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Abstract

Discrete time dynamic programming to solve dynamic portfolio choice models has 

three immanent issues: firstly, the curse of dimensionality prohibits more than a 

handful of continuous states. Secondly, in higher dimensions, even regular sparse 

grid discretizations need too many grid points for sufficiently accurate approxima-

tions of the value function. Thirdly, the models usually require continuous control 

variables, and hence gradient-based optimization with smooth approximations of the 

value function is necessary to obtain accurate solutions to the optimization prob-

lem. For the first time, we enable accurate and fast numerical solutions with gradi-

ent-based optimization while still allowing for spatial adaptivity using hierarchical 

B-splines on sparse grids. When compared to the standard linear bases on sparse 

grids or finite difference approximations of the gradient, our approach saves an order 

of magnitude in total computational complexity for a representative dynamic portfo-

lio choice model with varying state space dimensionality, stochastic sample space, 

and choice variables.
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1 Introduction

A common approach to solve dynamic portfolio choice models in discrete time is 

dynamic programming, iterating over the value function backwards in time. Starting 

from the known value function at final time T, the value function is approximated 

on a state space grid, assuming that the state space is continuous. To determine the 

next iterate of the value function at each grid point at time T − 1 we have to solve 

an optimization problem that depends on the value function of the previous iter-

ate at time T. When a tensor product approximation is used, this approach suffers 

from the curse of dimensionality as the number of grid points of the approximation 

grows exponentially with the dimensionality of the state space. In addition, solving 

for the current value function iterate at a grid point relies on an accurate solution of 

the underlying optimization problem. When the portfolio choice is continuous, e.g., 

choosing the investment amount in stocks, bonds, etc., the computation of the opti-

mal solution can be greatly accelerated by gradient-based optimization routines if 

the gradient of the objective function is available.

Recently, sparse grids have been successfully employed to break the curse of 

dimensionality in high-dimensional dynamic models  (Brumm and Scheidegger 

2017; Judd et  al. 2014; Schober 2018; Winschel and Krätzig 2010).1 A standard 

d-dimensional tensor product grid on the unit hypercube [0, 1]d with mesh size 

2
−n , n ∈ ℕ , and no points on the boundary contains 2

n
− 1 grid points per coor-

dinate direction and thus O(2nd) points in total, growing exponentially with the 

dimensionality d. In contrast, a regular sparse grid with the same mesh size con-

tains only O(2n
n

d−1) points. The error of the sparse grid approximation of a func-

tion with homogeneous boundary conditions using piecewise linear basis functions 

is O(2−2n
n

d−1) with respect to the L2 and L∞ norm if the approximated function has 

bounded mixed second derivatives (Bungartz and Griebel 2004; Zenger 1991). This 

is only slightly worse than the corresponding error O(2−2n) for the case of full tensor 

product grids.

In higher dimensions, even regular sparse grids need too many grid points for a 

sufficiently accurate approximation when solving high-dimensional dynamic mod-

els (Brumm and Scheidegger 2017). Fortunately, for approximations in the standard 

piecewise linear basis, the hierarchical structure of sparse grids allows for spatially 

adaptive refinement of the grid by inserting the 2d children of only certain leaves 

in the hierarchical structure. Spatially adaptive refinement has successfully been 

employed to solve high-dimensional dynamic models by Brumm and Scheidegger 

(2017) and  Schober (2018). Unfortunately, approximations of the value function 

using the standard piecewise linear basis are not continuously differentiable and, 

hence, have discontinuous gradients. This poses a problem to gradient-based optimi-

zation techniques, which rely on a twice continuously differentiable approximation 

of the objective function to ensure convergence (Schober 2018).

1 See Cai (2019) for a discussion on alternative approximation methods for dynamic economic models 

that also do not suffer from the curse of dimensionality.
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Global polynomial approximations have shown to work well with value function 

iteration and continuous choices for solving dynamic economic models  (Cai and 

Judd 2015; Judd et al. 2014) as they are globally smooth. Smolyak’s formula can be 

used to construct sparse grid approximations (Barthelmann et  al. 2000) on global 

polynomial bases, which can be refined adaptively with regard to specific dimen-

sions of the state space (Judd et al. 2014) and with regard to the hierarchical sur-

pluses, i.e., locally adaptively (Stoyanov 2017). Value function iteration with the 

use of gradient information to approximate the value function more accurately with 

global polynomials is also possible (Cai and Judd 2015).

However, B-splines are much more flexible than global polynomials (Valentin 

and Pflüger 2016; Valentin 2019). While global polynomial approximations are 

bound to certain grid structures to avoid Runge’s phenomenon or similar issues, 

B-spline basis functions can be employed on any nested spatially adaptive grid 

hierarchy. They allow for simultaneous local- and degree-adaptive refinement (hp-

adaptivity), implying that one could use a smaller or larger mesh size and/or degree 

of the B-spline basis functions in certain regions of the state space, e.g., to resolve 

kinks. In addition, the local basis functions are faster to evaluate than the conven-

tional global polynomial basis functions. Approximations with B-splines of cubic 

degree (or higher) are twice continuously differentiable, and readily supply smooth 

and explicit approximations of both, the value function and the gradient. Compared 

to approximating the derivatives with finite differences, the optimization is not only 

more accurate but also significantly faster, especially when the number of optimiza-

tion variables is large (Valentin 2019). B-splines have thus proven useful for com-

puting numerical solutions to numerous dynamic models when finding the root of 

the gradient is required (Chu et al. 2013; Habermann and Kindermann 2007; Judd 

and Solnick 1994; Philbrick and Kitanidis 2001).

In total, three issues with discrete time dynamic programming for dynamic port-

folio choice models with continuous choices emerge: the curse of dimensionality, 

the lack of spatial adaptivity, and the lack of continuous gradients. It is apparent that 

current economic literature deals with these issues only in isolation, e.g., by com-

bining sparse grids with global polynomial basis functions, or using sparse grids 

with non-smooth local linear basis functions to allow for spatial adaptivity. These 

approaches are hence computationally inefficient in accurately solving high-dimen-

sional dynamic portfolio choice models or any high-dimensional dynamic economic 

model that requires smooth approximations or gradient-based optimization.

This paper is the first to address all of these issues at once by combining 

hierarchical B-splines with sparse grids to approximate the value function and 

its gradient. Thus, we enable accurate and fast numerical solutions using gradi-

ent-based optimization while still allowing for spatial adaptivity (Pflüger 2010; 

Valentin and Pflüger 2016). The hierarchical grid structure allows us to develop 

an algorithm that uses the local adaptivity similar to Brumm and Scheidegger 

(2017) and Schober (2018), but interpolates the value function and its gradient 

with a B-spline basis. Therefore, we create a sparse grid for the value function, 

for which we interpolate the value function in the piecewise linear basis. We then 

refine the grid using the standard hierarchical surplus-volume-based refinement 
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criterion. Finally, we interpolate the value function with hierarchical B-spline 

basis functions on the spatially adaptively refined sparse grid.

We focus our study on the numerical accuracy of our approach. Therefore, we 

choose a dynamic portfolio choice model with multiple stocks, one bond, and 

consumption. For buying and selling the stocks, linear transaction costs have to 

be deducted. The resulting optimization problem is high-dimensional in terms of 

the state space, stochastic sample space, and choice variables. Hence, this prob-

lem is especially suited for a complexity analysis. At the same time, this model is 

similar to models from a vast strand of state-of-the-art literature on dynamic port-

folio choice, e.g., Barberis and Huang (2009), Cocco et al. (2005), De Giorgi and 

Legg (2012), Horneff et al. (2010), Horneff et al. (2008), Hubener et al. (2016), 

Hubener et al. (2014), Inkmann et al. (2011). Consequently, our approach can be 

generalized to a broad class of dynamic portfolio choice models with only minor 

modifications.

Dynamic portfolio choice models with transaction costs have been studied eco-

nomically, e.g., by Abrams and Karmarkar (1980), Kamin (1975), Liu and Loewen-

stein (2002), Magill and Constantinides (1976), and extensively numerically by Cai 

(2009), Cai and Judd (2010), Cai et al. (2015), Cai et al. (2020). The latter report 

computational times and economic solutions for higher-dimensional transaction 

costs problems. They employ polynomial interpolation with only few polynomial 

nodes and parallelization to solve these problems with and without consumption 

using value function iteration in discrete time. Cai et al. (2020) present convergence 

results and computational times for the three-dimensional transaction costs prob-

lem with consumption and numerical errors for the four-dimensional problem using 

complete Chebyshev polynomials to approximate the value function. However, only 

we have employed spatially adaptive sparse grids to the transaction costs problem, 

which induces optimization on continuous choices (Schober 2018). We also apply 

local adaptivity to compute the optimal policies from the solution to the underlying 

optimization problem as earlier suggested by us (Schober 2018) and Brumm and 

Grill (2014).

A complexity analysis reveals that cubic B-splines save more than one order of 

magnitude in computational effort compared to the state of the art with the linear 

basis (Brumm and Scheidegger 2017) and/or finite difference approximations of the 

gradient on regular sparse grids. Using spatially adaptive refinement of the optimal 

policy, we solve the problem for up to five dimensions where highly accurate solu-

tions on regular sparse grids would require hundreds of thousands of grid points, 

and are thus no longer suitable. Here, spatially adaptive refinement allows a compa-

rably low base resolution in the solution process of the value function, and, in a sec-

ond step, adds grid points in the optimal policies where required. By this, we obtain 

low reported unit-free Euler equation errors for the transaction costs problem.

The rest of this article is structured as follows: In Sect. 2, we define the general class 

of dynamic portfolio choice models for which our approach is applicable. Section 3 

introduces hierarchical B-splines on spatially adaptive sparse grids, leading to the defi-

nition of hierarchical weakly fundamental not-a-knot splines. Algorithms for solving 

dynamic portfolio choice models with B-splines on spatially adaptive sparse grids 

are discussed in Sect.  4. We analyze the complexity and demonstrate the numerical 
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accuracy of our approach solving the transaction costs problem in Sect. 5 before con-

cluding in Sect. 6.

