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Ozan Öktem
Department of Mathematics,

KTH – Royal Institute of Technology,

SE-100 44 Stockholm, Sweden

E-mail: ozan@kth.se

Carola-Bibiane Schönlieb
Department of Applied Mathematics and Theoretical Physics,

Cambridge University, Wilberforce Road,

Cambridge, CB3 0WA, UK

E-mail: C.B.Schoenlieb@damtp.cam.ac.uk

Recent research in inverse problems seeks to develop a mathematically co-
herent foundation for combining data-driven models, and in particular those
based on deep learning, with domain-specific knowledge contained in physical–
analytical models. The focus is on solving ill-posed inverse problems that are
at the core of many challenging applications in the natural sciences, medicine
and life sciences, as well as in engineering and industrial applications. This
survey paper aims to give an account of some of the main contributions in
data-driven inverse problems.

This is an Open Access article, distributed under the terms of the Creative Commons

Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the

original work is unaltered and is properly cited. The written permission of Cambridge University Press

must be obtained for commercial re-use or in order to create a derivative work.

https://doi.org/10.1017/S0962492919000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492919000059


2 S. Arridge, P. Maass, O. Öktem and C.-B. Schönlieb
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1. Introduction

In several areas of science and industry there is a need to reliably recover
a hidden multi-dimensional model parameter from noisy indirect observa-
tions. A typical example is when imaging/sensing technologies are used in
medicine, engineering, astronomy and geophysics. These so-called inverse
problems are often ill-posed, meaning that small errors in data may lead to
large errors in the model parameter, or there are several possible model para-
meter values that are consistent with observations. Addressing ill-posedness
is critical in applications where decision making is based on the recovered
model parameter, for example in image-guided medical diagnostics. Fur-
thermore, many highly relevant inverse problems are large-scale: they in-
volve large amounts of data and the model parameter is high-dimensional.

Traditionally, an inverse problem is formalized as solving an equation of
the form

g = A(f) + e.

Here g ∈ Y is the measured data, assumed to be given, and f ∈ X is the
model parameter we aim to reconstruct. In many applications, both g and
f are elements in appropriate function spaces Y and X, respectively. The
mapping A : X → Y is the forward operator, which describes how the model
parameter gives rise to data in the absence of noise and measurement errors,
and e ∈ Y is the observational noise that constitutes random corruptions in
the data g. The above view constitutes a knowledge-driven approach, where
the forward operator and the probability distribution of the observational
noise are derived from first principles.

Classical research on inverse problems has focused on establishing condi-
tions which guarantee that solutions to such ill-posed problems exist and on

https://doi.org/10.1017/S0962492919000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492919000059


Solving inverse problems using data-driven models 3

methods for approximating solutions in a stable way in the presence of noise
(Engl, Hanke and Neubauer 2000, Benning and Burger 2018, Louis 1989,
Kirsch 2011). Despite being very successful, such a knowledge-driven ap-
proach is also associated with some shortcomings. First, the forward model
is always an approximate description of reality, and extending it might be
challenging due to a limited understanding of the underlying physical or
technical setting. It may also be limited due to computational complex-
ity. Accurate analytical models, such as those based on systems of non-
linear partial differential equations (PDEs), may reach a numerical com-
plexity beyond any feasible real-time potential in the foreseeable future.
Second, most applications will have inputs which do not cover the full model
parameter space, but stem from an unknown subset or obey an unknown
stochastic distribution. The latter shortcoming in particular has led to the
advance of methods that incorporate information about the structure of the
parameters to be determined in terms of sparsity assumptions (Daubechies,
Defrise and De Mol 2004, Jin and Maass 2012b) or stochastic models (Kaipio
and Somersalo 2007, Mueller and Siltanen 2012). While representing a sig-
nificant advancement in the field of inverse problems, these models are,
however, limited by their inability to capture very bespoke structures in
data that vary in different applications.

At the same time, data-driven approaches as they appear in machine
learning offer several methods for amending such analytical models and for
tackling these shortcomings. In particular, deep learning (LeCun, Bengio
and Hinton 2015), which has had a transformative impact on a wide range
of tasks related to artificial intelligence, ranging from computer vision and
speech recognition to playing games (Igami 2017), is starting to show its
impact on inverse problems. A key feature in these methods is the use
of generic models that are adapted to specific problems through learning
against example data (training data). Furthermore, a common trait in the
success stories for deep learning is the abundance of training data and the
explicit agnosticism from a priori knowledge of how such data are gener-
ated. However, in many scientific applications, the solution method needs
to be robust and there is insufficient training data to support an entirely
data-driven approach. This seriously limits the use of entirely data-driven
approaches for solving problems in the natural and engineering sciences, in
particular for inverse problems.

A recent line of development in computational sciences combines the
seemingly incompatible data- and knowledge-driven modelling paradigms.
In the context of inverse problems, ideally one uses explicit knowledge-driven
models when there are such available, and learns models from example data
using data-driven methods only when this is necessary. Recently several al-
gorithms have been proposed for this combination of model- and data-driven
approaches for solving ill-posed inverse problems. These results are still

https://doi.org/10.1017/S0962492919000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492919000059


4 S. Arridge, P. Maass, O. Öktem and C.-B. Schönlieb

primarily experimental and lack a thorough theoretical foundation; never-
theless, some mathematical concepts for treating data-driven approaches for
inverse problems are emerging.

This survey attempts to provide an overview of methods for integrating
data-driven concepts into the field of inverse problems. Particular emphasis
is placed on techniques based on deep neural networks, and our aim is to
pave the way for future research towards providing a solid mathematical
theory. Some aspects of this development are covered in recent reviews of
inverse problems and deep learning, for instance those of McCann, Jin and
Unser (2017), Lucas, Iliadis, Molina and Katsaggelos (2018) and McCann
and Unser (2019).

1.1. Overview

This survey investigates algorithms for combining model- and data-driven
approaches for solving inverse problems. To do so, we start by reviewing
some of the main ideas of knowledge-driven approaches to inverse prob-
lems, namely functional analytic inversion (Section 2) and Bayesian inver-
sion (Section 3), respectively. These knowledge-driven inversion techniques
are derived from first principles of knowledge we have about the data, the
model parameter and their relationship to each other.

Knowledge- and data-driven approaches can now be combined in several
different ways depending on the type of reconstruction one seeks to com-
pute and the type of training data. Sections 4 and 5 represent the core
of the survey and discuss a range of inverse problem approaches that in-
troduce data-driven aspects in inverse problem solutions. Here, Section 4
is the data-driven sister section to functional analytic approaches in Sec-
tion 2. These approaches are primarily designed to combine data-driven
methods with functional analytic inversion. This is done either to make
functional analytic approaches more data-driven by appropriate paramet-
rization of these approaches and adapting these parametrizations to data, or
to accelerate an otherwise costly functional analytic reconstruction method.

Many reconstruction methods, however, are not naturally formulated
within the functional analytic view of inversion. An example is the posterior
mean reconstruction, whose formulation requires adopting the Bayesian
view of inversion. Section 5 is the data-driven companion to Bayesian inver-
sion in Section 3, and surveys methods that combine data- and knowledge-
driven methods in Bayesian inversion. The simplest is to apply data-driven
post-processing of a reconstruction obtained via a knowledge-driven method.
A more sophisticated approach is to use a learned iterative scheme that
integrates a knowledge-driven model for how data are generated into a
data-driven method for reconstruction. The latter is done by unrolling
a knowledge-driven iterative scheme, and both approaches, which compute
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statistical estimators, can be combined with forward operators that are par-
tially learned via a data-driven method.

The above approaches come with different trade-offs concerning demands
on training data, statistical accuracy and robustness, functional complex-
ity, stability and interpretability. They also impact the choice of machine
learning methods and algorithms for training. Certain recent – and some-
what anecdotal – topics of data-driven inverse problems are discussed in
Section 6, and exemplar practical inverse problems and their data-driven
solutions are presented in Section 7.

Within data-driven approaches, deep neural networks will be a focus
of this survey. For an introduction to deep neural networks the reader
might find it helpful to consult some introductory literature on the topic.
We recommend Courville, Goodfellow and Bengio (2017) and Higham and
Higham (2018) for a general introduction to deep learning; see also Vidal,
Bruna, Giryes and Soatto (2017) for a survey of work that aims to provide a
mathematical justification for several properties of deep networks. Finally,
the reader may also consult Ye, Han and Cha (2018), who give a nice survey
of various types of deep neural network architectures.

Detailed structure of the paper. In Section 2 we discuss functional ana-
lytic inversion methods, and in particular the mathematical notion of ill-
posedness (Section 2.3) and regularization (Section 2.4) as a means to coun-
teract the latter. A special focus is on variational regularization methods
(Sections 2.5–2.7), as those reappear in bilevel learning in Section 4.3 in the
context of data-driven methods for inverse problems.

Statistical – and in particular Bayesian – approaches to inverse problems
are described in Section 3. In contrast to functional analytic approaches
(Section 2.4), in Bayesian inversion (Section 3.1) the model parameter is a
random variable that follows a prior distribution. A key difference between
Bayesian and functional analytic inversion is that in Bayesian inversion an
approximation to the whole distribution of the model parameter conditioned
on the measured data (posterior distribution) is computed, rather than a
single model parameter as in functional analytic inversion. This means that
reconstructed model parameters can be derived via different estimates of
its posterior distribution (a concept that we will encounter again in Sec-
tion 5, and in particular Section 5.1.2, where data-driven reconstructions
are phrased as results of different Bayes estimators), but also that uncer-
tainty of reconstructed model parameters can be quantified (Section 3.2.5).
When evaluating different reconstructions of the model parameter – which
is again important when defining learning, i.e. optimization criteria for in-
verse problem solutions – aspects of statistical decision theory can be used
(Section 3.3). Also, the parallel concept of regularization, introduced in
Section 3 for the functional analytic approach, is outlined in Section 3.2 for
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statistical approaches. The difficult problem of selecting a prior distribution
for the model parameter is discussed in Section 3.4.

In Section 4 we present some central examples of machine learning com-
bined with functional analytic inversion. These encompass classical para-
meter choice rules for inverse problems (Section 4.1) and bilevel learning
(Section 4.3) for parameter learning in variational regularization methods.
Moreover, dictionary learning is discussed in Section 4.4 as a companion to
sparse reconstruction methods in Section 2.7, but with a data-driven diction-
ary. Also, the concept of a black-box denoiser, and its application to inverse
problems by decoupling the regularization from the inversion of the data, is
presented in Section 4.6. Two recent approaches that use deep neural net-
work parametrizations for data-driven regularization in variational inversion
models are investigated in Section 4.7. In Section 4.9 we discuss a range
of learned optimization methods that use data-driven approximations as a
means to speed up numerical computation. Finally, in Section 4.10 we in-
troduce a new idea of using the recently introduced concept of deep inverse
priors for solving inverse problems.

In Section 5 learning data-driven inversion models are phrased in the con-
text of statistical regularization. Section 5.1.2 connects back to the difficulty
in Bayesian inversion of choosing an appropriate prior (Section 3.4), and
outlines how model learning can be used to compute various Bayes estim-
ators. Here, in particular, fully learned inversion methods (Section 5.1.3),
where the whole inversion model is data-driven, are put in context with
learned iterative schemes (Section 5.1.4), in which data-driven components
are interwoven with inverse model assumptions. In this context also we
discuss post-processing methods in Section 5.1.5, where learned regulariza-
tion together with simple knowledge-driven inversion methods are used se-
quentially. Section 5.2 addresses the computational bottleneck of Bayesian
inversion methods by using learning, and shows how one can use learning
to efficiently sample from the posterior.

Section 6 covers special topics of learning in inverse problems, and in Sec-
tion 6.1 includes task-based reconstruction approaches that use ideas from
learned iterative reconstruction (Section 5.1.4) and deep neural networks for
segmentation and classification to solve joint reconstruction-segmentation
problems, learning physics-based models via neural networks (Section 6.2.1),
and learning corrections to forward operators by optimization methods that
perform joint reconstruction-operator correction (Section 6.2).

Finally, Section 7 illustrates some of the data-driven inversion methods
discussed in the paper by applying them to practical inverse problems.
These include an introductory example on inversion of ill-conditioned lin-
ear systems to highlight the intricacy of using deep learning for inverse
problems as a black-box approach (Section 7.1), bilevel optimization from
Section 4.3 for parameter learning in TV-type regularized problems and
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variational models with mixed-noise data fidelity terms (Section 7.2), the ap-
plication of learned iterative reconstruction from Section 5.1.4 to computed
tomography (CT) and photoacoustic tomography (PAT) (Section 7.3), ad-
versarial regularizers from Section 4.7 for CT reconstruction as an example
of variational regularization with a trained neural network as a regularizer
(Section 7.4), and the application of deep inverse priors from Section 4.10
to magnetic particle imaging (MPI) (Section 7.5).

In Section 8 we finish our discussion with a few concluding remarks and
comments on future research directions.

2. Functional analytic regularization

Functional analysis has had a strong impact on the development of inverse
problems. One of the first publications that can be attributed to the field
of inverse problems is that of Radon (1917). This paper derived an ex-
plicit inversion formula for the so-called Radon transform, which was later
identified as a key component in the mathematical model for X-ray CT.
The derivation of the inversion formula, and its analysis concerning missing
stability, makes use of operator formulations that are remarkably close to
the functional analysis formulations that would be developed three decades
later.

2.1. The inverse problem

There is no formal mathematical definition of an inverse problem, but from
an applied viewpoint such problems are concerned with determining causes
from desired or observed effects. It is common to formalize this as solving
an operator equation.

Definition 2.1. An inverse problem is the task of recovering the model
parameter ftrue ∈ X from measured data g ∈ Y , where

g = A(ftrue) + e. (2.1)

Here, X (model parameter space) and Y (data space) are vector spaces
with appropriate topologies and whose elements represent possible model
parameters and data, respectively. Moreover, A : X → Y (forward operator)
is a known continuous operator that maps a model parameter to data in
absence of observation noise and e ∈ Y is a sample of a Y -valued random
variable modelling the observation noise.

In most imaging applications, such as CT image reconstruction, elements
in X are images represented by functions defined on a fixed domain Ω ⊂ Rd
and elements in Y represent imaging data by functions defined on a fixed
manifold M that is given by the acquisition geometry associated with the
measurements.
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2.2. Introduction to some example problems

In the following, we briefly introduce some of the key inverse problems we
consider later in this survey. All are from imaging, and we make a key
distinction between (i) image restoration and (ii) image reconstruction. In
the former, the data are a corrupted (e.g. noisy or blurry) realization of the
model parameter (image) so the reconstruction and data spaces coincide,
whereas in the latter the reconstruction space is the space of images but the
data space has a definition that is problem-dependent. As we will see when
discussing data-driven approaches to inverse problems in Sections 4 and 5,
this differentiation is particularly crucial as the difference between image
and data space poses additional challenges to the design of machine learning
methods. Next, we describe very briefly some of the most common operators
that we will refer to below. Here the inverse problems in Sections 2.2.1–2.2.3
are image restoration problems, while those in Sections 2.2.4 and 2.2.5 are
examples of image reconstruction problems.

2.2.1. Image denoising
The observed data are the ideal solution corrupted by additive noise, so the
forward operator in (2.1) is the identity transform A = id, and we get

g = ftrue + e, (2.2)

In the simplest case the distribution of the observational noise is known.
Furthermore, this distribution may in more advanced problems be correl-
ated, spatially varying and of mixed type.

In Section 7.2 we will discuss bilevel learning of total variation (TV)-
type variational models for denoising of data corrupted with mixed noise
distributions.

2.2.2. Image deblurring
The observed data are given by convolution with a known filter function K
together with additive noise, so (2.1) becomes

g = ftrue ∗K + e. (2.3)

Any inverse problem of the type (2.1) with a linear forward operator that
is translation-invariant will be of this form.

In the absence of noise, the inverse problem (image deconvolution) is ex-
actly solvable by division in the Fourier domain, i.e. ftrue =F−1[F [g]/F [K]],
provided that F [K] has infinite support in the Fourier domain. In the pres-
ence of noise, the estimated solution is corrupted by noise whose frequency
spectrum is the reciprocal of the spectrum of the filter K. The distribution
of the observational also has the same considerations as in (2.2). Finally,
extensions include the case of a spatially varying kernel and the case where
K is unknown (blind deconvolution).
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2.2.3. Image in-painting

Here, the observed data represents a noisy observation of the true model
parameter ftrue : Ω→ R restricted to a fixed measurable set Ω0 ⊂ Rn:

g = ftrue

∣∣
Ω0

+ e. (2.4)

In the above, ftrue

∣∣
Ω0

is the restriction of ftrue to Ω0. Solutions take different

forms depending on the size of connected components in Ω0. Extensions
include the case where Ω0 is unknown or only partially known.

2.2.4. Computed tomography (CT)

The simplest physical model for CT assumes mono-energetic X-rays and dis-
regards scattering phenomena. The model parameter is then a real-valued
function f : Ω → R defined on a fixed domain Ω ⊂ Rd (d = 2 for two-
dimensional CT and d = 3 for three-dimensional CT) that has unit mass
per volume. The forward operator is the one given by the Beer–Lambert
law:

A(f)(ω, x) = e−µ
∫∞
−∞ f(x+sω) ds. (2.5)

Here, the unit vector ω ∈ Sd−1 and x ∈ ω⊥ represent the line ` : s 7→ x+ sω
along which the X-rays travel, and we also assume f decays fast enough for
the integral to exist. In medical imaging, µ is usually set to a value that
approximately corresponds to water at the X-ray energies used. The above
represents pre-logarithm (or pre-log) data, and by taking the logarithm (or
log) of data, one can recast the inverse problem in CT imaging to one where
the forward model is the linear ray transform:

A(f)(ω, x) =

∫ ∞
−∞

f(x+ sω) ds. (2.6)

For low-dose imaging, pre-log data are Poisson-distributed with mean
A(ftrue), where A is given as in (2.5), that is, g ∈ Y is a sample of g ∼
Poisson(A(ftrue)). Thus, to get rid of the non-linear exponential in (2.5),
it is common to take the log of data. With such post-log data the forward
operator is linear and given as in (2.6). A complication with such post-
log data is that the noise model becomes non-trivial, since one takes the
log of a Poisson-distributed random variable (Fu et al. 2017). A common
approximate noise model for post-log data is (2.1), with observational noise
e which is a sample of a Gaussian or Laplace-distributed random variable.

In the case of complete data, that is, where a full angular set of data is
measured, an exact inverse is obtained by the (Fourier-transformed) data
backprojected on the same lines as used for the measurements and scaled by
the absolute value of the spatial frequency, followed by the inverse Fourier
transform. Thus, as in deblurring, the noise is amplified, but only lin-
early in spatial frequency, making the problem mildly ill-posed. Extensions
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include the emission tomography problem (single photon emission computed
tomography (SPECT) and positron emission tomography (PET)) where the
line integrals are exponentially attenuated by a function µ that may be un-
known. A major challenge in tomography is to consider incomplete data, in
particular the case where only a subset of lines is measured. This problem
is much more ill-posed.

See Sections 7.3, 7.4 and 7.6 for instances of CT reconstruction that use
deep neural networks in the solution of the inverse problem.

2.2.5. Magnetic resonance imaging (MRI)

The observed data are often considered to be samples of the Fourier trans-
form of the ideal signal, so the MRI image reconstruction problem is an
inverse problem of the type (2.1), where the forward operator is given as a
discrete sampling operator concatenated with the Fourier transform. A cor-
rect description of the problem takes account of the complex-valued nature
of the data, which implies that when e is normally distributed then the noise
model of | F−1[g]| is Rician. As in CT, the case of under-sampled data is of
high practical importance. In MRI, the subsampling operator has to consist
of connected trajectories in Fourier space but is not restricted to straight
lines.

Extensions include the case of parallel MRI where the forward operator
is combined with (several) spatial sensitivity functions. More exact forward
operators take account of other non-linear physical effects and can recon-
struct several functions in the solution space.

2.3. Notion of ill-posedness

A difficulty in solving (2.1) is that the solution is sensitive to variations
in data, which is referred to as ill-posedness. More precisely, the notion of
ill-posedness is usually attributed to Hadamard, who postulated that a well-
posed problem must have three defining properties, namely that (i) it has a
solution (existence) that is (ii) unique and that (iii) depends continuously on
the data g (stability). Problems that do not fulfil these criteria are ill-posed
and, according to Hadamard, should be modelled differently (Hadamard
1902, Hadamard 1923).

For example, instability arises when the forward operator A : X → Y
in (2.1) has an unbounded or discontinuous inverse. Hence, every non-
degenerate compact operator between infinite-dimensional Hilbert spaces
whose range is infinite naturally leads to ill-posed inverse problems. Slightly
more generally, one can prove that continuous operators with non-closed
range yield unbounded inverses and hence lead to ill-posed inverse problems.
This class includes non-degenerate compact operators as well as convolution
operators on unbounded domains.
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Another way of describing ill-posedness is in terms of the set of f ∈ X
such that ‖A(f)−g‖ ≤ ‖e‖ for given noise e in (2.1). This is an unbounded
set for continuous operators with non-closed range. Finally, yet another way
to understand the ill-posedness of a compact linear operator A is by means
of its singular value decomposition. The decay of the spectrum {σk}k∈N
is strongly related to the ill-posedness: faster decay implies a more ill-
posed problem. This allows us to determine the severity of the ill-posedness.
More precisely, (2.1) is weakly ill-posed if σk decays with polynomial rate
as k →∞ and strongly ill-posed if the decay is exponential: see Engl et al.
(2000), Derevtsov, Efimov, Louis and Schuster (2011) and Louis (1989) for
further details. As a final note, such classification is not possible when
the forward operator is non-linear. In such cases, either linearized forward
operators are analysed or a non-linear spectral analysis is considered for
determining the degree of ill-posedness: see e.g. Hofmann (1994). Moreover,
extensions to non-compact linear operators are considered by Hofmann et al.
(2010), for example.

2.4. Regularization

Unfortunately, Hadamard’s dogma stigmatized the study of ill-posed prob-
lems and thereby severely hampered the development of the field. Math-
ematicians’ interest in studying ill-posed problems was revitalized by the
pioneering works of Calderón and Zygmund (1952, 1956), Calderón (1958)
and John (1955a, 1955b, 1959, 1960), who showed that instability is an in-
trinsic property in some of the most interesting and challenging problems
in mathematical physics and applied analysis. To some extent, these pa-
pers constitute the origin of the modern theory of inverse problems and
regularization.

The aim of functional analytic regularization theory is to develop stable
schemes for estimating ftrue from data g in (2.1) based on knowledge of A,
and to prove analytical results for the properties of the estimated solution.
More precisely, a regularization of the inverse problem in (2.1) is formally
a scheme that provides a well-defined parametrized mapping Rθ : Y → X
(existence) that is continuous in Y for fixed θ (stability) and convergent. The
latter means there is a way to select θ so thatRθ(g)→ ftrue as g → A(ftrue).

Besides existence, stability and convergence, a complete mathematical
analysis of a regularization method also includes proving convergence rates
and stability estimates. Convergence rates provide an estimate of the dif-
ference between a regularized solution Rθ(g) and the solution of (2.1) with
e = 0 (provided it exists), whereas stability estimates provide a bound on
the difference between Rθ(g) and Rθ(A(ftrue)) depending on the error ‖e‖.
These theorems rely on ‘source conditions’: for example, convergence rate
results are obtained under the assumption that the true solution ftrue is in
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the range of [∂A(ftrue)]
∗ : Y → X. One difficulty is to formulate source

conditions that are verifiable. This typically relates to a regularity assump-
tion for ftrue that ensures a certain convergence rate: see e.g. Engl, Kunisch
and Neubauer (1989), Hofmann, Kaltenbacher, Pöschl and Scherzer (2007),
Schuster, Kaltenbacher, Hofmann and Kazimierski (2012), Grasmair, Halt-
meier and Scherzer (2008) and Hohage and Weidling (2016) for an example
of this line of development.

From an algorithmic viewpoint, functional analytic regularization meth-
ods are subdivided into essentially four categories.

Approximate analytic inversion. These methods are based on stabiliz-
ing a closed-form expression for A−1. This is typically achieved by consider-
ing reconstruction operators that give a mollified solution, so the resulting
approaches are highly problem-specific.

Analytic inversion has been hugely successful: for example, filtered back-
projection (FBP) (Natterer 2001, Natterer and Wübbeling 2001) for invert-
ing the ray transform is still the standard method for image reconstruction
in CT used in clinical practice. Furthermore, the idea of recovering a molli-
fied version can be stated in a less problem-specific manner, which leads to
the method of approximate inverse (Louis 1996, Schuster 2007, Louis and
Maass 1990).

Iterative methods with early stopping. Here one typically considers
iteration methods based on gradient descent for the data misfit or discrep-
ancy term f 7→ ‖A(f) − g‖2. The ill-posedness of the inverse problem
leads to semiconvergent behaviour, meaning that the reconstruction error
decreases until a certain data fit is achieved and then starts diverging. Hence
a suitable stopping needs to be designed, which acts as a regularization.

