hull:

Algorithm CH2D-Output-Sensitive:
0. H = ∅
1. for i = 0, 1 . . .:
2. if the gap size of H is below a constant then

compute and print the hull within each gap and return
3. for each gap σ of H:
4. divide σ into ri subslabs each containing O(1/ri)-th of the points
5. compute the bridges at the walls of these subslabs and insert them to H

The simplest choice of parameters is r0 = r1 = · · · = r, with O(logr n) iterations
of the outer loop. Line 4 can be carried out by an approximate quantiles algo-
rithm [62, 82]. Line 5 requires solving r linear programs and can be carried out by
theorem 3.3.3 in O(1/δ) passes, O((1/δ)rmδ) space, and at most O((1/δ)m log m)
time, where m is the number of points in the gap σ.

In each iteration of the outer loop, there are at most h+1 gaps. The key idea is
to handle all O(h) iterations of the inner loop (lines 3–5) simultaneously. Each point
belongs to only one gap of H, which can be identified in O(log h) time. So, the num-
ber of passes for lines 3–5 remains O(1/δ), the space usage is O((1/δ)hrnδ), and the
running time is at most O((1/δ)n log n). The algorithm thus makes O((1/δ) logr n)
passes, uses O((1/δ)hrnδ) space, and runs in O((1/δ)n log n logr n) time. The the-
orem follows by setting r = nδ (and readjusting δ). ¤
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We can make the running time output-sensitive as well, provided that an upper
bound on h is given. (Note that a standard trick [20] of “guessing” the output size
cannot be applied, because it would increase the number of passes by a nonconstant
factor.)

Theorem 3.5.2 The running time in theorem 3.5.1 can be improved to
O((1/δ2)(n log(c) n + n log h̄)) time, where h̄ is a known upper bound on h.

Proof: The algorithm is the same, but we provide a more careful analysis using a
different choice of parameters.

For line 4, we use a variant of Munro and Paterson’s approximate quantiles
algorithm, as in the proof of theorem 3.3.3. For line 5, we use theorem 3.3.3. Then in
iteration i of the outer loop, the running time becomes O(n log h+(1/δ)(ni log(c) ni+
ni log ri)), where ni is the number of points inside the gaps of H at the beginning
of the iteration.

We choose r0 = h̄ log(c−1) n, r1 = h̄ log(c−2) n, . . . , rc−2 = h̄ log n, and rc−1 =
rc = · · · = h̄nδ/2, with at most c− 1 + d2/δe iterations. Since ni = O(h̄n/ri−1), we
have

O(n0 log r0) = O(n log(c) n + n log h̄),

and,

O(ni log ri) = O

(
h̄n

ri−1

log ri

)
= O(n log h̄) (i ≥ 1).

So the running time of each iteration is at most O((1/δ)(n log(c) n + n log h̄)). The
upper bounds on the number of passes and space are unchanged. ¤

We can also obtain a tradeoff result analogous to theorem 3.2.1. (Due to the
sorting lower bound, our result is near optimal except for the nδ and logarithmic
factors.)

Theorem 3.5.3 Given n points in R2 and a parameter s, we can generate the h
vertices of the upper hull from left to right, by an O((1/δ2)dh/se)-pass algorithm
that uses O((1/δ2)snδ) space and runs in O((1/δ2)dh/sen log n) time.

Proof: It is straightforward to modify the algorithm in theorem 3.5.1 to output the
leftmost s hull edges with O((1/δ2)snδ) space (by only keeping the leftmost s edges
of H in every iteration). Repeating this process dh/se times yields the theorem. ¤
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3.6 3D Convex Hulls

Finally, we consider the 3D convex hull problem. As before, due to sorting lower
bounds, we cannot hope for a nontrivial result with a constant number of passes in
general. Still, we show that a result analogous to theorem 3.2.1 is possible. This
time, the algorithm is more involved but relies on a standard divide-and-conquer
approach in dual space (similar to the proof of theorem 3.3.4 as well as an algorithm
by Clarkson and Shor [38]).

Theorem 3.6.1 Given n points in R3 and s ≥ n1/c for a fixed constant c, we can
generate the facets of the upper hull by an O((n/s) polylog n)-pass algorithm that
uses O(s) space and runs in O((n2/s) polylog n) time w.h.p.

Proof: We solve the dual problem of computing the vertices of the lower envelope
of a set H of planes in R3 by the following recursive procedure (initially, we call
Env0(R3)):

Algorithm Envi(∆):
0. if i = c then

compute and print the vertices of the lower envelope of
{h ∈ H | h intersects ∆} inside ∆ and return

1. take a random sample R of expected size r log n of {h ∈ H | h intersects ∆}
2. compute a triangulation T of the lower envelope of R restricted inside ∆
3. for each simplex ∆′ ∈ T do Envi+1(∆

′)

Let H∆ = {h ∈ H | h intersects ∆}. As in the analysis of theorem 3.3.4, we
have |H∆′| = O(|H∆|/r) for all ∆′ ∈ T w.h.p. So, at each leaf (on the c-th level)
of the recursion, we have |H∆| = O(n/rc) w.h.p. Since lower envelopes have linear
complexity in R3, we can find a triangulation T of size O(r log n). So, there are
O((r log n)c) leaves in the recursion.