2  Discrete Time Dynamic Portfolio Choice Models

We consider discrete time dynamic portfolio choice models with finite time horizon T 

in which the investor seeks to maximize additive expected life-time utility u from con-

sumption c
t
:

Here, she has m
p
 continuous choices p

t
∈ � ⊂ ℝ

m
p (e.g., investment amounts in 

stocks and bonds) with respect to d continuous states x
t
∈ � ⊂ ℝ

d (e.g., current 

financial wealth or labor income) she can reside in at time t. In addition, the transi-

tion from state x
t
 to x

t+1
 does not only depend on her choices and her state, but may 

also be subject to m� random shocks �
t
∈ Z (such as stock returns or labor income 

shocks), which are drawn from the sample space Z ⊂ ℝ
m� . The random variable 

f
t
∶ � ×� × Z → � , (p

t
, x

t
, �

t
) ↦ x

t+1 , then describes the continuous state dynam-

ics between t and t + 1 . We denote by � < 1 the subjective time discount factor, and 

we assume the utility function to be of Constant Relative Risk Aversion type with 

risk aversion � > 1:

It is also straightforward to include discrete choices (compare also, e.g., Brumm and 

Scheidegger 2017) in the trivial way and discrete states (Schober 2018) in this model 

setup. Furthermore, the model can be generalized to further utility functions, e.g., to 

Epstein and Zin (1989) utility and to utility functions with a narrow framing compo-

nent (Barberis and Huang 2009). In this paper, we disregard these modeling choices 

purely for simplicity.

By the Bellman principle (Bellman 1954), this utility maximization problem can 

be reformulated in terms of the value function jt for t = 0,… , T  with known termi-

nal utility v

subject to the m
g
 possibly non-linear inequality constraints g

t
∶ � ×� → ℝ

m
g:

 For two vectors a, b , we define a ≥ b if a
i
≥ b

i
 for all i (and “ ≤ ” analogously). The 

corresponding expected value of jt+1
 is

(1)�0

[

T
∑

t=0

�
t
u(c

t
(p

t
, x

t
))

]

.

(2)u(c
t
) =

1

1 − �
c

1−�

t
.

(3a)jt(xt) = max
pt

{

u(ct(pt, xt)) + ��t

[

jt+1(f t(pt, xt, � t))
]}

, t < T ,

(3b)jT (xT ) = v(xT ) ,

(3c)g
t
(p

t
, x

t
) ≥ 0 .



190 P. Schober et al.

1 3

Here, �
t
(⋅ | x

t
) denotes the conditional distribution of �

t
 . Note that we only need 

the value function at time t + 1 to determine the value function at time t via 

maximization.

To numerically solve the optimization problem  (3), discrete-time dynamic pro-

gramming iterating over the value function is common (Judd 1998; Rust 2008). 

Therefore, the value function jt is restricted to a finite grid on the (truncated) state 

space with N
t
 grid points x

(k)

t
 , k = 1,… , N

t
 . The value function values in between 

grid points are interpolated by

with basis functions �
k
 and coefficients �

k
 , which are chosen in such a way that the 

interpolant jS
t
 fits the known function values at all grid points x

(k)

t
 . Beginning with 

the known final solution at time T, the Bellman equation is solved backwards in time 

until the value function is computed for each grid point at each t = T − 1,… , 0.

For t < T  , let us define the interpolant of the objective function of the maximiza-

tion in Eq. (3a) for grid point x
(k)

t
 by:

The maximization of this target function (6) with respect to p
t
 can then be performed 

using Sequential quadratic programming (SQP) routines, see "Appendix A.1".

To compute the expectation with respect to d� , numerical integration can be 

used if the conditional distributions �(⋅ | x
(k)

t
) are known.2

3  Hierarchical B‑Splines on Sparse Grids

As discussed in Sect.  1, hierarchical B-splines on sparse grids provide numerous 

advantages over other basis choices, especially in the context of optimization (Val-

entin 2019; Valentin and Pflüger 2016). In addition, they allow for spatially adaptive 

refinement by applying the standard surplus-based refinement criterion. To compute 

the coefficients of the B-spline approximation, usually a computationally expensive 

linear system has to be solved. Therefore, we determine the underlying grid structure 

by applying the surplus-based refinement criterion on the piecewise linear basis and 

interpolating with B-splines on the resulting grid. As proven in our previous work 

(4)�t

[
jt+1(f t(pt, xt, � t))

]
∶= ∫

Z

jt+1(f t(pt, xt, � t)) d�t(� t | xt) .

(5)jS
t
(xt) ∶=

Nt
∑

k=1

�k�k(xt) ,

(6)j̃S
t
(pt, x

(k)
t ) ∶= u(ct(pt, x

(k)
t )) + ��t

[

jS
t+1

(f t(pt, x
(k)
t , � t))

]

.

2 In this paper, we assume that numerical quadrature is possible. The applicability of the algorithms 

does not change if the distribution is generated by a different method, e.g., a Monte Carlo simulation. 

However, due to their slow convergence, Monte Carlo integration methods need a large simulated sample 

to obtain the accuracy required for the numerical optimization routine, see, e.g., the discussion by Cai 

(2019).



191

1 3

Solving High-Dimensional Dynamic Portfolio Choice Models…

(Valentin 2019), the computational effort needed for the computation of the coeffi-

cients can be further reduced by using the unidirectional principle. This is facilitated 

by weakly fundamental not-a-knot splines and the insertion of some additional grid 

points.

3.1  Not-A-Knot B-Spline Basis

Let p ∈ ℕ
0
 , m ∈ ℕ , and � = (�0,… , �

m+p
) be an increasing sequence of real num-

bers. The B-spline b
p

k,�
 of degree p for the knot sequence � is defined via the Cox–de 

Boor recurrence (Cox 1972; de Boor 1972; Höllig and Hörner 2013)

where k = 0,… , m − 1.

It can be shown that for m > p , the B-splines b
p

0,�
,… , b

p

m−1,�
 form a basis of the 

spline space S
p

�
∶= span{b

p

k,�
∣ k = 0,… , m − 1} on D

p

�
∶= [�p, �m] (Höllig and 

Hörner 2013). The space S
p

�
 contains exactly those functions s ∶ D

p

�
→ ℝ which are 

piecewise polynomial of degree smaller or equal to p on every knot interval [�
k
, �

k+1] 

in the interior of D
p

�
 ( k = p,… , m − 1 ) and at least p − 1 times continuously differ-

entiable at every knot �
k
 in the interior of D

p

�
 , k = p + 1,… , m − 1 (Höllig and 

Hörner 2013).

For simplicity, we restrict the considerations and results in this paper to cubic 

B-splines (i.e., p = 3 ) although it is important to note that our method can be gener-

alized to arbitrary odd B-spline degrees. A common special case is the case of linear 

B-splines ( p = 1 , so called hat functions), which are commonly used as basis func-

tions for sparse grids.

We consider equidistant grid points x
�,i

∶= ih
�
 on the unit interval [0, 1] where 

� ∈ ℕ
0
 is the level, i = 0,… , 2� is the index, and h

�
∶= 2

−� is the mesh size. We 

want to find basis functions �
�,i ∶ [0, 1] → ℝ such that we can interpolate a given 

objective function f ∶ [0, 1] → ℝ on the equidistant grid of level � by a linear com-

bination of the basis functions:

with some �
�,i

∈ ℝ.

The most straightforward choice of B-splines for �
�,i

 are uniform B-splines that 

are scaled and translated versions of the cardinal B-spline b3 ∶= b
3

0,(0,1,2,3,4)
 (Pflüger 

2010; Valentin 2019):

(7)

b
p

k,�
(x) ∶=

x − �k

�k+p − �k

b
p−1

k,�
(x) +

�k+p+1 − x

�k+p+1 − �k+1

b
p−1

k+1,�
(x),

b0

k,�
(x) ∶=

{

1 if x ∈ [�k, �k+1),

0 otherwise,

(8)f̃ (x
�,j) = f (x

�,j) for all j = 0,… , 2� , where f̃ ∶=

2�
∑

i=0

�
�,i��,i

(9)�
unif

�,i
(x) ∶= b

3(2�
x + 2 − i) .
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The resulting uniform B-splines �unif

�,i
 , i = 0,… , 2� , are exactly the B-splines b3

k,�unif
 , 

k = 0,… , m − 1 , that arise from Eq. (7) when choosing the uniform knot sequence 

�unif ∶= (x
�,−2, x

�,−1,… , x
�,2�+2) and m ∶= 2

�
+ 1.

However, the interpolation domain on which the B-splines span the spline space 

would only be D3

�unif
= [�p, �m] = [x

�,1, x
�,2�−1] = [2−� , 1 − 2−�] . This interval does 

not contain the two boundary grid points x
�,0 = 0 and x

�,2� = 1 . This leads to interpo-

lation problems since the spline space on [0, 1] is not contained in the spanned space of 

the basis functions �unif

�,i
 . Even simple polynomials such as f (x) = 4(x − 0.5)2 cannot 

be represented exactly with the B-spline basis on the whole domain [0, 1] as shown by 

Fig. 1a and Valentin and Pflüger (2016). Consequently, the approximation quality for 

more complex functions like the value functions we interpolate in this paper deterio-

rates unnecessarily, which means that the economic results are not as conclusive as 

they could be.

As a remedy, we impose so-called not-a-knot boundary conditions by remov-

ing the left-most and right-most inner grid points x
�,1 and x

�,2�−1 from the knot 

sequence (Höllig and Hörner 2013; Valentin 2019). To keep the number m = 2
�
+ 1 

of B-splines the same, we have to insert two additional knots outside the domain:

The new interpolation domain D
3

�nak
= [x

�,0, x
�,2� ] is now the whole unit interval 

[0, 1], containing all grid points at which we interpolate. As a result, the not-a-knot 

B-spline functions

(10)�nak ∶= (x
�,−3, … , x

�,0, x
�,2, … , x

�,2�−2, x
�,2� , … , x

�,2�+3) .

(11)�
nak

�,i
∶= b

3

i,�nak
, i = 0,… , 2� ,

(a) (b)

Fig. 1  Nodal B-spline bases and interpolation of parabola. a Nodal uniform B-spline basis of level 3 in 

1D and interpolation of the parabola f (x) = 4(x − 0.5)2 with this basis, resulting in oscillations near the 

boundary. b The corresponding nodal not-a-knot B-spline basis interpolates the parabola f exactly. The 

knots at the left-most and right-most inner grid points x
�,1 and x

�,7 (crosses) are removed
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form a basis of the spline space on [0,  1] corresponding to the grid 

{x
�,i ∣ i = 0,… , 2�}⧵{x

�,1, x
�,2�−1} and, consequently, the not-a-knot basis is able to 

reproduce all polynomials of degree smaller or equal to p on [0, 1], see Fig. 1b, Höl-

lig and Hörner (2013), and Valentin (2019). Note that the removal of the two grid 

points x
�,1 and x

�,2�−1 is only possible if � ≥ 2 . If � = 0 or � = 1 , we define �nak

�,i
 as 

the Lagrange polynomial corresponding to the data {(i�, �
i,i� ) ∣ i

� = 0,… , 2�} where 

�
i,i′

 is the Kronecker delta, e.g.,

3.2  Hierarchical Not-A-Knot B-Splines

The construction of sparse grids needs a hierarchical splitting of the nodal basis. 