Well-known examples are the iterative schemes of Kaczmarz and Land-
weber (Engl et al. 2000, Natterer and Wübbeling 2001, Kirsch 2011). There
is also large body of literature addressing iteration schemes in Krylov spaces
for inverse problems (conjugate gradient (CG) type methods) as well as
accelerated and discretized versions thereof (e.g. CGLS, LSQR, GMRES):
see Hanke-Bourgeois (1995), Hanke and Hansen (1993), Frommer and Maass
(1999), Calvetti, Lewis and Reichel (2002) and Byrne (2008) for further
reference. A different approach that has a statistical interpretation uses a
fixed-point iteration for the maximum a posteriori (MAP) estimator leading
to the maximum likelihood expectationmaximization (ML-EM) algorithm
(Dempster et al. 1977).

Discretization as regularization. Projection or Galerkin methods, which
search for an approximate solution of an inverse problems in a predefined
subspace, are also a powerful tool for solving inverse problems. The level
of discretization controls the approximation of the forward operator but
it also stabilizes the inversion process: see Engl et al. (2000), Plato and
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Vainikko (1990) and Natterer (1977). Such concepts have been discussed in
the framework of parameter identification for partial differential equations
(quasi-reversibility): see Lattès and Lions (1969) for an early reference and
Hämarik, Kaltenbacher, Kangro and Resmerita (2016) and Kaltenbacher,
Kirchner and Vexler (2011) for some recent developments.

Variational methods. The idea here is to minimize a measure of data
misfit that is penalized using a regularizer (Kaltenbacher, Neubauer and
Scherzer 2008, Scherzer et al. 2009):

Rθ(g) := arg min
f∈X

{L(A(f), g) + Sθ(f)}, (2.7)

where we make use of the notation in Definitions 2.2, 2.4 and 2.5. This is a
generic, yet highly adaptable, framework for reconstruction with a natural
plug-and-play structure where the forward operator A, the data discrepancy
L and the regularizer Sθ are chosen to fit the specific aspects of the inverse
problem. Well-known examples are classical Tikhonov regularization and
TV regularization.

Sections 2.5 and 2.6 provide a closer look at the development of variational
methods since these play an important role in Section 4, where data-driven
methods are used in functional analytic regularization. To simplify these
descriptions it is convenient to establish some key notions.

Definition 2.2. A regularization functional S : X → R+ quantifies how
well a model parameter possesses desirable features: a larger value usually
means less desirable properties.

In variational approaches to inverse problems, the value of S is considered
as a penalty term, and in Bayesian approaches it is seen as the negative log
of a prior probability distribution. Henceforth we will use Sθ to denote a
regularization term that depends on a parameter set θ ∈ Θ; in particular
we will use θ as parameters that will be learned.

Remark 2.3. In some cases θ is a single scalar. We will use the notation
λS(f) ≡ Sθ(f) wherever such usage is unambiguous, and with the implic-
ation that θ = λ ∈ R+. Furthermore, we will sometimes express the set θ
explicitly, e.g. Sα,β, where the usage is unambiguous.

Definition 2.4. A data discrepancy functional L : Y × Y → R is a scalar
quantification of the similarity between two elements of data space Y .

The data discrepancy functional is considered to be a data fitting term
in variational approaches to inverse problems. Although often taken to
be a metric on data space, choosing it as an affine transformation of the
negative log-likelihood of data allows for a statistical interpretation, since
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minimizing f 7→ L(A(f), g) amounts to finding a maximum likelihood solu-
tion. For Gaussian observational noise e ∼ N(0,Γ), the corresponding data
discrepancy is then given by the Mahalanobis distance:

L(g, v) := ‖g − v‖2Γ−1 for g, v ∈ Y . (2.8)

If data are Poisson-distributed, i.e. g ∼ Poisson(A(ftrue)), then an appro-
priate data discrepancy functional is the Kullback–Leibler (KL) divergence.
When elements in data space Y are real-valued functions on M, then the
KL divergence becomes

L(g, v) :=

∫
M

[v(y) log g(y)− log v(y)− g(y) + v(y)] dy for g, v ∈ Y . (2.9)

Similarly, Laplace-distributed observational noise corresponds to a data
discrepancy that is given by the 1-norm. One can also express the data
log-likelihood for Poisson-distributed data with an additive observational
noise term that is Gaussian, but the resulting expressions are quite complex
(Benvenuto et al. 2008).

Definition 2.5. A reconstruction operator R : Y → X is a mapping which
gives a point estimate f̂ as the solution to (2.1).

Henceforth we will use Rθ to denote a reconstruction operator that de-
pends on a parameter set θ ∈ Θ; in particular we will use θ as parameters
that will be learned.

Remark 2.6. In variational approaches we will typically use the notation
Rλ to denote an operator parametrized by a single scalar λ > 0 which
corresponds (explicitly or implicitly) to optimizing a functional that includes
a regularization penalty λS as in Definition 2.2. More generally θ will
also be used to define the parameters of an algorithm or neural network
used to generate a solution fθ that may or may not explicitly specify a
regularization functional. Again we will assume the context provides an
unambiguous justification for the choice between Rθ and Rλ. Furthermore,
we will sometimes express the set θ explicitly, e.g. RW,ψ, where the usage
is unambiguous.

2.5. Classical Tikhonov regularization

Tikhonov (or Tikhonov–Phillips) regularization is arguably the most prom-
inent technique for inverse problems. It was introduced by Tikhonov (1943,
1963), Phillips (1962) and Tikhonov and Arsenin (1977) for solving ill-posed
inverse problems of the form (2.1), and can be stated in the form

Rλ(g) := arg min
f∈X

{
1

2
‖A(f)− g‖2 + λS(f)

}
. (2.10)
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Bearing in mind the notation in Remarks 2.3 and 2.6, note that (2.10) has
the form of (2.7) with L given by the squared L2-distance. Here X and
Y are Hilbert spaces (typically both are L2 spaces). Moreover, the choice
S(f) := 1

2‖f‖
2 is the most common one for the penalty term in (2.10). In

fact, if A is linear, with A∗ denoting its adjoint, then standard arguments
for minimizing quadratic functionals yield

Rλ = (A∗ ◦A+λ id)−1 ◦ A∗ . (2.11)

Until the late 1980s the analytical investigations of regularization schemes
of the type in (2.10) were restricted either to linear operators or to rather
specific approaches for selected non-linear problems. Many inverse prob-
lems, such as parameter identification in linear differential operators, lead
to non-linear parameter-to-state maps, so the corresponding forward op-
erator becomes non-linear (Arridge and Schotland 2009, Greenleaf, Kur-
ylev, Lassas and Uhlmann 2007, Bal, Chung and Schotland 2016, Jin and
Maass 2012b, Jin and Maass 2012a).

Analysis of (2.10) for non-linear forward operators is difficult, for ex-
ample, singular value decompositions are not available. A major theoretical
breakthrough came with the publications of Seidman and Vogel (1989) and
Engl et al. (1989), which extended the theoretical investigation of Tikhonov
regularization to the non-linear setting by introducing radically new con-
cepts. Among others, it extended the notion of minimum norm solution
used in theorems dealing with convergence rates to f0-minimum norm solu-
tions. This means one assumes the knowledge of some meaningful parameter
f0 ∈ X and the aim of the regularization method is to approximate a solu-
tion that in the limit minimizes ‖f − f0‖ amongst all solutions of A(f) = g.
Hence, f0 acts as a kind of prior. Among the main results of Engl et al.
(1989) is a theorem that estimates the convergence rate assuming sufficient
regularity of the forward operator A and a source condition that relates the
penalty term to the functional A at ftrue. This theorem, which is stated
below, opened the path to many successful applications, particularly for
parameter identification problems related to partial differential equations,
and such assumptions occur in different variations in all theorems related
to the variational approach.

Theorem 2.7. Consider the inverse problem in (2.1) where A : X → Y
is continuous, weakly sequentially closed and with a convex domain. Next,
assume there exists a f0-minimum norm solution ftrue for some fixed f0 ∈ X
and let data g ∈ Y in (2.1) satisfy ‖A(ftrue) − g‖ ≤ δ. Also, let f δλ ∈
X denote a minimizer of (2.10) with S(f) := 1

2‖f‖
2. Finally, assume the

following.

(1) A has a continuous Fréchet derivative.

https://doi.org/10.1017/S0962492919000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492919000059


16 S. Arridge, P. Maass, O. Öktem and C.-B. Schönlieb

(2) There exists a γ > 0, such that

‖[∂A(ftrue)]− [∂A(f)]‖L(X,Y ) ≤ γ‖ftrue − f‖X

for all f ∈ dom(A) ∩ Br(ftrue) with r > 2‖ftrue − f0‖. Here, L(X,Y )
is the vector space of Y -valued linear maps on X and Br(ftrue) ⊂ X
denotes a ball of radius r around ftrue.

(3) There exists v ∈ Y with γ‖v‖ < 1 such that ftrue−f0 = [∂A(ftrue)]
∗(v).

Then, choosing λ ∝ δ as δ → 0 yields

‖f δλ − ftrue‖ = O(
√
δ) and ‖A(f δλ)− g‖ = O(δ).

2.6. Extension of classical Tikhonov regularization

Tikhonov regularization is a particular case of the more general variational
regularization schemes (2.7). In fact, penalty terms for Tikhonov-type func-
tionals, as well as suitable source conditions, have been generalized consid-
erably in a series of papers. A key issue in solving an inverse problem is to
use a forward operator A that is sufficiently accurate. It is also important
to choose an appropriate data discrepancy L, regularizer Sθ, and to have a
parameter choice rule for setting θ. Depending on these choices, different
reconstruction results are obtained.

The data discrepancy. Here the choice is ideally guided by statistical consid-
erations for the observation noise (Bertero, Lantéri and Zanni 2008). Ideally
one selects L as an appropriate affine transform of the negative log-likelihood
of data, in which case minimizing f 7→ L(A(f), g) becomes the same as com-
puting an maximum likelihood estimator. Hence, Poisson-distributed data
that typically appear in photography (Costantini and Susstrunk 2004) and
emission tomography applications (Vardi, Shepp and Kaufman 1985) lead
to a data discrepancy given by the Kullback–Leibler divergence (Sawatzky,
Brune, Müller and Burger 2009, Hohage and Werner 2016), while additive
normally distributed data, as for Gaussian noise, result in a least-squares
fit model.

The regularizer. As stated in Definition 2.2, S acts as a penalizer and is
chosen to enforce stability by encoding a priori information about ftrue.
How to set the (regularization) parameter θ reflects noise level in data: see
Section 4.1.

Classical Tikhonov regularization (2.10) uses Hilbert-space norms (or
semi-norms) to regularize the inverse problems. In more recent years,
Banach-space regularizers have become more popular in the context of
sparsity-promoting and discontinuity-preserving regularization, which are
revisited in Section 2.7. TV regularization was introduced by Rudin, Osher
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and Fatemi (1992) for image denoising due to its edge-preserving properties,
favouring images f that have a sparse gradient. Here, the TV regularizer is
given as

S(f) := TV(f) := |Df |(Ω) =

∫
Ω

d|Df |, (2.12)

where Ω ⊂ Rd is a fixed open and bounded set. The above functional (TV
regularizer) uses the total variation measure of the distributional derivat-
ive of f defined on Ω (Ambrosio, Fusco and Pallara 2000). A drawback
of using such a regularization procedure is apparent as soon as the true
model parameter not only consists of constant regions and jumps but also
possesses more complicated, higher-order structures, e.g. piecewise linear
parts. In this case, TV introduces jumps that are not present in the true
solution, which is referred to as staircasing (Ring 2000). Examples of gener-
alizations of TV for addressing this drawback typically incorporate higher-
order derivatives, e.g. total generalized variation (TGV) (Bredies, Kunisch
and Pock 2011) and the infimal-convolution total variation (ICTV) model
(Chambolle and Lions 1997). These read as

Sα,β(f) := ICTVα,β(f)

= min
v∈W 1,1(Ω)
∇v∈BV (Ω)

{α‖Df −∇v‖M(Ω;R2) + β‖D∇v‖M(Ω;R2×2)}, (2.13)

and the second-order TGV (Bredies and Valkonen 2011, Bredies, Kunisch
and Valkonen 2013) reads as

Sα,β(f) := TGV2
α,β(f)

= min
w∈BD(Ω)

{α‖Df − w‖M(Ω;R2) + β‖Ew‖M(Ω;Sym2(R2))}. (2.14)

Here

BD(Ω) := {w ∈ L1(Ω;Rd) | ‖Ew‖M(Ω;Rd×d) <∞}

is the space of vector fields of bounded deformation on Ω with E denoting
the symmetrized gradient and Sym2(R2) the space of symmetric tensors of
order 2 with arguments in R2. The parameters α, β are fixed positive para-
meters. The main difference between (2.13) and (2.14) is that we do not
generally have w = ∇v for any function v. That results in some qualitative
differences of ICTV and TGV regularization: see e.g. Benning, Brune, Bur-
ger and Müller (2013). One may also consider Banach-space norms other
than TV, such as Besov norms (Lassas, Saksman and Siltanen 2009), which
behave more nicely with respect to discretization (see also Section 3.4). Dif-
ferent TV-type regularizers and their adaption to data by bilevel learning
of parameters (e.g. α and β in ICTV and TGV) will be discussed in more
detail in Section 4.3.1 and numerical results will be given in Section 7.2.
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Finally, in applied harmonic analysis, `p-norms of wavelets have been
proposed as regularizers (Daubechies et al. 1991, Mallat 2009, Unser and
Blu 2000, Kutyniok and Labate 2012, Eldar and Kutyniok 2012, Foucart
and Rauhut 2013). Other examples are non-local regularization (Gilboa
and Osher 2008, Buades, Coll and Morel 2005), anisotropic regularizers
(Weickert 1998) and, in the context of free discontinuity problems, the rep-
resentation of images as a composition of smooth parts separated by edges
(Blake and Zisserman 1987, Mumford and Shah 1989, Carriero, Leaci and
Tomarelli 1996).

2.7. Sparsity-promoting regularization

Sparsity is an important concept in conceiving inversion models as well
as learning parts of them. In what follows we review some of the main
approaches to computing sparse solutions, and postpone learning sparse
representations to Section 4.4.

2.7.1. Notions of sparsity
Let X be a separable Hilbert space, that is, we will assume that it has a
countable orthonormal basis. A popular approach to sparse reconstruction
uses the notion of a dictionary D := {φi} ⊂ X, whose elements are called
atoms. Here, D is either given, i.e. knowledge-driven, or data-driven and
derived from a set of realizations fi ∈ X: see Bruckstein, Donoho and Elad
(2009), Daubechies et al. (2004), Rubinstein, Bruckstein and Elad (2010),
Lanusse, Starck, Woiselle and Fadili (2014) and Chen and Needell (2016).

A special class of dictionaries is that of frames. A dictionary D := {φi} is
a frame if there exists C1, C2 > 0 such that

C1‖f‖2 ≤
∑
i

|〈f, φi〉|2 ≤ C2‖f‖2 for any f ∈ X. (2.15)

A frame is called tight if C1 = C2 = 1; it is called over-complete or redundant
if D does not form a basis for X. Redundant dictionaries, e.g. translation-
invariant wavelets, often work better than non-redundant dictionaries: see
Peyré, Bougleux and Cohen (2011) and Elad (2010).

To construct sparse representations, i.e. sparsity-promoting regularizers
from such a parametrization, we need the notions of an analysis and a
synthesis operator. Given a dictionary D, the analysis operator ED : X → Ξ
maps an element in X to a sequence in Ξ, which is typically in `2, such that

ξ = ED(f) ∈ Ξ has components ξi = 〈f, φi〉.

The corresponding synthesis operator E∗D : Ξ → X is the adjoint of the
analysis operator, that is,

E∗D(ξ) :=
∑
i

ξiφi. (2.16)
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We further define the frame operator as E∗D ◦ ED : X → X, that is,

E∗D ◦ ED(f) :=
∑
i

〈f, φi〉φi. (2.17)

Now, we can define an f ∈ X to be s-sparse with respect to D if

‖ ED(f)‖0 = #{i|〈f, φi〉 6= 0} ≤ s. (2.18)

In most applications, the model parameter is not sparse in the strict sense,
which leads to the weaker notion of compressibility. A model parameter
f ∈ X is compressible with respect to D if the following power decay law
holds:

|ξ̃k| ≤ Ck−1/q as k →∞ for some C > 0 and 0 < q < 1. (2.19)

Here, ξ̃ is a non-increasing rearrangement of the sequence ξ = {〈f, φi〉} =
ED(f). Note that sparse signals are compressible, and in particular, if q
is small in (2.19), then compressibility is equivalent to sparsity from any
practical viewpoint. We further define ξs to consist of the s largest (in

magnitude) coefficients of the sequence ξ̃.

2.7.2. Sparse recovery

Here we consider solving (2.1) when our prior model assumes ftrue to be
compressible with respect to a given dictionary D := {φi}. Then sparse
recovery of f can be done by either the synthesis approach (i.e. sparse cod-
ing) or the analysis approach. In the synthesis approach the reconstruction
operator Rθ is given as

Rθ(g) := E∗D(ξ̂), (2.20)

where

ξ̂ = arg min
ξ∈Ξ

{L(A(E∗D(ξ)), g) + λ‖ξ‖0},

with θ = {D, λ}, i.e. θ is the scalar λ > 0 and the entire dictionary that
defines the synthesis operator E∗D. In the corresponding analysis approach,
we get

Rθ(g) := arg min
f∈X

{L(A(f), g) + λ‖ ED(f)‖0}. (2.21)

If D is an orthonormal basis then synthesis and analysis formulations are
equivalent.

There are different strategies for numerically computing sparse represent-
ations that solve (2.20) and (2.21).

Greedy approaches. These build up an approximation in a greedy fash-
ion, computing one non-zero entry of ξ̂ at a time by making locally opti-
mal choices at each step. One example of a greedy approach is iterative
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(hard) thresholding (Blumensath and Davies 2008, Blumensath 2013, Fou-
cart 2016), where for an initial guess ξ(i0 and i = 0, 1, . . . one iterates

ξ(i+1) = Ts(ξ
(i) −A∗D(AD(ξ(i))− g)), (2.22)

where AD := A◦E∗D. Here, Ts(ξ) sets all but the largest (in magnitude)
s elements of ξ to zero. This is therefore a proximal-gradient method
with the proximal of the function being 0 at 0 and 1 everywhere else (see
Section 8.2.7). Other examples are matching pursuit (MP) (Mallat and
Zhang 1993), orthogonal matching pursuit (OMP) (Tropp and Gilbert 2007)
and variants thereof such as StOMP (Donoho, Tsaig, Drori and Starck
2012), ROMP (Needell and Vershynin 2009) and CoSamp (Needell and
Tropp 2009).

Convex relaxation. One of the most common approaches to solving sparse
recovery is to replace the `0-(semi)norm with the `1-norm in (2.20) and
(2.21). This leads to basis pursuit (Candès, Romberg and Tao 2006), also
called Lasso in the statistics literature (Tibshirani 1996). The optimiza-
tion literature for solving the resulting `1-type problems is vast. A few
examples are interior-point methods (Candès et al. 2006, Kim et al. 2007),
projected gradient methods (Figueiredo, Nowak and Wright 2007), iterative
soft thresholding (see Section 8.2.7) (Daubechies et al. 2004, Fornasier and
Rauhut 2008) and fast proximal gradient methods (FISTA and variants)
(Bubeck 2015), to name just a few.

Combinatorial algorithms. A third class of approaches for sparse cod-
ing is that of combinatorial algorithms. They are particularly suitable when
acquiring highly structured samples of the signal so that rapid reconstruc-
tion via group testing is efficient. This class of approaches includes Fourier
sampling, chaining pursuit and HHS pursuit (Berinde et al. 2008).

The above approaches for solving (2.20) and (2.21) all have their ad-
vantages and disadvantages. First of all, greedy methods will generally not
give the same solution as convex relaxation. However, if the restricted iso-
metry property (RIP) from Section 2.7.3 holds, then both approaches have
the same solution. Convex relaxation has the advantage that it succeeds
with a very small number of possibly noisy measurements. However, their
numerical solution tends to be computationally burdensome. Combinator-
ial algorithms, on the other hand, can be extremely fast (sublinear in the
length of the target signal) but they require a very specific structure of the
forward operator A and a large number of samples. The performance of
greedy methods falls in between those of convex relaxation and combinat-
orial algorithms in their run-time and sampling efficiency.
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2.7.3. Error estimates for sparse recovery

When the true model parameter is compressible, then it is possible to estim-
ate the error committed by performing sparse recovery. Such estimates have
been derived in the finite-dimensional setting when the matrix representing
the linear forward operator satisfies the RIP:

(1− εs)‖f‖22 ≤ ‖A(f)‖22 ≤ (1 + εs)‖f‖22 for all s-sparse f ∈ X, (2.23)

for sufficiently small εs > 0. Then we have the following error estimate for
sparse recovery.

Theorem 2.8 (Candès, Romberg and Tao 2006). Let A : Rn → Rm
be a linear mapping whose matrix satisfies the RIP. If g = A(ftrue)+e with
‖e‖ ≤ δ and

f̂δ := arg min
f∈X

‖f‖1 subject to ‖A(f)− g‖2 ≤ δ, (2.24)

then

‖f̂δ − ftrue‖2 ≤ C
[
δ +
‖ftrue − f (s)

true‖2√
s

]
. (2.25)

In the above, f
(s)
true ∈ Rn is a vector consisting of the s largest (in magnitude)

coefficients of ftrue and zeros otherwise.

Examples of matrices satisfying RIP are sub-Gaussian matrices and par-
tial bounded orthogonal matrices (Chen and Needell 2016). Theorem 2.8
states that the reconstruction error is at most proportional to the norm of

the noise in the data plus the tail ftrue−f (s)
true of the signal. Cohen, Dahmen

and DeVore (2009) show that this error bound is optimal (up to the precise
value of C). Moreover, if ftrue is s-sparse and δ = 0 (noise-free data), then
ftrue can be reconstructed exactly. Furthermore, if ftrue is compressible with
(2.19), then

‖f̂δ − ftrue‖2 ≤ C(δ + C ′s1/2−1/q). (2.26)

Finally, error estimates of the above type have been extended to the infinite-
dimensional setting in Adcock and Hansen (2016).

The choice of dictionary is clearly a central topic in sparsity-promoting
regularization and, as outlined in Section 4.4, the dictionary can be learned
beforehand or jointly alongside the signal recovery.

2.7.4. Error estimates for convex relaxation

Applying the convex relaxation to the analysis approach of (2.21) yields the
regularized Tikhonov functional

Rθ(g) := arg min
f∈X

{L(A(f), g) + λ‖ ED(f)‖p} (2.27)
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with 1 ≤ p < 2. In the context of ill-posed inverse problems this functional
was introduced and analysed in the ground-breaking paper by Daubechies
et al. (2004). We emphasize that this analysis holds in infinite-dimensional
function spaces, and does not depend on the finite-dimensional concepts
used in compressive sampling or finite-dimensional sparse recovery concepts.

Since then, this model has been studied intensively, and in particular the
case p = 1. Similar to Theorem 2.7, error estimates and regularizing proper-
ties, such as existence of minimizers, well-posedness, stability, convergence
rates and error estimates, have been obtained for linear and non-linear op-
erators: see e.g. Scherzer et al. (2009). Minimizers of this functional with
p = 1 are indeed sparse even if the true solution is not. Using the notion of
Bregman distances, such sparsity-promoting approaches have been extended
to rather general choices of data discrepancy and regularizers. For a more
complete introduction, see Chan and Shen (2006), Scherzer et al. (2009) and
Bredies et al. (2011) and the recent survey by Benning and Burger (2018,
Section 2).

3. Statistical regularization

Statistical regularization, and Bayesian inversion in particular, is a complete
statistical inferential methodology for inverse problems. It offers a rich set
of tools for incorporating data into the recovery of the model parameter,
so it is a natural framework to consider when data-driven approaches from
machine learning are to be used for solving ill-posed inverse problems.

A key element is to treat both the data and model parameter as real-
izations of certain random variables and phrase the inverse problem as a
statistical inference question. In contrast, the functional analytic viewpoint
(Section 2) allows for data to be interpreted as samples generated by a
random variable, but there are no statistical assumptions on the model
parameters.

Remark 3.1. In functional analytic regularization, a statistical model for
data is mostly used to justify the choice of data discrepancy in a variational
method and for selecting an appropriate regularization parameter. Within
functional analytic regularization, one can more carefully account for stat-
istical properties of data which can be useful for uncertainty quantification
(Bissantz, Hohage, Munk and Ruymgaart 2007).

Bayesian statistics offers a natural setting for such a quest since it is nat-
ural to interpret measured data in an inverse problem as a sample of a ran-
dom variable conditioned on data whose distribution is the data likelihood.
The data likelihood can often be derived using knowledge-driven modelling.
Solving an inverse problem can then be stated as finding the distribution
of the model parameter conditioned on data (posterior distribution). The
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posterior describes all possible solutions given measured data, so in par-
ticular it provides an estimate of the statistical uncertainty of the solution
that can be used for uncertainty quantification. Many of the challenges in
Bayesian inversion are associated with realizing these advantages without
having access to the full posterior. In particular, designing a ‘good’ prior
and to have a computationally feasible means for exploring the posterior
is essential for implementing and using Bayesian inversion. This, along
with investigating its regularizing properties, drives much of the research in
Bayesian inversion.