Line 0 requires a single pass with O(n/rc) space and O(n + (n/rc) log(n/rc))
time w.h.p. Line 1 can be easily done in one pass. Line 2 takes O(|R| log |R|) =
O(r log2 n) time [80, 91] in main memory. The overall number of passes is thus
O((r log n)c), the space usage is O(n/rc+r log n), and the running time is O((r log n)c·
[n+(n/rc) log(n/rc)+ r log2 n]) w.h.p. The theorem follows by setting r = (n/s)1/c

(and noting that (n/s)1/c = o(s) for s ≥ n1/c). ¤

By the standard lifting transformation, we immediately obtain the same result
for Voronoi diagrams of 2D point sets.
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3.7 Final Remarks

We have given new algorithms and lower bounds for some basic geometric problems
under the multi-pass model. We hope that the techniques here (like pipelining)
may be applicable to solve other geometric problems and may inspire further work.
Although one-pass streaming algorithms admittedly are more desirable than multi-
pass algorithms in many settings involving massive data sets, certain hardware
systems such as the graphics card [2] do favor streaming computation with multiple
passes. The multi-pass model can also be viewed as a simpler form of external-
memory algorithms. In some ways, one might regard streaming algorithms, which
process input sequentially, as the opposite of parallel algorithms. Curiously though,
many of our algorithms (e.g., see theorem 3.3.4) are naturally parallelizable, as each
pass is parallelizable. Apparently, designing algorithms that minimize the number
of passes or rounds share some similarities to designing parallel algorithms that
minimize processor time.
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Chapter 4

Algorithms in the Read-Only
Model

In this chapter, we consider the read-only model, where we are allowed read-only
random access to the input, and we are concerned no longer with the number
of passes, but just the running time (as measured in the standard RAM) and the
amount of extra working space. The first two results are announced with the results
in chapter 3 in SoCG’05.

4.1 Our Results

In this chapter, we present:

• a read-only O(n)-time randomized algorithm for linear programming in fixed
dimensions, using O(log n) space.

• a read-only O(n)-time algorithm for finding the convex hull of n sorted points
in R2, using O(nδ) space for any fixed δ > 0.

• a read-only O(n3/s2)-time deterministic algorithm for Klee’s measure problem
in 2D, using O(s) space, where s < n/ log n.

4.2 Fixed-Dimensional Linear Programming

The read-only model is less restrictive than the multi-pass model. Here, we start
with another well-known linear programming algorithm, Seidel’s randomized incre-
mental algorithm [97], which we have not examined in chapter 3. We apply this
algorithm in a recursive fashion, in a similar way described by Chan [21] (in the
context of solving “implicit” linear programs).
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Theorem 4.2.1 Given a read-only array of n halfspaces in Rd, we can compute
the lowest point in their intersection by an algorithm that runs in O(n) expected
time and uses O(log n) space.

Proof: We describe a recursive algorithm, assuming that the input resides in the
union of at most d subarrays each of size at most n: First divide the input into
at most dr blocks of size n/r. The idea is to treat each block as a single con-
straint. More precisely, each block represents a convex object (the intersection of
the halfspaces in the block), and the problem is to find the lowest point inside
the intersection of these r convex objects—a convex programming problem. It is
important to note that these objects are not explicitly constructed but are rather
viewed abstractly.

The convex program (or more generally, LP-type problems) can by solved di-
rectly by an algorithm proposed by Sharir and Welzl [101]. We use a variation
of Seidel’s randomized incremental algorithm [97] for linear programming. This
algorithm mainly performs a set of “violation tests”—deciding whether a point is
outside a given object—and a set of of “basis evaluations”—computing the optimal
solution for a given subset of objects. For O(r) constraints, this algorithm requires
an expected O(r) number of violation tests and an expected O(logd r) number of
basis evaluations for a given set of d objects.

For our convex objects, each violation test can be done in O(n/r) time and O(1)
space by scanning the n/r halfspaces in a block; a basis evaluation can be done
by making a recursive call for the union of d subarrays. We therefore obtain the
following recurrence for the running time for some constant c:

T (n) ≤ (c logd r)T (n/r) + O(r · n/r).

Setting r to be a sufficiently large constant (depending only on d) yields T (n) =
O(n). The space requirement is O(r) times the depth of the recursion O(logr n). ¤

4.3 2D Convex Hull for Sorted Point Sets

Recall the lower bound of constructing the convex hull of a set of sorted points
in the multi-pass model, where Ω(

√
n/ log n) space is required for any algorithm

taking O(1) number of passes. Here, we present an algorithm which only uses O(nδ)
extra space and O(n) time, in the read-only model.

Theorem 4.3.1 Given a read-only array of n points in R2 sorted from left to right,
we can generate the vertices of the upper hull from left to right by an algorithm that
uses O((1/δ)nδ) extra space and runs in O((1/δ)n) expected time.

Proof: We describe a recursive algorithm: First divide the input into r blocks
each containing n/r points, from left to right. As in the proof of theorem 4.2.1,
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it is helpful to view each block abstractly as a single convex object. Consider the
following variant of Graham’s scan [61] to compute all tangents of the upper hull
of r vertically separated convex objects γ1, . . . , γr, ordered from left to right:

Algorithm CH2D-Read-Only:
0. e1 = tangent between γ1 and γ2, i0 = 1, i1 = 2, j = 1
1. for i = 3, . . . , r:
2. while j > 0 and γi is not entirely below the line through ej, j = j − 1
3. ej+1 = tangent between γij and γi, ij+1 = i
4. j = j + 1
5. return 〈e1, . . . , ej〉

The above method performs O(r) “primitive operations”—testing whether an
object is entirely below a line (line 2), and finding the tangent (bridge) between
two objects (lines 0 and 3). In our case, each object is the upper hull of the points
in a block. The first type of operation can be carried out in O(n/r) time and O(1)
space by scanning the points in the block. The second type can be handled by
theorem 4.2.1 in O(n/r) expected time and O(log n) space. The method then gives
us a partial hull with gap size at most n/r.

After this process, we take each gap of this partial hull and recursively output
the upper hull of the points within each gap. The expected running time of the
whole algorithm satisfies the recurrence

T (n) = rT (n/r) + O(r · n/r),

which solves to T (n) = O(n logr n). The space bound is O(r logr n). Setting r = nδ

yields the theorem. ¤

We can avoid randomization if we do not mind a larger constant factor:

Theorem 4.3.2 The algorithm in theorem 4.3.1 can be made deterministic if the
running time is increased to O(2O(1/δ)n).