Therefore, we define the so-called nodal subspaces Vnak

�
 and hierarchical subspaces 

W
nak

�
 by

where

The bases of the hierarchical subspaces are shown in Fig. 2.

(12)�
nak

0,0
(x) ∶= 1 − x , �

nak

0,1
(x) ∶= x , �

nak

1,1
(x) ∶= 4x(x − 1) .

(13)V
nak
�

∶= span{�nak
�,i

∣ i = 0,… , 2�} , W
nak
�

∶= span{�nak
�,i

∣ i ∈ I
�
} ,

(14)I
�
∶=

{

{i = 1,… , 2� − 1 ∣ i odd} � > 0,

{0, 1} � = 0.

Fig. 2  Hierarchical not-a-knot 

B-spline basis in 1D up to 

level 3
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It can be shown that the basis functions of W
nak

�
 for � = 0,… , n and n ∈ ℕ

0
 

are linearly independent on [0,  1] (Valentin 2019). This means that the sum 

span{�nak
�,i

∣ � = 0,… , n , i ∈ I
�
} of the subspaces W

nak

0
,… , W

nak
n

 is direct (i.e., 

W
nak

�
∩ W

nak

�� = {0} for � ≠ �
′ ) and can be written as 

⨁n

�=0
W

nak

�
 . Due to dimensional 

arguments, the direct sum coincides with the nodal space,

Both sides are equal to the not-a-knot spline space described before.

3.3  Sparse Grids

We generalize the univariate hierarchical basis to d-variate functions with a tensor 

product approach:

where level and index are multi-indices � = (�1,… ,�
d
) ∈ ℕ

d

0
 and i = (i1,… , i

d
) 

with i
t
∈ {0,… , 2�

t} for t = 1,… , d . The corresponding grid points are given by

and nodal and hierarchical subspaces are defined by

where 0 ≤ i ≤ 2
n is to be read component-wise ( 0 ≤ i

t
≤ 2

n
t for all t = 1,… , d ) and 

I
�
= I

�
1

×⋯ × I
�

d
 with the Cartesian product × . The nodal subspace of level n can 

be split into hierarchical subspaces by the d-dimensional generalization of Eq. (15):

where n ∈ ℕ
d

0
 . In the following, we assume that the level is equal for every dimen-

sion: n ∶= (n,… , n) = n ⋅ 1.

Sparse grids provide a method for the interpolation of objective functions 

f ∶ [0, 1]d → ℝ . The common approach is to use the nodal space Vnak

n
 for interpola-

tion. However, the corresponding full grid of level n,

contains (2n + 1)d = �(2nd) grid points. If we interpolated with V
nak

n
 , we would 

have to evaluate the objective function �(2nd) times, a number that grows expo-

nentially with the dimensionality d. This fact is known as the curse of dimension-

ality (Bellman 1961). If evaluations of the objective function are computationally 

expensive, then dimensionalities of d ≥ 4 usually prohibit full grid approaches. For 

(15)

n
⨁

�=0

W
nak

�
= V

nak

n
.

(16)�
nak

�,i
∶ [0, 1]d → ℝ , �

nak

�,i
(x) ∶=

d
∏

t=1

�
nak

�
t
,i

t

(x
t
) ,

(17)x
�,i ∶= (x

�1,i1
,… , x

�
d
,i

d
) ∈ [0, 1]d ,

(18)V
nak
�

∶= span{�nak
�,i

∣ 0 ≤ i ≤ 2
n} , W

nak
�

∶= span{�nak
�,i

∣ i ∈ I
�
} ,

(19)

⨁

�≤n

W
nak

�
= V

nak

n
,

(20){x
n,i

∣ 0 ≤ i ≤ 2
n} ,
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dynamic portfolio choice models, this means that only very coarse full grids may be 

employed in the state space if the number d of state variables is large.

Sparse grids exploit the splitting  (19) to select only some hierarchical sub-

spaces such that the number of necessary evaluations for interpolation is drastically 

reduced, but the interpolation error deteriorates only slightly. The subspace selection 

can be formulated as an optimization problem for the piecewise linear case ( p = 1 ) 

on the L
2 and L

∞ interpolation error as detailed by Bungartz and Griebel (2004). 

The basic idea is to select those hierarchical subspaces that contribute most to the 

interpolation, assuming the objective function is sufficiently smooth. The optimal a 

priori selection for hat functions is given by the regular sparse grid of level n:

where the 1-norm ‖⋅‖
1
 is given by ‖�‖

1
=

∑d

t=1
��

t
� . This definition is illus-

trated in Fig.  3. It can be seen as an analogue to Eq.  (19), which we obtain 

by replacing the 1-norm on the right-hand side of Eq.  (21) with the ∞-norm 

‖�‖∞ ∶= max{��
t
� ∣ t = 1,… , d}.

Although the definition is motivated by the piecewise linear case ( p = 1 ), using 

other basis functions such as higher-order B-splines has proven useful in various 

(21)
V

S,nak

n
∶=

�

‖�‖1≤n

W
nak

�
,

Fig. 3  Selection of hierarchical subspaces for the regular sparse grid of level n = 3 in 2D; the gray sub-

spaces are omitted. For each subspace Wnak

�
 , the grid points {x

�,i ∣ i ∈ I
�
} ∈ W

nak

�
 are shown. The rec-

tangular regions are the supports for the piecewise linear case; for the cubic case, they can be seen as a 

rough indication of the support sizes. To the left and top, the one-dimensional not-a-knot B-spline func-

tions are plotted. The resulting grid is shown on the right
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applications (Pflüger 2010; Valentin and Pflüger 2016; Valentin et  al. 2018). For 

p = 1 and homogeneous boundary conditions, the L2 interpolation error on the full 

grid of level n is given by O(2−2n) and the number of grid points (i.e., the required 

function evaluations) is O(2nd) . In contrast, the sparse grid L2 interpolation error is 

O(2−2n
n

d−1) and therefore only slightly worse (by a factor which is polynomial in n) 

while requiring O(2n
n

d−1) grid points (see the proof in Bungartz and Griebel 2004). 

The number of grid points does not depend on 2nd anymore, which means that sig-

nificantly less grid points than in the full grid case are required. For B-splines of 

degree p, the interpolation error has been proven by Sickel and Ullrich (2011) to be 

in the order of O(2−(p+1)nnd−1) , which differs from the corresponding full grid error 

O(2−(p+1)n) (see Höllig and Hörner 2013 for a proof) by the same polynomial factor 

n
d−1.

These a priori estimates are based on the assumption that the interpolated function 

has continuous mixed second derivatives. If this is not the case or if it contains oscilla-

tions with high frequencies, then spatial adaptivity must be employed. Therefore, grid 

points are refined a posteriori according to suitable refinement criteria, see Fig. 4. This 

is of particular importance for the scope of this paper as spatial adaptivity enables us to 

increase the accuracy in regions of interest while simultaneously keeping the number 

of grid points at an acceptable level. The idea of the common surplus-based refinement 

criterion is that in the piecewise linear basis, the hierarchical surpluses correspond to 

the integral of the mixed second derivative of the interpolated function (Bungartz and 

Griebel 2004). If the absolute value |�
�,i
| of the hierarchical surplus of a grid point x

�,i
 

Fig. 4  Spatially adaptive refinement of the hierarchical subspace W(1,2) for the regular sparse grid of level 

n = 3 in 2D. A refinable grid point (blue) is refined by adding its 2d = 4 children (red). The resulting grid 

is shown on the right



197

1 3

Solving High-Dimensional Dynamic Portfolio Choice Models…

is larger than a certain tolerance � , then the 2d children of x
�,i

 are inserted to improve 

the accuracy of the interpolation in the proximity of x
�,i

 (Pflüger 2012). This criterion 

is only motivated for piecewise linear basis functions. Therefore, and for reasons of 

complexity, we use the piecewise linear basis to determine the grid points to be refined, 

and interpolate with the B-spline basis on the refined grid.

3.4  Weakly Fundamental Not-A-Knot Splines

Let �S
⊂ [0, 1]d be the set of grid points of the sparse grid, for example 

�
S = {x

�,i ∣ ‖�‖1 ≤ n , i ∈ I
�
} for the regular sparse grid of level n (but dimension-

ally or spatially adaptive sparse grids are possible as well). In this setting, the task of 

interpolation is usually called hierarchization for the basis functions �
�,i

 . The result-

ing coefficients �
�,i

 for Eq. (8) are the hierarchical surpluses.

Conventional B-spline bases, such as the not-a-knot B-splines described before, 

share the drawback that the hierarchization is in general computationally expen-

sive. In the case of the common piecewise linear basis ( p = 1 ), the hierarchical sur-

pluses can be calculated in O(|�S| ⋅ d) time with the so-called unidirectional princi-

ple (Pflüger 2010). For B-splines, usually the solution of a linear system with |�S| 

unknowns is required, which is generally much slower as this needs O(|�S|3) time 

(where, e.g., |�S| = O(2n
n

d−1) for regular sparse grids of level n if we omit points 

on the boundary).

In one dimension, the reason is the additional couplings between the basis func-

tions of different levels introduced by the wider support of the cubic B-splines com-

pared to the piecewise linear functions. To mitigate this issue, we linearly combine 

as few neighboring nodal not-a-knot B-splines as possible such that the resulting 

combination �wfnak

l,i
 satisfies

which we call the weakly fundamental property. The resulting basis functions are 

plotted in Fig. 5. This enables the efficient unidirectional principle for the hierarchi-

zation with the resulting weakly fundamental not-a-knot spline basis if specific 

points are inserted beforehand (for details, see Valentin 2019). Therefore, we use 

weakly fundamental not-a-knot splines on sparse grids for the rest of the paper.