Motivated by the above, the focus of this brief survey is on Bayesian
inversion. As one would expect, the theory was first developed in the finite-
dimensional setting, i.e. when both model parameter and space and data
spaces are finite-dimensional. Important early developments were made in
the geophysics community (Tarantola and Valette 1982, Tarantola 2005),
which had a great impact in the field; see also Calvetti and Somersalo
(2017, Section 2) for a brief historical survey. Nice surveys of the finite-
dimensional theory are given in Kaipio and Somersalo (2005) and Calvetti
and Somersalo (2017), where many further references can be found.

Our focus is primarily on later developments that deal with Bayesian
inversion in the infinite-dimensional (non-parametric) setting. Early work in
this direction can be found in Mandelbaum (1984) and Lehtinen, Päivärinta
and Somersalo (1989). Our brief survey in Sections 3.1, 3.2.1 and 3.2.2 is
based on the excellent survey papers by Evans and Stark (2002), Stuart
(2010) and Dashti and Stuart (2017). The sections concerning convergence
(Section 3.2.3), convergence rates (Section 3.2.3) and characterization of the
Bayesian posterior (Section 3.2.5) are based on the excellent short survey
by Nickl (2017b).

3.1. Basic notions for Bayesian inversion

The vector spaces X and Y play the same role as in functional analytic reg-
ularization (Section 2), that is, elements in X represent model parameters
and elements in Y represent data. For technical reasons, we also assume
that both X and Y are separable Banach spaces. Both these spaces are also
equipped with a Borel σ-algebra, and we let PY and PY denote the class of
probability measures on X and Y , respectively. We also assume there exists
a (X × Y )-valued random variable (f,g) ∼ µ that is distributed according
to some joint law µ. Here, f generates elements in X (model parameters)
and g generates elements in Y (data).

Remark 3.2. In this setting, integrals over X and/or Y , which are needed
for defining expectation, are interpreted as a Bochner integral that extends
the Lebesgue integral to functions that take values in a Banach space. See
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Dashti and Stuart (2017, Section A.2) for a brief survey of Banach and
Hilbert space-valued random variables.

3.1.1. The data model

A key assumption is that the conditional distribution of (g | f = f) ∼ Πf
data

exists (data likelihood) under the joint law µ for any f ∈ X. This allows
us to define the data model, which is the statistical analogue of the forward
operator, as the following PY -valued mapping defined on X:

f 7→ Πf
data for any f ∈ X. (3.1)

Remark 3.3. The existence of regular conditional distributions can be
ensured under very general assumptions. In particular, let f be an X-
valued random variable and g a Y -valued random variable, where X is a
Polish space, i.e. a complete and separable metric space, and Y is a general
measurable space. Then there exists a regular conditional distribution of
the conditional random variable (f | g) (Kallenberg 2002, Theorem 6.3). In
particular, when both X and X are Polish spaces, then both (f | g) and
(g | f) exist.

The most common data model is the statistical analogue of (2.1) where
the model parameter is allowed to be a random variable (Kallenberg 2002,
Lemma 1.28 and Corollary 3.12):

g = A(f) + e. (3.2)

Here, A : X → Y is the same forward operator as in (2.1), which models
how data are generated in the absence of noise. Likewise, e ∼ Πnoise, with
Πnoise ∈PY known, is the random variable that generates the observation
noise. If e is independent from f, then (3.2) amounts to the data model

Πf
data = δA(f) ~ Πnoise = Πnoise( · −A(f)) for any f ∈ X, (3.3)

where ~ denotes convolution between measures.

Remark 3.4. Another common data model is when Πf
data is a Poisson

random measure on Y with mean equal to A(f) (Hohage and Werner 2016,
Streit 2010, Vardi et al. 1985, Besag and Green 1993). This is suitable
for modelling statistical properties of low-dose imaging data, such as data
that is measured in line of response PET (Kadrmas 2004, Calvetti and
Somersalo 2008, Section 3.2 of Natterer and Wübbeling 2001) and variants
of fluorescence microscopy (Hell, Schönle and Van den Bos 2007, Diaspro
et al. 2007).

3.1.2. The inverse problem

Following Evans and Stark (2002), a (statistical) inverse problem requires
us to perform the task of recovering the posterior given a single sample
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(measured data) from the data model with unknown true model parameter.
A more precise statement reads as follows.

Definition 3.5. A statistical inverse problem is the task of recovering the
conditional distribution Πg

post ∈ PY of (f | g = g) under µ from measured
data g ∈ Y , where

g is a single sample of (g | f = ftrue) ∼ Πftrue
data . (3.4)

Here ftrue ∈ X is unknown while f 7→ Πf
data, which describes how data are

generated, is known.

The conceptual difference that comes from adopting such a statistical
view brings with it several potential advantages. The posterior, assuming
it exists, describes all possible solutions, so recovering it represents a more
complete solution to the inverse problem than recovering an approximation
of ftrue, which is the goal in functional analytic regularization. This is
particularly the case when one seeks to quantify the uncertainty in the
recovered model parameter in terms of statistical properties of the data.
However, recovering the entire posterior is often not feasible, such as in
inverse problems that arise in imaging. As an alternative, one can settle
for exploring the posterior by computing suitable estimators (Section 3.3).
Some may serve as approximations of ftrue whereas others are designed for
quantifying the uncertainty.

3.1.3. Bayes’ theorem

A key part of solving the above inverse problem is to utilize a relation
between the unknown posterior that one seeks to recover and the known
data likelihood. Such a relation is given by Bayes’ theorem.

A very general formulation of Bayes’ theorem is given by Schervish (1995,
Theorem 1.31). For simplicity we consider the formulation that holds for the
special case where the data likelihood is given as in (3.2), with A : X → Y a
measurable map. Assume furthermore that f ∼ Πprior and e ∼ Πnoise, with
e independent of f. Then the data model is given as in (3.3), that is, at f
it yields the translate of Πnoise by A(f).

Assume next that Πf
data � Πnoise (i.e. Πf

data is absolutely continuous with
respect to Πnoise) Πnoise-almost surely for all f ∈ X, so there exists some
measurable map Φ: X × Y → R (potential) such that

dΠf
data

dΠnoise
(g) = exp(−L(f, g)) for all f ∈ X. (3.5)

with

Eg∼Πnoise [exp(−L(f,g))] = 1.
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The mapping f 7→ −L(f, g) is called the (data) log-likelihood for the data
g ∈ Y .

Remark 3.6. The equality for the Radon–Nikodym derivative in (3.5)
means that

E
g∼Πfdata

[F (g)] = Eg∼Πnoise [exp(−L(f,g))F (g)]

holds for any measurable F : Y → R.

Finally, assume L is µ0-measurable, where µ0 := Πprior ⊗Πnoise and µ�
µ0, which means in particular that the joint law (f,g) ∼ µ can be written
as

dµ

dµ0
(f, g) = exp(−L(f, g)) for (f, g) ∈ X × Y .

Bearing in mind the above assumptions, we can now state Bayes’ theorem
(Dashti and Stuart 2017, Theorem 14), which expresses the posterior in
terms of the data likelihood and the prior.

Theorem 3.7 (Bayes’ theorem). The normalization constant Z : Y →
R is defined by

Z(g) := Ef∼Πprior
[exp(−L(f, g))] (3.6)

and we assume Z(g) > 0 holds Πnoise-almost surely for g ∈ Y . Then the
posterior Πg

post, which is the conditional distribution of (f | g = g), exists

under µ and it is absolutely continuous with respect to the prior, i.e. Πg
post �

Πprior. Furthermore,

dΠg
post

dΠprior
(f) =

1

Z(g)
exp(−L(f, g)) (3.7)

holds µ0-almost surely for (f, g) ∈ X × Y .

Bayes’ theorem is the basis for Bayesian inversion, where one seeks to
solve the statistical inverse problem assuming access to both a prior and a
data likelihood, whereas ftrue ∈ X remains unknown. The data likelihood is
given by the data model, which is in turn derived from knowledge about how
data are generated. The choice of prior, however, is more subtle: it needs
to act as a regularizer, and ideally it also encodes subjective prior beliefs
about the unknown model parameter ftrue by giving high probability to
model parameters similar to ftrue and low probability to other ‘unnatural’
model parameters. A brief survey of hand-crafted priors is provided in
Section 3.4.

3.2. Regularization theory for Bayesian inversion

In functional analytic regularization, existence, stability and convergence
are necessary if a reconstruction method is to be a regularization (see
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Section 2.4). Moreover, a mathematical analysis also seeks to provide con-
vergence rates and stability estimates. There is an ongoing effort to develop
a similar theory for Bayesian inversion.

Methods for functional analytic regularization of ill-posed inverse prob-
lems typically regularize by a variational procedure or a spectral cut-off.
In Bayesian inversion, regularization is mainly through the choice of an
appropriate prior distribution. Since many different priors can serve as reg-
ularizers, a large portion of the theory seeks to characterize properties of
Bayesian inversion methods that are independent of the prior. Much of the
analysis in Sections 3.2.3–3.2.5 is therefore performed in the large-sample or
small-noise limit, and under the assumption that data g is generated from
(g | f = f) where f = ftrue (the true model parameter), instead of having
f as a random sample of f ∼ Πprior (prior).

Remark 3.8. The parametric setting refers to the case when the dimen-
sions of X and Y are finite. In this context, a large-sample limit refers to an
asymptotic analysis performed when the dimension of X is kept fixed and
independent of the dimension of Y (sample size), which is allowed to grow.
In the non-parametric setting, either both Y and X are infinite-dimensional
from the outset, or one lets the dimension of X increase as the dimension
of Y (sample size) increases.

3.2.1. Existence
Existence for Bayesian inversion follows when Bayes’ theorem holds. Below
we state the precise existence theorem (Dashti and Stuart 2017, Theorem 16)
for the setting in Section 3.1.3, which covers the case when model parameter
and data spaces are infinite-dimensional separable Banach spaces.

Theorem 3.9 (existence for Bayes inversion). Assume that L : X ×
Y → R in (3.5) is continuously differentiable on some X ′ ⊂ X that contains
the support of the prior Πprior and Πprior(X

′⋂B) > 0 for some bounded
set B ⊂ X. Also, assume there exists mappings M1,M2 : R+ × R+ → R+

that are component-wise monotone, non-decreasing and where the following
holds:

−L(f, g) ≤M1(r, ‖f‖),
|L(f, g)− L(f, v)| ≤M2(r, ‖f‖)‖g − v‖

(3.8)

for f ∈ X and g, v ∈ Br(0) ⊂ Y . Then, Z in (3.6) is finite, i.e. 0 < Z(g) <∞
for any g ∈ Y , and the posterior given by (3.7) yields a well-defined PX -
valued mapping on Y : g 7→ Πg

post.

Under certain circumstances it is possible to work with improper priors
on X, for example by computing posterior distributions that approximate
the posteriors one would have obtained using proper conjugate priors whose
extreme values coincide with the improper prior.
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3.2.2. Stability

One can show that small changes in the data lead to small changes in the
posterior distribution (in Hellinger metric) on PX . The precise formulation
given by Dashti and Stuart (2017, Theorem 16) reads as follows.

Theorem 3.10 (stability for Bayes inversion). Let the assumptions
in Theorem 3.9 and assume in addition that

f 7→ exp(M1(r, ‖f‖))(1 +M2(r, ‖f‖))2 is Πprior-integrable on X (3.9)

for some fixed r > 0. Then

dH(Πg
post,Π

v
post) ≤ C(r)‖g + v‖

for some C(r) > 0 and g, v ∈ Br(0) ⊂ Y . In the above, dH : PX ×PX → R
is the Hellinger metric (see Dashti and Stuart 2017, Definition 4).

Theorem 3.10 holds in particular when the negative log-likelihood of data
is locally Hölder-continuous, which is the case for many standard probab-
ility distribution functions, for example when the negative log-likelihood is
continuously differentiable.

By Theorem 3.10 the posterior is Lipschitz in the data with respect to
the Hellinger metric, so rephrasing the inverse problem as the task of recov-
ering the posterior instead of a model parameter acts as a regularization of
an inverse problem that is ill-posed in the functional analytic sense. Note,
however, that the above does not automatically imply that a particular es-
timator is continuous with respect to data. However, the Hellinger distance
possesses the convenient property that continuity with respect to this metric
implies the continuity of moments. Hence, a corollary to Theorem 3.10 is
that posterior moments, such as the mean and covariance, are continuous
(Sprungk 2017, Corollary 3.23), that is, these estimators are regularizing.

As a final note, one can also show that small changes in the data log-
likelihood L in (3.5) lead to small changes in the posterior distribution,
again in the Hellinger metric (Dashti and Stuart 2017, Theorem 18). This
enables one to translate errors arising from inaccurate forward operator into
errors in the Bayesian solution of the inverse problem, a topic that is also
considered in Section 6.2.

3.2.3. Convergence

Posterior consistency is the Bayesian analogue of the notion of convergence
in functional analytic regularization. More precisely, the requirement is that
the posterior Πg

post, where g is a sample of (g | f = ftrue), concentrates in any
small neighbourhood of the true model parameter ftrue ∈ X as information
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in data g increases indefinitely.1 Intuitively, this means our knowledge about
the model parameter becomes more accurate and precise as the amount of
data increases indefinitely.

In the finite-dimensional setting, consistency of the posterior holds if and
only if ftrue ∈ X is contained in the support of the prior Πprior (Freedman
1963, Schwartz 1965) (provided the posterior is smooth with respect to the
model parameter).

The situation is vastly more complex in the infinite-dimensional (non-
parametric) setting. It is known that the posterior is consistent at every
model parameter except possibly on a set of measure zero (Doob 1948,
Breiman, Le Cam and Schwartz 1965), that is, Bayesian inversion is al-
most always consistent in the measure-theoretic sense. However, the situ-
ation changes if ‘smallness’ is measured in a topological sense, as shown
by a classical counter-example in Freedman (1963) involving the simplest
non-parametric problem where consistency fails. This is not a patholo-
gical counter-example: it is a generic property in the sense that most pri-
ors are ‘bad’ in a topological sense (Freedman 1965). In fact, consistency
may fail for non-parametric models for very natural priors satisfying the
support condition, which means even an infinite amount of data may not
be sufficient to ‘correct’ for errors introduced by a prior. Hence, unlike
the finite-dimensional setting, many priors do not ‘wash out’ as the in-
formation in the data increases indefinitely, so the prior may have a large
influence on the corresponding posterior even in the asymptotic setting.
Examples of posterior consistency results for Bayesian inversion are given
in Ghosal, Ghosh and Ramamoorthi (1999), Ghosal, Ghosh and van der
Vaart (2000), Neubauer and Pikkarainen (2008), Bochkina (2013), Aga-
piou, Larsson and Stuart (2013), Stuart and Teckentrup (2018), Kekkonen,
Lassas and Siltanen (2016) and Kleijn and Zhao (2018).

To summarize, there are many reasonable priors for which posterior con-
sistency holds at every point of the model parameter space X. A general
class of such ‘good’ priors is that of tail-free priors (Freedman 1963) and
neutral-to-the-right priors (Doksum 1974); see also Le Cam (1986, Sec-
tion 17.7). The fact that there are too many ‘bad’ priors may therefore
not be such a serious concern since there are also enough good priors ap-
proximating any given subjective belief. It is therefore important to have
general results providing sufficient conditions for the consistency given a
pair of model parameter and prior as developed, and Schwartz (1965) is an
example in this direction.

1 Increasing the ‘information in data indefinitely’ means e→ 0 in (3.2), and if the data
space Y is finite-dimensional, one also lets its dimension (sample size) increase. See
Ghosal and van der Vaart (2017, Definition 6.1) for the precise definition.
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3.2.4. Convergence rates

Posterior consistency is a weak property shared by many different choices
of priors. More insight into the performance of Bayesian inversion under
the choice of different priors requires characterizing other properties of the
posterior, such as quantifying how quickly it converges to the true solution
as the observational noise goes to 0. This leads to results about contrac-
tion rates, which is the Bayesian analogue of convergence rate theorems in
functional analytic regularization.

Formally, consider the setting in (3.2) where the observational noise tends
to zero as some scalar δ → 0, that is, for some fixed ftrue ∈ X we have

g = A(ftrue) + eδ where ‖eδ‖ → 0 as δ → 0. (3.10)

A contraction rate theorem seeks to find the base rate for ε(δ) → 0 such
that

Πgδ

post({f ∈ X : `X(f, ftrue) ≥ ε(δ)})→ 0

Πg0
post-almost surely as ε→ 0. Here, gδ ∈ Y is a single sample of g in (3.10),

g0 = A(ftrue) is the corresponding ideal data, {Πδ
prior}δ ⊂PX is a sequence

of prior distributions with f ∼ Πδ
prior, and `X : X × X → R is a (meas-

urable) distance function on X. Research in this area has mainly focused
on (a) obtaining contraction rates for Bayesian inversion where the prior is
from some large class, or (b) improving the rates by changing the paramet-
ers of the prior depending on the level of noise (and even the data). Most
of the work is done for additive observational white Gaussian noise, that is,
the setting in (3.10) with eδ = δW, where W is a centred Gaussian white
noise process that can be defined by its action on a separable Hilbert space
Y . See Dashti and Stuart (2017, Sections A.3 and A.4) for a survey related
to Gaussian measures and Wiener processes on separable Banach spaces.

As one might expect, initial results were for linear forward operators.
The first results restricted attention to conjugate priors where the pos-
terior has an explicit expression (it is in the same family as the prior)
(Liese and Miescke 2008, Section 1.2). However, Bayesian non-parametric
statistics often carries over to the inverse setting via the singular value
decomposition of the linear forward operator. This allowed one to prove
contraction rate results for Bayesian inversion with non-conjugate priors
(Knapik, van der Vaart and van Zanten 2011, Knapik, van der Vaart and
van Zanten 2013, Ray 2013, Agapiou et al. 2013, Agapiou, Stuart and
Zhang 2014). In particular, if the Gaussian prior is non-diagonal for the
singular value decomposition (SVD), then the posterior is still Gaussian
and its contraction rate will be driven by the convergence rate of its pos-
terior mean (since the variance does not depend on the data). Furthermore,
in the linear setting, the posterior mean is the MAP, so the convergence
rate of the MAP will be a posterior contraction rate.
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Unfortunately, not many of the methods developed for proving contrac-
tion rates in the linear setting carry over to proving contraction rates for
general, non-linear, inverse problems. A specific difficulty in the Bayesian
setting is that the noise term often does not take values in the natural range
of the forward operator. For example, consider the data model in (3.3) with
observational white Gaussian noise, i.e. (3.10) with eδ = δW, where W is a
centred Gaussian white noise process that can be defined by its action on a
separable Hilbert space Y . If we have a non-linear forward operator A given
as the solution operator to an elliptic PDE, then the noise process W does
not define a proper random element in Y = L2(M) for M ⊂ Rd: instead
it defines a random variable only in a negative Sobolev space W−β with
β > d/2. Nevertheless, there are also some results in the non-linear set-
ting: for example, Kekkonen et al. (2016) derive contraction rate results for
Bayesian inversion of inverse problems under Gaussian conjugate priors and
where the forward operator is a linear hypoelliptic pseudodifferential oper-
ator. Recent developments that make use of techniques from concentration
of measure theory have resulted in contraction rate theorems outside the
conjugate setting. For example, Nickl and Söhl (2017) and Nickl (2017a)
derive contraction rates for Bayesian inversion for parameter estimation
involving certain classes of elliptic PDEs that are minimax-optimal in pre-
diction loss: see e.g. Nickl (2017a, Theorem 28) for an example of a general
contraction theorem. The case of a (possibly) non-linear forward operator
and a Gaussian prior is considered in Nickl, van de Geer and Wang (2018),
which studies properties of the MAP estimator. Finally, Gugushvili, van der
Vaart and Yan (2018) derive contraction rates for ‘general’ priors expressed
by scales of smoothness classes. The precise conditions are checked only for
an elliptic example: it is not clear whether it works in other examples, such
as the ray transform.

Remark 3.11. The proof techniques used for obtaining contraction rates
in the non-linear setting depend on stability estimates for the forward prob-
lem that allow us to control ‖f − h‖ in terms of ‖A(f) − A(h)‖ in some
suitable norm, and a dual form of the usual regularity estimates for solu-
tions of PDEs that encodes the (functional analytic) ill-posedness of the
problem. With estimates, one can use methods from non-parametric stat-
istics to prove contraction rates for Bayesian inversion, with priors that do
not require identifying a singular value-type basis underlying the forward
operator.

3.2.5. Characterization of the posterior for uncertainty quantification

Posterior consistency and contraction rates are relevant results, but assess-
ing the performance of Bayesian inversion methods in uncertainty quanti-
fication requires a more precise characterization of the posterior. The aim

https://doi.org/10.1017/S0962492919000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492919000059


32 S. Arridge, P. Maass, O. Öktem and C.-B. Schönlieb

is to characterize the fluctuations of (f | g = g) near ftrue when scaled by
some inverse contraction rate.

One approach is to derive Bernstein–von Mises type theorems, which
characterize the posterior distribution in terms of a canonical Gaussian dis-
tribution in the small-noise or large-sample limit. To better illustrate the
role of such theorems, we consider the special case with Gaussian prior on
the Hilbert space X and observational noise eδ = δW in (3.10) (white noise
model) where W denotes a Gaussian white noise process in the Hilbert space
Y , that is,

gδ = A(ftrue) + δW.

Many of the results on contraction rates (Section 3.2.4) for Bayesian inver-
sion in this setting are obtained for the distance function induced by the
L2-norm, so it is natural to initially consider the statistical fluctuations in
L2 of the random variable

zδ :=
1

εδ
(E[f | g = gδ]− ftrue).

Now, it turns out that there is no Bernstein–von Mises type asymptotics for
zδ as the noise level δ tends to zero, that is, there is no Gaussian process
(G(φ))φ∈C∞ such that(

1

δ
〈zδ − E[zδ], φ〉L2

)
φ∈C∞

→ (G(φ))φ∈C∞ weakly as δ → 0. (3.11)

To sidestep this difficulty, Castillo and Nickl (2013, 2014) seek to determine
maximal families Ψ that replace C∞ in (3.11) and where such an asymp-
totic characterization holds. This leads to non-parametric Bernstein–von
Mises theorems, and while Castillo and Nickl (2013, 2014) considered ‘direct’
problems in non-parametric regression and probability density estimation,
recent papers have obtained non-parametric Bernstein–von Mises theorems
for certain classes of inverse problems. For example, Monard, Nickl and
Paternain (2019) consider the case of inverting the (generalized) ray trans-
form, whereas Nickl (2017a) considers PDE parameter estimation problems.
The case with general linear forward problem is treated by Giordano and
Kekkonen (2018), who build upon the techniques of Monard et al. (2019).

To give a flavour of the type of results obtained, we consider Theorem 2.5
of Monard et al. (2019), which is relevant to tomographic inverse problems
involving inversion of the ray transform for recovering a function (images)
defined on Ω ⊂ Rd, i.e. X ⊂ L2(Ω). This theorem states that

1

δ
〈(f | g = gδ)− E[f|g = gδ], φ〉L2 → N(0, ‖A◦(A∗ ◦A)−1(φ)‖Y ) (3.12)

as δ → 0 for any φ ∈ C∞(Ω).
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The convergence is in Πprior-probability and the Y -norm on the right-
hand side is a natural L2-norm on the range of the ray transform. The
limiting covariance is also shown to be minimal, that is, it attains the semi-
parametric Cramér–Rao lower bound (or ‘inverse Fisher information’) for
estimating 〈f, φ〉L2 near ftrue. A key step in the proof is to show smoothness
of the ‘Fisher information’ operator (A∗ ◦A)−1 : X → X, which is done us-
ing techniques from microlocal analysis (Monard et al. 2019, Theorem 2.2).
The existence and mapping properties of this inverse Fisher information op-
erator in (3.12) also plays a crucial role in proving that Bernstein–von Mises
theorem for other inverse problems. For those with a non-linear forward op-
erator, the information operator to be inverted is found after linearization
as shown in Nickl (2017a) for parameter estimation in an elliptic PDE.

Relevance to applications. For large-scale problems, such as those arising
in imaging, it is computationally challenging to even explore the posterior
beyond computing point estimators (Section 3.5). This holds in particular
for the task of computing Bayesian credible sets, which are relevant for
uncertainty quantification. Hence, the theoretical results in Section 3.2.5
can be of interest in practical applications, since these provide good analytic
approximations of the posterior that are much simpler to compute.

In particular, if a Bernstein–von Mises theorem holds, then the Bayesian
and maximum likelihood estimators have the same asymptotic properties
and the influence of the prior diminishes asymptotically as information in
the data increases. Then, Bayesian credible sets are asymptotically equi-
valent to frequentist confidence regions,2 so Bayesian inversion with 95%
posterior credibility will have approximately 0.95 chance of returning the
correct decision in repeated trials.