Proof: In the second type of operation, we want to find a bridge of the upper
hull of 2n/r points. Instead of using theorem 4.2.1, we handle this operation by a
recursive call to our upper-hull algorithm. (From the output of the algorithm, we
can skip over all edges but keep only the bridge we want.) As a result, we obtain
a new recurrence:

T (n) = O(r)T (2n/r) + O(r · n/r),

which solves to T (n) = O(2O(logr n)n). The space bound is the same. Setting r = nδ

yields the theorem. ¤
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4.4 Klee’s Measure Problem

Unlike the problems studied in the previous two sections, there were no efficient
algorithms to solve Klee’s measure problem in the multi-pass model. The algorithm
we present here can be viewed as a variation of the in-place algorithm described in
subsection 2.4.3. Instead of dividing the plane into O(log n) slabs, we divide the
plane into n/s slabs, such that each slab is crossed by s rectangles. When we solve
Klee’s measure problem in a slab, we maintain the segment tree structure explicitly
in O(s) extra space.

We combine the priority queues for intersecting rectangles and spanning rectan-
gles together. First observe that we can implement a priority queue with O(log s+
n/s) update time and O(s) space as follows. We divide the rectangles in the input
array into O(s) blocks, and each block has O(n/s) rectangles. In one block, we
identify the next rectangle to process in O(n/s) time. With O(s) extra words of
space, we maintain a priority queue of blocks explicitly. Therefore, reporting all
coordinates in order takes O(n log s + n2/s) total time in one slab1.

With only O(1) time per rectangle, we can identify whether the rectangle crosses,
spans over, or is disjoint from the slab. In the sweeping algorithm, maintaining the
segment tree structure explicitly takes O(s log s) total time and O(s) extra space.
If s < n/ log n, O(n2/s) dominates, then we have:

Lemma 4.4.1 Given a set of n axis-aligned rectangles and a slab in R2 and s <
n/ log n, the area/perimeter of the region covered by the rectangles in the slab can
be computed in O(n2/s) time with O(s) data units, in the read-only model, where n
is the number of rectangles and s is the number of rectangles intersecting the slab.

To determine the boundaries of the slabs, we can maintain another priority
queue of O(s) extra units based on the y-coordinates of rectangles. When a slab is
determined, we solve Klee’s measure problem in that slab by lemma 4.4.1. Then
we proceed to the next slab. Since determining all slabs takes O(n2/s) time and
there are n/s slabs, we have:

Theorem 4.4.2 Given a set of n axis-aligned rectangles in R2 and s < n/ log n, the
area/perimeter of the region covered by the rectangles can be computed in O(n3/s2)
time, with O(s) data units, in the read-only model.

Similarly, we can solve the depth problem in the read-only model. We can
maintain the segment tree for the depth problem explicitly in memory, which takes
O(s log n) bits. Thus, we can obtain an analog of theorem 4.4.2 for the depth
problem. In fact, we can improve the time bound slightly: by using the priority
queue in [90], we can have a priority queue using O(s) bits and O(n2/s) total
running time. By readjusting s, we have:

1This time bound improves slightly to O(n2/(s log n)) time, if coordinates are O(log n)-bit
integers, by using the heap-like priority queue proposed in [90]
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Corollary 4.4.3 Given a set of n axis-aligned rectangles in R2 and s < n/ log2 n,
the point covered by the maximum number of rectangles can be found in
O(n3/(s2 log n)) time with O(s) data units in the read-only model.

Corollary 4.4.4 Given a set of n points in R2 and s < n/ log2 n, the unit-square
covering the maximum number of points can be found in in O(n3/(s2 log n)) time
with O(s) data units in the read-only model.

52



Chapter 5

Stream-Sort Algorithms

In the stream-sort model, the input data are given in one data stream. There are
two ways to access these data. One is the scan pass. The input stream is scanned
sequentially, and one output stream is generated. The other is the sorting pass.
The input stream is sorted based on a user-defined comparator, and data are sorted
in the output stream based on that order. The generated output stream of data is
called an intermediate stream. In the next scan, this intermediate stream becomes
the input stream, and another output stream is generated. All intermediate streams
must be of size O(n). At the end, we count how many passes are used in total, and
how much space is used in memory by the program in the scan passes.

5.1 Our Results

All results in this chapter are presented in ISAAC’07 [32].

• We can construct 2D convex hulls in O(1) passes with O(nε) extra space.

• We can construct 3D convex hulls in O(1) expected number of passes with
O(nε) extra space.

• We can construct a triangulation of a simple polygon in O(1) expected number
of passes with O(nε) extra space, where n is the number of vertices on the
polygon.

• We can report all k intersections of a set of 2D line segments in O(1) passes
with O(nε) extra space, if an intermediate stream of size O(n + k) is allowed.

• If we are only allowed to choose the direction to scan the data but not for
sorting passes, we still can construct 2D convex hull in O(1) passes with O(nε)
extra space.
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5.2 Preliminaries

Divide-and-conquer is a general strategy commonly used under the stream-sort
model. With this strategy, the data set of the problem is divided into data sets for
several subproblems. We describe a technique that can help us solve all subproblems
simultaneously in one pass.

This technique can be described as follows. Given a stream containing multiple
independent data sets and one data set per subproblem, if the elements of each
data set are grouped together in the stream, we can process these data sets one
after another in a single pass. In the scan pass, after scanning over the data set
for one subproblem, we reset memory for the data set of the next subproblem. As
defined in subsection 1.2.4, in intermediate streams, we can write an extra field
for each element to identify which data set it belongs to. Storing this extra field
only lengthens the stream by O(n). Then, with a sorting pass, we can group the
elements for the same data set together.

Now we treat the recursive calls in a divide-and-conquer algorithm as a tree
structure. Each node represents one subproblem we need to solve. We can solve
all problems in the same level of the recursion tree in the same pass. Therefore, we
can bound the number of passes by the number of levels in the recursion tree.