4  B‑Splines on Spatially Adaptive Sparse Grids for Dynamic Portfolio 
Choice Models

To solve the Bellman problem (3) numerically, we compute the value function inter-

polants (5) by solving

at all grid points x
(k)

t
 ( k = 1,… , N

t
 ), using higher-order B-splines on sparse grids for 

jS
t+1

 in the right-hand side of target function (6). This basis choice readily provides 

(22)�
wfnak

l,i
(xk,j) = 0 for all k < l and j ∈ Ik ,

(23)jS
t
(x

(k)
t ) = max

pt

{

j̃S
t
(pt, x

(k)
t )

}
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the gradient of the target function (6) at each x
(k)

t
 , such that we can supply it to any 

SQP routine. As a result of the SQP optimization, we obtain the values of the inter-

polant jS
t
(x

(k)
t ) and the optimal policies p

opt,S

t
(x

(k)

t
) at these grid points for all t < T  

and k = 1,… , N
t
:

In general, the shapes of the value function and the optimal policies have dif-

ferent characteristics. The sufficiently accurate resolution of the optimal policy 

is already relevant to achieve plausible economic results if full grid solutions are 

computed (Brumm and Grill 2014). On sparse grids, this is even more important 

as kinks in the optimal policies can deteriorate the numerical error drastically 

(Schober 2018). Hence, as proposed by Schober (2018), in a subsequent step, 

optimal policy interpolants p
opt,S

t
 are computed by adaptively refining the respec-

tive policy grids and re-optimizing for the refined grid points if the added grid 

point is not yet part of the solution from the first step.

We track two interpolants j
S,1

t  and j
S,p

t  for each t = 0,… , T  . The former inter-

polates the value function data at the grid points x
(k)

t
 ( k = 1,… , N

t
 ) with the hier-

archical piecewise linear basis (used for the surplus-based grid generation) while 

the latter interpolates the data with cubic hierarchical weakly fundamental not-

a-knot splines of degree p = 3 . Each j
S,∗

t  ( ∗∈ {1, p} ) additionally stores the grid 

points x
(k)

t
 and the optimal policies p

opt

t
(x

(k)

t
) at the grid points. For simplicity, we 

do not pass them explicitly to the algorithms.

In the following Sects. 4.1–4.3, we describe the algorithmic details of the gen-

eration of the value function interpolant (23). The generation of the optimal policy 

(24)p
opt,S

t (x
(k)
t ) = ������

pt

{

j̃S
t
(pt, x

(k)
t )

}

.

Fig. 5  Hierarchical weakly 

fundamental not-a-knot spline 

basis in 1D up to level 3
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interpolant (24) follows in Sect. 4.4. Major parts from the Sects. 4.1–4.4 are taken 

from our previous work in the recently submitted Ph.D. thesis of Valentin (2019).

4.1  Solution for the Value Function

Algorithm  1 shows solveValueFunction, generating the value function 

interpolants j
S,1

t  and j
S,p

t  ( t = 0,… , T  ). The algorithm follows a simple opti-

mize–refine–interpolate scheme, which is presented in Fig.  6: First, Eq.  (23) is 

solved on an initial sparse grid (optimize). Then, we refine the grid spatially 

adaptively. Finally, the resulting grid data are interpolated with hierarchical 

higher-order B-splines.

At the beginning of every iteration t, the grid of the piecewise linear interpolant is 

reset to an initial, possibly regular sparse grid. It would also be possible to reuse the 

grid from the previous iteration t + 1 . However, the results we then obtain become 

worse, likely due to the different characteristics of jS,1

t  for different t (e.g., kinks).

4.2  Optimization

The optimize step can be seen in Algorithm 2. This algorithm accepts in j
S,1

t  a 

spatially adaptive sparse grid �S

t
= {x

(k)
t

∣ k = 1,… , N
t
} where the function values 

j
S,1

t (x
(k)
t ) may already be known for some grid points x

(k)

t
 if optimize is called 

from within refine. The function optimize computes the missing value function 

values. For t = T  , we assume that the terminal solution jT can be computed by some 

Fig. 6  Scheme of the generation of value function interpolants with solveValueFunction (left, 

Algorithm  1), which repeatedly calls the optimize algorithm (right, Algorithm  2), which in turn 

consists of various sub-functions. The function optimize iterates over all state grid points x
t
= x

(k)

t
 

( k = 1,… , N
t
 ) and calls optimizeSinglePoint for each point. The optimization method evalu-

ates the objective function and its gradient at a sequence of different policy points p
t
 to find p

opt,S

t
(x

(k)

t
) . 

This evaluation (denoted by evalObjFcnGrad) has to implicitly compute the expectation in Eq. (23), 

which is done using a quadrature rule. For every quadrature point � t = �
(j)

t  ( j = 1,… , Qt ), evalQuad-

Point computes the corresponding value of the expression in the expectation. Finally, evalInterp-

PartDeriv evaluates the interpolant j
S,p

t+1
 and its partial derivatives for which we have to loop over the 

state dimensions o = 1,… , d
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function computeKnownTerminalSolution.3 Otherwise, for t < T  , we solve 

the maximization problem (23) by using the higher-order B-spline interpolant j
S,p

t+1
 of 

the previous iteration t + 1 (optimizeSinglePoint). The computations for the 

different x
(k)

t
 are independent of each other, which means that they can be computed 

in parallel (Cai et al. 2015; Horneff et al. 2016).4 After generating all missing data, 

we update the hierarchical surpluses of the piecewise linear interpolant j
S,1

t  to inter-

polate the new data at all grid points of �S

t
.

4.3  Refinement

For adaptive refinement, the criterion is the common surplus-volume (Pflüger 

2010). We use the piecewise linear interpolant for the surplus-based grid generation 

as the surpluses are easier to compute in the piecewise linear case, and as they are 

more meaningful due to the integral representation formula (Bungartz and Griebel 

4 Such a problem is usually referred to as embarrassingly parallel.

3 In any case, the terminal solution may be computed as the solution of the corresponding single-time 

optimization problem, e.g., jT (x
(k)

T
) = max

pT

{

u(cT (x
(k)

T
, pT ))

}

.
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2004). Algorithm  3 shows how to generate the spatially adaptive sparse grid in 

solveValueFunction (Algorithm 1). Parameters are the tolerance � ∈ ℝ
≥0

 by 

which the set of grid points to be refined is determined and the number q ∈ ℕ
0
 of 

refinement iterations.

4.4  Solution for the Optimal Policies

To construct the optimal policies, we use the higher-order B-spline interpolant j
S,p

t  

and the optimal policies p
opt

t
(x

(k)

t
) at the grid points x

(k)

t
 ( k = 1,… , N

t
 ) obtained 

from Algorithm  1. We then spatially adaptively refine the grid for each policy to 

construct a policy interpolant of degree one, p
opt,S,1

t
 , for each t = 1,… , T  . The corre-

sponding Algorithm 1 is similar to solveValueFunction (Algorithm 4), except 

that it operates on the policy interpolants instead of the value function interpolant. 

The functions optimize and refine have been replaced by corresponding policy 

versions optimizePolicy and refinePolicy that work very much like their 

value function counterpart. In the optimization step, optimizePolicy only has 

to generate new values if the initial regular sparse grid for the policies is not con-

tained in the grid of j
S,p

t  . The policy grid is then refined independently of the value 

function grid. The iterations are independent of each other, which means that they 

can be parallelized.5

5 In principle, one could generate policy interpolants of degree p, p
opt,S,p

t
 , by adding an extra interpola-

tion step after refinePolicy (Valentin 2019).
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5  Application: Transaction Costs Problem

First, we introduce the dynamic portfolio choice model with transaction costs 

(Sect. 5.1). We then describe its numerical solution in Sect. 5.2 and derive our error 

measure (unit-free Euler equation errors) in Sect. 5.3. We verify our solution economi-

cally on a two-dimensional full grid (Sect. 5.4). Then, we analyze the time complexity 

of the solution approach and show the impact of the choice of basis functions on the 

computational complexity in Sect. 5.5. Therefore, we solve the problem with B-splines 

of cubic degree on a regular sparse grid and compare them to the linear approach as 

used by Brumm and Scheidegger (2017). We find that we save approximately one 

order of magnitude in computational complexity with cubic B-splines already for three 

dimensions. Furthermore, we compare the results of our approach based on analytical 

gradients with the results we obtain with finite differences. For d > 3 , solutions on 

regular sparse grids are no longer feasible to compute in suitable numerical accuracy. 

In Sect. 5.6, we illustrate how spatial adaptivity allows us to solve the transaction costs 

problem up to d = 5 accurately by showing pointwise error decay and convergence of 

our approach. Finally, we present in Sect. 5.7 economic results for the transaction costs 

problem in higher dimensions. The results in these sections are also contained in the 

recently submitted Ph.D. thesis of Valentin (2019).

5.1  Transaction Costs Problem

As the transaction costs problem is easiest described in vector notation, let us denote 

the unit vector with 1 . For two vectors a , b , we define the Hadamard product as 

(a ⊙ b)
i
∶= a

i
b

i
 for all i.

In the transaction costs problem the investor maximizes expected utility from 

consumption (1). Therefore, at time t, she tracks her wealth W
t
∈ ℝ

≥0
 and fractions 

of wealth x
t
∈ [0, 1]d invested in stocks. Her choices are how much to buy of the d 

stocks �+

t
∈ ℝ

d

≥0
 with transaction costs ��+

t
 or sell �−

t
∈ ℝ

d

≥0
 with transaction costs 

��
−

t
 where � > 0 is a cost factor. Additionally, she can invest in a transaction-cost-

free money market account B
t
 , yielding a risk-free return rf ∈ ℝ

≥0
 . We assume the 

returns r
t
∈ ℝ

≥0
 that the d stocks earn from t to t + 1 are independent and identically 



203

1 3

Solving High-Dimensional Dynamic Portfolio Choice Models…

lognormally distributed with mean � and covariance matrix � : r
t
∼ LN(�,�) (Cai 

2009; Cai and Judd 2010). The investor’s consumption C
t
 in period t is the residual 

of her wealth that is not invested in stocks or bonds, reduced by the transaction costs 

for rearranging her portfolio in this period:

The state dynamics from t to t + 1 are thus given by: 

The investor faces the optimization problem 

with utility function u from Eq. (2) subject to the constraint for all t = 0,… , T ,

where �+

t
≥ 0 , �−

t
∈ [0, x

t
W

t
] , B

t
≥ 0 , and 1⊤ ⋅ x

t
≤ 1 . Here, a minimum consump-

tion level C
min

 must be maintained, and the final stock holdings x
T
W

T
 are assumed 

to be sold before they can be consumed. In addition, at no point in time t the investor 

can sell more of the stocks than her current holdings x
t
W

t
.