Many of the results, however, assume a Gaussian prior and data likeli-
hood: for non-Gaussian problems in an infinite-dimensional setting the
structure of the posterior can be very chaotic and difficult to character-
ize. Furthermore, the issue with any such asymptotic characterization of
the posterior is that it is based on increasing information in data indefin-
itely. In reality data are fixed, and it is quite possible that the posterior is
(very) non-normal and possibly multi-modal even though it behaves asymp-
totically like a Gaussian (or more generally the sampling distribution of a
maximum likelihood estimator). Hence, a regularizing prior that provides
‘best’ contraction rates may not necessarily be the best when it comes to im-
age quality for data with a given noise level. Here one would need to consider
a prior that acts as more than just a regularizer. Finally, the assumptions

2 A Bayesian credible set is a subset of the model parameter space X that contains a
predefined fraction, say 95%, of the posterior mass. A frequentist confidence region
is a subset of X that includes the unknown true model parameter with a predefined
frequency as the experiment is repeated indefinitely.
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of the Bernstein–von Mises theorem are fragile and easy to violate for a
dataset or analysis, and it is difficult to know, without outside information,
when this will occur. As nicely outlined in Nickl (2013, Section 2.25), the
parametric (finite-dimensional) setting already requires many assumptions,
such as a consistent maximum likelihood estimator, a true model parameter
in the support of the prior, and a log-likelihood that is sufficiently regular.
For example, data in an inverse problem are observational, and therefore it
is unlikely that an estimator of ftrue, such as maximum likelihood or the
posterior mean, is consistent, in which case a Bernstein–von Mises theorem
does not apply.

3.3. Reconstruction method as a point estimator

In most large-scale inverse problems it is computationally very challenging,
if not impossible, to recover the entire posterior. However, a reconstruc-
tion method that seeks to compute an estimator for the posterior formally
defines a mapping R : Y → X (reconstruction operator). As such, it can
be viewed as non-randomized decision rule (point estimator) in a statist-
ical estimation problem: see Liese and Miescke (2008, Definition 3.1) for
the formal definition. Computing a suitable point estimator is therefore an
alternative to seeking to recover the posterior.

In the infinite-dimensional setting, the benefits of using one estimator
rather than another (e.g. the conditional mean estimate rather than the
MAP estimate) are not well understood. Statistical decision theory provides
criteria for selecting and comparing decision rules, which can be used when
selecting the estimator (reconstruction method). This requires phrasing the
inverse problem as a statistical decision problem. More precisely, the tuple

((Y,SY ), {Πf
data}f∈X) defines a statistical model which is parametrized by

the Banach space X. The inverse problem is now a statistical decision
problem (Liese and Miescke 2008, Definition 3.4) where the statistical model
is parametrized by X, the decision space is D := X, and a given loss
function:

`X : X ×X → R. (3.13)

The loss function is used to define the risk, which is given as the Πf
data-

expectation of the loss function. The risk seeks to quantify the downside
that comes with using a particular reconstruction operator R : Y → X.

3.3.1. Some point estimators
Here we briefly define the most common point estimators that are com-
monly considered in solving many inverse problems. Overall, estimators
that include an integration over X are computationally demanding. These
include the conditional mean and many estimators associated with uncer-
tainty quantification.
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Maximum likelihood estimator. This estimator maximizes the data likeli-
hood. Under the data model in (3.5), the (maximum likelihood) recon-
struction operator R : Y → X becomes

R(g) ∈ arg max
f∈X

{exp(−L(f, g))} = arg min
f∈X

L(f, g).

The advantage of the maximum likelihood estimator is that it does not in-
volve any integration over X, so it is computationally feasible to use on
large-scale problems. Furthermore, it only requires access to the data likeli-
hood (no need to specify a prior), which is known. On the other hand, it
does not act as a regularizer, so it is not suitable for ill-posed problems.

Maximum a posteriori (MAP) estimator. This estimator maximizes the pos-
terior probability, that is, it is the ‘most likely’ model parameter given
measured data g. In the finite-dimensional setting, the prior and posterior
distribution can typically be described by densities with respect to the Le-
besgue measure, and the MAP estimator is defined as the reconstruction
operator R : Y → X given by

R(g) := arg max
f∈X

πpost(f | g) = arg min
f∈X

{L(f, g)− log πprior(f)}.

The second equality above assumes a data model as in (3.5).
For many of the infinite-dimensional spaces there exists no analogue of

the Lebesgue measure, which makes it difficult to define a MAP estimator
through densities. One way to work around this technical problem is to
replace the Lebesgue measure with a Gaussian measure on X. Hence, we
assume the posterior and prior have densities with respect to some fixed
centred (mean-zero) Gaussian measure µ0 and E denotes its Cameron–
Martin space.3 Now, following Dashti, Law, Stuart and Voss (2013), we
consider the centre of a small ball in X with maximal probability, and then
study the limit of this centre as the radius of the ball shrinks to zero. Stated
precisely, given fixed data g ∈ Y , assume there is a functional J : E → R
that satisfies

lim
r→0

Πg
post(Br(f1))

Πg
post(Br(f2))

= exp(J (f1)− J (f2)).

Here, Br(f) ⊂ X is the open ball of radius r > 0 centred at f ∈ X and J
is the Onsager–Machlup functional (Ikeda and Watanabe 1989, p. 533).

3 The Cameron–Martin space E associated with Π ∈PX consists of elements f ∈ X such
that δf~Π� Π, that is, the translated measure B 7→ Π(B−f) is absolutely continuous
with respect to Π. The Cameron–Martin space is fundamental when dealing with the
differential structure in X, mainly in connection with integration by parts formulas,
and it inherits a natural Hilbert space structure from the space X∗.
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For any fixed f1 ∈ X, a model parameter f2 ∈ X for which the above
limit is maximal is a natural candidate for the MAP estimator and is clearly
given by minimizers of the Onsager–Machlup functional. The advantage
of the MAP estimator is that it does not involve any integration over X.
Furthermore, the prior often acts as a regularizer, so MAP can be useful
for solving an ill-posed inverse problem. A disadvantage is that a MAP
may not always exist (Section 3.3.2): one needs to provide an explicit prior,
and many priors result in a non-smooth optimization problem. Due to the
latter, MAP estimation is computationally more challenging than maximum
likelihood estimation.

Conditional (posterior) mean. The reconstruction operator R : Y → X is
here defined as

R(g) := E[f | g = g] =

∫
X
f dΠg

post(f).

This estimator involves integration over X, making it challenging to use
on even small- to mid-scale problems. It also assumes access to the pos-
terior, which in turn requires a prior. It does, however, act as a regularizer
(Sprungk 2017, Corollary 3.23) and therefore it is suitable for ill-posed prob-
lems.

Bayes estimator. One starts by specifying a function `X : X ×X → R that
quantifies proximity inX (it does not have to be a metric). Then, a Bayes es-
timator minimizes the expected loss with respect to the prior Πprior, that is,
R : Y → X is defined as

R(g) := R̂(g), where R̂ ∈ arg min
R : Y→X

E(f,g)∼µ[`X(R(g), f)]. (3.14)

This estimator is challenging to compute even for small- to mid-scale prob-
lems, due to the integration over X × Y and the minimization over all non-
randomized decision rules. It also requires access to the joint distribution µ,

which by the law of total probability is expressible as µ = Πprior⊗Πf
data with

known data likelihood Πf
data. An important property of the Bayes estimator

is that it is a regularizer, so it is suitable for ill-posed problems. It is also
equivalent to the conditional mean when the loss is taken as the square of
the L2-norm (Helin and Burger 2015) and the conditional median when the
loss is the L1-norm. Furthermore, Theorem 1 of Burger and Lucka (2014)
shows that a MAP estimator with a Gibbs-type prior where the energy func-
tional is Lipschitz-continuous and convex equals a Bayes estimator where
the loss is the Bregman distance of the aforementioned energy functional.
Finally, in the finite-dimensional setting, one can show (Banerjee, Guo and
Wang 2005) that the Bayes estimator is the same as the conditional mean

https://doi.org/10.1017/S0962492919000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492919000059


Solving inverse problems using data-driven models 37

if and only if `X is the Bregman distance of a strictly convex non-negative
differentiable functional.4

Other estimators. Another important family of estimators in statistical de-
cision theory is that of minimax estimators that minimize the maximum loss.
Estimators for uncertainty quantification typically involve higher-order mo-
ments, such as the variance, or interval estimators that are given as a set of
points in the model parameter space X.

3.3.2. Relation to functional analytic regularization

It is quite common to interpret a variational method as in (2.7) as a MAP
estimators. This is especially the case when one chooses the data discrep-
ancy L so that minimizing f 7→ L(A(f), g) corresponds to computing a
maximum likelihood estimator.

Such an interpretation is almost always possible in the finite-dimensional
setting since, as mentioned in Definition 2.2, the regularization functional Sθ
can be interpreted as a Gibbs-type prior ρprior(f) ∝ exp(−Sθ(f)) (Kaipio
and Somersalo 2005) where ρprior is the density for the prior. The situation is
more complicated in the infinite-dimensional setting since a MAP estimator
does not always exist, and if it exists then there is no general scheme for
connecting the topological description of a MAP estimate to a variational
problem. The main reason is that the posterior no longer has a natural
density representation, which significantly complicates the definition and
study of the underlying conditional probabilities.

Assume the prior measure is specified by a Gaussian random field, and
the likelihood satisfies conditions in Theorem 3.9 that are necessary for the
existence of a well-posed posterior measure. Then the MAP estimator is
well-defined as the minimizer of an Onsager–Machlup functional defined on
the Cameron–Martin space of the prior. If one has Gaussian noise, then this
becomes a least-squares functional penalized by a regularization functional
that is the Cameron–Martin norm of the Gaussian prior (Dashti et al. 2013);
see also Dashti and Stuart (2017, Section 4.3). To handle the case with
non-Gaussian priors, Helin and Burger (2015) introduce the notion of weak
MAP estimate (wMAP) and show that a wMAP estimate can be connected
to a variational formulation also for non-Gaussian priors. Furthermore, any
MAP estimate in the sense of Dashti et al. (2013) is a wMAP estimate,
so this is a generalization in the strict sense. The wMAP approach, how-
ever, fails when the prior does not admit continuous densities. In order to
handle this, Clason, Helin, Kretschmann and Piiroinen (2018) introduce the
notion of a generalized mode of a probability measure (Clason et al. 2018,
Definition 2.3) and define a (generalized) MAP estimator as a generalized

4 The Bregman distance for x 7→ 〈x, x〉 gives the L2-loss.
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mode of the posterior measure. Generalized MAP reduces to the classical
MAP in certain situations that include Gaussian priors but the former also
exist for a more general class of priors, such as uniform priors. The main
result in Clason et al. (2018) is that one can characterize a generalized MAP
estimator as a minimizer of an Onsager–Machlup functional even in cases
when the prior does not admit a continuous density.

As a final remark, while a MAP estimate with a Gaussian noise model
does lead to an optimization problem with a quadratic data-fidelity term,
Gribonval and Nikolova (2018) show via explicit examples that the con-
verse is not true. They characterize those data models of the type in (3.2)
where Bayes estimators can be expressed as the solution of a penalized least-
squares optimization problem. One example is denoising in the presence of
additive Gaussian noise and an arbitrary prior; another is a data model with
(a variant of) Poisson noise and any prior probability on the unknowns. In
these cases, the variational approach is rich enough to build all possible
Bayes estimators via a well-chosen penalty.

3.4. Explicit priors

The choice of prior is important in Bayesian inversion, and much of the work
has focused on characterizing families of priors that ensure posterior consist-
ency holds and for which there are good convergence rates (Section 3.2.3).

From the general Bayesian statistics literature, much effort has gone into
characterizing robust priors. These have limited influence (in the asymptotic
regime) on the posterior (Bayesian robustness), and such non-informative
priors are useful for Bayesian inversion when there is not enough inform-
ation to choose a prior for the unknown model parameter, or when the
information available is not easily translated into a probabilistic statement:
see Berger (1985, Section 4.7.9) and Calvetti and Somersalo (2017). For
example, hierarchical priors tend to be robust (Berger 1985, Section 4.7.9).
Another class is that of conjugate priors, which are desirable from a compu-
tational perspective (Section 3.5.2) since they have tails that are typically
of the same form as the likelihood function. Conjugate priors also remain
influential when the likelihood function is concentrated in the (prior) tail, so
natural conjugate priors are therefore not necessarily robust (Berger 1985,
Section 4.7).

Priors on digitized images. A wide range of priors for Bayesian inversion
have been suggested when the unknown model parameter represents a di-
gitized image, the latter given by a real-valued function in some suitable
class defined on a domain Ω ⊂ Rn.

One such class is that of smoothness priors, which reflect the belief that
values of the model parameter at a point are close to the average of its values
in a neighbourhood of that point. Another is structural priors, which allow
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for more abrupt (discontinuous) changes in the values of the unknown model
parameter at specific locations. Yet another is sparsity-promoting priors (see
Section 2.7), which encode the a priori belief that the unknown model para-
meter is compressible with respect to some underlying dictionary, that is,
it can be transformed into a linear combination of dictionary elements where
most coefficients vanish (or are small). Finally, there are hierarchical priors
which are formed by combining other priors hierarchically into an overall
prior. This is typically done in a two-step process where one first specifies
some underlying priors, often taken as natural conjugate priors, and then
mixes them in a second stage over hyper-parameters. Recently, Calvetti,
Somersalo and Strang (2019) have reformulated the question of sparse re-
covery as an inverse problem in the Bayesian framework, and expressed the
sparsity criteria by means of a hierarchical prior mode. More information
and further examples of priors in the finite-dimensional setting are given
by Kaipio and Somersalo (2005), Calvetti and Somersalo (2008, 2017) and
Calvetti et al. (2019).

Priors on function spaces. Defining priors when X is an infinite-dimensional
function space is somewhat involved. A common approach is to consider a
convergent series expansion and then let the coefficients be generated by a
random variable.

More precisely, consider the case when X is a Banach space of real-valued
functions on some fixed domain Ω ⊂ Rd. Following Dashti and Stuart (2017,
Section 2.1), let {φi}i ⊂ X be a countable sequence whose elements are
normalized, i.e. ‖φi‖X = 1. Now consider model parameters f ∈ X of the
form

f = f0 +
∑
i

αiφi,

where f0 ∈ X is not necessarily normalized to 1. A probability distribution
on the coefficients αi renders a real-valued random function on Ω: simply
define the deterministic sequence {γi}i ⊂ R and the i.i.d. random sequence
{ξi}i ⊂ R and set αi = γiξi. This generates a probability measure Πprior on
X by taking the pushforward of the measure on the i.i.d. random sequence
{ξi}i ⊂ R under the map which takes the sequence into the random function.

Using the above technique, one can construct a uniform prior that can
be shown to generate random functions that are all contained in a subset
X ⊂ L∞(Ω), which can be characterized (Dashti and Stuart 2017, The-
orem 2). It is likewise possible to define Gaussian priors where the random
function exists as an L2 limit in Sobolev spaces of sufficient smoothness
(Dashti and Stuart 2017, Theorem 8). For imaging applications, much
effort has been devoted to constructing edge-preserving priors. An obvi-
ous candidate is the TV-prior, but it is not ‘discretization-invariant’ as its
edge-preserving property is lost when the discretization becomes finer. This
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prompted the development of other edge-preserving priors, such as Besov
space priors, which are discretization-invariant (Lassas et al. 2009, Koleh-
mainen, Lassas, Niinimäki and Siltanen 2012). See also Dashti and Stuart
(2017, Theorem 5), which characterizes Besov priors that generate random
functions contained in separable Banach spaces. However, edge-preserving
inversion using a Besov space prior often relies on the Haar wavelet basis.
Due to the structure of the Haar basis, discontinuities are preferred on an
underlying dyadic grid given by the discontinuities of the basis functions. As
an example, on [0, 1] a Besov space prior prefers a discontinuity at x = 1/4
over x = 1/3. Thus, in most practical cases, Besov priors rely on both
a strong and unrealistic assumption. For this reason, Markkanen, Roin-
inen, Huttunen and Lasanen (2019) propose another class of priors for edge-
preserving Bayesian inversion, the Cauchy difference priors. Starting from
continuous one-dimensional Cauchy motion, its discretized version, Cauchy
random walk, can be used as a non-Gaussian prior for edge-preserving
Bayesian inversion. As shown by Markkanen et al. (2019), one can also
develop a suitable posterior distribution sampling algorithm for computing
the conditional mean estimates with single-component Metropolis–Hastings.
The approach is applied to CT reconstruction problems in materials science.

The above constructions of random functions through randomized series
can be linked to each other through the notion of random fields as shown
in Dashti and Stuart (2017, Section 2.5); see also Ghosal and van der Vaart
(2017, Chapters 2 and 10) for further examples. These constructions also
extend straightforwardly to Rn- or Cn-valued functions.

3.5. Challenges

The statistical view of an inverse problem in Bayesian inversion extends
the functional analytic one, since the output is ideally the posterior that
describes all possible solutions. This is very tractable and fits well within the
scientific tradition of presenting data and inferred quantities with error bars.

Most priors are chosen to regularize the problem rather than improving
the output quality. Next, algorithmic advances (Section 3.5.2) have res-
ulted in methods that can sample in a computationally feasible manner
from a posterior distribution in a high-dimensional setting, say up to 106

dimensions. This is still not sufficient for large-scale two-dimensional ima-
ging or regular three-dimensional imaging applications. Furthermore, these
methods require an explicit prior, which may not be feasible if one uses
learning to obtain it. They may also make use of analytic approximations
such as those given in Section 3.2.5, which restricts the priors that can come
into question. For these reasons, most applications of Bayesian inversion on
large-scale problems only compute a MAP estimator, whereas estimators re-
quiring integration over the model parameter space remain computationally
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unfeasible. These include Bayes estimators and the conditional mean as well
as estimators relevant for uncertainty quantification.

In conclusion, the above difficulties in specifying a ‘good’ prior and in
meeting the computational requirements have seriously limited the dissem-
ination of Bayes inversion in large-scale inverse problems, such as those
arising in imaging. Before providing further remarks on this, let us men-
tion that Section 5.1 shows how techniques from deep learning can be used
to address the above challenges when computing a wide range of estimators.
Likewise, in Section 5.2 we show how deep learning can be used to efficiently
sample from the posterior.

3.5.1. Choosing a good prior

Current theory for choosing a ‘good’ prior mainly emphasizes the regulariz-
ing function of the prior (Section 3.4). In particular, one seeks a prior that
ensures posterior consistency (Section 3.2.3) and good contraction rates
(Section 3.2.4) and, if possible, also allows for an asymptotic characteriza-
tion of the posterior (Section 3.2.5).

This theory, however, is for the asymptotic setting as the noise level in
data tends to zero, whereas there seems to be no theory for Bayesian in-
version that deals with the setting when the data have a fixed noise level.
Here, the prior has a role that goes beyond acting as a regularizer, and its
choice may have a large influence on the posterior. For example, it is far
from clear whether a prior that provides ‘optimal’ contraction rates is the
most suitable one when the data are fixed with a given noise level. Another
difficulty is that norms used to quantify distance in the mathematical the-
orems have little to do with what is meant by a ‘good’ estimate of a model
parameter. An archetypal example is the difficulty in quantifying the no-
tion of ‘image quality’ in radiology. This is very difficult since the notion
of image quality depends on the task motivating the imaging application.
Hand-crafted priors surveyed in Section 3.4 have limitations in this regard,
and in Sections 4.3, 4.4, 4.7 and 4.10 we survey work that uses data-driven
modelling to obtain a prior.

3.5.2. Computational feasibility

The focus here is on techniques that are not based on deep learning for
sampling from a very high-dimensional posterior distribution that lacks an
explicit expression.

A well-known class of methods is based on Markov chain Monte Carlo
(MCMC), where the aim is to define an iterative process whose stationary
distribution coincides with the target distribution, which in Bayesian inver-
sion is the posterior. MCMC techniques come in many variants, and one
common variant is MCMC sampling with Metropolis–Hastings dynamics
(Minh and Le Minh 2015), which generates a Markov chain with equilibrium
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distribution that coincides with the posterior in the limit. Other variants
use Gibbs sampling, which reduces the autocorrelation between samples.
Technically, Gibbs sampling can be seen as a special case of Metropolis–
Hastings dynamics and it requires computation of conditional distribu-
tions. Further variants are auxiliary variable MCMC methods, such as
slice sampling (Neal 2003), proximal MCMC (Green,  Latuszysński, Pereyra
and Robert 2015, Durmus, Moulines and Pereyra 2018, Repetti, Pereyra
and Wiaux 2019) and Hamiltonian Monte Carlo (Girolami and Calderhead
2011, Betancourt 2017). See also Dashti and Stuart (2017, Section 5) for
a nice abstract description of MCMC in the context of infinite-dimensional
Bayesian inversion.

An alternative approach to MCMC seeks to approximate the posterior
with more tractable distributions (deterministic inference), for example in
variational Bayes inference (Fox and Roberts 2012, Blei, Küçükelbir and
McAuliffe 2017) and expectation propagation (Minka 2001). Variational
Bayes inference has indeed emerged as a popular alternative to the clas-
sical MCMC methods for sampling from a difficult-to-compute probability
distribution, which in Bayesian inversion is the posterior distribution. The
idea is to start from a fixed family of probability distributions (variational
family) and select the one that best approximates the target distribution
under some similarity measure, such as the Kullback–Leibler divergence.

Blei et al. (2017, p. 860) try to provide some guidance on when to use
MCMC and when to use variational Bayes. MCMC methods tend to be
more computationally intensive than variational inference, but they also
provide guarantees of producing (asymptotically) exact samples from the
target density (Robert and Casella 2004). Variational inference does not
enjoy such guarantees: it can only find a density close to the target but
tends to be faster than MCMC. A recent development is the proof of a
Bernstein–von Mises theorem (Wang and Blei 2017, Theorem 5), which
shows that the variational Bayes posterior is asymptotically normal around
the variational frequentist estimate. Hence, if the variational frequentist
estimate is consistent, then the variational Bayes posterior converges to a
Gaussian with a mean centred at the true model parameter. Furthermore,
since variational Bayes rests on optimization, variational inference easily
takes advantage of methods such as stochastic optimization (Robbins and
Monro 1951, Kushner and Yin 1997) and distributed optimization (though
some MCMC methods can also exploit these innovations (Welling and Teh
2011, Ahmed et al. 2012)). Thus, variational inference is suited to large
data sets and scenarios where we want to quickly explore many models;
MCMC is suited to smaller data sets and scenarios where we are happy to
pay a heavier computational cost for more precise samples. Another factor
is the geometry of the posterior distribution. For example, the posterior
of a mixture model admits multiple modes, each corresponding to label
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permutations of the components. Gibbs sampling, if the model permits, is
a powerful approach to sampling from such target distributions; it quickly
focuses on one of the modes. For mixture models where Gibbs sampling is
not an option, variational inference may perform better than a more general
MCMC technique (e.g. Hamiltonian Monte Carlo), even for small datasets
(Küçükelbir, Ranganath, Gelman and Blei 2017).

4. Learning in functional analytic regularization

There have been two main ways to incorporate learning into functional
analytic regularization. The first relates to the ‘evolution’ of regularizing
functionals, primarily within variational regularization (Sections 4.3, 4.4,
4.6, 4.7 and 4.10). Early approaches focused on using measured data to
determine the regularization parameter(s), but as prior models became in-
creasingly complex, this blended into approaches where one learns a highly
parametrized regularizer from data. The second category uses learning to
address the computational challenge associated with variational regulariz-
ation. The idea is to ‘learn how to optimize’ in variational regularization
given an a priori bound on the computational budget (Section 4.9).

4.1. Choosing the regularization parameter

To introduce this topic we first consider the simplified case where only one
parameter is used for characterizing the scale of regularization as in (2.10)
and in the functional analytic regularization methods encountered in Sec-
tions 2.5–2.7. Thus we use the notation of Remarks 2.3 and 2.6, that is, ftrue

denotes the true (unknown) model parameter and fλ :=Rλ(g) is the regular-
ized solution obtained from applying a reconstruction operator Rλ : Y → X
on data g satisfying (2.1).

In this context, and recalling some historical classification, the three main
types of parameter choice rules are characterized as a posteriori, a priori
and error-free parameter choice rules: see Bertero and Boccacci (1998, Sec-
tion 5.6) and Engl et al. (2000). With hindsight, many of these parameter
choice rules can be seen as early attempts to use ‘learning’ from data in the
context of reconstruction.

A posteriori rules. This class of rules is based on the assumption that a
reasonably tight estimate of the data discrepancy and/or value of regularizer
at the true solution can be accessed. That is, one knows ε > 0 and/or S > 0
such that

L(A(ftrue), g) ≤ ε for g = A(ftrue) + e and/or S(ftrue) ≤ S.

A prominent example of an a posteriori parameter choice rule is the Morozov
discrepancy principle (Morozov 1966). Here, the regularization parameter
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λ is chosen so that

L(A(fλ), g) ≤ ε. (4.1)

Another example is Miller’s method (Miller 1970), where the regularization
parameter λ is chosen so that

L(A(fλ), g) ≤ ε and S(fλ) ≤ S.

A priori rules. These methods combine an estimate of the noise level in
the data with some knowledge of the smoothness of the solution as a priori
information. Hence, the choice of regularization parameter can be made
before computing fλ. The choice of λ is ideally guided by a theorem that
ensures the parameter choice rule yields an optimal convergence rate, for
example as in Theorem 2.7 where the (scalar) regularization parameter is
chosen in proportion to the noise level. For more detailed references, see
Engl et al. (2000) and Kindermann (2011).

Error-free parameter choice rules. Use data to guide the choice of
parameter, for example by balancing principles between the error in the
fidelity and the regularization terms. An important example in this context

is generalized cross-validation (Golub, Heat and Wahba 1979). Let f
[k]
λ ∈ X

denote the regularized solution obtained from data when we have removed
the kth component gk of g. Then the regularization parameter λ is chosen
to predict the missing data values:

minimize λ 7→
m∑
k=1

| A(f
[k]
λ )k − gk| subject to A(f

[k]
λ )k ' gk.