Since the sorting pass is the most expensive part, we define a simpler and self-
contained model in which the sorting pass is not allowed. Instead, we can only
choose a direction to scan the stream (forward or backward). We call this model
the direction-flexible model. This model is weaker than the stream-sort model.

5.3 2D Convex Hulls

We begin with a very simple example, so that we can get familiar with this model. In
this section we give an algorithm that constructs the convex hull of a set of 2D points
in O(1) passes with O(nε) extra space under the stream-sort model. This simple
result will also be used as a sub-routine in solving later problem. Constructing the
convex hull of a set of 2D points in primal space is equivalent to constructing the
lower envelope of a set of halfplanes in dual space [40]. In the pseudocode below,
the input H is the set of halfplanes and the output L is the lower envelope of H.
The parameter B in the pseudocode below will be determined later in this section.

Algorithm 2D-Envelope(H):
If |H| ≤ B

Solve the problem directly in memory and return L
Divide H in B disjoint sets of equal size
For each subset Hi

Li = 2D Envelopes(Hi)
Merge B lower envelopes Li to obtain the lower envelope L and return L

54



Merging B lower envelopes can be done in a constant number of passes in the
stream-sort model by a sweep from left to right as follows. We maintain all O(B)
edges intersecting the sweep line and a list of edges appearing in the merged lower
envelope. Whenever the sweep line touches an intersection of two edges in the
merged lower envelope, we add the appearing edge to the list. We sort all edges
by the x-coordinates of their left endpoints in a sorting pass. We only keep the
B edges intersecting the sweep line in memory in the scan pass. The intersections
between edges are computed in memory, so the space needed is O(B).

We view the recursive calls of our algorithm as a tree structure. Applying the
technique presented in section 5.2, we perform all merges at the same level of the
recursion tree in one round. In a sorting pass, we use the group identifier of each
element as the primary key and the left x-coordinates of edges in the same group as
the secondary key. In the scan pass, we simply merge each group of lower envelopes,
one by one.

By setting B = O(nε), we ensure that there are O(1) levels of the recursion
tree. Thus we have:

Theorem 5.3.1 The convex hull of a set of n 2D points can be constructed in O(1)
passes with O(nε) extra space, for any fixed ε > 0.

Remark: If we are also concerned with the time taken in the scan passes, the
above algorithm runs in O(n1+ε) time in each pass. We can reduce the time bound
to O(npolylogn) as follows. In the merging procedure, the intersections between
the sweep line and envelopes are a set of points moving vertically with constant
speeds. Merging B envelopes is equivalent to keeping track of the lowest point
among the set of moving points. This can be maintained by a kinetic heap with
O(B) space in memory [16]. Whenever a new edge is touched by the sweep line,
the velocity of the corresponding vertex is changed.

5.4 3D Convex Hulls

In this section, we highlight another useful technique, random sampling, for this
model. Sampling is a well-known technique in computational geometry, but to our
knowledge, it has not been applied in the stream-sort model before. A similar
sampling idea is also used for constructing 3D convex hulls in the multi-pass model
in section 3.6.

Given a set of 3D points, we show how to construct its 3D convex hull in O(1)
expected number of passes with O(nε) extra space in the stream-sort model. We
follow a random sampling approach [38, 80].

We transform the problem into dual space. Each point in primal space maps
to a halfspace in dual space. Constructing the convex hull of a set of 3D points
is equivalent to constructing the lower envelope of a set of 3D halfspaces [40]. We
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first describe our algorithm in the traditional memory model, and then modify it
to fit in the stream-sort model. The notations are defined as follows. The cell ∆f

defined by a triangle f refers to the vertical prism underneath f . The set of planes
intersecting ∆f is denoted by Hf . In the algorithm, the input H is a set of n 3D
halfspaces, and the output E is the set of faces in the lower envelope. (See [80] for
the definition of the canonical triangulation.)

Algorithm 3D-Envelope(H):
Initialize an empty set R
If |H| ≤ B

Solve the problem directly in memory and return the answer
Repeat

Sample a random subset R of size B in H
Find the lower envelope ER of R
Build the canonical triangulation T for ER

Until
∑

f∈T |Hf | = O(n) and maxf∈T |Hf | = O((n/B) log B)

For each f ∈ T
Ef = 3D Envelope(Hf )

Merge all the Ef ’s to form E and return E

The set R is a randomly selected subset, which can be selected in three passes.
In the first scan pass, we compute the size of the data set. When the end of the
data set is reached, we add B random numbers to the output stream. With a
sorting pass, we move the generated numbers to the beginning the data set. In the
third scan pass, we first read these numbers in memory, then select data unit with
corresponding indices, as the data set is scanned.

By the analysis from Clarkson and Shor [38] for randomly selected samples,
it is known that the expected value of

∑
f∈T |Hf | is O(n). Therefore, we have∑

f∈T |Hf | ≤ cn with probability greater than a constant, for a sufficiently large
constant c. It is also known [80] that maxf∈T |Hf | ≤ c′(n/B) log B with probability
greater than a constant, for a sufficiently large constant c′. Therefore, the expected
number of iterations before both conditions are satisfied is constant.

We modify this algorithm to fit in the stream-sort model. We set B to nε. Thus,
R and ER takes O(nε) space in memory. The operation for choosing the set R can
be done in one scan pass. Constructing ER can be done in memory using O(nε)
extra space.

By keeping T in memory, verifying the conditions to terminate the loop can be
done by one scan pass. One iteration of the first loop can be done in O(1) passes
with O(nε) extra space.

For the second loop structure, we proceed as follows. We create a copy of h for
each cell ∆f intersected by the halfspace h. We also attach a label to each copy to
identify the corresponding cell. This operation can be done in one scan pass. In
the following sorting pass, we use the attached label as the key. All halfspaces are
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grouped together in the data stream. With the technique introduced in section 5.2,
all subproblems in the same level of the recursion tree are solved simultaneously in
one scan pass.