The problem can be simplified by normalizing the value function jt = Jt∕Wt , con-

sumption c
t
= C

t
∕W

t
 , and investment choices b

t
= B

t
∕W

t
 , �+

t
= �

+
t
∕W

t
 , �−

t
= �

−
t
∕W

t
 

with respect to wealth W
t
 for each t. The investor’s normalized consumption c

t
 in 

period t is then

The state dynamics from t to t + 1 can be expressed in terms of the portfolio value

in t + 1 : 

(25)C
t
=
(

1 − 1
⊤
⋅ x

t

)

W
t
− B

t
− (1 + �)1

⊤
⋅ �

+

t
− (� − 1)1

⊤
⋅ �

−

t
.

(26a)Wt+1 = Btrf +

(

xtWt + �
+

t
− �

−

t

)⊤

⋅ rt ,

(26b)x
t+1

=

(

x
t
W

t
+ �

+

t
− �

−

t

)

⊙ r
t

W
t+1

.

(27a)J
t
(W

t
, x

t
) = max

B
t
,�

+
t

,�
−
t

{

u(C
t
) + ��

t

[

J
t+1

(

W
t+1, x

t+1

)]}

, t < T ,

(27b)J
T
(W

T
, x

T
) = u

((

1 − �1
⊤
⋅ x

T

)

W
T

)

,

(27c)B
t
+ (1 + �)1

⊤
⋅ �

+

t
+ (� − 1)1

⊤
⋅ �

−

t
≤
(

1 − 1
⊤
⋅ x

t

)

W
t
− Cmin ,

(28)c
t
= 1 − 1

⊤
⋅ x

t
− b

t
− (1 + �)1

⊤
⋅ �

+

t
− (� − 1)1

⊤
⋅ �

−

t
.

(29)�t+1
∶= btrf + (xt + �

+

t
− �

−

t
)⊤ ⋅ rt

(30a)W
t+1 = W

t
�

t+1 ,

(30b)x
t+1

=

(

x
t
+ �

+

t
− �

−

t

)

⊙ r
t

�
t+1

.
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With this normalization, the solution to problem (27a–27c) can be expressed as 

Jt = W
1−�

t jt for each t = 0,… , T  with 

subject to the constraints for all t = 0,… , T ,

where the minimum consumption level c
min

= C
min

∕W
t
 is also normalized with 

respect to wealth (see "Appendix A.2"). Now the investor’s optimization problem 

no longer depends on W
t
 , and hence one state variable can be eliminated. The non-

normalized optimal choices can be obtained by multiplication with a given wealth 

W
t
 for any t and state x

t
.

5.2  Numerical Solution

To compute the solution to the transaction costs problem, we use the certainty 

equivalent transformation ĵt of the normalized value function jt,

which reduces the curvature of the value function when the utility is of Constant 

Relative Risk Aversion type, Eq.  (2) (Garlappi and Skoulakis 2009). Since this 

transform is strictly monotone, any maximizer of ĵt also maximizes jt . The optimi-

zation problem then reads 

(31a)jt(xt) = max
bt ,�

+

t
,�

−

t

{

u(ct) + ��t

[

�
1−�

t+1
jt+1(xt+1)

]

}

, t < T ,

(31b)jT (xT ) = u
(

1 − �1
⊤
⋅ xT

)

,

(31c)b
t
+ (1 + �)1

⊤
⋅ �

+

t
+ (� − 1)1

⊤
⋅ �

−

t
≤ 1 − 1

⊤
⋅ x

t
− cmin ,

(31d)�
+

t
≥ 0 ,

(31e)�
−

t
≥ 0 ,

(31f)�
−

t
≤ x

t
,

(31g)b
t
≥ 0 ,

(31h)1
⊤
⋅ x

t
≤ 1 ,

(32)ĵt(xt) =
(

(1 − �)jt(xt)
)

1

1−� ,

(33a)ĵt(xt) = max
bt ,�

+

t
,�

−

t

{

(

c
1−�

t + ��t

[

(

�t+1 ĵt+1(xt+1)
)1−�

])
1

1−�

}

,
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 with constraints Eq. (31c) to (31h) (see "Appendix A.3").

The optimization problem for a given state x
t
 is solved with the SQP solver 

SNOPT (Gill et  al. 2005), see "Appendix  A.4" for the specific objective func-

tion and its gradient. Since the distribution of the returns r
t
 is multivariate log-

normal and state-independent, we can compute the expectation in Eq.  (6) using 

Gauss–Hermite quadrature. For this, we also use a sparse grid quadrature rule, 

thus breaking the curse of dimensionality when including stochastic risk factors 

(see the appendix of Horneff et al. 2016 for details).

The constraint (31h) constrains the state space. The resulting eligible subspace 

�Simplex = {x
t
∈ [0, 1]d ∣ 1

⊤
⋅ x

t
≤ 1} ⊂ [0, 1]d is a d-dimensional simplex, not a 

rectangular domain as needed for the sparse grid approximation. We solve this 

problem by assuming that any state attained that is not eligible is cropped to an 

eligible state by selling all stock holdings pro rata until all constraints are satis-

fied. That is, money is transferred from stocks to wealth, for which the propor-

tionate transaction costs are deducted (see "Appendix A.5"). The approximation 

of the value function is then evaluated at this eligible state.

The optimization ran over an investment horizon of T = 6 years and had a fixed 

period length of 1 year. The risk aversion � = 3.5 , the risk-free rate rf = 4% , and 

the transaction costs factor � = 1% were taken from Cai and Judd (2010). We 

extended the return distribution parametrization of Cai and Judd (2010) to five 

dimensions:

and set the time discount factor to � = 0.97 and c
min

= 0.001 to ensure that minimal 

consumption was taking place. For d stocks we used the first d entries of � and the 

elements � i,j , i, j ≤ d , as the return distribution parametrization. As initial grids, we 

used regular sparse grids �S

n,d
 of level n and dimension d.

The code was written in MATLAB where the interpolation on sparse and full 

grids was implemented by a MEX file interface to the sparse grids C++ tool-

box  SG++ (sgpp.spars egrid s.org, Pflüger 2010). The quadrature routine was 

implemented by a MEX file interface to the TASMANIAN sparse grids C++ 

toolbox (Stoyanov 2017) as TASMANIAN allows us to integrate a real valued 

function over a Gaussian density using Hermite polynomials on sparse grids (see 

the appendix of Horneff et al. 2016). We used the SNOPT implementation of the 

Numerical Algorithms Group (www.nag.co.uk). If convergence of the optimizer 

was not observed, we stopped the optimization after 100 iterations. To avoid 

being stuck in local minima, we repeated the optimization process for a vary-

ing number of initial multi-start points (in the range of a few dozens). All com-

putations were performed on the compute cluster LOEWE-CSC (csc.uni-frank 

furt.de) where we exclusively allocated three compute nodes with two Intel Xeon 

(33b)ĵT (xT ) = 1 − �1
⊤
⋅ xT ,

(34)

http://www.sgpp.sparsegrids.org
http://www.nag.co.uk
http://www.csc.uni-frankfurt.de
http://www.csc.uni-frankfurt.de
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E5-2670 v2 CPUs (ten cores at 2.5 GHz, 20 threads) each, i.e., 120 threads in 

total, and 4000 MB RAM per thread.

5.3  Error Measurement

Any optimal policy p
opt

t
∶= (b

opt

t
, �

+,opt

t
, �

−,opt

t
)⊤ must satisfy the first order condi-

tions of the Lagrangian at any given state x
t
 for each t < T  . Specifically, for the 

transaction costs problem—when neglecting binding constraints—we obtain from 

the first-order condition with regard to the optimal bond policy b
opt

t
:

where 

 Rearranging Eq. (35) and taking the root (⋅)−1∕� yields the unit-free Euler equation 

error,

which should be 0 for any given state x
t
 in the eligible domain �Simplex.

However, the state space cropping distorts unit-free Euler equation errors. This 

is due to three sources: Firstly, the cropping already occurs for large stock hold-

ings 1⊤ ⋅ x
t
 that are less than one as stocks have to be sold to maintain minimum 

consumption c
min

 . Secondly, transaction costs for selling the stocks are deducted. 

Thirdly, even if neither minimum consumption is required, nor transaction costs are 

incurred the error at the hyperplane 1⊤ ⋅ x
t
= 1 does not vanish even for full grid 

solutions. Only in the limit, as the resolution of the grid goes to infinity, the error 

will vanish. Economically, the region near this hyperplane is not significant as such 

large stock fractions are unusual, which is confirmed by Monte Carlo simulations. 

We therefore use the weighted Euler equation error

(35)−c
opt

t

−�
+ ��t

[

(

�
opt

t+1
ĵS
t+1

)−�
rf

(

ĵS
t+1

−

(

�
xt+1

ĵS
t+1

)⊤

⋅ x
opt

t+1

)]

= 0 ,

(36a)c
opt

t
= 1 − 1

⊤
⋅ x

t
− b

opt

t
− (1 + �)1

⊤
⋅ �

+,opt

t
− (� − 1)1⊤ ⋅ �

−,opt

t
,

(36b)�
opt

t+1
= b

opt

t rf + (xt + �
+,opt

t − �
−,opt

t )⊤ ⋅ rt ,

(36c)x
opt

t+1
=

(

x
t
+ �

+,opt

t
− �

−,opt

t

)

⊙ r
t

�
opt

t+1

.

(37)�
t
(xt) =

(

��t

[

(

�
opt

t+1
ĵS
t+1

)−�
rf

(

ĵS
t+1

−

(

�
xt+1

ĵS
t+1

)⊤

⋅ x
opt

t+1

)

c
opt

t

�
])−

1

�

− 1 ,
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instead of �
t
 . Alternatives would be restricting the state domain in which the error 

is computed or weighting the error with the probability that a given state occurs in a 

Monte Carlo simulation.6

We then choose the same N = 1000 points x
(k) ∈ �Simplex ( k = 1,… , N ) for all 

times t = 0,… , T − 1 and compute the errors �w

t
(x(k)) for each t.7 We report the L2 

norm scaled by 
√

d! and the L∞ norm for each t: 

 For details on the error derivation see "Appendix A.6".