Another method within this class is the L-curve (Hansen 1992). Here
the regularization parameter λ is chosen where the log-log plot of λ 7→
(L(A(fλ), g)+λS(fλ)) has the highest curvature (i.e. it exhibits a corner).

Most of the work on parameter choice techniques addresses the case of
a single scalar parameter. Much of the theory is developed for additive
Gaussian noise, that is, when the data discrepancy L is a squared (pos-
sibly weighted) 2-norm. For error-free parameter choice rules, convergence
fλ(δ) → ftrue as δ → 0 cannot be guaranteed (Bakushinskii 1984). Error-free
parameter choice rules are computationally very demanding as they require
solutions for varying values of the regularization parameter. Although many
rules have been proposed, very few of them are used in practice. In Sec-
tion 4.3.1 we will encounter another instance of parameter choice rules for
TV-type regularization problems via bilevel learning.
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4.2. Learning in approximate analytic inversion

Early approaches to using learning in approximate analytic inversion (Sec-
tion 2.4) mostly dealt with the FBP method for tomographic image recon-
struction.

One of the first examples of the above is that of Floyd (1991), which
learns the reconstruction filter of an analytic reconstruction algorithm. The
same principle is considered by Würfl et al. (2018), who have designed a
convolutional neural network (CNN) architecture specifically adapted to
encode an analytic reconstruction algorithm for inverting the ray transform.
A key observation is that the normal operator A∗A is of convolutional type
when A is the ray transform, and the reconstruction filter in FBP acts
by a convolution as well. Hence, both of these are easily representable in
a CNN. The paper gives explicit constructions of such CNNs for FBP in
parallel-beam geometry and fan-beam geometry and the Feldkamp–Davis–
Kress method in cone-beam geometry. Having the analytic reconstruction
operator encoded as a CNN allows one to learn every other possible step
in it, so the approach in Würfl et al. (2018) actually goes beyond learning
the reconstruction filter of an analytic reconstruction algorithm. Finally,
we mention Janssens et al. (2018), who consider a fan-beam reconstruction
algorithm based on the Hilbert transform FBP (You and Zeng 2007) for
which the filter is trained by a neural network.

4.3. Bilevel optimization

In variational methods (see Section 2.6), we define the reconstruction oper-
ator Rθ : Y → X by

Rθ(g) := arg min
f∈X

{L(A(f), g) + Sθ(f)} for g ∈ Y . (4.2)

As already mentioned, ideally f 7→ L(A(f), g) corresponds to an affine
transformation of the negative log-likelihood of the data. However, it is less
clear how to choose the regularizer Sθ : X → R and/or the value for the
parameter θ.

The focus here is on formulating a generic set-up for learning selected
components of (4.2) from supervised training data given a loss function
`X : X×X → R. This set-up can be tailored towards learning the regulariz-
ation functional S, or the data fidelity term L, or an appropriate component
in a forward operator A, e.g. in blind image deconvolution (Hintermüller
and Wu 2015). The starting point is to have access to supervised train-
ing data (fi, gi) ∈ X × Y that are generated by a (X × Y )-valued random
variable (f,g) ∼ µ. We can then form the following bilevel optimization
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formulation: 
θ̂ ∈ arg min

θ
E(f,g)∼µ[`X(Rθ(g), f)],

Rθ(g) := arg min
f∈X

{L(A(f), g) + Sθ(f)}. (4.3)

Note here that θ̂ is a Bayes estimator, but µ is not fully known. Instead it is
replaced by its empirical counterpart given by the supervised training data,
in which case θ̂ corresponds to empirical risk minimization Section 3.3.

In the bilevel optimization literature, as in the optimization literature
as a whole, there are two main and mostly distinct approaches. The first
one is the discrete approach that first discretizes the problem (4.2) and
subsequently optimizes its parameters. In this way, optimality conditions
and their well-posedness are derived in finite dimensions, which circumvents
often difficult topological considerations related to convergence in infinite-
dimensional function spaces, but also jeopardizes preservation of continuous
structure (i.e. optimizing the discrete problem is not automatically equi-
valent to discretizing the optimality conditions of the continuous problem
(De los Reyes 2015)) and dimension-invariant convergence properties.

Alternatively, (4.2) and its parameter θ are optimized in the continuum
(i.e. appropriate infinite-dimensional function spaces) and then discretized.
The resulting problems present several difficulties due to the frequent non-
smoothness of the lower-level problem (think of TV regularization), which,
in general, makes it impossible to verify Karush–Kuhn–Tucker constraint
qualification conditions. This issue has led to the development of alternat-
ive analytical approaches in order to obtain first-order necessary optimal-
ity conditions (Bonnans and Tiba 1991, De los Reyes 2011, Hintermüller,
Laurain, Löbhard, Rautenberg and Surowiec 2014). The bilevel problems
under consideration are also related to generalized mathematical programs
with equilibrium constraints in function spaces (Luo, Pang and Ralph 1996,
Outrata 2000).

One of the first examples of the above is the paper by Haber and Tenorio
(2003), who considered a regularization functional Sθ : X → R that can de-
pend on location and involves derivatives or other filters. Concrete examples
are anisotropic weighted Dirichlet energy where θ is a function, that is,

Sθ(f) := ‖θ( · )∇f( · )‖22 for θ : Ω→ R,

and anisotropic weighted TV,

Sθ(f) := ‖θ(|∇f( · )|)‖1 for θ : R→ R.

The paper contains no formal mathematical statements or proofs, but there
are many numerical examples showing how to use supervised learning tech-
niques to determine a regularization functional given a training set of feas-
ible solutions.
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Another early example of learning a regularizer is the paper by Tappen
(2007), who considered bilevel optimization for finding optimal regularizers
parametrized by finite-dimensional Markov random field models. Bilevel
optimization for optimal model design for inverse problems has also been
discussed by Haber, Horesh and Tenorio (2010), Bui-Thanh, Willcox and
Ghattas (2008) and Biegler et al. (2011).

A revival of bilevel learning in the context of non-smooth regularizers took
place in 2013 with a series of papers: De los Reyes and Schönlieb (2013),
Calatroni, De los Reyes and Schönlieb (2014), De los Reyes, Schönlieb
and Valkonen (2016, 2017), Calatroni, De los Reyes and Schönlieb (2017),
Van Chung, De los Reyes and Schönlieb (2017), Kunisch and Pock (2013),
Chen, Pock and Bischof (2012), Chen, Yu and Pock (2015), Chung and
Espanol (2017), Hintermüller and Wu (2015), Hintermüller and Rauten-
berg (2017), Hintermüller, Rautenberg, Wu and Langer (2017), Baus, Niko-
lova and Steidl (2014) and Schmidt and Roth (2014). A critical theor-
etical issue is the well-posedness of the learning; another is to derive a
characterization of the optimal solutions that can be used in the design of
computational methods. Such results were first derived by De los Reyes
and Schönlieb (2013), Calatroni et al. (2014), De los Reyes, Schönlieb
and Valkonen (2016, 2017), Van Chung et al. (2017) and Hintermüller and
Rautenberg (2017), with applications to inverse problems and image pro-
cessing (e.g. bilevel learning for image segmentation (Ranftl and Pock 2014))
as well as classification (e.g. learning an optimal set-up of support vector
machines (Klatzer and Pock 2015)).

In what follows, we survey the main mathematical properties of bilevel
learning and review the main parametrizations of regularizers in (4.2) that
are considered in the literature.

4.3.1. Learning of TV-type regularizers and data fidelity terms

We start with a simple but theoretically and conceptually important ex-
ample, namely the learning of total variation (TV)-type regularization mod-
els as proposed in De los Reyes and Schönlieb (2013), Kunisch and Pock
(2013) and De los Reyes, Schönlieb and Valkonen (2017).

Let X = BV (Ω), where Ω ⊂ Rn is a fixed open bounded set with Lipschitz
boundary, and Y = L2(M,R), where M is a manifold given by the data
acquisition geometry. Next, let θ = (λ, α), where λ = (λ1, . . . , λM ) and
α = (α1, . . . , αN ) are non-negative scalar parameters. We also assume that
the loss `X : X×X → R is convex, proper and weak* lower semicontinuous.
We next study the bilevel problem

θ̂ ∈ arg min
θ

[`X(Rθ(g), f)],

Rθ(g) = arg min
f∈X

{Lθ(A(f), g) + Sθ(f)}. (4.4)
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In the above, Lθ : Y × Y → R and Sθ : X → R are defined for θ = (λi, αi)
as

Lθ(A(f), g) =

M∑
i=1

λiLi(A(f), g) and Sθ(f) =

N∑
j=1

αj‖J j(f)‖M(Ω;Rmj )

(4.5)
where Li : Y × Y → R and J j ∈ M(Ω;Rmj ) are given. Hence, in (4.4)
the variational model is parametrized in terms of sums of different fidelity
terms Li and TV-type regularizers ‖J j(f)‖M(Ω;Rmj ), weighted against each
other with parameters λi and αj (respectively). For N = 1 and S1 = D the
distributional derivative, then

‖S1(f)‖M(Ω;Rm1 ) = TV(f).

This framework is the basis for the analysis of the learning model, in which
convexity of the variational model and compactness properties in the space
of functions of bounded variation are crucial for proving existence of an
optimal solution: see De los Reyes, Schönlieb and Valkonen (2016). Richer
parametrizations for bilevel learning are discussed in Chen et al. (2012,
2015), for example, where non-linear functions and convolution kernels are
learned. Chen et al., however, treat the learning model in finite dimensions,
and a theoretical investigation of these more general bilevel learning models
in a function space setting is a matter for future research.

In order to derive sharp optimality conditions for optimal parameters of
(4.4) more regularity on the lower-level problem is needed. For shifting
the problem (4.4) into a more regular setting, the Radon norms are regu-
larized with Huber regularization and a convex, proper and weak* lower-
semicontinuous smoothing functional H: X → [0,∞] is added to the lower-
level problem, typically H(f) = 1

2‖∇f‖
2. In particular, the former is re-

quired for the single-valued differentiability of the solution map (λ, α) 7→
fα,λ, required by current numerical methods, irrespective of whether we
are in a function space setting (see e.g. Rockafellar and Wets 1998, The-
orem 9.56, for the finite-dimensional case). For parameters µ ≥ 0 and
γ ∈ (0,∞], the lower-level problem in (4.4) is then replaced by

Rθ := arg min
f∈X

{µH(f) + L(A(f), g) + Sγθ (f)}, (4.6)

with

Sγθ (f) :=

N∑
j=1

αj‖J j(f)‖γM(Ω;Rmj )
.

Here, f 7→ ‖J j(f)‖γM(Ω;Rmj )
is the Huberized TV measure, given as follows.
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Definition 4.1. Given γ ∈ (0,∞], the Huber regularization for the norm
‖ · ‖2 on Rn is defined by

‖g‖γ =


‖g‖2 −

1

2γ
, ‖g‖2 ≥

1

γ
,

γ

2
‖g‖22, ‖g‖2 <

1

γ
.

Then, for µ ∈ M(Ω;Rmj ) with Lebesgue decomposition µ = νLn + µs we
have the Huber-regularized total variation measure,

|µ|γ(V ) :=

∫
v
|ν(x)|γ dx+ |µs|(V ) (V ⊂ Ω Borel-measurable),

and finally its Radon norm,

‖µ‖γM(Ω;Rmj )
:= ‖|µ|γ‖M(Ω;Rmj ).

In all of these, we interpret the choice γ = ∞ to give back the standard
unregularized total variation measure or norm. In this setting existence
of optimal parameters and differentiability of the solution operator can be
proved, and with this an optimality system can be derived: see De los Reyes
et al. (2016). More precisely, for the special case of the TV-denoising model
the following theorem holds.

Theorem 4.2 (TV denoising (De los Reyes et al. 2016)). Consider
the denoising problem (2.2) where g, ftrue ∈ BV (Ω)

⋂
L2(Ω), and assume

TV(g) > TV(ftrue). Also, let TVγ(f) := ‖Df‖γM(Ω;Rn). Then there exist

µ̄, γ̄ > 0 such that any optimal solution αγ,µ ∈ [0,∞] to the problem
min

α∈[0,∞]

1

2
‖ftrue − fα‖2L2(Ω),

fα = arg min
f∈BV (Ω)

{
1

2
‖g − f‖2L2(Ω) + αTVγ(f) +

µ

2
‖∇f‖2L2(Ω;Rn)

}
satisfies αγ,µ > 0 whenever µ ∈ [0, µ̄] and γ ∈ [γ̄,∞].

Theorem 4.2 states that if g is a noisy image which oscillates more than
the noise-free image ftrue, then the optimal parameter is strictly positive,
which is exactly what we would naturally expect. De los Reyes et al. (2016)
proved a similar result for second-order TGV and ICTV regularization for
the case when X = Y . The result was not extended to data with a general
Y , but it is possible with additional assumptions on the parameter space.

Moreover, in much of the analysis for (4.4) we could allow for spatially
dependent parameters α and λ. However, the parameters would then need
to lie in a finite-dimensional subspace of C0(Ω;RN ): see De los Reyes and
Schönlieb (2013) and Van Chung et al. (2017). Observe that Theorem 4.2 al-
lows for infinite parameters α. Indeed, for regularization parameter learning
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it is important not to restrict the parameters to be finite, as this allows us
to decide between TGV2, TV and TV2 regularization. De los Reyes et al.
(2016) also prove a result on the approximation properties of the bilevel
scheme with the smoothed variational model (4.6) as γ ↗ ∞ and µ ↘ 0.
In particular, they prove that as the numerical regularization vanishes, any
optimal parameters for the regularized models tend to optimal parameters
of the original model (4.4) in the sense of Γ-convergence. Moreover, De los
Reyes and Schönlieb (2013) take the limit as γ ↗ ∞ but µ > 0 fixed for
the optimality system and derive an optimality system for the non-smooth
problem. Recently Davoli and Liu (2018) expanded the analysis for bilevel
optimization of total variation regularizers beyond (4.4) to a richer family
of anisotropic total variation regularizers in which the parameter of the dual
norm and the (fractional) order of derivatives becomes part of the parameter
space that (4.4) is optimized over.

Remark 4.3. Let us note here that despite the apparent simplicity of
only one parameter to optimize over in Theorem 4.2, even in the case of
the forward operator A = id being the identity, the bilevel optimization
problem is non-convex in α (against common hypotheses previously stated
in publications). Evidence for this provides the counter-example construc-
ted by Pan Liu (private communication) in Figure 4.1. Here, the one-
dimensional TV regularization problem for signal denoising is considered.
Fed with a piecewise constant input g, the one-dimensional TV problem
can be solved analytically (Strong et al. 1996) and its solution is denoted
by f(α). Figure 4.1(b) shows the non-convexity of the associated L2-loss
function I(α) = ‖ftrue − f(α)‖2.

Computing optimal solutions to the bilevel learning problems requires a
proper characterization of optimal solutions in terms of a first-order optim-
ality system. Since (4.4)–(4.6) constitutes a PDE-constrained optimization
problem, suitable techniques from this field may be utilized. For the limit
cases, an additional asymptotic analysis needs to be performed in order to
get a sharp characterization of the solutions as γ →∞ or µ→ 0, or both.

Several instances of the abstract problem (4.4) have been considered in
the literature. De los Reyes and Schönlieb (2013) considered the case with
TV regularization in the presence of several noise models. They proved the
Gâteaux differentiability of the solution operator, which led to the deriv-
ation of an optimality system. Thereafter they carried out an asymptotic
analysis with respect to γ →∞ (with µ > 0), obtaining an optimality sys-
tem for the corresponding problem. In that case the optimization problem
corresponds to one with variational inequality constraints and the charac-
terization concerns C-stationary points. Also, De los Reyes et al. (2017)
have investigated differentiability properties of higher-order regularization
solution operators. They proved a stronger Fréchet-differentiability result
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(a) data g (red) against ground truth ftrue (blue)

(b) plot of I(α) = ‖ftrue − f(α)‖2

Figure 4.1. Parameter optimality for TV denoising in Theorem 4.2. The non-
convexity of the loss function, even for this one-parameter optimization problem,
is clearly visible. Courtesy of Pan Liu.

for the TGV2 case, which also holds for TV. In particular, these stronger
results open the door to further necessary and sufficient optimality condi-
tions. Further, using the adjoint optimality condition gradient, formulas
for the reduced cost functional can be derived, which in turn feed into the
design of numerical algorithms for solving (4.4): see Calatroni et al. (2016,
Section 3).
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4.3.2. From fields of experts to variational networks

The TV-type regularization approaches discussed above used popular hand-
crafted variational regularizers in a first attempt to make them more data-
driven, staying in the framework of optimizing proposed regularization mod-
els in infinite-dimensional function space. In what follows, we change our
perspective to discrete variational regularization models (4.2) in which X =
Rn, and the functional S(·) is equipped with parametrizations that go bey-
ond TV-type regularizers; however, these are not covered by the theory in
the previous section.

MRF parametrizations. A prominent example of such richer parametriza-
tions of regularizers has its origins in MRF theory. MRFs, first introduced
by Besag (1974) and then used by Cross and Jain (1983) for texture mod-
elling, provide a probabilistic framework for learning image priors: see e.g.
Zhu, Wu and Mumford (1998). Higher-order MRF models such as the cel-
ebrated Field of Experts (FoE) model (Roth and Black 2005) are the most
popular ones, as they are able to express very complex image structures
and yield good performance for various image processing tasks. The FoE
model is learning a rich MRF image prior by using ideas from sparse coding
(Olshausen and Field 1997), where image patches are approximated by a lin-
ear combination of learned filters, variations of which lead to the well-known
principal component analysis (PCA) and independent component analysis
(ICA), and the Product of Experts (PoE) model (Welling, Osindero and
Hinton 2003).

In the context of bilevel learning, the FoE model has been used by Chen,
Pock, Ranftl and Bischof (2013) and Chen, Ranftl and Pock (2014). Here,
the regularizer is parametrized in the form

Sθ(f) :=

N∑
i=1

[
αi

n∑
k=1

ρ((Jif)k)

]
with θ = (α1, . . . , αN , J1, . . . , JN ), (4.7)

where N is the number of filters Ji which are sparse and implemented as
a two-dimensional convolution with a kernel ki, that is, Jif is the digit-
ized version of ki ∗ f . In the FoE model we use the parametrization Ji =∑m

j=1 βi,jBj , for a given set of basis filters {B1, . . . , Bm} with Bj ∈ Rn×n.
Moreover, the αi are non-negative parameters and the non-linear function
ρ(z) = log(1 + z2). The shape of ρ is motivated by statistics over natural
images that were shown to roughly follow a Student t-distribution (Huang
and Mumford 1999). With these parametrizations, θ in (4.7) can be seen as
θ = (αi, βi,j) for i = 1, . . . , n and j = 1, . . . ,m, and one learns the optimal
θ from supervised training data (fi, gi) by minimizing the squared L2-loss:

`X(Rθ(g), f) := ‖Rθ(g)− f‖22 with Rθ : Y → X given by (4.4).

Chen et al. (2014) investigated other non-linearities such as the non-smooth
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and non-convex ρ(z) = log(1 + |z|), and the non-smooth but convex `1-
norm ρ(z) = |z|. Their experiments in particular suggested that, while the
two log-type non-linearities gave very similar regularization performance,
the convex `1-norm regularizer clearly did worse. Moreover, Chen et al.
(2015) parametrized the non-linearities ρ with radial basis functions, whose
coefficients are learned as well. Earlier MRF-based bilevel learning schemes
exist: see e.g. Samuel and Tappen (2009).

A further development is the variational networks introduced by Kobler,
Klatzer, Hammernik and Pock (2017) and Hammernik et al. (2018). The
idea was to replace the above bilevel scheme with learning to optimize
(Section 4.9) using a supervised loss, thereby leading to a learned iterat-
ive method. This will be discussed in more detail in Section 5.1.4, where
the variational networks re-emerge in the framework of learned iterative
schemes.

4.4. Dictionary learning in sparse models

In Section 2.7 we discussed sparsity as an important concept for modelling
prior knowledge in inverse problems. Assuming that the model parameter
possesses a sparse or compressible representation in a given dictionary D
sparse recovery strategies, associated computational approaches and error
estimates for the model parameter can be derived. In what follows, we turn
to approaches which, rather than working with a given dictionary, learn
the dictionary before or jointly with the recovery of the model parameter.
Note that almost all work on dictionary learning in sparse models has been
carried out in the context of denoising, i.e. A = id only.

Patch-based local models. A particular class of sparse coding models are
those which impose sparsity on patches (segmented) that are extracted from

the signal. Let g = A(ftrue) + e and f̂ ∈ X. Further, let D = {φk} ⊂ X be
a dictionary, and Pj : X → X with Pj(f) = f |Ωj for j = 1, . . . N patches of
f . Assume that

f̂ =
N∑
j=1

Pj(ftrue), (4.8)

where Pj(ftrue) ∈ X is compressible with respect to D.
Some of the currently leading denoising methods are based on patch-based

local models. Examples include K-SVD, which is a sparse coding approach
on image patches (Elad and Aharon 2006), BM3D, which combines sparsity
and self-similarity (Dabov, Foi, Katkovnik and Egiazarian 2007), and EPLL,
which is a Gaussian mixture model of image patches (Zoran and Weiss 2011).
Other examples are NCSR (Dong, Zhang, Shi and Li 2013), weighted nuclear
norm regularization of image patches (WNNM) (Gu, Zhang, Zuo and Feng
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2014) and SSC-GSM, a non-local sparsity approach with a Gaussian scale
mixture (Dong, Shi, Ma and Li 2015).

Sparse-land models are a particular subclass of patch-based models. Here,
each patch is sparse with respect to some global dictionary. Examples
include sparse coding approaches that are applied patch-wise (Elad and
Aharon 2006, Dong, Zhang, Shi and Wu 2011, Mairal and Ponce 2014, Ro-
mano and Elad 2015, Sulam and Elad 2015). In sparse-land models f̂ ∈ X
is reconstructed by solving

min
f∈X,ξi∈Ξ

{L(A(f), g) + Sθ(f, ξ1, . . . , ξN )}, (4.9)

where

Sθ(f, ξ1, . . . , ξN ) :=

N∑
j=1

[λj‖Pj(f)− E∗D(ξj)‖22 + µj‖ξj‖pp], (4.10)

with θ = (λj , µj)
N
j=1 ∈ (R2)N and E∗D : Ξ→ X denoting the synthesis oper-

ator associated with the given dictionary D. Bai et al. (2017) propose the
following alternating scheme to solve the sparse-land reconstruction prob-
lem:
f i+1 := arg min

f∈X

{
L(A(f), g) +

N∑
j=1

λj‖Pj(f)− E∗D(ξjj )‖
2
2

}
ξi+1
j := arg min

ξi∈Ξ
{λj‖Pj(f i+1)− E∗D(ξj)‖22 + µj‖ξj‖pp} for j = 1, . . . , N .

(4.11)
The advantage of these approaches over plain-vanilla dictionary learning

is that sparse-land models are computationally more feasible. Sparse-land
models are one example of a dictionary learning approach, which will be
discussed in the next section.

4.4.1. Reconstruction and dictionary learning

In sparse models, there are three ways to determine the dictionary. First,
the dictionary is specified analytically. Second, the dictionary is determined
from example data (dictionary learning). Third (as in the sparse-land mod-
els discussed above) the dictionary is determined jointly while performing
reconstruction (joint reconstruction and dictionary learning). In what fol-
lows, we particularly focus on the second and third options for determining
the dictionary.

Joint reconstruction and dictionary learning. The recent paper by Cham-
bolle, Holler and Pock (2018) proposes a convex variational model for joint
reconstruction and (convolutional) dictionary learning that applies to in-
verse problems where data are corrupted and/or incomplete. Chambolle
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et al. (2018) prove rigorous results on well-posedness and stability stated in
the infinite-dimensional (non-digitized) setting.

Earlier approaches were less rigorous and considered the finite-dimen-
sional setting with a patch-based dictionary (sparse-land model). One
such example is adaptive dictionary-based statistical iterative reconstruc-
tion (ADSIR) (Zhang et al. 2016), which adds the dictionary D = {φi} ⊂ X
as an unknown to the sparse-land model as in global dictionary-based stat-
istical iterative reconstruction (GDSIR) (Xu et al. 2012; see also Chun,
Zheng, Long and Fessler 2017). This results in the following problem:

min
f∈X,ξi∈Ξ,D

{L(A(f), g) + Sθ(f, ξ1, . . . , ξN ,D)}, (4.12)

where

Sθ(f, ξ1, . . . , ξN ,D) :=

N∑
j=1

[λj‖Pj(f)− E∗D(ξj)‖22 + µj‖ξj‖pp], (4.13)

with θ = ((λj , µj)
N
j=1) ∈ (R2)N , and E∗D : Ξ→ X denotes the synthesis oper-

ator associated with the dictionary D. Usually an alternating minimization
scheme is used to optimize over the three variables in (4.12).