Because the total number of intersections between halfspaces and cells is O(n),
the duplication of halfspaces only lengthens the size of the intermediate stream
by a constant factor times. The size of any subproblem is O(n1−ε log n), since
B = nε. The number of levels of the recursion tree is constant, since the size of
the intermediate stream increases by a constant factor every round. Therefore, all
intermediate streams are of size O(n).

Because the first loop in the above algorithm terminates in a constant expected
number of iterations, this algorithm takes O(1) expected number of passes in one
round. Therefore, the expected total number of passes is also O(1).

The merging step at the end of the algorithm can be done by a sorting pass and
a scan pass. In the sorting pass, we use the planes containing facets as the key and
group all facets in the same plane together.

Theorem 5.4.1 Given a set of n 3D points, its convex hull can be constructed in
O(1) expected number of passes with O(nε) extra space, for any fixed ε > 0.

Remark: The algorithm can also be derandomized in the same bounds. Instead
of making the set R random, we can use a (1/B)-net to make the set, where B =
O(nε). A streaming algorithm by Bagchi et al. [9] can deterministically compute
this (1/B)-net in one pass with O(polylogn) space.

5.5 Triangulation of Simple Polygons

In this section, we describe how to triangulate a simple polygon. This algorithm
is not only based on the general techniques discussed in previous sections, but
also based on new interesting properties of a type of special polygons proposed in
section 5.5.4.

More generally, our algorithm can triangulate an arbitrary set of disjoint line
segments. Given a set L of n disjoint line segments in a plane, we show how to
construct a triangulation of L (covering the convex hull of the endpoints of L and
not using extra vertices) in O(1) expected number of passes with O(nε) extra space,
for any fixed ε > 0.

Before we describe our algorithm, we define some terms. By a unimonotone
polygon, we mean an x-monotone polygon with one edge connecting its leftmost
and rightmost vertex. We call this edge the long edge of the polygon. See fig. 5.1.

Our algorithm consists of four major phases. In section 5.5.1, we explain the
construction of a trapezoidal decomposition of the line segments. In section 5.5.2,
we describe the transformation of the trapezoidal decomposition to a decomposition
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Long edge

Figure 5.1: A unimonotone polygon

of unimonotone polygons. In section 5.5.3, we describe the decomposition of each
unimontone polygons to a set of special polygons. In section 5.5.4, we show how to
triangulate a special polygon. In section 5.5.5, we put these four phases together
to obtain the overall algorithm.

5.5.1 Trapezoidal Decomposition of Line Segments

Recall the trapezoidal decomposition defined in subsection 1.1.3. In this subsection,
we present a recursive algorithm constructing the trapezoidal decomposition of a
set of disjoint line segments. The input L is a set of n disjoint line segments. The
output T is the trapezoidal decomposition for T . We denote the set of line segments
intersecting a trapezoid t by Lt. The parameter B will be determined later in this
section. This algorithm uses a well-known random sampling approach [38, 80].

Algorithm Trap-Decomp(L):
If |L| ≤ B

Solve directly in memory
Repeat

Randomly select a subset R of size B from L
Build the trapezoidal decomposition TR of R

Until
∑

t∈TR
|Lt| = O(n) and maxt∈TR

|Lt| = O((n/B) log B)
For each t ∈ TR

Tt = Trap Decomp(Lt)
Merge all the Tt’s together to form T and return T

The set R is a randomly selected subset. The analysis is similar to theorem 5.4.1.
Therefore, we have

∑
t∈TR

|Lt| ≤ cn with probability greater than a constant, for
a sufficiently large constant c, and maxt∈TR

|Lt| ≤ c′(n/B) log B with probability
greater than a constant, for a sufficiently large constant c′. Therefore, the first loop
iterates only a constant expected number of times.
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In the stream-sort model, we keep the set R and TR in memory. By setting B
= nε, these two structures only take O(nε) space in memory. With TR in memory,
we can check the conditions to terminate the first loop in O(1) passes.

We use the same duplication idea used in section 5.4. To prepare for the re-
cursive calls in the second loop, in a scan pass, we create one copy of the segment
for each trapezoid intersected and attach a label to each copy to identify the inter-
sected trapezoid. In the sorting pass, we use the attached label as the key and group
segments by the trapezoids intersected. Because maxt∈TR

|Lt| = O(n1−ε) log n, the
number of levels of recursions is O(1). Because

∑
t∈TR

|Lt| = O(n), the intermediate
stream for one level contains O(n) line segments. Since there are only O(1) levels
of recursive calls, any intermediate stream contains O(n) line segments.

The merging step can be done with one sorting pass and one scan pass. Each
trapezoid is bounded by an upper edge, a lower edge, and two walls. In the sorting
pass, we use the line segment of the upper edge as the primary key and the left-to-
right order as the secondary key to sort all trapezoids. In the scan pass, trapezoids
bounded by the same walls are all merged together.

We simultaneously solve subproblems in the same level in the same pass using
the technique described in section 5.2. Our algorithm can build the trapezoidal
decomposition in O(1) rounds. Since the expected number of pass to obtain a valid
trapezoid is O(1), our algorithm takes O(1) expected number of passes in total.

Thus we have:

Lemma 5.5.1 For any fixed ε > 0, the trapezoidal decomposition of a set of n
disjoint 2D line segments can be constructed in O(1) expected number of passes
with O(nε) extra space.

5.5.2 Decomposition of Line Segments

In this subsection, we show how to construct a decomposition of line segments into
unimonotone polygons. This is a well-known algorithm described in [40]. We only
adapt it in the stream-sort model. The input T is a set of trapezoids from the
trapezoidal decomposition described in the previous subsection. The output M is
the set of unimonotone polygons from this decomposition.