In principle, we could also compare the solutions ĵS
t
 and optimal policies p

opt,S

t
 

obtained on sparse grids with the full grid solution, e.g., in a point-wise way. How-

ever, full grid solutions with acceptable resolutions are computationally infeasible 

already in d > 2 . In addition, the Euler equation error does not compare numerical 

solutions with each other, but rather measures the accuracy of any solution, regard-

less of whether it is obtained numerically or analytically.

5.4  Economical Verification

We show in Fig.  7 a full grid solution for the case of d = 2 stocks, i.e., 

{x
(k)
t

∣ k = 1,… , N
t
} = {0, 2−n,… , 1}d for some fixed level n ∈ ℕ (here, 

n = 7 and N
t
= (27 + 1)2 = 16641 ) and for all t = 0,… , T  . The red dot 

(x
t,1, x

t,2) = (0.1509, 0.1831) shows the so-called Merton point

for which Merton (1969) derives that in the case of � = 0 the optimal stock frac-

tions x
opt

t
 are constant over time and wealth. When faced with transaction costs, 

Magill and Constantinides (1976) find that the investor must weigh up the benefits 

of improved diversification against the associated transaction costs for rebalancing 

the portfolio. This leads to the no-trade region (red outline). If x
opt

t
 lies within this 

region, the investor does not alter her portfolio. In discrete time consumption and 

portfolio choice, the no-trade region is known to be a convex set, and, if the current 

stock fraction is outside this region, the optimal policy is to move to the convex hull 

(38)�
w

t
(x

t
) ∶=

(

1 − 1
⊤
⋅ x

t

)

�
t
(x

t
)

(39a)�
w,L2

t
∶=

√√√√ 1

N

N∑

k=1

|�w
t
(x(k))|2 ,

(39b)�
w,L∞

t
∶= max{|�w

t
(x(k))| ∣ k = 1,… , N} .

(40)x
opt

t ∶=
�−1(� − 1rf )

�
,

6 Another possibility is to transform the non-rectangular domain to the unit hypercube, e.g., by analyz-

ing the principal components of the ergodic distribution (Judd et al. 2014).
7 We choose 1000 × d! points from [0, 1]d and discard all points that are not in �Simplex . Here, the d! cor-

rects for the volume of the d-dimensional simplex obtained by cropping. Thus, there are only N ≈ 1000 

points in �Simplex.
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of the set (Abrams and Karmarkar 1980; Constantinides 1979). Naturally, the Mer-

ton point lies inside the no-trade region. We can confirm this result for our optimal 

policies, i.e., if we choose any point outside the no-trade region (but within the eligi-

ble domain �Simplex ), computing x
t
+ �

+,opt

t
− �

−,opt

t
 then results in a boundary point 

of the no-trade region. Figure 7 also shows the impact of the state space cropping 

as the eligible subspace �Simplex ⊂ [0, 1]d is not a rectangular domain as needed for 

the sparse grid interpolation. This is the reason why the certainty equivalent value 

function ĵS
t
 is zero in [0, 1]d⧵�Simplex and the optimal sell policies �

−,opt,S

t
 contain a 

diagonal kink at the hyperplane 1⊤ ⋅ x
t
.

Obviously, computing full grid solutions is only computationally feasible for low 

dimensionalities d due to the curse of dimensionality. The two-dimensional solution 

of level n = 7 took over nine hours to compute on the LOEWE-CSC cluster with 

120 threads. The solution of the next level is estimated to already take one week. 

Hence, full grid solutions can only be computed up to d = 3 due to prohibitively 

long computational times for d ≥ 4 . This underlines the need for sophisticated dis-

cretization techniques such as sparse grids.

5.5  Savings in Complexity Using B-Splines

A complexity analysis reveals that the difficulty of solving dynamic portfolio choice 

models quickly grows with the dimensionality d: The number of necessary arithme-

tic operations grows like (see Fig. 6)

Fig. 7  Full grid solution for the transaction costs problem with d = 2 stocks. Shown are the certainty 

equivalent value function ĵS
t
(xt) (top left) and the optimal policies p

opt,S

t
(x

t
) for t = 0 . Also shown are the 

Merton point x
opt

t
 (red dot) and the no-trade region (red outline)
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where for the transaction costs problem m
p
= 2d + 1 and Qt, Nt, Nt+1 ∈ �(2nnd−1) if 

regular sparse grids of level n without boundary points would be used for state and 

stochastic grids (due to m� = d ). In addition, the number of optimizer iterations is 

likely superlinear in d as this depends on the dimensionality m
p
 of the search space 

as well as on the number of multi-start points (which also grows with m
p
 ). This 

means that the complexity is at least cubic in d, quadratic in the average number 

N
t
 of employed state grid points, and linear in the number Qt of quadrature points. 

Figure  8 confirms these observations with experimental data using regular sparse 

grids without spatially adaptive refinement. For fixed d, the total time required by 

(41)�

(

T ⋅ Nt ⋅ # optimizer iterations ⋅ Qt ⋅

one evaluation of interpolant

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
m

p
⋅ Nt+1 ⋅ d ⋅ p

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
one evaluation of objective gradient

)

,

(a) (b) (c)

Fig. 8  Computational times (top) and numbers of iterations and evaluations of the interpolant (bottom) 

for the transaction costs problem on regular sparse grids without refinement. “Total time” is the serial 

time required to solve all emerging optimization problems. “Time per opt.” is this time divided by the 

number #Opt. = TN of optimization problems. “Time per it.” is the total time divided by the number #It. 

of optimizer iterations, each of which is assumed to correspond to exactly one combined evaluation of 

objective function and gradient (the latter only if gradients are used). “Time per eval.” is the total time 

divided by the number #Eval. of evaluations of the sparse grid interpolant and its gradient. The colors 

correspond to B-spline degrees p = 3 or p = 1 and to gradients (“∇ ”) or finite differences (“FD”)
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the optimization process grows quadratically with the number N of grid points. The 

time for one solution of the Bellman equation, the time for one optimizer iteration, 

and the time for one evaluation of the interpolant are all linear in N as the number 

of optimizer iterations is constant for fixed d. If d increases, then the number of 

interpolant evaluations per optimizer iteration (i.e., the number of quadrature points) 

increases as well. Surprisingly, the number of optimizer iterations per grid point 

and the time per evaluation are not monotonously increasing. The latter observation 

might be due to code optimization effects such as vectorization.

5.5.1  Comparison to Piecewise Linear Functions

Hierarchical B-splines introduce two major benefits to the solution of dynamic 

portfolio choice models. The first benefit are the smooth objective functions: When 

repeating the computations with piecewise linear functions (i.e., p = 1 ), one obtains 

almost the same weighted Euler equation errors as in the cubic case (except for the 

case of d = 1 where the error is one order of magnitude larger than in the cubic 

case). However, as we see in Fig. 8, the total computational time is several times 

larger for piecewise linear functions although evaluations are cheaper than for 

B-splines. The main reason is that the number of required optimizer iterations for 

piecewise linear basis functions is almost seven times as high as in the cubic case 

since the optimizer has to deal with kinks in the objective function. Our experiments 

show that beginning with d = 4 , the total optimization time required to solve the 

transaction costs problem will be one whole order of magnitude shorter for cubic 

B-splines than for piecewise linear functions.

5.5.2  Comparing Exact Gradients to Finite Differences

The second benefit is the availability of exact gradients: Figure 8 also contains com-

putational times of the solution process if we artificially do not use exact gradients 

of the objective functions, but rather approximate them with finite differences. For 

each evaluation of the objective gradient, at least m
p
 additional evaluations of the 

objective function have to be performed to compute the finite differences ( 2m
p
 if 

central differences are used). Consequently, while the resulting weighted Euler 

equation errors are similar, the total optimization time increases by a factor of up to 

five if we do not use exact gradients.

5.6  Accuracy Through Spatial Adaptivity

Figure  9 shows the convergence of the scaled L
2 norm �w,L2

t
 and the L

∞ norm 

�
w,L

∞

t
 of the weighted Euler equation error for t = 0 for regular sparse grids and 

spatially adaptive sparse grids for the cases of d = 1,… , 4 stocks. We look at the 

error for t = 0 throughout the remaining sections as numerical inaccuracies accrue 

from time t to time t − 1 by the dynamic programming nature of the problem (3). 

For Fig. 9 and the following plots, the value function grid is left unchanged while 

the average number N
t
 of policy grid points increases with decreasing refinement 
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threshold � . This is because the value function grid does not seem to have a great 

influence on the convergence of the Euler equation errors. Compared to regular 

sparse grids, the spatial adaptivity decreases the error by two orders of magni-

tude in one dimension. The gain is smaller for higher dimensionalities d, but spa-

tially adaptive sparse grids still outperform regular sparse grids. For d = 2 , we 

observe that the error saturates at N
0
≈ 4000 points. This is most likely due to 

floating-point rounding errors that are not influenced by sparse grid interpola-

tion. In addition, convergence significantly decelerates starting with d = 4 . For 

d = 4 , spatially adaptive sparse grids are able to achieve a weighted Euler equa-

tion error of �w,L2

0
≈ 1.99e−02 and �w,L∞

0
≈ 5.76e−02 (with an average number 

N
0
= 4252 of policy grid points). For d = 5 , we are still able to achieve a small 

error of �w,L2

0
≈ 2.67e−02 and �w,L∞

0
≈ 6.37e−02 , respectively, with spatially adap-

tive sparse grids with an average number N
0
= 12572 of policy grid points. While 

we cannot detect any convergence for this dimensionality yet, this is still a major 

result as such high-dimensional models could not be solved that accurately up to 

now with conventional methods.

Pointwise plots of the weighted Euler equation error as in Fig. 10 for two stocks 

reveal that there are two types of regions where the error is large: The first type of 

region is the neighborhood of the aforementioned diagonal boundary 1⊤ ⋅ x
t
= 1 of 

the uncropped region where the cropping distorts the error despite the weights. The 

second type of region are kinks of the optimal policy functions, which is most vis-

ible for coarse grids (e.g., Fig.  10a). When increasing the number of grid points 

(e.g., Fig. 10b, c), the error decreases quickly in the whole domain.