Dictionary learning. Let `X : X ×X → R be a given loss function (e.g. the
`2- or `1-norm). Further, let f1 . . . fN ∈ X be a given unsupervised training
data, D = {φi} ⊂ X a dictionary, and E∗D : Ξ → X the synthesis operator
given as E∗D(ξ) =

∑
i ξiφi for ξ ∈ Ξ. One approach in dictionary learning is

based on a sparsity assumption and solves

(D̂, ξ̂i) ∈ arg min
ξi∈Ξ,D⊂X

N∑
i=1

`X(fi, E∗D(ξi)), (4.14)

such that ‖ξi‖0 ≤ s for i = 1, . . . , N , for a given sparsity level s. Alternat-
ively, one looks for a dictionary that minimizes the total cost for representing
signals in the training data while enforcing a constraint on the precision in
the following way:

(D̂, ξ̂i) = arg min
ξi∈Ξ,D⊂X

N∑
i=1

‖ξi‖0, (4.15)

such that `X(fi, E∗D(ξi)) ≤ ε for i = 1, . . . , N . A unified formulation is given
by the unconstrained problem

(D̂, ξ̂i) = arg min
ξi∈Ξ,D⊂X

N∑
i=1

[`X(fi, E∗D(ξi)) + θ‖ξi‖0]. (4.16)

All three formulations are posed in terms of the `0-norm and are NP-hard
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to compute. This suggests the use of convex relaxation, by which (4.16)
becomes

(D̂, ξ̂i) = arg min
ξi∈Ξ,D⊂X

N∑
i=1

[`X(fi, E∗D(ξi)) + θ‖ξi‖1]. (4.17)

If D is fixed then the sum in (4.17) decouples and leads to the convex
relaxation of the sparse coding problem in (2.20) for A = id.

In the finite-dimensional setting X = Rm and Ξ is replaced by Rn for
some n. Then the dictionary is D := {φk}k=1...n ⊂ Rm represented by an
n × m matrix D leading to the synthesis operator becoming a mapping
E∗D : Rm → Rn with E∗D(ξ) = D ·ξ. In this setting (4.17) becomes

(D̂, ξ̂i) := arg min
ξi∈Rm,D∈Rn×m

N∑
i=1

[`X(fi,D ·ξi) + θ‖ξi‖1]. (4.18)

Here, if D satisfies the RIP then the convex relaxation preserves the sparse
solution (Candès et al. 2006). State-of-the-art dictionary learning algorithms
are K-SVD (Aharon, Elad and Bruckstein 2006), geometric multi-resolution
analysis (GRMA) (Allard, Chen and Maggioni 2012) and online dictionary
learning (Mairal, Bach, Ponce and Sapiro 2010). Most work on dictionary
learning to date has been done in the context of denoising, i.e. A = id; see
also Rubinstein et al. (2010).

4.4.2. Convolutional sparse coding and convolutional dictionary learning

Dictionary learning in the context of sparse coding has been very popular
and successful, with several seminal approaches arising in this field, as out-
lined in the previous section. However, there are still several issues with
sparse coding related to the locality of learned structures and the computa-
tional effort needed. Sparse-land models (4.9), for instance, perform sparse
coding over all the patches, and this tends to be a slow process.

The computational performance can be addressed by using learning to im-
prove upon an optimization scheme (Section 4.9), for example the Learned
Iterative Soft-Thresholding Algorithm (LISTA) (see Section 4.9.2) learns a
finite number of unrolled Iterative Soft-Thresholding Algorithm (ISTA) it-
erates using unsupervised training data to match ISTA solutions (Gregor
and LeCun 2010). Moreover, learning a dictionary over each patch inde-
pendently as in (4.12) cannot account for global information, e.g. shift-
invariance in images. What is needed is a computational feasible approach
that introduces further structure and invariances in the dictionary, e.g. shift-
invariance, and that makes each atom dependent on the whole signal instead
of just individual patches. In this realm convolutional dictionaries have
been introduced. Here atoms are given by convolution kernels and act on
signal features via convolution, that is, D is a concatenation of Toeplitz
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matrices (a union of banded and circulant matrices). Set up like this, con-
volutional dictionaries render computationally feasible shift-invariant dic-
tionaries, where atoms depend on the entire signal.

Convolutional sparse coding. Consider now the inverse problem of recover-
ing ftrue ∈ X from (2.1) with the assumption that ftrue is compressible with
respect to convolution dictionary D := {φi} ⊂ X.

In convolutional sparse coding (CSC), this is done by performing a syn-
thesis using convolutional dictionaries, that is, atoms act by convolutions.
More precisely, the reconstruction operator Rθ : Y → X is given as

R(g) :=
∑
i

ξ̂i ∗ φi, (4.19)

where

ξ̂i ∈ arg min
ξi∈X

{
L
(
A
(∑

i

ξi ∗ φi
)
, g

)
+ λ‖ξi‖0

}
.

Computational methods for solving (4.19) for denoising use convex relaxa-
tion followed by the alternating direction method of multipliers (ADMM)
in frequency space (Bristow, Eriksson and Lucey 2013) and its variants. See
also Sreter and Giryes (2017) on using LISTA in this context. So far CSC
has only been analysed in the context of denoising (Bristow et al. 2013,
Wohlberg 2014, Gu et al. 2015, Garcia-Cardona and Wohlberg 2017) with
theoretical properties given in Papyan, Sulam and Elad (2016a, 2016b).

Convolutional dictionary learning. Learning a dictionary in the context of
CSC is called convolutional dictionary learning. Here, given unsupervised
training data f1, . . . , fm ∈ X and a loss function `X : X : X → X, one solves

arg min
φi,ξj,i∈X

{
m∑
j=1

`X

(
fj ,
∑
i

ξj,i ∗ φi
)

+ λ
m∑
j=1

∑
i

‖ξj,i‖1

}
, (4.20)

where ‖φi‖2 = 1. For instance, Garcia-Cardona and Wohlberg (2017) solved
(4.20) with a squared L2-loss using an ADMM-type scheme. Extension
of convolutional dictionary learning to a supervised data setting has been
considered by Affara, Ghanem and Wonka (2018), for instance. Here, dis-
criminative dictionaries instead of purely reconstructive ones are learned
by introducing a supervised regularization term in the usual CSC objective
that encourages the final dictionary elements to be discriminative.

Multi-layer convolutional sparse coding. A multi-layer extension of CSC,
referred to as multi-layer convolutional sparse coding (ML-CSC), is pro-
posed by Sulam, Papyan, Romano and Elad (2017). Given L convolutional
dictionaries D1, . . . ,DL ⊂ X with atoms Dk := {φkj }j , a model parameter
f ∈ X admits a representation in terms of the corresponding multi-layer
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convolutional sparse coding (ML-CSC) model if there are s1, . . . , sL ∈ R
such that {

f =
∑

j(ξ
1
j ∗ φ1

j ),

ξk =
∑

j(ξ
k+1
j ∗ φk+1

j ) for k = 1, . . . , L− 1,

and ‖ξk‖0,∞ ≤ sk for k = 1, . . . , L. Hence, atoms φk,i ∈ Dk in the kth
convolution dictionary are compressible in the (k+1)th dictionary Dk+1 for
k = 1, . . . , L− 1.

The ML-CSC model is a special case of CSC where intermediate repres-
entations have a specific structure (Sulam et al. 2017, Lemma 1). Building
on the theory for CSC, Sulam et al. (2017) provide a theoretical study of this
novel model and its associated pursuits for dictionary learning and sparse
coding in the context of denoising. Further, consequences for the theoretical
analysis of CNNs can be extracted from ML-CSC using the fact that the
resulting layered thresholding algorithm and the layered basis pursuit share
many similarities with a forward pass of a deep CNN.

Indeed, Papyan, Romano and Elad (2017) show that ML-CSC yields a

Bayesian model that is implicitly imposed on f̂ when deploying a CNN, and
that consequently characterizes signals belonging to the model behind a deep
CNN. Among other properties, one can show that the CNN is guaranteed
to recover an estimate of the underlying representations of an input signal,
assuming these are sparse in a local sense (Papyan et al. 2017, Theorem 4)
and the recovery is stable (Papyan et al. 2017, Theorems 8 and 10). Many of
these results also hold for fully connected networks, and they can be used to
formulate new algorithms for CNNs, for example to propose an alternative to
the commonly used forward pass algorithm in CNN. This is related to both
deconvolutional (Zeiler, Krishnan, Taylor and Fergus 2010, Pu et al. 2016)
and recurrent networks (Bengio, Simard and Frasconi 1994).

An essential technique for proving the key results in the cited references
for ML-CSC is based on unrolling, which establishes a link between sparsity-
promoting regularization (compressed sensing) and deep neural networks.
More precisely, one starts with a variational formulation like that in (4.20)
and specifies a suitable iterative optimization scheme. In this setting one
can prove several theoretical results, such as convergence, stability and er-
ror estimates. Next, one unrolls the truncated optimization iterates and
identifies the updating between iterates as layers in a deep neural network
(Section 4.9.1). The properties of this network, such as stability and con-
vergence, can now be analysed using methods from compressed sensing.

Deep dictionary learning. Another recent approach in the context of dic-
tionary learning is deep dictionary learning. Here, the two popular rep-
resentation learning paradigms – dictionary learning and deep learning –
come together. Conceptually, while dictionary learning focuses on learning
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a ‘basis’ and ‘features’ by matrix factorization, deep learning focuses on
extracting features via learning ‘weights’ or ‘filters’ in a greedy layer-by-
layer fashion. Deep dictionary learning, in turn, builds deeper architectures
by using the layers of dictionary learning. See Tariyal, Majumdar, Singh
and Vatsa (2016), who show that their approach is competitive against
other deep learning approaches, such as stacked auto-encoders, deep belief
networks and convolutional neural networks, regarding classification and
clustering accuracies.

4.4.3. TV-type regularizer with learned sparsifying transforms.

The idea here is to learn the underlying sparsifying transform in a TV-type
regularizer. One such approach is presented by Chun, Zheng, Long and
Fessler (2017), who consider the case of a single sparsifying transform. This
idea is further developed by Zheng, Ravishankar, Long and Fessler (2018),
who consider a regularizer that is given by a union of sparsifying transforms
(ULTRA), which act on image patches and quantify the sparsification er-
ror of each patch using its best-matched sparsifying transform: see Zheng
et al. (2018, equation (3)). The resulting optimization problem is solved
by an intertwined scheme that alternates between a CT image reconstruc-
tion step, calculated via a relaxed linearized augmented Lagrangian method
with ordered subsets, and a sparse coding and clustering step, which sim-
ultaneously groups the training patches into a fixed number of clusters and
learns a transform in each cluster along with the sparse coefficients (in the
transform domain) of the patches.

A variant of Zheng et al. (2018) is considered by Ye, Ravishankar, Long
and Fessler (2018b), who use the same pre-learned union of sparsifying trans-
forms as in Zheng et al. (2018), but the alternating scheme also includes it-
eratively updating a quadratic surrogate functions for the data discrepancy.
These variants of learned sparsifying transforms are all applied to low-dose
CT image reconstruction. Finally, Chen et al. (2018) use essentially the
method of Zheng et al. (2018) applied to cone-beam CT.

4.5. Scattering networks

Scattering networks refer to networks that share the hierarchical struc-
ture of deep neural networks but replace data-driven filters with wavelets
(Mallat 2012, Bruna and Mallat 2013, Mallat 2016), thus providing an al-
ternative method for parametrizing a regularizer (Dokmanić, Bruna, Mal-
lat and de Hoop 2016). The networks can be made globally invariant to
the translation group and locally invariant to small deformations, and they
have many other desirable properties, such as stability and regularity. They
also manifest better performance than regular CNNs for image classification
problems and small-sample training data.
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A key component in defining scattering networks is to have access to
wavelet transforms at different scales, Wsk : X → XC, where X is the set
of real-valued functions on Ω and XC is the set of complex-valued functions
on Ω. We also have ρ : XC → X, where ρ(f) = |f |. For N levels, we now
define ΓNs1,...,sN : X → X by

ΓNs1,...,sN (f) = [φ ∗ (ρ ◦WsN ) ◦ . . . ◦ (ρ ◦Ws1)](f),

and the scattering transform of order N is defined as

ΛN (f) := (φ ∗ f,Γ1
s1(f), . . . ,ΓNs1,...,sN (f))s1,...,sN∈Z.

The output of ΛN (f) is a hierarchically ordered sequence that forms the
‘tree’ of scattering coefficients up to order N .

Dokmanić et al. (2016) combine the Central Limit Theorem with some
additional assumptions to conclude that ΛN (f) with f ∼ Πprior is approx-
imately Gaussian with mean f̄ and covariance Σ, where

f̄ := E
f∼Π̂prior

[ΛN (f)] and Σ = Cov
f∼Π̂prior

[ΛN (f)].

The regularizer S in (2.7) is now defined as

S :=
1

2
‖f̄ − ΛN (f)‖2

Σ−1/2 .

4.6. Black-box denoisers

Several approaches for solving (2.7) explicitly decouple the data discrepancy
and regularization terms so that the latter can be treated with stand-alone
methods. This is especially useful for cases where the data discrepancy term
is differentiable but the regularizer is not.

The Plug-and-Play Prior (P 3) method. This approach, which was intro-
duced in Venkatakrishnan, Bouman and Wohlberg (2013), is based on the
observation that a split operator method for minimizing the objective in
(2.7) can be posed as an equality constrained problem, that is,

f̂ := arg min
f
{L(A(f), g) + λS(f)}

is equivalent to

(f̂ , ĥ) := arg min
f,h

{L(A(f), g) + λS(h)} subject to f = h.

The latter can be solved using ADMM (Section 8.2.7), where the update in
h is computed using a proximal operator,

hk+1) = proxτλS(h(k) − f + u), (4.21)

where u is a Lagrange (dual) variable.
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The idea is now to replace the proximal operator with a generic denoising
operator, which implies that the regularization functional S is not neces-
sarily explicitly defined. This opens the door to switching in any demon-
strably successful denoising algorithms without redesigning a reconstruction
algorithm – hence the name ‘Plug-and-Play’. However, the method comes
with some disadvantages. The lack of an explicit representation of the reg-
ularizer detracts from a strict Bayesian interpretation of the regularizer as
a prior probability distribution in MAP estimation and prevents explicit
monitoring of the change in posterior probability of the iterative estimates
of the solution. Next, the method is by design tied to the ADMM iter-
ative scheme, which may not be optimal and which requires a non-trivial
tuning of parameters of the ADMM algorithm itself (e.g. the Lagrangian
penalty weighting term). Finally, it is not provably convergent for arbitrary
denoising ‘engines’.

Regularization by denoising (RED). The RED method (Romano, Elad and
Milanfar 2017a) is motivated by the P 3 method. It is a variational method
where the reconstruction operator is given as in (2.7), where the regulariz-
ation functional is explicitly given as

S(f) := 〈f, f − Λ(f)〉 for some Λ: X → X. (4.22)

The Λ operator above is a general (non-linear) denoising operator : it can
for example be a trained deep neural network. It does, however, need to
satisfy two two key properties, which are justifiable in terms of the desirable
features of an image denoiser.

Local homogeneity. The denoising operator should locally commute with
scaling, that is,

Λ(cf) = cΛ(f)

for all f ∈ X and |c− 1| ≤ ε with ε small.5

Strong passivity. The derivative of Λ should have a spectral radius less
than unity:

ρ(∂Λ(f)) ≤ 1.

This is justified by imposing a condition that the effect of the denoiser
should not increase the norm of the model parameter:

‖Λ(f)‖ = ‖∂Λ(f)f‖ ≤ ‖ρ(∂Λ(f))‖ ‖f‖ ≤ ‖f‖.

The key implication from local homogeneity is that the directional deriv-
ative of Λ along f is just the application of the denoiser to the f itself:

∂Λ(f)f = Λ(f).

5 This is a less restrictive condition than requiring equality for all c ≥ 0.
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The key implication from strong passivity is that it allows for convergence
of the proposed RED methods by ensuring convexity of their associated
regularization functionals.

Defining W : X → R implicitly through the relation W (f)f = Λ(f) and
assuming local homogeneity and strong passivity yields the following com-
putationally feasible expression for the gradient of the regularizer:

∇S(f) = f − Λ(f) = (id−W (f))(f). (4.23)

Here, the operator (id −W (f)) is further interpreted as an ‘image adapt-
ive Laplacian-based’ regularizer. The above allows one to implement the
RED framework in any optimization such as gradient-descent, fixed-point
or ADMM in contrast to the P 3 approach, which is coupled to the ADMM
scheme. See also Reehorst and Schniter (2018) for further clarifications and
new interpretations of the regularizing properties of the RED method.

4.7. Deep neural networks as regularization functionals

In this section we review two recent approaches (Lunz, Öktem and Schönlieb
2018, Li, Schwab, Antholzer and Haltmeier 2018b) to using deep learning
to train a regularizer Sθ : X → R in (2.7).

4.7.1. Adversarial regularizer

A recent proposal by Lunz et al. (2018) for the construction of data-driven
regularizers is inspired by how discriminative networks are trained using
modern generative adversarial network (GAN) architectures. Our aim is to
learn a regularizer Sθ, which in some cases (Section 3.3.2) can be interpreted
as being proportional to the negative log-likelihood of the prior Πprior in a
MAP estimator.

Consider the statistical setting in (3.4) and let fi ∈ X be samples of the
X-valued random variable f ∼ Πprior. Likewise, let gi ∈ X be samples of
the Y -valued random variable g ∼ σ that are independent of the samples
fi, that is, we have unmatched training data. We also assume there ex-
ists a (potentially regularizing) pseudo-inverse A† : Y → X to the forward

operator A in (3.2) and define the measure ρ ∈ PX as ρ := A†#(σ) for

σ ∈ P(Y ). Note that both Πprior and σ are replaced by their empirical
counterparts given by the training data fi ∈ X and gi ∈ Y , respectively.

The idea is to train the regularizer Sθ parametrized by a neural net-
work (see Section 7.4 for an exemplar architecture and application of this
approach) in order to discriminate between the distributions Πprior and ρ,

the latter representing the distribution of imperfect solutions A†(gi). More
specifically, we compute

S
θ̂
: X → R, (4.24)
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where θ̂ ∈ arg minθ L(θ), with the loss function θ 7→ L(θ) defined as

L(θ) := Ef∼Πprior
[G1(Sθ(f))]− Ef∼ρ[G2(Sθ(f))]. (4.25)

Here, G1, G2 : R→ R are monotone functions that have to be chosen. Popu-
lar choices for Gi are logarithms, as in the original GAN paper (Goodfellow
et al. 2014), and the Gi associated with the Wasserstein loss, as in Arjovsky,
Chintala and Bottou (2017) and Gulrajani et al. (2017). The heuristic be-
hind this choice for the loss function for training a regularizer is that a
network trained with (4.25) will penalize noise and artefacts generated by
the pseudo-inverse (and contained in ρ). When used as a regularizer, it will
hence prevent these undesirable features from occurring. Note also that in
practical applications, the measures Πprior, ρ ∈PX are replaced with their

empirical counterparts Π̂prior and ρ̂, given by training data fi and A†(gi),
respectively. The training problem in (4.24) for computing θ̂ then reads as

θ̂ ∈ arg min
θ

{
1

m

m∑
i=1

G1(Sθ(fi))−
1

n

n∑
i=1

G2(Sθ(A†(gi)))

}
. (4.26)

We also point out that, unlike other data-driven approaches for inverse
problems, the above method can be adapted to work with only unsuper-
vised training data. A special case is to have gi ≈ A(fi), which gives a
unsupervised formulation of (4.26).

Lunz et al. (2018) chose a Wasserstein-flavoured loss functional (Gulrajani
et al. 2017) to train the regularizer, that is, one solves (4.24) with the loss
function

L(θ) := Ef∼Πprior
[Sθ(f)]− Ef∼ρ[Sθ(f)] + λE[(‖∇Sθ(f)‖ − 1)2

+]. (4.27)

The last term in the loss function serves to enforce the trained regularizer
Sθ to be Lipschitz-continuous with constant one (Gulrajani et al. 2017).
Under appropriate assumptions on ρ and π (see Assumptions 4.4 and 4.5)
and for the asymptotic case of S

θ̂
having been trained to perfection, the

loss (4.27) coincides with the 1-Wasserstein distance defined in (B.2).
A list of qualitative properties of S

θ̂
can be proved: for example, The-

orem 1 of Lunz et al. (2018) shows that under appropriate regularity as-
sumptions on the Wasserstein distance between ρ and π, starting from ele-
ments in ρ and taking a gradient descent step of S

θ̂
(which results in a new

distribution ρη) strictly decreases the Wasserstein distance between the new
distribution ρη and π. This is a good indicator that using S

θ̂
as a variational

regularization term, and consequently penalizing it, indeed introduces the
highly desirable incentive to align the distribution of regularized solutions
with the distribution of ground truth samples Πprior. Another characteriz-
ation of such a trained regularizer S

θ̂
using the Wasserstein loss in (B.2) is
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in terms of a distance function to a manifold of desirable solutions M. To
do so, we make the following assumptions.

Assumption 4.4 (weak data manifold assumption). Assume that the
measure ρ is supported on a weakly compact set M, i.e. ρ(Mc) = 0

This assumption captures the intuition that real data lie in a lower-
dimensional submanifold of X, which is a common assumption for analysing
adversarial networks (Goodfellow et al. 2014). Moreover, it is assumed that
the distributions π can be recovered from the distribution π through an
appropriate projection onto the data manifold M.

Assumption 4.5. Assume that π and ρ satisfy (PM)#(ρ) = π, where
PM : D →M is the mapping x 7→ arg miny∈M ‖x− y‖. Here D denotes the
set of points for which such a projection exists (which under weak assump-
tions on M and ρ can be assumed to cover all of ρ, i.e. ρ(D) = 1)

Note that Assumption 4.5 is weaker than assuming that any given f can
be recovered by projecting the pseudo-inverse of the corresponding g back
onto the data manifold. Assumption 4.5 can instead be considered as a
low-noise assumption. These assumptions yield the following theorem.

Theorem 4.6 (Lunz, Öktem and Schönlieb 2018). The distance func-
tion to the data manifold dM(x) := miny∈M ‖x−y‖ is a maximizer to (B.2)
under Assumptions 4.4 and 4.5.

Theorem 4.6 shows that, if Sθ were trained to perfection, i.e. trained so
that Sθ solves (B.2), then Sθ would be given by the L2-distance function
to M. This is implicitly also done in the RED approach described in Sec-
tion 4.6. Similarly, Wu, Kim, Fakhri and Li (2017) learn a regularizer in a
variational model given as in Wu et al. (2017, equation (3)) from unsuper-
vised data by means of a K-sparse auto-encoder. This yields a regularizer
that minimizes the distance of the image to the data manifold.

Finally, a weak stability result for Sθ is proved in the spirit of the classical
theory provided in Engl et al. (2000). Since Sθ is not necessarily bounded
from below, the 1-Lipschitz property of Sθ is used instead to prove this
stability result.

Theorem 4.7 (Lunz, Öktem and Schönlieb 2018). Under appropri-
ate assumptions on A : X → Y given in Lunz et al. (2018, Appendix A),
the following holds. Consider a sequence {gn}n ⊂ Y with gn → g in the
norm topology in Y and let {fn} ⊂ X denote a sequence of corresponding
minimizers of (2.7), that is,

fn ∈ arg min
f∈X

{‖A(f)− gn‖2 + λSθ(f)}.
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Then fn has a subsequence that converges weakly to a minimizer of f 7→
‖A(f)− g‖2 + λSθ(f).

Theorem 4.7 constitutes a starting point for further investigation into the
regularizing properties of adversarial regularizers Sθ. Section 7.4 shows the
application of the adversarial regularizer to CT reconstruction.

4.7.2. The neural network Tikhonov (NETT) approach

Another proposal for learning a regularizer in (2.7) by a neural network
is given in Li et al. (2018b) and called the NETT approach. NETT is
based on composing a pre-trained network Ψθ : X → Ξ with a regularization
functional S : Ξ → [0,∞], such that S ◦Ψθ : X → [0,∞] takes small values
for desired model parameters and penalizes (larger values) model parameters
with artefacts or other unwanted structures.

Here, Ψθ : X → Ξ and S : Ξ → [0,∞] and the deep neural network Ψθ

is allowed to be a rather general network model, a typical choice for Ψθ

being an auto-encoder network. Once trained, the reconstruction operator
is given by

Rθ := arg min
f

J θ(f), (4.28)

where J θ(f) := L(A(f), g) + λS(Ψθ(f)).
The main focus of Li et al. (2018b) is a discussion on analytic condi-

tions, which guarantees that the NETT approach is indeed a regularization
method in the sense of functional analytic regularization. In particular, Li
et al. discuss assumptions on S and Ψθ such that the functional analytic
regularization theory of Grasmair et al. (2008) can be applied. This theory
requires a weakly lower semicontinuous and coercive regularization term,
which obviously holds for many deep neural networks Ψθ with coercive ac-
tivation functions. Accordingly, Li et al. (2018b) discuss replacing the usual
ReLU activation function with leaky ReLU, defined with a small τ > 0 as

`ReLUτ (s) := max(τs, s).

For s → −∞, leaky ReLU also tends to −∞, which in combination with
the affine linear maps W in Ψθ yields a coercive and weakly lower semi-
continuous regularization function S ◦Ψθ for standard choices of S, such as
weighted `p-norms S(ξ) =

∑
i vi|ξi|p with uniformly positive weights vi and

p ≥ 1. They even go beyond these classical results and, by introducing the
novel concept of absolute Bregman distances (Li et al. 2018b), they obtain
convergence results and convergence rates in the underlying function space
norm.