Algorithm Monotone-Decomposition(T ):
Initialize S = ∅
/* step 1: split trapezoids */
Check for each t ∈ T

/* These three cases are shown in fig. 5.2 */
Case 1: the upper or lower edge of t is a whole segment

Put t into S
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(Case 1) (Case 2) (Case 3) (Case 4)

L1

L2

L1

L2

L1

L3

L2

L1

L2

L3 L4

Figure 5.2: Different cases to split a trapezoid

Case 2: two vertices are endpoints of line segments,
but they are not from the same edge

Draw the diagonal between the two vertices
Split t into t↑ and t↓ and put t↑ and t↓ into S

Case 3: one vertex p is an endpoint of a line segment
and another endpoint q of a line segment is on a vertical edge

Draw the edge pq
Split t into a triangle ∆t and trapezoid Qt and put ∆t and Qt into S

Case 4: no vertices are endpoints of line segments
and two endpoints, p1 and p2 are on the vertical edges

Draw the edge p1p2

Split t into two trapezoids T1 and T2 and put T1 and T2 into S

/*step 2: merge polygons in S to unimonotone polygons */
For each line segment l

Sort all polygons using l as the upper edge from left to right
Merge all these polygons to form a unimonotone polygon m and put m into M
Sort all polygons using l as the lower edge from left to right
Merge all these polygons to form a unimonotone polygon m and put m into M

Return M

Now we modify both steps of the algorithm for the stream-sort model. Step 1
can be simply done by a scan pass. Instead of writing the results to a data structure
S, we write them into the output stream. For step 2, in a sorting pass, we use the
segment of the upper edge as the primary key and the left-to-right order as the
secondary key to group and sort polygons. In a scan pass, we merge the polygons,
whose upper edges are of the same segment, to a unimonotone polygon and write
the polygon to the output stream. We do the same for the polygons whose lower
edges are of the same segment. Both of these two steps take O(1) passes with O(1)
extra space.
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5.5.3 Decomposition of a Unimonotone Polygon

It is not obvious how to triangulate unimonotone polygons directly in the stream-
sort model. In this section and the next, we introduce nontrivial new ideas that
differ from the approaches in previous (sequential or parallel) polygon triangulation
algorithms. The following definition is the key:

Definition Given a direction d, a unimonotone polygon is a special polygon at
direction d, if its chain of edges is monotone in direction d and both vertices of the
long edge are higher than any other vertices in the direction perpendicular to d.

Figure 5.3: A special polygon

The decomposition is built recursively. Given the unimonotone polygon P , we
divide the monotone chain into B parts with equal size, and build the upper hull
for each part. Below the upper hulls, the decomposition will be built recursively.
Above the upper hulls, we obtain a new unimonotone polygon, whose monotone
chain Q is formed by at most B concave chains. See fig. 5.4. The following top-down
sweeping algorithm decomposes Q into a set of special polygons. Interestingly, this
part is inspired by a well-known algorithm for constructing the 2D maxima of a set
of points [91]. The input Q is an x-monotone chain formed by B concave chains.
The output C is the set of edges of the special polygons. Without loss of generality,
we assume the right end is higher than the left end.

Algorithm Special-Decomp(Q):
Initialize v to the right end of the long edge and C empty
Put all vertices along the y-direction in a sorted list L in decreasing order
For each vertex vi in decreasing y-order

If vi is left of v
Add edge (vi, v) to C
v = vi

Return C

By this algorithm, we connect the right endpoint of the long edge to the left end
with an xy-monotone chain, and all regions below this chain are special polygons
along the x-direction, as one can easily see. Consider the region Q′ above the xy-
monotone chain. (See fig. 5.4.) This is also a special polygon, where, this time, the
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Figure 5.4: Decomposition of Q into special polygons

direction d is perpendicular to the long edge. In the scan pass, we only need to
keep v and vi in memory. Any created edge in C is written into the output stream
as scan proceeds. With a sorting pass, we sort all edges using the x-coordinate
of the first point as the primary key and the x-coordinate of the second point as
the secondary key. Then, with another scan pass, we can obtain the xy-monotone
chain in order. Therefore, in the stream-sort model, the above algorithm takes O(1)
passes with O(1) space in memory.

By setting B to nε, the number of levels of the recursion is O(1). Then we
simultaneously solve all problems in the same level of the recursion tree in one
round. Because any edge we write to the output stream is an edge in the final
triangulation and the size of the triangulation is O(n), the size of all intermediate
streams is O(n). Since the upper hulls are computed by our algorithm in section
5.3, it takes O(B) space in memory with O(1) passes.

5.5.4 Triangulation of a Special Polygon

We build a triangulation for a special polygon, say in the direction of the x-axis,
by a top-down sweeping procedure. In this algorithm, we maintain a tree structure
bridges in memory. It stores a set of pairs (left, right). Each pair corresponds to
one portion of the chain intersecting the sweep line. They are ordered left to right
in direction y. For p, which is a query point or a pair in bridges, its predecessor
and successor in bridges refer to the bridge immediately left of and right of p,
denoted as p− and p+, respectively. There are two types of events: 1. the sweep
line touches a vertex which belongs to an edge already intersecting the sweep line
and 2. the sweep line touches a vertex which does not belong to an edge already
intersecting the sweep line. The input is a special polygon whose monotone chain
is monotone in x direction without loss of generality. For any other special polygon
in other directions, we can rotate the coordinate plane, so that the polygon is a
special polygon in direction of y-axis. The triangulated region constructed by the
algorithm is illustrated in fig. 5.5.