All in all, Figs. 9 and 10 show that there are two necessary conditions to com-

pute accurate solutions in higher dimensions: Firstly, reliable optimization ena-

bled through B-spline interpolants of the value function and, secondly, spatial 

(a) (b) (c) (d)

Fig. 9  Convergence of the scaled L2 norm �w,L2

t
 (solid) and L∞ norm �w,L

∞

t
 (dashed) of the weighted Euler 

equation error for t = 0 for regular sparse grids (blue) and spatially adaptive sparse grids (red). The num-

ber N
t
 is the average number 1∕m

p

∑m
p

j=1
Nt,j of grid points over all policy grids for t = 0 where Nt,j is the 

number of grid points of the j-th policy entry
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adaptive refinement of the policy grids. The latter condition was originally pro-

posed in our previous work (Schober 2018).

Figures 11 and 12 each display the value function and the optimal policies cor-

responding to sparse grid solutions for d = 2 stocks with N
0
= 879 policy grid 

points or d = 5 stocks with N
0
= 12572 policy grid points. Obviously, most grid 

(a) (b) (c)

Fig. 10  Pointwise weighted Euler equation error �w

t
(x

t
) for the two-dimensional transaction costs prob-

lem and different spatially adaptive sparse grids at t = 0

(a) (b) (c)

(d) (e) (f)

Fig. 11  Spatially adaptive sparse grid solution for the transaction costs problem with d = 2 stocks. 

Shown are the linear interpolant ĵ
S,1

t  for the certainty equivalent value function ĵS
t
 (top left) and the linear 

interpolants p
opt,S,1

t
 for the optimal policies p

opt,S

t
 at the initial time step t = 0 as obtained from Algo-

rithm 1 and 4. The corresponding grid points (dots) are plotted onto the x
t,1–x

t,2 plane
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points are placed along the various kinks in the policies. Interestingly, experi-

ments show that the surplus-based refinement criterion does not place more grid 

points along the perfectly diagonal kink caused by the cropping of the state space 

(i.e., along 1⊤ ⋅ x
t
= 1 ). It is possible to circumvent this issue by either rotating 

the domain or directly incorporating the distance to the diagonal into the refine-

ment criterion for the value function. However, we refrain from doing so here as 

this does not seem to drastically improve results. Again, this might be due to the 

domination of the overall error by general floating-point rounding errors.

5.7  Solutions in Higher Dimensions

For higher dimensions, economic results for our transaction costs prob-

lem (31a–31h) scarcely exist. In continuous time, analytical solutions for special 

cases (Liu 2004; Liu and Loewenstein 2002) and numerical solutions with finite 

Fig. 12  Spatially adaptive sparse grid solution for the transaction costs problem with d = 5 stocks. 

Shown are slice plots of the linear interpolant ĵ
S,1

t  for the certainty equivalent value function ĵS
t
 (top left) 

and the linear interpolants p
opt,S,1

t
 for the optimal policies p

opt,S

t
 at the initial time step t = 0 . For each 

function a pair (o1, o2) of dimensions was chosen, and the stock fractions x
t,o

 of the other dimensions 

o ∈ {1,… , d}⧵{o1, o2} were set to 0.1. In addition, the corresponding grid points (dots) are shown as the 

projection onto the x
t,o1

–x
t,o2

 plane
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element methods (Muthuraman and Kumar 2006) have been discussed. Dynamic 

programming solutions with value function iteration in discrete time have been 

studied by Cai (2009), Cai and Judd (2010), Cai et al. (2020) for up to six stocks 

and one bond without consumption choice.

The purpose of this paper is to show the numerical accuracy of our approach. 

Rather than analyzing the economic implications of the solution to the higher-

dimensional transaction costs problem, we limit ourselves to assessing the result-

ing optimal policy interpolants (p
opt,S,1

t
)
t=0,…,T in a Monte Carlo simulation setup. 

We calculate the average optimal policy

for m
MC

∈ ℕ individuals where p
opt

t,(j)
= (b

opt

t,(j)
, �

+,opt

t,(j)
, �

−,opt

t,(j)
)⊤ denotes the optimal poli-

cies of the individuals ( t = 0,… , T  and j = 1,… , mMC ). They are determined by 

We plot the resulting average state and policies in Fig. 13 for d = 2 , 3, 4, and 5 

stocks for m
MC

= 105 individuals. In addition, this figure contains the evolution of 

the weighted Euler equation error �w,L2

t
 over time. We perform a two-part assess-

ment of the simulation results: First, consumption is slightly increasing over time, 

which is plausible given the solution, e.g., by Merton (1969) in the finite-horizon 

case. Second, we compare the stock fractions implied by the Merton points with 

the simulated stock fractions x́
t,o
∕(1⊤

⋅ x́
t
) ( o = 1,… , d ) for t = 0 in Table 1. We 

observe that the simulated stock fractions deviate from the Merton points’ stock 

fractions as expected. However, after computing the simulated stock fractions for 

all times, we see that they do not change much over time. This is in line with the 

buy-and-hold characteristics of solutions to portfolio choice models with transac-

tion costs (e.g., Liu and Loewenstein 2002).

(42)p̄
opt

t ∶=
1

mMC

mMC
∑

j=1

p
opt

t,(j)

(43a)b
opt

t,(j)
∶= b

opt,S,1

t (xt,(j)) ,

(43b)�
+,opt

t,(j)
∶= �

+,opt,S,1

t (xt,(j)) ,

(43c)�
−,opt

t,(j)
∶= �

−,opt,S,1

t (xt,(j)) ,

(43d)�
opt

t,(j)
∶= b

opt

t−1,(j)
rf + (xt−1,(j) + �

+,opt

t−1,(j)
− �

−,opt

t−1,(j)
)⊤ ⋅ rt−1,(j) , t > 0 ,

(43e)xt,(j) ∶=

(

xt−1,(j) + �
+,opt

t−1,(j)
− �

−,opt

t−1,(j)

)

⊙ rt−1,(j)

�
opt

t−1,(j)

, t > 0 , x0,(j) = 1 ,

(43f)rt,(j) ∼ LN(�,�) .
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Finally, we present in Table 2 the computational times and numerical errors of the 

sparse grid solutions underlying Fig. 13 and Table 1.

(a) (b)

(c) (d)

Fig. 13  Average values of wealth W
t
 (blue), unnormalized optimal bonds B

t
 (purple), unnormalized opti-

mal consumption C
t
 (green), and unnormalized stock holdings x́

t
∶= (x

t
+ �

+

t
− �

−

t
)W

t
 after buying and 

selling (red) in a Monte Carlo simulation of 105 individuals where we assume that W
0
= $1 for all indi-

viduals. In addition, the plots show the evolution of the scaled L2 error �w,L2

t
 over time t (gray, right axes)

Table 1  Simulated stock fractions x́
t,o
∕(1⊤

⋅ x́
t
) for t = 0 and stock fractions implied by the Merton points 

x
opt

t,o ∕(1
⊤
⋅ x

opt

t
) ( o = 1,… , d ) for the Monte Carlo simulations obtained by evaluating the optimal policy 

interpolants computed on spatially adaptive sparse grids

d x́
t,o
∕(1⊤

⋅ x́
t
) x

opt

t,o ∕(1
⊤
⋅ x

opt

t
)

2 (0.441, 0.559) (0.452, 0.548)

3 (0.300, 0.317, 0.383) (0.314, 0.302, 0.384)

4 (0.239, 0.238, 0.253, 0.270) (0.275, 0.185, 0.250, 0.289)

5 (0.199, 0.188, 0.197, 0.205, 0.212) (0.275, 0.122, 0.176, 0.203, 0.223)



216 P. Schober et al.

1 3

6  Conclusion

In this paper, we are the first to develop an approach to accurately solve high-dimen-

sional dynamic portfolio choice models in discrete time that require smooth approxi-

mations or gradient-based optimization. With our approach, we have addressed 

the three key issues of solving these models by means of value function iteration: 

the curse of dimensionality, the lack of spatial adaptivity, and the lack of continu-

ous gradients all at once by using B-splines on sparse grids with spatially adaptive 

refinement. We have solved a dynamic portfolio and consumption choice model with 

transaction costs to study the numerical accuracy of our approach. Solutions to the 

transaction costs problem with value function iteration have achieved economically 

acceptable results already for lower resolutions of the interpolation grid than in our 

presented example. Our approach, however, can easily be applied to other dynamic 

portfolio choice models or any high-dimensional economic model that require such 

a high resolution.

We have solved the transaction costs problem with up to five stocks and one 

risk-free bond, i.e., a five-dimensional interpolation and an eleven-dimensional 

optimization problem per time step. Using spatially adaptive refinement of the 

optimal policies, we have obtained maximum unit-free Euler equation errors 

around 5% for the five-dimensional problem and even lower maximum errors for 

lower-dimensional problems. This showcases the high accuracy of the proposed 

spatially adaptive solution scheme for the optimization of continuous choices, 

which relies on smooth approximations of the value function and the gradient. 

We have shown convergence of our approach in up to four dimensions. Here, 

spatially adaptive refinement of the optimal policies decreased the maximum 

Table 2  Number of stocks d, base level n, refine tolerance � , grid points of the base grid |�S

n,d
| for d 

stocks and level n, grid points N
t
 of the refined grid, added points �

N
t

 , computational time and weighted 

Euler equation errors �w,L2

t
 , �w,L

∞

t
 , at t = 0 . For the optimal policy p

opt,S,1

t
 rows, the number N

t
 is the aver-

age number 1∕m
p

∑m
p

j=1
Nt,j of grid points over all policy grids for t = 0 where Nt,j is the number of grid 

points of the j-th policy entry

d Interp. n � |�S

n,d
| N

t
�

N
t

Time
�

w,L2

t
�

w,L
∞

t

2 ĵ
S,1

t
4 ∞ 113 113 0 0 min 8.9  e-06 9.0  e-05

p
opt,S,1

t

4 3  e-09 113 5154 5041 3 min

3 ĵ
S,1

t
4 ∞ 593 593 0 3 min 3.7  e-04 3.6  e-03

p
opt,S,1

t

4 2  e-07 593 28735 28142 5 h 19 min

4 ĵ
S,1

t
4 ∞ 2769 2769 0 3 h 41 min 1.5  e-02 3.9  e-02

p
opt,S,1

t

4 2  e-04 2769 3343 574 3 h 30 min

5 ĵ
S,1

t
4 ∞ 12033 12033 0 9 h 23 min 2.0  e-02 4.8  e-02

p
opt,S,1

t

4 3  e-04 12033 12572 539 3 h 5 min
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Euler equation error by nearly two orders of magnitude in the four-dimensional 

case compared to regular sparse grids without spatially adaptive refinement. This 

has shown that only with spatial adaptivity, high-dimensional problems can be 

solved accurately. Finally, we have given a rigorous analysis of the complexity 

of our approach for dynamic portfolio choice models in general, not only for the 

transaction costs problem for which we have verified our analysis of complexity 

with measurements of computational time. We have found that the sole avail-

ability of the gradient for the optimization process has saved nearly one order of 

magnitude in computational complexity in the three-stock case. We expect even 

larger reductions of the computational complexity for higher-dimensional prob-

lems. Compared to finite differences with interpolation on hat functions as used 

by Brumm and Scheidegger (2017), we have saved considerably more than one 

order of magnitude in computational complexity and one order of magnitude in 

total computational time in three dimensions.