Li et al. (2018b) discuss the application of NETT to PAT reconstruction
from limited data. The neural network Ψθ is trained against supervised
data (fi, hi) ∈ X × X, where fi serves as ground truth model parameter
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and hi = (A† ◦A)(fi), where A† : Y → X is some (regularized) pseudo-
inverse of the forward operator A. In tomographic applications it is taken
as FBP, so hi will typically contain sampling artefacts. The network Ψθ is
then modelled as an auto-encoder, more specifically as the encoder part of
an encoder–decoder neural network. The parameters θ are trained by min-
imizing a loss function that evaluates the capability of the encoder–decoder
pair to reproduce desirable f as well as h = (A† ◦A)(f) with artefacts us-
ing an appropriate distance function. After training Ψθ as described above,
the NETT functional (4.28) is minimized by a generalized gradient des-
cent method. The numerical results obtained with artificial data confirm
the theoretical findings but lack comparison or seem to be slightly less fa-
vourable when compared with results obtained with other neural network
approaches: see e.g. Hauptmann et al. (2018).

4.8. Learning optimal data acquisition schemes

Learning has also been used to determine data sampling patterns. An ex-
ample is that of Baldassarre et al. (2016), who use training signals and
develop a combinatorial training procedure which efficiently and effectively
learns the structure inherent in the data. Thereby it is possible to design
measurement matrices that directly acquire only the relevant information
during acquisition. The resulting data sampling schemes not only out-
perform the existing state-of-the-art compressive sensing techniques on real-
world datasets (including neural signal acquisition and magnetic resonance
imaging): they also come with strong theoretical guarantees. In particular,
Baldassarre et al. (2016) describe how to optimize the samples for the stand-
ard linear acquisition model along with the use of a simple linear decoder,
and build towards optimizing the samples for non-linear reconstruction al-
gorithms.

Gözcü et al. (2018) apply these techniques to MRI in order to learn op-
timal subsampling patterns for a specific reconstruction operator and ana-
tomy, considering both the noiseless and noisy settings. Examples are for
reconstruction operators given by sparsity-promoting variational regulariz-
ation. The idea is to parametrize the data sampling (data acquisition and
its digitization), then learn over these parameters in a supervised setting.

4.9. Data-driven optimization

Reconstruction methods given by variational methods or by the MAP es-
timator give rise to an optimization problem with an objective parametrized
by g ∈ Y :

R(g) := arg min
f∈X

J (f, g) (4.29)
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for g ∈ Y and J : X × Y → R. A typical example is that of reconstruction
methods in (2.7), where J (f, g) := L(A(f), g) + S(f).

The objective here is to use data-driven methods for faster evaluation
of R, which is often computationally demanding. Given a parametrized
family (an architecture) {Rθ}θ of candidate solution operators, the ‘best’

approximation toR is given byR
θ̂
: Y → X, where θ̂ solves the unsupervised

learning problem:

θ̂ ∈ arg min
θ

Eg∼σ[J (Rθ(g),g)]. (4.30)

The probability distribution σ of the random variable g generating data
is unknown. In (4.30) it is therefore replaced by its empirical counterpart
derived from unsupervised training data g1, . . . , gm ∈ Y that are samples of
g ∼ σ. In such a case, the unsupervised learning problem in (4.30) reads as

θ̂ ∈ arg min
θ

{
1

m

m∑
i=1

J (Rθ(gi), gi)
}
, (4.31)

where g1, . . . , gm ∈ Y are samples of g ∼ σ.
Note that the loss in (4.30) involves evaluations of the objectivef 7→
J (f, g), so training can be computationally quite demanding. However, the
training is an off-line batch operation, so the computational performance
requirements on R are much more relaxed during training than when R
is used for reconstruction. Besides having access to a sufficient amount
of unsupervised training data, a central part in successfully realizing the
above scheme is to select an appropriate architecture for Rθ. It should be
computationally feasible, yet one should be able to approximate R with
reasonable accuracy by solving (4.31).

An early example in the context of tomographic reconstruction is that
of Pelt and Batenburg (2013) and Plantagie and Batenburg (2015). Here,
R is the TV-regularized reconstruction operator, which in many imaging
applications is considered computationally unfeasible. Each Rθ is given as
a non-linear combination of FBP reconstruction operators that are fast to
compute. These non-linear combinations of the reconstruction filters in the
FBP reconstruction operators are all learned by training against the out-
come of the TV regularization as in (4.31). The architecture used in the
above-cited publications uses FBP operators, which only makes sense for
inverse problems involving inversion of the ray transform. Another line of
development initiated by Gregor and LeCun (2010) considers deep neural
network architectures for approximating reconstruction operators R given
by (2.20) (sparse coding). The idea is to incorporate selected components of
an iterative scheme, in this case ISTA (Section 8.2.7), to solve the optimiza-
tion problem in (2.20). This is done by ‘unrolling’ the iterative scheme and
replacing its explicit updates with learned ones, which essentially amounts
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to optimizing over optimization solvers; see also Andrychowicz et al. (2016)
for similar work. This has been used for more efficient solution of vari-
ational problems arising in a large-scale inverse problem. As an example,
Hammernik, Knoll, Sodickson and Pock (2016) and Lee, Yoo and Ye (2017)
consider unrolling for compressed sensing MRI reconstruction and Schlem-
per et al. (2018) for dynamic two-dimensional cardiac MRI, the latter aiming
to solve the variational problem (Schlemper et al. 2018, equation (4)). Sim-
ilarly, Meinhardt, Moeller, Hazirbas and Cremers (2017) consider unrolling
for deconvolution and demosaicking.

Remark 4.8. The idea of optimizing over optimization solvers also ap-
pears in reinforcement learning. Furthermore, a similar problem is treated
in Drori and Teboulle (2014), which considers the worst-case performance

sup
θ,g
{J (Rθ(g), g)− J (R(g), g)}

with Rθ given by a gradient-based scheme that is stopped after N steps.
It is assumed here that f 7→ J (f, g) is continuously differentiable with
Lipschitz-continuous gradients, and with a uniform upper bound on the
Lipschitz constants. Subsequent work along the same lines can be found in
Kim and Fessler (2016) and Taylor, Hendrickx and Glineur (2017).

4.9.1. General principle of unrolling

The aim of unrolling is to find a deep neural network architecture Rθ : Y →
X that is especially suited to approximating an operator R : Y → X that is
implicitly defined via an iterative scheme. A typical example is when R(g)
is implicitly defined via an iterative scheme that is designed to converge to
a (local) minimum of f 7→ J (f, g).

We start by giving an illustrative example of how to unroll an iterat-
ive gradient descent scheme. This is followed by an outline of the general
principle of unrolling. Two specific cases are considered in Sections 4.9.2
and 4.9.3.

Unrolled gradient descent as a neural network. Consider the case when
J ( · ,g) : X → R is smooth for any g ∈ Y and assume R(g) is given by
a standard gradient descent algorithm, that is,

R(g) = lim
k→∞

fk where

{
f0 = f0 is given,

fk = fk−1 − ωk∇f J (fk, g) for k = 1, 2, . . . .

Each parameter ωk is a step length for the kth iteration, and normally these
are chosen via the Goldstein rule or backtracking line search (Armijo rule)
(Bertsekas 1999), which under suitable conditions ensures convergence to a
minimum.
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Computational feasibility of the above scheme is directly tied to the num-
ber of iterates necessary to get sufficiently close to the desired local minima.
Time limitations imposed by many applications limit the maximum number
of evaluations of f 7→ J (f, g), that is, we have an a priori bound N on the
number of iterates. Unrolling the gradient descent scheme defining R and
stopping the iterates after N steps allows us to express the Nth iterate as

Rθ(g) := (ΛωN ◦ . . . ◦ Λω1)(f0) with θ := (ω1, . . . , ωN ), (4.32)

where Λωk : X → X are updating operators given by

Λωk := id− ωk∇J ( · , g) for k = 1, . . . , N . (4.33)

Now, note that Rθ can be seen as a feed-forward neural network where
each layer in the network evaluates Λωk and the parameters of the network
are θ = (ω1, . . . , ωN ). Moreover, if the step length is fixed, i.e. ω1 = · · · =
ωN = ω for some ω, the gradient descent algorithm can in fact be interpreted
as a recurrent neural network. For both cases, the best choice of step lengths
ω1, . . . , ωN for approximating R : Y → X with N gradient descent iterates
can be obtained by unsupervised learning: simply solve (4.31) with Rθ as
in (4.32).

A further option is to replace the explicit updating in (4.33), used to
define Rθ in (4.32), with generic deep neural networks:

Λθk := id + Γθk( · ,∇J ( · , g)) where Γθk : X ×X → X. (4.34)

Each Γθk is now a deep neural network, for example a CNN, that is trained
against unsupervised data by solving (4.31) with Rθ as in (4.34).

Abstract unrolled schemes. The above example of unrolling a gradient des-
cent and replacing its explicit updates with a neural network trained by un-
supervised learning applies to many other iterative schemes. It essentially
amounts to optimizing over optimization solvers. Since we seek g 7→ R(g)
given by (4.29), we are not only interested in optimizing a single objective,
but rather an infinite family {J ( · , g)}g of objectives parametrized by data
g ∈ Y .

More precisely, if f 7→ J (f, g) in (4.29) is smooth, then it is natural to
consider an iterative scheme that makes use of the gradient of the objective.
Given an initial model parameter f0 ∈ X (usually set to zero), such schemes
can be written abstractly as{

f0 = f0 ∈ X chosen,

fk+1 := Γθk(fk,fkm,∇fJ (fk, g)),

for some updating operator Γθk : X×Xm×X → X. The above formulation
includes accelerated schemes, like fast gradient methods (Nesterov 2004)
and quasi-Newton methods (Nocedal and Wright 2006). Now, stopping and

https://doi.org/10.1017/S0962492919000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492919000059


70 S. Arridge, P. Maass, O. Öktem and C.-B. Schönlieb

unrolling the above scheme after N iterates amounts to definingRθ : Y → X
with θ = (θ1, . . . , θN ) as

Rθ(g) = (ΛθN ◦ . . . ◦ Λθ1)(f0),

where Λθk : X ×Xm → X ×Xm is defined as

Λθk(f,h) := (Γθk(f,h,∇fJ (f, g)),h′) with h′ := (h2, . . . , hm) ∈ Xm−1

and PX : X × Xm → X is the usual projection. The final step is to re-
place the hand-crafted updating operators Γθk : X × Xm × X → X with
deep neural networks that then train the resulting Rθ : Y → X against
unsupervised data as in (4.31).

In inverse problem applications, the objective in (4.29) often has further
structure that can be utilized. A typical example is (2.7), where the object-
ive is of the form

J (f, g) := L(A(f), g) + Sλ(f). (4.35)

A wide range of iterative schemes that better utilize such a structure include
updating in both X (primal) and Y (dual) spaces. These can be written
abstractly as{

(f0, g0) = (f0, g) ∈ X × Y with f0 chosen,

(fk+1, gk+1) := Γθk(fk,fkm1
, gk, gkm2

, [∂A(fk)]∗(gk),A(fk),∇Sλ(fk),)

(4.36)
for some updating operator

Γθk : X ×Xm1 × Y × Y m2 ×X × Y ×X → X × Y. (4.37)

Here, m1,m2 is the memory in the X- and Y -iterates, so

fkm1
= (fk−1, . . . , fk−m1) ∈ Xm1 and gkm2

= (gk−1, . . . , gk−m2) ∈ Y m2 ,

with the convention that fk−l = f0 and gk−l = g whenever k − l < 0.
Stopping and unrolling such a scheme after N iterates amounts to defining
Rθ : Y → X with θ = (θ1, . . . , θN ) as

Rθ(g) := (PX ◦ΛθN ◦ . . . ◦ Λθ1)(f0,f0
m1
, g, g0

m2
), (4.38)

where Λθk : X ×Xm1 × Y × Y m2 → X ×Xm1 × Y × Y m2 for k = 1, . . . , N
is defined as

Λθk(f,h, v,v) := (f̂θk ,h
′, v̂θk ,v

′),

with h′ := (h2, . . . , hm1) ∈ Xm1−1, v′ := (v2, . . . , vm2) ∈ Xm2−1, and

(f̂θk , v̂θk) := Γθk(f,f , v,v, [∂A(f)]∗(v),A(f),∇Sλ(f)) ∈ X × Y.

In the above, PX : X ×Xm1 × Y × Y m2 → X is the usual projection and,
just as before, these hand-crafted updating operators are replaced with deep

https://doi.org/10.1017/S0962492919000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492919000059


Solving inverse problems using data-driven models 71

neural networks and the resulting deep neural network Rθ : Y → X is
trained against training data, for example as in (4.31) in the case with
unsupervised data.

Likewise, in the setting where Sλ : X → R in (4.35) is non-smooth, the
prototype proximal-gradient scheme without memory reads as{

fk+1/2 := Λθ1k
(fk,∇fL(A(fk), g)),

fk+1 := Λθ2k
(fk, fk+1/2,proxγ Sλ(fk+1/2)),

(4.39)

for updating operators Λθ1k
: X ×X → X and Λθ2k

: X ×X ×X → X. Now,

just as before, one can terminate and unroll the above scheme after N iter-
ates and replace the updating operators with deep neural networks. The res-
ulting deep neural network Rθ : Y → X, where θ = (θ1

1, . . . , θ
1
N , θ

2
1, . . . , θ

2
N ),

is then trained against unsupervised data as in (4.31). Just as in the smooth
case, it is furthermore possible to add memory and/or ‘break up’ the ob-
jective even further, the latter in order to better account for the structure in
the problem. For example, variational methods for linear inverse problems
often result in minimizing an objective of the form

J (f, g) := Sλ(f) +
m∑
i=1

Li(Ai(f), gi)

where Ai : X → Yi are linear and Sλ : X → [−∞,∞] and Li : Yi × Yi →
[−∞,∞] are proper, convex and lower semicontinuous. One can then con-
sider unrolling iterative schemes that utilize this structure, such as operator
splitting techniques: see Eckstein and Bertsekas (1992), Beck and Teboulle
(2009), Chambolle and Pock (2011), Boyd et al. (2011), Combettes and
Pesquet (2011, 2012), He and Yuan (2012), Boţ and Hendrich (2013), Boţ
and Csetnek (2015), Ko, Yu and Won (2017), Latafat and Patrinos (2017)
and Bauschke and Combettes (2017).

A natural question is to investigate the error in using Rθ to approximate
R as a function of N and properties of the unsupervised training data.
Such estimates, which are referred to as time–accuracy trade-offs, have been
proved for LISTA (Section 4.9.2) by Giryes, Eldar, Bronstein and Sapiro
(2017); see also Oymak and Soltanolkotabi (2017) for further development
along these lines. Another related type of investigation has been pursued
by Banert et al. (2018), who derive conditions on the unrolled iterative
scheme that is terminated after N iterates, so that training this yields a
scheme that is convergent in the limit. It turns out that imposing such
convergence constraints has only a minor impact on the performance at N
iterates. Furthermore, it improves the generalization properties, that is, one
can use the same trained solver even when the objective is slightly changed,
for example by considering a different forward operator.
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To summarize, the iterative update in most schemes for solving optim-
ization problems has the structure of a composition of (possibly multiple)
affine operations followed by a non-linear operation. If each iterate is identi-
fied with a layer and the non-linear operation plays the role of an activation
function, e.g. Sλ(f) = λ‖f‖, then proxλS corresponds to soft thresholding,
which in turn is very close to the well-known ReLU activation function.
In this way the iterative scheme stopped after N steps can be represented
via a neural network with an architecture that is adapted to that iterative
scheme.

4.9.2. Learned Iterative Soft-Thresholding Algorithm (LISTA)

LISTA is the earliest example of unrolling an optimization scheme and it
was first introduced in Gregor and LeCun (2010). It is the abstract un-
rolling scheme in Section 4.9.1 adapted to the specific case of ISTA iterates
(Section 8.2.7). This results in a fully connected network with N -internal
layers of identical size that is adapted to evaluating the solution operator
for the following convex non-smooth optimization problem:

R(g) := E∗(ξ̂), (4.40)

where

ξ̂ ∈ arg min
ξ∈Ξ

{‖g −A◦E∗(ξ)‖22 + λ‖ξ‖1}.

Such optimization problems arise as the convex relaxation of (2.20), which
is sparsity-promoting regularization of an ill-posed linear inverse problem
(Section 2.7).

The ISTA iterative scheme for evaluating R reads as

ξn+1 = proxλτ‖·‖1 = Sλτ [τ A∗E∗ g + (id− τ A∗E∗ AE∗)ξ
n], (4.41)

where 0 < τ < 2/L is the step length approximated by the reciprocal of
the Lipschitz constant of AE∗ , and S is the shrinkage operator (see Sec-
tion 8.2.7). Now the insight is to recognize bk(g) := τkA∗E∗ g as a bias,
Wk := (id − τkA∗E∗ AE∗) as a fixed linear operator and ψk = Sλτk as a
pointwise non-linearity. Note that Wk is symmetric positive definite by
construction. Assuming a fixed iteration number N , we may write the ap-
proximation to (4.40) as{

ξ(0) ∈ Ξ given

ξ(k) = ψ(Wkξ
(k−1) + bk(g))

for k = 1, . . . , N .

In unrolled form, the above defines Rθ : Y → Ξ with θk := (ψ, τk,Wk, bk) as

Rθ := (ΛθN ◦ . . . ◦ Λθ1)(ξ(0)) (4.42)

where Λθk : Ξ→ Ξ is Λθk := ψk ◦ (Wk + bk(g) id). This is precisely the form
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of a feed-forward network with N layers, each with identical fixed affine
map Wk(ξ) := Wkξ + bk; the activation function ψk := Sλτk is given by the
shrinkage operator (see Section 8.2.7).

Remark 4.9. The expression given in (4.42) has the form of an encoder
ΨW : Y → Ξ for a fixed dictionary given by W .

The affine maps between the layers are assumed to be identical. LISTA
then trains W and potentially ψ on some given unsupervised training data
by solving (4.31). The derivation of Gregor and LeCun (2010) is framed in
terms of learning a sparse encoder. Here we rephrase the idea in terms of a
reconstruction problem and a learned decoder as follows.

Lemma 4.10. Let Ψ†W : Ξ→ X denote a fully connected network with in-
put ξ0 and N -internal layers. Furthermore, assume that the activation func-
tion is identical to a proximal mapping for a convex functional τλS : Ξ→ R.
Also, let W be restricted so that id−W is positive definite, i.e. there exists
a matrix B such that

id−W = τB∗B.

Finally, fix the bias term as b = τB∗g. Then Ψ†W (ξ) is the Nth iterate of

an ISTA scheme with starting value ξ(0) for minimizing

J B(ξ) =
1

2
‖Bξ − g‖2 + λS(ξ). (4.43)

Note that the connection to ISTA is only given when the weights are
the same across layers. The conclusion in the lemma follows directly from

(A.10). In this sense, training a decoder network Ψ†W by minimizing

1

2
‖AΨ†W (ξ)− g‖2

with respect to W , and computing f̂ = Ψ†W (ξ) is equivalent to computing

B̂ by minimizing a Tikhonov functional of the form (4.43) with respect

to B, then computing f̂ := Ψ†W (B̂) as a solution to the inverse problem.
Following these arguments, one can rephrase LISTA as a concept for learning
the discrepancy term in a classical Tikhonov functional.

Remark 4.11. The restriction of activation functions to proximal map-
pings is not as severe as it might look at first glance. For example, as already
mentioned in Section 4.9.1, ReLU is the proximal mapping for the indicator
function of positive real numbers and soft shrinkage is the proximal mapping
for the modulus function.

4.9.3. Learned proximal operators
Just as with LISTA, the learned proximal operator approach is the abstract
unrolling scheme in Section 4.9.1 adapted to the specific case of unrolling
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operator-splitting approaches, such as proximal gradient (PG), primal–dual
hybrid gradient (PDHG) or ADMM; see also Section 8.2.7 and Chambolle
and Pock (2016).

More precisely, consider the variational regularization that minimizes the
functional in (4.35) under the Gaussian noise log-likelihood model with co-
variance Σ and a non-smooth regularizer, that is,

R(g) := f̂ , (4.44)

where

f̂ := arg min{λS(f) + ‖A(f)− g‖2Σ−1}

and S : X → R is non-smooth. Our aim is to approximate R(g) in (4.44)
by a deep neural network that is obtained by unrolling a suitable scheme.

Unrolling iterates of a PG method (Section 8.2.7) and replacing the prox-
imal operator with a learned operator yields

Rθ(g) := fN , (4.45)

where

fk+1 := Λθ(f
k + τ A∗Σ−1(A fk − g)).

In the above, Λθ : X → X is a deep neural network that replaces the prox-
imal of S in (4.44). Similarly, the ADMM framework (Section 8.2.7) has
the augmented Lagrangian

L(f, h, u) =
1

2
‖A(f)−g‖2Σ−1 +λS(h) +

β

2

∥∥∥∥f −h+
1

β
u

∥∥∥∥2

2

− 1

2β
‖u‖22, (4.46)

which results in Rθ(g) := fN , where

fk+1 := (A∗Σ−1A+β id)−1(A∗Σ−1(A(fk)− g) + β(fk − hk) + uk),

(4.47)

hk+1 := Λθ

(
fk+1 +

1

β
uk
)
, (4.48)

uk+1 := uk + β(fk+1 − hk+1), (4.49)

where the general expression for the proximal operator of the log-likelihood
from (A.12) has the direct form (4.47), and the general expression for the
proximal operator of S from (A.13) is replaced with a network Λθ : X → X
in (4.48).

This compares to other P 3 approaches (Section 4.6) using a denoising
method such as BM3D in place of the proximal operator. An important
point noted in Meinhardt et al. (2017) is that by choosing β = 1 in (4.46),
the networks do not need to be retrained on different noise levels if they
can be considered as a scaling of the likelihood term. Related work includes
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‘deep image demosaicing’ using a cascade of convolutional residual denois-
ing networks (Kokkinos and Lefkimmiatis 2018, Lefkimmiatis 2017), which
includes learning of the activation function.

A related method is that of Chang et al. (2017), who propose a general
framework that implicitly learns a signal prior and a projection operator
from a large image dataset and is predicated on the ADMM framework
(Section 8.2.7). In place of an ‘ideal’ prior defined as the indicator func-
tion IX0 : X → R on the set of natural images X0 ⊂ X and its proximal
operator, they make use of a trained classifier D : X → [0, 1] and a learned

projection function P that maps an estimated f̂ ∈ X to the set defined
by the classifier; the learned P then replaces the proximal operator within
the ADMM updates. They identify sufficient conditions for the convergence
of the non-convex ADMM with the proposed projection operator, and use
these conditions as guidelines to design the proposed projection network.
They show that it is inefficient at solving generic linear inverse problems
with state-of-the-art methods using specially trained networks. Experi-
mental results also show that these are prone to being affected by changes in
the linear operators and noise in the linear measurements. In contrast, the
proposed method is more robust to these factors. Results are shown for the
trained network applied to several problems including compressive sensing,
denoising, in-painting (random pixels and block-wise) and super-resolution,
and to different databases including MNIST, MS-Celeb-1M dataset and the
ImageNet dataset.

4.9.4. Summary and concluding remarks on unrolling

The idea of unrolling can be seen as constructing a deep neural network
architecture. Here we used it to approximate solution operators to optimiz-
ation problems, which are defined implicitly through an iterative optimiza-
tion solver. This principle can, however, be applied in a much wider context
and it also establishes a link between numerical analysis and deep learning.

For example, the learned iterative scheme (Section 5.1.4) uses unrolling
to construct a deep learning architecture for the solution of an inverse prob-
lem that incorporates a forward operator and the adjoint of its derivative.
Another example of using unrolling is that of Gilton, Ongie and Willett
(2019), who construct a deep neural network by unrolling a truncated Neu-
mann series for the inverse of a linear operator. This is used to successfully
solve inverse problems with a linear forward operator. Gilton et al. claim
that the resulting Neumann network architecture outperforms functional
analytic approaches (Section 2), model-free deep learning approaches (Sec-
tion 5.1.3) and state-of-the-art learned iterative schemes (Section 5.1.4) on
standard datasets.

One can also unroll iterative schemes for solving PDEs, as shown by Hsieh
et al. (2019), who unroll an iterative solver tailored to a PDE and modify
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the updates using a deep neural network. A key part of their approach
is ensuring that the learned scheme has convergence guarantees. See also
Rizzuti, Siahkoohi and Herrmann (2019) for a similar approach to solving
the Helmholtz equation.

Finally, we also mention Ingraham, Riesselman, Sander and Marks (2019),
who unroll a Monte Carlo simulation as a model for protein folding. They
compose a neural energy function with a novel and efficient simulator based
on Langevin dynamics to build an end-to-end-differentiable model of atomic
protein structure given amino acid sequence information.

4.10. Deep inverse priors

Deep inverse priors (DIPs) generalize deep image priors that were recently
introduced in Ulyanov, Vedaldi and Lempitsky (2018) for some image pro-
cessing tasks. We emphasize that deep inverse priors (DIPs) do not use
a learned prior in the sense used so far in this paper. Deep inverse priors
(DIPs), as we will see, more closely resemble non-linear Landweber schemes,
but with a partly learned likelihood given by a trained neural network.