Algorithm Special-Triangulate(P ):
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Figure 5.5: Triangulating a special polygon

Put all vertices on the monotone chain top-down in direction y in a sorted list L
Let the left end point of the long edge be El and the right one be Er

Initialize bridges with two pairs (−∞, El) and (Er,∞)
While L is not empty

Pick the next vertex v from L
Add triangle (v−.right, v, v+.left) to T
Case 1: v causes an event of the type 1 // see fig. 5.6 (left)

If the left side of v along the sweep line is inside P
v+.left = v

Else if the right side of v along the sweep line is inside P
v−.right = v

Else
Delete v− and v+ and insert (v−.left, v+.right)

Case 2: v causes an event of the type 2 // see fig. 5.6 (right)
Add (v, v) to bridges

End of cases
End of loop

In the stream-sort model, we use a sorting pass to prepare L. Then we perform
the loop part of the algorithm and write all triangles into the output stream in one
scan pass, and store only bridges in memory. Therefore the extra space used in
memory is linear to the maximum number of edges intersecting the sweep line.

Lemma 5.5.2 Given a special polygon at direction d, it can be triangulated in
O(1) passes with O(m) extra space, where m is the maximum number of edges of
the polygon intersected by a line in direction d.
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Figure 5.6: Adding a new triangle into the triangulated area

Proof: We prove the following invariant: at any time, the portion of the polygon
above the bridges is triangulated and lies above the sweep line. Initially, after the
first two vertices v1 and v2 are read, the invariant holds. From the definition of
special polygons, we know that v1 and v2 must be vertices of the long edge, so v1v2

lies above the sweep line.

As the sweeping algorithm proceeds, the newly added vertices can be connected
to the two adjacent vertices in the bridges without intersecting polygon edges (see
fig. 5.6). Therefore, the invariant holds after the new vertex is added. ¤

5.5.5 Triangulation of Line Segments

By solving multiple subproblems in one round, we simultaneously construct the tri-
angulation of all special polygons decomposed from the same level of the recursive
calls in the monotone decomposition algorithm described in section 5.5.3. Re-
call that the special polygons are decomposed from a unimonotone polygon whose
monotone chain is composed of nε upper hulls. We conclude that the special poly-
gon Q′ above the xy-monotone chain and all obtained special polygons below the
xy-monotone chain (see fig. 5.4) have O(nε) edges intersecting its sweep line. The
extra space used to triangulate one special polygon is O(nε). Note that all of the
four phases take O(1) passes with O(nε) space. Thus, we have:

Theorem 5.5.3 A triangulation of a set of n disjoint line segments can be con-
structed in O(1) expected number of passes with O(nε) extra space, for any fixed
ε > 0.

Remark: The merging procedure used in sections 5.5.1 and 5.5.2 can be done
in the same sorting pass, to minimize the number of expensive sorting passes in
practice. This algorithm can also be derandomized by using the same (1/B)-net
algorithm [9] mentioned in section 5.4.

5.5.6 Intersection Reporting for Line Segments

As another application of the trapezoidal decomposition algorithm, we can report
all k intersections of a set of line segments with intersections in O(1) expected
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number of passes with O(nε) extra space, if intermediate streams of size O(n + k)
are allowed, where k is the number of intersections.

We adapt the trapezoidal decomposition algorithm (section 5.5.1) to report in-
tersections for a set of line segments with intersections. We modify the random
sampling verification step used in the algorithm in section 5.5.1. Here we use∑

t∈TR
|Lt| ≤ c(n + kB/n) [38], where k is the number of intersections detected so

far. If this is a valid random sample, we build the trapezoidal decomposition on
this sample, break the segment intersecting the boundary of the trapezoidal decom-
position into two segments, one above the boundary and one below the boundary.

Corollary 5.5.4 For any fixed constant ε > 0, all intersections of a set of n 2D
line segments can be reported in O(1) expected number of passes with O(nε) extra
space, if size O(n + k) intermediate streams are allowed, where k is the number of
intersections between line segments.

5.6 2D Convex Hulls of Sorted Points Sets in a

Weaker Model

Since the sorting pass is the most expensive part, we define a simpler and self-
contained model in which the sorting pass is not allowed. Instead, we can only
choose a direction to scan the stream (forward or backward). We call this model
the direction-flexible model. This model is weaker than the stream-sort model. For
example, it is impossible to sort data in order in a constant number of passes in
the direction-flexible model, if the extra space allowed is sublinear.

This result is interesting to us, because it contrasts with the near-
√

n lower
bound result for the same problem shown as theorem 3.4.4 in the original multi-
pass stream model in chapter 3.

We only describe how to construct the upper hull, because constructing the
lower hull is symmetric. Computing the lower hull simultaneously at most doubles
the size of the intermediate stream.

Given a set P of 2D points and a vertical line h, we define the bridge at h as the
edge of the upper hull of P intersecting h. To compute the bridge at h, we transform
the problem in dual space. In dual space, each point becomes a halfplane and a
bridge corresponds to an extreme point in the intersection of halfplanes. This point
can be computed using linear programming. With O(nε) extra space in memory,
this linear programming problem can be solved under the multi-pass model in O(1),
as shown in chapter 3.

We find all points not on the upper hull by divide-and-conquer. The input is
a set P of 2D points sorted in x-order. In the output, all points not on the upper
hull are marked. In the final pass, we scan this output, and report all unmarked
points in x-order, which form the upper hull of P .
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Algorithm MarkUH(P ):
If |P | = O(Bnε)

Solve the problem directly in memory
Else

Divide P into B groups: P1, P2, ..., PB

Find the set H of vertical lines between any two adjacent groups
For P , compute the bridges at each h ∈ H.
Mark any p ∈ P if p is below one of these bridges
For each Pi

MarkUH(Pi)

Again, we solve all subproblems in one level simultaneously. For each subprob-
lem, we need to compute B − 1 bridges. The computation for each bridge corre-
sponds one linear-programming problem. We use the multi-pass linear-programming
algorithm mentioned above. This algorithm scans an array of data sequentially
multiple times without modifying it, and the order of the scan does not affect the
algorithm. However, between scans, additional information must be kept by the
algorithm in memory.