There are certain limitations to the applicability of spatially adaptive sparse 

grids to solve high-dimensional dynamic economic models: Firstly, sparse grid 

approximations are not shape-preserving, which is especially of importance for 

value function iteration with interpolation (Cai and Judd 2012). Secondly, the 

calculation of the coefficients of the B-spline interpolant is time-consuming and 

not trivial to parallelize since the solution to a system of linear equations has 

to be computed in every time step. Thirdly, the exact choice of the refinement 

tolerance for value function and policy interpolants is subject to trial-and-error. 

Choosing a refinement tolerance that is too low will lead to too many points that 

are inserted and may cause instability of the entire scheme if the optimizer does 

not give perfect results.

Future improvements of our approach may lie in the use of problem-tailored 

adaptivity criteria (Brumm and Scheidegger 2017; Pflüger 2012) instead of the 

simple surplus-based refinement criterion.

Appendix A

A.1 Sequential Quadratic Programming (SQP)

SQP methods are well-suited to compute the solution to problem (3). These methods 

use the linearization of the Lagrangian

with Kuhn-Tucker multipliers �
t
∈ ℝ

m
g to set up a quadratic programming problem

(44)Lt(pt,�t, x
(k)
t ) ∶= j̃S

t
(pt, x

(k)
t ) + �

⊤

t
⋅ gt(pt, x

(k)
t ) ,

(45)max
d
(i)
t

{

�pt
j̃S
t
(p

(i)
t , x

(k)
t )⊤ ⋅ d(i)

t
+

1

2
d(i)

t

⊤

⋅ �
2

pt
j̃S
t
(p

(i)
t , x

(k)
t ) ⋅ d(i)

t

}

,
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which finds the search direction d(i)

t
 for the current iterate p

(i)

t
 starting from an initial 

guess p
(0)

t
∈ � ⊂ ℝ

m
p.8 This problem can hence be solved by means of standard 

quadratic programming where frequently the Hessian �2

pt
j̃S
t
 is approximated by the 

BFGS method (Fletcher 2013). Finally, the next iterate p
(i+1)

t
 is chosen by an appro-

priate line search procedure over the step length �
i
:

  If the gradient �
pt

j̃S
t
 is not available, implementations of SQP methods approxi-

mate it by finite differences. This leads to m
p
 additional evaluations of j̃S

t
 per quad-

ratic programming iteration and to 2m
p
 additional evaluations if central finite dif-

ferences are used. Some SQP routines allow the user to choose finite difference 

approximations, some automatically use central finite differences in certain situa-

tions to achieve higher accuracy when needed. However, almost all SQP routines 

allow the user to provide the gradient �
pt

j̃S
t
 (and many also the gradients of the con-

straints) to save computing time and to increase accuracy. For details see Fletcher 

(2013), Gill et al. (2005).

The gradient �
pt

j̃S
t
 of the target function (6) at the grid point x

(k)

t
,

can be supplied to the SQP routine by evaluating the approximation of the gradient 

�f t
jS
t+1

 rather than using finite differences.

A.2 Proof of the Normalization

Theorem 1 For all t = 0,… , T ,

where J
t
 is the solution of problem  (27a–27c) and jt the solution of problem 

(31a–31h).

Proof We have u
(

C
t

)

= u
(

W
t
c

t

)

= W
1−�

t
u
(

c
t

)

 for all t due to the choice of the utility 

function (2).

Base case t = T  : Because of Eqs. (27b) and (31b) it is

Inductive hypothesis: For t + 1 it is Jt+1

(

Wt+1, xt+1

)

= W
1−�

t+1
jt+1(xt+1).

(46)p
(i+1)

t
∶= p

(i)

t
+ �

i
d(i)

t
.

(47)

�pt
j̃S
t
= �pt

u(ct(pt, x
(k)
t )) + ��t

[

�f t
jS
t+1

(f t(pt, x
(k)
t , � t))

⊤
⋅ �pt

f t(pt, x
(k)
t , � t)

]

,

(48)Jt(Wt, xt) = W
1−�

t jt(xt) ,

(49)
JT (WT , xT ) = u

((

1 − �1
⊤
⋅ xT

)

WT

)

= W
1−�

T
u
(

1 − �1
⊤
⋅ xT

)

= W
1−�

T
jT (xt) .

8 We define �x f ∶= (�fj∕�xi)i,j (i.e., the transposed Jacobian) and “ ⋅ ” denotes the matrix-vector product.
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Inductive step t + 1 → t : By the inductive hypothesis and Eq. (30a) it is

  ◻

A.3 Proof of the Certainty Equivalent Transformation

Theorem 2 For all t = 0,… , T ,

where jt the solution of problem (31a–31h) and ĵt the solution of problem (33a, 33b).

Proof Base case t = T  : Because of Eqs. (31b) and (33b) it is

Inductive hypothesis: For t + 1 it is jt+1
(xt+1

) = 1∕(1 − �)ĵt+1
(xt+1

)1−�.

Inductive step t + 1 → t : By the inductive hypothesis and Eq. (33a) it is

where we used that (⋅)1∕(1−�) is a strictly monotonously decreasing function and 

1 − � < 0 .   ◻

(50)

Jt(Wt, xt) = max
Bt ,�

+

t
,�

−

t

{

u(Ct) + ��t

[

W
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t+1
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]

}

= W
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t max
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t
,�

−

t

{

u(ct) + ��t

[

�
1−�

t+1
jt+1(xt+1)

]

}

= W
1−�

t jt(xt) .

(51)jt(xt) =
1

1 − �
ĵt(xt)

1−�
,

(52)

jT (xT ) = u
(

1 − �1
⊤
⋅ xT

)

=
1

1 − �

(

1 − �1
⊤
⋅ xT

)1−�

=
1

1 − �
ĵT (xt)

1−�
.

(53)

jt(xt) = max
bt ,�

+

t
,�

−

t
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�
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t+1
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]

}
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t
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−

t
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1 − �
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[

�
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1
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1−�
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=
1
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,�
−
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A.4 Analytical Gradients

For t < T  at state x
t
 , let us define the objective function (6) for the certainty equiva-

lent formulation of the transaction costs problem (33a, 33b) by

where ĵS
t
 denotes the sparse grid B-spline approximation of Eq. (33a) evaluated at 

x
t
 . With the sparse grid B-spline approximation of the gradient with respect to x

t
 

evaluated at x
t
 , �

xt
ĵS
t
 , the gradient of the objective function (47) with respect to the 

policies b
t
 , �+

t
 , and �−

t
 is: 

A.5 State Space Cropping

To obtain function values outside the feasible state space we virtually sell, if 

1
⊤
⋅ x

t
> 1 as many stocks as needed to meet the constraint 1⊤ ⋅ x

t
≤ 1 . We already 

might need to sell stocks even if 1⊤ ⋅ x
t
 is smaller but close to one in order to satisfy 

the minimum consumption requirement (31c). In detail, we replace x
t
 by �̂x

t
 when-

ever �̂ < 1 where �̂ > 0 is a cropping factor that is determined by

Here, 
(

1
⊤
⋅ x

t
− 1

⊤
⋅ (�̂x

t
)
)

 is the amount of virtually sold stocks. Hence, the term 

in square brackets is the fraction of wealth that is still available after deducting the 

induced transaction costs. The product of this term with 
(

1 − 1
⊤
⋅ (�̂x

t
)
)

 is the frac-

tion of wealth that can be consumed after the virtual selling, which needs to be at 

least c
min

 . Solving Eq. (56) for �̂  and choosing the positive solution, we finally obtain

(54)̃̂
jS
t
(bt, �

+

t
, �

−

t
, xt) ∶=

{

c
1−�

t + ��t

[

(

�t+1 ĵS
t+1

)1−�
]}

1

1−�

,

(55a)

�bt

̃̂
jS
t
=
̃̂
jS
t

�
(

−c
−�

t + ��t
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(

�t+1 ĵS
t+1

)−�
rf

(

ĵS
t+1

−

(

�
xt+1

ĵS
t+1
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⋅ xt+1
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,

(55b)

�
�
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t
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(

1ĵS
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(

�
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ĵS
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,

(55c)
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�
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(

�
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.

(56)

[

1 − �
(

1
⊤
⋅ x
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− 1

⊤
⋅ (�̂x

t
)
)

]

⋅

(

1 − 1
⊤
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= c
min

.

(57)
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− 1 +
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A.6 Euler Equation Error Derivation

The Lagrangian (44) for the transaction costs problem in certainty equivalent formu-

lation (33a, 33b) is given by:

with 
̃̂
jS
t
 from Eq. (54), � ∈ ℝ

3d+2 and g
t
(b

t
, �

+

t
, �

−

t
, x

t
) = (c

t
− cmin, �

+

t
, �

−

t
, x

t
− �

−

t
, b

t
)⊤ 

from constraints Eqs. (31c) to (31g).

The first order condition with regard to b
t
 is

We neglect binding constraints, i.e., we assume �1

t
= �

3d+2

t
= 0 , and set the error 

�
w

t
(x

t
) = NaN whenever �1

t
≠ 0 or �3d+2

t
≠ 0 for any x

t
 . Thus, we take the NaN-mean 

in Eq. (39a) and the NaN-maximum in Eq. (39b).

Assuming �1

t
= �

3d+2

t
= 0 in Eq. (59), plugging in Eq. (55a) for �bt

̃̂
jS
t
 at the opti-

mum (b
opt

t
, �

+,opt

t
, �

−opt

t
)⊤ and dividing both sides by 

̃̂
jS
t

�

 yields Eq. (35).
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