In each subproblem, we compute all B − 1 bridges by simulating this multi-
pass linear programming algorithm. The memory contents of these simulations
are kept in memory. After all data of one subproblem are scanned, we write all
memory contents to the output stream after the data of that subproblem. Then
the memory is reset for the next subproblem in the stream. Thus, in intermediate
streams, data and memory contents of the multi-pass algorithm are interleaved.
For the next scan, this output stream becomes the input stream. We start from
the other end of the stream, so that we can reload the memory content of each
subproblem back in memory, before any data point of that subproblem is accessed.
After the final pass, all bridges are determined. They are written into the stream
after the corresponding data set. To mark points under a bridge, we start from the
other end. All bridges are loaded into memory, before the corresponding data set
is accessed. This step takes O(1) passes. By setting B = O(nε), the height of the
tree is constant. Therefore, the total number of passes is O(1) and the memory
required is O(n2ε).

Besides one mark for each item, all extra information written into the stream
consists of the memory contents produced by the multi-pass algorithm. At each
level, the total number of bridges to compute is at most O( n

Bnε ). The total extra
space is O(n/B) = o(n).

By setting 2ε = δ, we have:

Theorem 5.6.1 Given a set of n x-ordered 2D points, its convex hull can be con-
structed in O(1) passes with O(nδ) extra space in the direction-flexible streaming
model, for any fixed δ > 0.
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Chapter 6

Conclusion

In this thesis, we have studied some fundamental geometric problems in the in-place
model, the multi-pass model, the read-only model, and the stream-sort model.

Most of our results are summarized in table 6. At the end of the thesis, we
would like to note some open problems in the models we have studied.

In-place algorithms and implicit data structures.

• Given a set of n 3D points, can its convex hull be constructed in O(n log n)
time with O(1) space? At the end, all points on the convex hull should
be stored in a prefix of the input array, and all edges and facets should be
outputted to a write-only stream.

• In the permutation+bits model, if we are allowed to have unlimited number
of extra bits, can we build a data structure to answer nearest neighbor queries
in O(log n) time? Or can we prove a lower bound ω(log n) on this problem in
this model?

• Given a set of n points in 2D, can we build a data structure of size n +
O(1), such that point-location queries in the Delaunay triangulation can be
answered in o(log2 n) time with O(1) space?

• Given a set of n axis-aligned boxes in 3D, can we solve Klee’s measure problem
in O(n3/2 polylogn) time with O(polylog n) space? In the traditional model,
this problem can be solved in O(n3/2 log n) time with O(n) space [88]1.

• Given an arbitrary planar subdivision defined by n points in the plane, can
we build a data structure by a permutation of these points, which can support
point-location queries in O(log n) time with O(1) space? We recently have
proposed a data structure supporting queries in O(log2 n) time with O(1)
space [14].

1Recently, Chan has proposed a slightly faster algorithm in the traditional model [25].
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In the multi-pass model.

• In our algorithms for linear programming (theorems 3.3.2, 3.3.4, 3.3.5, and
3.3.8), the number of passes depends on the fixed constant δ. Can we make
this constant smaller? Formally, given δ > 0, can we compute the lowest
point in the intersection of n halfplanes in Rd, using o(1/δd−1) passes and
O(nδ) space?

• Our algorithm for linear programming (theorem 3.3.7) takes d + 1 passes.
Can we prove a lower bound of d+1 passes for any sublinear space algorithm
solving the fixed-dimensional linear programming problem?

In the read-only model.

• Is there an algorithm running in O(n log n + n2/s) time with O(s) units of
space to solve Klee’s measure problem in 2D?

In the stream-sort model.

• Does there exist a lower bound of Ω(polylog n) passes for constructing convex
hulls with O(1) words of space?

• Can we compute the 2D convex hull in O(1) number of sorting passes, and
O(polylogn) number of scan passes with O(polylogn) space?
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In-place Algorithms and Implicit Data Structures
Problem Space Time Reference

2D Nearest Neighbor Query O(1) O(log1.71 n) Thm. 2.3.4

Klee’s Measure O(
√

n) O(n3/2 log n) Thm. 2.4.1
With integer coordinates O(1) O(n log2 n) Thm. 2.4.4
Depth problem O(1) O(n log2 n) Cor. 2.4.5 and 2.4.6

Multi-Pass Algorithms
Problem Space # Passes Reference
Fixed-D LP O(

√
n log n) d + 1 Thm. 3.3.7

O(nδ) O(1) Thm. 3.3.2, 3.3.4,
3.3.5, 3.3.8

Ω(nδ) O(1) Thm. 3.3.10
2D convex hull O(s) O(n/s) Thm. 3.2.1

Ω(s) O(n/s) by [82]
O(hnδ) O(1) Thm. 3.5.1 and 3.5.2

Sorted case O(n1/2+δ) O(1) Thm. 3.4.1 and 3.4.3

Ω(
√

n/ log n) O(1) Thm. 3.4.4
3D convex hull O(s) O((n/s) polylog n) Thm. 3.6.1

The Read-Only Model
Problem Space Time Reference
Fixed-D LP O(log n) O(n) randomized Thm. 4.2.1
2D convex hull, sorted case O(nδ) O(n) Thm.4.3.1 and 4.3.2
Klee’s Measure O(s), s < n/ log n O(n3/s2) Thm. 4.4.2
Depth problem O(s), s < n/ log2 n O(n3/(s2 log n)) Cor. 4.4.3 and 4.4.4

The Stream-Sort Model
Problem Space # Passes Reference
2D Convex hull O(nε) O(1) Thm. 5.3.1
3D Convex hull O(nε) O(1) Thm. 5.4.1
Triangulation of Polygons O(nε) O(1) Thm. 5.5.3

The Direction Flexible Model
Problem Space # Passes Reference
2D convex hull: sorted case O(nε) O(1) Thm. 5.6.1

Table 6.1: Summary of results
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