The choice of network design is crucial: it is assumed to provide a struc-
tural prior for the parameters or images to be reconstructed. More precisely,
one assumes that the structure of a generator network is sufficient to cap-
ture most of the low-level image statistics prior to any learning. During
the training of the network, more and more detailed information is added
and an appropriate stopping criterion is essential to avoiding overfitting. In
particular, a randomly initialized neural network can be used with excellent
results in standard inverse problems such as denoising, super-resolution and
in-painting.

For linear operators in a finite-dimensional setting, the task is to train a

decoder network Ψ†θ : Ξ → X with fixed input ξ0 ∈ Ξ. The reconstruction
operator R : Y → X is now given as the output of this decoder, that is,

R(g) := Ψ†
θ̂(g)

(ξ0), (4.50)

where

θ̂(g) ∈ arg min
θ
‖A◦Ψ†θ(ξ0)− g‖2.

At the core of the DIP approach is the assumption that one can construct a

(decoder) network Ψ†θ : Ξ→ X which outputs elements in X, which are close
to or have a high probability of belonging to the set of feasible parameters.

We emphasize that the training is with respect to θ: the input ξ0 is kept
fixed. Furthermore, machine learning approaches generally use large sets of
training data, so it is somewhat surprising that deep image priors are trained
on a single data set g. In summary, the main ingredients of deep inverse
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priors (DIPs) are a single data set, a well-chosen network architecture and a
stopping criterion for terminating the training process (Ulyanov et al. 2018).

One might assume that the network architecture Ψ†θ would need to incor-
porate rather specific details about the forward operator A, or even more
importantly about the prior distribution Πprior of feasible model paramet-
ers. This seems not to be the case: empirical evidence suggests that rather
generic network architectures work for different inverse problems, and the
obtained numerical results demonstrate the potential of DIP approaches for
large-scale inverse problems such as MPI.

So far, investigations related to DIP have been predominantly experi-
mental and mostly restricted to problems that do not fall within the class
of ill-posed inverse problems. However, some work has been done in the
context of inverse problems: for example, Van Veen et al. (2018) consider
the DIP approach to solve an inverse problem with a linear forward oper-
ator. They introduce a novel learned regularization technique which further
reduces the number of measurements required to achieve a given reconstruc-
tion error. An approach similar to DIP is considered by Gupta et al. (2018)
for CT reconstruction. Here one regularizes by projection onto a convex set
(see Gupta et al. 2018, equation (3)) and the projector is constructed by
training a U-Net against unsupervised data. Gupta et al. (2018, Theorem 3)
also provide guarantees for convergence to a local minimum.

We now briefly summarize the known theoretical foundations of DIP for
inverse problems based on the recent paper by Dittmer, Kluth, Maass and
Baguer (2018), who analyse and prove that certain network architectures in
combination with suitable stopping rules do indeed lead to regularization
schemes, which lead to the notion of ‘regularization by architecture’. We
also include numerical results for the integration operator; more complex
results for MPI are presented in Section 7.5.

4.10.1. DIP with a trivial generator

To better understand the regularizing properties of DIP, we begin by consid-
ering a trivial generator that simply takes a scalar value of unity on a single

node (i.e. ξ0 = 1) and outputs an element h ∈ X, that is, Ψ†θ(ξ0) = h inde-
pendently of ξ0. This implies simply that the network is a single layer with
the value θ = h, without any bias term or non-linear activation function.
Then, the reconstruction operator in (4.50) reads as R(g) = θ̂, where

θ̂ ∈ arg min
θ
‖A(θ)− g‖2. (4.51)

In this setting θ can be directly identified with an element inX (and Ξ ≡ X),
so training this network by gradient descent that seeks to minimize the ob-
jective in (4.51) is equivalent to the classical Landweber iteration. Despite
its obvious trivialization of the neural network approach, this shows that
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there is potential for training networks with a single data point. Also,
Landweber iterations converge from rather arbitrary starting points, indic-
ating that the choice of ξ0 in the general case is indeed of minor importance.

4.10.2. Analytic deep priors
The idea is based on the perspective that training a DIP network is, for cer-
tain network architectures, equivalent to minimizing a Tikhonov functional
as in (2.10), that is,

min
f∈X

{
1

2
‖B(f)− g‖2 + λS(f)

}
. (4.52)

This can be seen by considering networks similar to the unrolled schemes
(see Section 4.9.2); that is, we consider a fully connected feed-forward net-
work with N layers. We impose the further restriction that (i) the non-
linearity (activation function) is identical to a proximal mapping proxλS
with respect to a convex functional S : X → R, (ii) the affine linear map-
ping between layers allows the decomposition id −W = λB∗ ◦B for some
linear operator B : X → Y , and (iii) the bias term is fixed as b = λB∗ g.

As described in Section 4.9.2, the output of a network using this architec-
ture is equivalent to the Nth iterate of an ISTA scheme for approximating

a minimizer of (4.52). WithW = id−λB∗ ◦B, the network Ψ†W(ξ0) is given
by the unrolled ISTA scheme (Section 4.9.1)

f0 = ξ0,

fk+1 = proxλS(W(fk) + b),

Ψ†W(ξ0) = fN .

(4.53)

Such ISTA schemes converge as N →∞ for rather arbitrary starting points;
hence, as pointed out above, the particular choice of ξ0 in (4.50) is indeed
of minor importance.

The starting point for a more in-depth mathematical analysis is the as-
sumption that the above unrolled ISTA scheme has fully converged, that is,

Ψ†W(ξ0) = f̂ := arg min
f

J B(f). (4.54)

Using this characterization of f̂ , we define the analytic deep prior as the
network, which is obtained by a gradient descent method with respect to B
for

L(B, g) =
1

2
‖A(f̂)− g‖2. (4.55)

The resulting deep prior network has proxλS as activation function, and the
linear map W and its bias b are as described in (ii) and (iii). This allows
us to obtain an explicit description of the gradient descent for B, which in
turn leads to an iteration of functionals J B.
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Below, we provide this derivation for a toy example that nevertheless
highlights the differences between a classical Tikhonov minimizer and the
solution of the DIP approach.

Simple example. We here examine analytic deep priors for linear inverse
problems, i.e. A : X → Y is linear, and compare them to classical Tikh-
onov regularization with S(f) = 1

2‖f‖
2. Let fλ ∈ X denote the solution

obtained with the classical Tikhonov regularization, which by (2.11) can be
expressed as

fλ = (A∗ ◦A+λ id)−1 ◦ A∗(g).

This is equivalent to the solution obtained by the analytic deep prior ap-
proach, with B = A without any iteration. Now, take B = A as a starting
point for computing a gradient descent with respect to B using the DIP
approach, and compare the resulting f̂ with fλ.

The proximal mapping for the functional R above is given by

proxλS(z) =
1

1 + λ
z.

A rather lengthy calculation (see Dittmer, Kluth, Maass and Baguer 2018)
yields an explicit formula for the derivative of F with respect to B in the
iteration

Bk+1 = Bk−η∂F (Bk).

The expression stated there can be made explicit for special settings. For
illustration we assume the rather unrealistic case that f+ = h, where h ∈ X
is a singular function for A with singular value σ. The dual singular function
is denoted by v ∈ Y , i.e. Ah = σv and A∗ v = σh, and we further assume
that the measurement noise in g is in the direction of this singular function,
i.e. g = (σ+δ)v. In this case, the problem is indeed restricted to the span of
h and the span of v, respectively. The iterates Bk only change the singular
value βk of h, that is,

Bk+1 = Bk−ck〈 · , h〉v,

with a suitable ck = c(λ, δ, σ, η).

Deep inverse priors for the integration operator. We now illustrate the use
of deep inverse prior approaches for solving an inverse problem with the
integration operator A : L2([0, 1])→ L2([0, 1]), defined by

A(f)(t) =

∫ t

0
f(s) ds. (4.56)

Here A is linear and compact, hence the task of evaluating its inverse is an
ill-posed inverse problem.
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Figure 4.2. Example of g for ftrue = u5 and 10% of noise.
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Figure 4.3. Comparison of Tikhonov reconstructions and results obtained with
DIP. Reconstructions are shown for different fixed values of λ. The network was
trained with the standard gradient descent method and a learning rate of 0.05. In
(a) 500 epochs were used whereas in (b) 2000 were used.

Discretizing this operator with n = 100 yields a matrix An ∈ Rn×n, which
has h/2 on the main diagonal, h everywhere under the main diagonal and 0
above (here h = 1/n). We choose ftrue to be one of the singular vectors of
A and determine noisy data g = An ftrue + e with e ∼ N (0, σ2), where σ2 is
chosen as 10% of the largest coefficient of g; see Figure 4.2.

Figure 4.3 shows some reconstruction results withN = 10 layers. The first
plot contains the true solution ftrue, the standard Tikhonov solution fλ, and
the reconstruction obtained with the analytic deep inverse approach f(Bopt)
after 2000 iterations for updating B. For both choices of λ the training of B
converges to a matrix Bopt, such that f(Bopt) has a smaller true error than
fλ. As can be observed in the last plot, the resulting matrix Bopt contains
some patterns that reflect what was predicted by the analytic deep prior.
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Figure 4.4. Reconstructions with an adaptive λ for different starting values λ0.
The networks were trained with gradient descent using 0.1 as learning rate. In all
cases 3000 epochs were used.

So far, the regularization parameter λ has been assumed to be fixed. In a
real application one needs to choose it via a technique such as the L-curve
(Hansen 1992) or the discrepancy principle (4.1) in Section 4.1. However,
they usually involve finding reconstructions for many different values of λ.
In our case, that would mean retraining the network each time, which would
lead to a really high computational cost. This motivates an adaptive choice
of λ during the training, which could be achieved by letting λ also be a
trainable weight of the network. The results for the same example and
different starting values λ0 are shown in Figure 4.4.

5. Learning in statistical regularization

The focus here is on various approaches for combining techniques from deep
learning with Bayesian inversion and we begin by recapitulating the stat-
istical setting in Section 3.1.2.

To recapitulate, we assume there exists a (X×Y )-valued random variable
(f,g) ∼ µ that generates model parameters with associated data. The aim
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is to compute various estimators from the posterior Πg
post where g ∈ Y is

single sample of (g | f = ftrue) with ftrue ∈ X unknown. The data likelihood

Πf
data, which is the distribution of (g | f = f), is here known for any f ∈ X

via (3.3), that is,

g = A(f) + e,

with e ∼ Πnoise independent of f.
Ideally one would like to recover the entire posterior distribution f 7→

Πg
post for the measured data g. However, this is very challenging (Sec-

tion 3.5), so many approaches settle for computing a selected estimator
(Section 5.1). Alternatively, one may use deep neural nets to sample from
the posterior, as surveyed in Section 5.2.

5.1. Learning an estimator

As outlined in Section 3.3, any reconstruction operator that can be repres-
ented by a deterministic measurable map R : Y → X formally corresponds
to a point estimator (also called a non-randomized decision rule). One can
now use techniques from deep learning in computing such estimators.

5.1.1. Overview

There are various ways of combining techniques from deep learning with
statistical regularization. The statistical characteristics of training data
together with the choice of loss function determines the training problem
one seeks to solve during learning. This in turn determines the type of
estimator (reconstruction operator) one is approximating.

Supervised learning. The training data are given as samples (fi, gi) ∈
X × Y generated by (f,g) ∼ µ. One can then approximate the Bayes

estimator, that is, we seek R
θ̂
: Y → X, where θ̂ solves

θ̂ ∈ arg min
θ

E(f,g)∼µ[`X(Rθ(g), f)]. (5.1)

The actual training involves replacing the joint law µ with its empirical
counterpart induced by the supervised training data. Examples of methods
that build on the above are surveyed in Section 5.1.2.

Learned prior. The training data fi ∈ X are samples generated by a µf -
distributed random variable, where µf ∈ PX is the f-marginal of µ. One
can then learn the negative log prior density in a MAP estimator, that is,
R
θ̂
: Y → X is given by

R
θ̂
(g) := arg min

f∈X
{− log πdata(g | f) + S

θ̂
(f)}.

Here πdata( · | f) is the density for the data likelihood Πf
data ∈ PY and θ̂
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is learned such that S
θ̂
(f) ≈ − log(πf(f)), with πf denoting the density

for µf ∈ PX , which is the f-marginal of µ. The actual training involves
replacing µf with its empirical counterpart induced by the training data.
Examples of methods that build on the above are surveyed in Section 4.7.

Unsupervised learning. The training data gi ∈ Y are samples generated
by a µg-distributed random variable where µg ∈ PY is the g-marginal of
µ. It is not possible to learn a prior in a MAP estimator from such training
data, but one can improve upon the computational feasibility for evaluating
a given MAP estimator. We do that by considering R

θ̂
: Y → X, where θ̂

solves

θ̂ := arg min
θ

Eg∼µg [− log πdata(g | Rθ(g)) + Sλ(Rθ(g))]. (5.2)

In the above, both the density πdata( · | f) for the data likelihood Πf
data ∈PY

and the negative log density Sλ : X → R of the prior are handcrafted. The
actual training involves replacing µg ∈ PY with its empirical counterpart
induced by the training data. In the above, µ̂g is the empirical counterpart
of µ̂g given by training data, L : Y × Y → R is the negative data log-
likelihood, and Sλ : X → R is the negative log-prior. The latter two are
not learned. Examples of methods that build on the above are surveyed in
Section 4.9.

Semi-supervised learning. The training data fi ∈ X and gi ∈ Y are
semi-supervised, i.e. unpaired samples from the marginal distributions µf
and µg of µ, respectively. One can then compute an estimator R

θ̂
: Y → X,

where θ̂ solves

θ̂ ∈ arg min
θ
{E(f,g)∼µf⊗µg [`Y (A(Rθ(g)),g) + `X(Rθ(g), f)]

+ λ`PX
((Rθ)#(µg), µf)}. (5.3)

In the above, `X : X × X → R and `Y : Y × Y → R are loss functions on
X and Y , respectively. Next, `PX

: PX ×PX → R is a distance notion
between probability distributions on X and (Rθ)#(µg) ∈ PX denotes the
pushforward of the measure µg ∈ PY by Rθ : Y → X. It is common to
evaluate `PX

using techniques from GANs, which introduce a separate deep
neural network (discriminator/critic). Finally, the parameter λ controls the
balance between the distributional consistency, noise suppression and data
consistency. One can also consider further variants of the above, for example
when there is access to a large sample of unpaired data combined with a
small amount of paired data, or when parts of the probability distributions
involved are known.

The choice of neural network architecture for the reconstruction operator
R
θ̂
: Y → X is formally independent of the choice of loss function and the
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set-up of the training problem. The choice does, however, impact the train-
ability of the learning, especially when there is little training data. In such
cases, it is important to make use of all the information. In inverse problems
one has explicit knowledge about how data are generated that comes in the
form of a forward operator, or one might have an expression for the en-
tire data likelihood. Architectures that embed such explicit knowledge, e.g.
the forward operator and the adjoint of its derivative, perform better when
there is little training data. They also have better generalization proper-
ties, and against adversarial attacks (Chakraborty et al. 2018, Akhtar and
Mian 2018) they are more difficult to design since a successful attack needs
to be consistent with how data are generated. Architectures that account
for such information can be defined by unrolling (Section 4.9.4).

The remaining sections survey various approaches from the literature in
computing the above estimators.

5.1.2. Deep direct Bayes estimation

The aim is to compute a Bayes estimator, which by the definition given in
(3.14) amounts to finding a reconstruction operator Rµ : Y → X that solves

Rµ ∈ arg min
R : Y→X

E(f,g)∼µ[`X(f,R(g))], (5.4)

where `X : X ×X → R is a fixed loss function. The data likelihood is often
known, and by the law of total probability we have

µ(f, g) = Πprior(f)⊗Πf
data, (5.5)

so the joint law µ is known as soon as a prior has been selected.
As already mentioned (Section 3.5.1), selecting an appropriate prior that

reflects the probability distribution of natural model parameters is very
challenging, and current hand-crafted choices (Section 3.4) do not capture
the full extent of the available a priori information about the true unknown
model parameter ftrue ∈ X. Next, the expression in (5.4) involves tak-
ing an expectation over X × Y as well as an optimization over all possible
non-randomized decision rules. Both these operations easily become com-
putationally overwhelming in large-scale inverse problem, such as those that
arise in imaging.

These issues can be addressed by using techniques from supervised train-
ing. To start with, one can restrict the minimization in (5.4) to a family
of reconstruction methods parametrized by a deep neural network architec-
ture Rθ : Y → X. Next, the unknown joint law µ can be replaced with its
empirical counterpart given by supervised training data

Σm := {(f1, g1), . . . , (fm, gm)} ⊂ X × Y , (5.6)

where (fi, gi) are generated by (f,g) ∼ µ. If there is a sufficient amount of
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such training data, then one can approximate the Bayes estimator in (5.4)
by the neural network R

θ̂
: Y → X, where the finite-dimensional network

parameter θ̂ ∈ Θ is learned from data by solving the following empirical risk
minimization problem:

θ̂ ∈ arg min
θ∈Θ

1

m

m∑
i=1

`X(fi,Rθ(gi)), (5.7)

where (fi, gi) ∈ Σm as in (5.6). Note now that (5.7) does not explicitly

require specifying a prior f 7→ Πprior(f) or a data likelihood g 7→ Πf
data that

models how data are generated given a model parameter. Information about
both of these is implicitly contained in supervised training data Σm ⊂ X×Y .

Fully learned Bayes estimation (Section 5.1.3) refers to approaches where
one assumes there is enough supervised training data to learn the joint law
µ, that is, one disregards the explicit knowledge about the data likelihood.
In contrast, learned iterative schemes (Section 5.1.4) include the information
about the data likelihood by using an appropriate architecture of Rθ : Y →
X. Learned post-processing methods (Section 5.1.5) offer an alternative
way to account for the data likelihood since these methods apply an initial
reconstruction operator that maps data to a model parameter. This is
actually an estimator different from the above Bayes estimator, but if the
loss is the squared L2-norm and the initial reconstruction operator is a linear
sufficient statistic, then these estimators coincide in the ‘large-sample’ or
‘small-noise’ limit.

Regularizing the learning. The problem in (5.7) is ill-posed in itself, so one
should not try to solve it in the formal sense. A wide range of techniques
have been developed within supervised learning for implicitly or explicitly
regularizing the empirical risk minimization problem in (5.7) as surveyed
and categorized by Kukačka, Golkov and Cremers (2017). A key challenge
is to handle the non-convexity, and the energy landscape for the objective in
(5.7) typically has many local minima: for example, for binary classification
there is an exponential number (in terms of network parameters) of distinct
local minima (Auer, Herbster and Warmuth 1996).

Similar to Shai and Shai (2014, Section 2.1), we define a training algorithm
for (5.7) as an operator mapping a probability measure on X × Y to a
parameter in Θ that approximately solves (5.7):

T : PX×Y → Θ, (5.8)

where T (µ̂) ≈ θ̂ with θ̂ ∈ Θ denoting a solution to (5.7). Thus, the train-
ing algorithm is a method for approximately solving (5.7) given a fixed
neural network architecture. This also includes necessary regularization
techniques: for example, a common strategy for solving (5.7) is to use some
variant of stochastic gradient descent that is cleverly initialized (often at

https://doi.org/10.1017/S0962492919000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492919000059


86 S. Arridge, P. Maass, O. Öktem and C.-B. Schönlieb

random from a specific distribution) along with techniques to ensure that
the value of the objective (training error) decreases sufficiently rapidly. This,
combined with early stopping (i.e. not fully solving (5.7)), warm-start, use
of mini-batches, adding a regularization term to the objective, and so on,
acts as a regularization (Ruder 2016, Kukačka et al. 2017, Bottou, Curtis
and Nocedal 2018).

Concerning the model architecture, there is strong empirical evidence
that the choice of neural network architecture has an influence on the ill-
posedness of (5.7) (Li, Xu, Taylor and Goldstein 2018c, Draxler, Veschgini,
Salmhofer and Hamprecht 2018). Many tasks that are successfully solved
by supervised learning rely on (deep) neural networks, which can approxim-
ate a wide range of non-linear phenomena (large model capacity) without
impairing computability. For this reason we consider deep neural networks
to parametrize Rθ : Y → X. Furthermore, empirical evidence indicates that
deep neural network architectures yield a more favourable energy landscape
for the objective of (5.7) than shallow ones: for example, most local minima
are almost global (Choromanska et al. 2015, Becker, Zhang and Lee 2018).
This intricate interplay between the choice of architecture and avoiding get-
ting trapped in ‘bad’ local minima is poorly understood, and it is an active
area of research within the machine learning community. Despite the lack
of a theory, there is a consensus that an appropriate model architecture not
only ensures computational feasibility but also acts as a kind of implicit
regularization for (5.7).

To summarize, a training algorithm T as in (5.8) together with a spe-
cific model architecture regularizes (5.7), thereby resulting in the following
approximation to the Bayes estimator (5.4):

RT (µ̂) : Y → X (5.9)

for the empirical measure µ̂ given by Σm ⊂ X × Y as in (5.6).

5.1.3. Fully learned Bayes estimation

Here the reconstruction operator Rθ : Y → X has a generic parametrization
given by a deep neural network that does not explicitly account for the data
likelihood.

An obvious difficulty with this approach is that the data space Y and
model parameter space X are mathematically different. Without an expli-
cit mapping from Y to X the action of convolutional layer operators cannot
be properly defined. Therefore, fully learned approaches usually involve
one or more ‘fully connected layers’ that represent a pseudo-inverse oper-
ator Bθ1 : Y → X mapping elements in Y to elements in X followed by a
conventional neural network for Fθ2 : X → X, that is, we get

Rθ := Fθ2 ◦Bθ1 with θ = (θ1, θ2). (5.10)
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In the discrete setting, where Y = Rn and X = Rm, the simplest repres-
entation for B is a dense matrix B ∈ Rm×n; the inclusion of an activation
function makes this a non-linear mapping.

Initial examples of fully learned reconstruction in tomographic imaging
include Paschalis et al. (2004) for SPECT imaging and Argyrou, Maintas,
Tsoumpas and Stiliaris (2012) for transmission tomography. Both papers
consider small-scale problems: for example, Paschalis et al. (2004) consider
recovering 27× 27 pixel SPECT images, and Argyrou et al. (2012) consider
recovering 64× 64 pixel images from tomographic data.

A more recent example is the automated transform by manifold approx-
imation (AutoMap) method introduced in Zhu et al. (2018) as a tool for
fully data-driven image reconstruction. Here, Rθ : Y → X is represented by
a feed-forward deep neural network with fully connected layers followed by a
sparse convolutional auto-encoder. This is in some sense similar to the Deep
Cascade architecture in Schlemper et al. (2017), as it has one portion of the
network for data consistency and the other for super-resolution/refinement
of image quality. The encoder from data space to the model parameter
space is implemented using three consecutive fully connected networks with
sinh activation functions followed by two CNN layers with ReLU activation.

We interpret this as a combination of a pseudo-inverse R†θ3 : Y → X with a
conventional convolutional auto-encoder:

Rθ = Ψ†θ1 ◦Ψθ2︸ ︷︷ ︸
auto-encoder

◦R†θ3 for θ = (θ1, θ2.θ3).

AutoMap was used to reconstruct 128×128 pixel images from MRI and PET
imaging data. The dependence on fully connected layers results in a large
number of neural network parameters that have to be trained. Primarily
motivated by this difficulty, a further development of AutoMap is ETER-
net (Oh et al. 2018), which uses a recurrent neural network architecture in
place of the fully connected/convolutional auto-encoder architecture. Also
addressing 128 × 128 pixel images from MRI, Oh et al. (2018) found a re-
duction in required parameters by over 80%. A method similar to AutoMap
is used by Yoo et al. (2017) to solve the non-linear reconstruction problem
in diffuse optical tomography. Here the forward problem is the Lippman–
Schwinger equation but only a single fully connected layer is used in the
backprojection step. Yoo et al. (2017) exploit the intrinsically ill-posed
nature of the forward problem to argue that the mapping induced by the
auto-encoder step is low-rank and therefore sets an upper bound on the
dimension of the hidden convolution layers.

The advantage of fully learned Bayes estimation lies in its simplicity,
since one avoids making use of an explicit forward operator (or data likeli-
hood). On the other hand, any generic approach to reconstruction by deep
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neural networks requires having connected layers that represent the relation
between model parameters and data. For this reason, generic fully learned
Bayes estimation will always scale badly: for example, in three-dimensional
tomographic reconstruction it is common to have an inverse problem which,
when discretized, involves recovering a (512× 512× 512 ≈ 108)-dimensional
model parameter from data of the same order of magnitude. Hence, a
fully learned generic approach would involve learning at least 1016 weights
from supervised data! There have been several attempts to address the
above issue by considering neural network architectures that are adapted
to specific direct and inverse problems. One example is that of Khoo and
Ying (2018), who provide a novel neural network architecture (SwitchNet)
for solving inverse scattering problems involving the wave equation. By
leveraging the inherent low-rank structure of the scattering problems and
introducing a novel switching layer with sparse connections, the SwitchNet
architecture uses far fewer parameters than a U-Net architecture for such
problems. Another example is that of Ardizzone et al. (2018), who propose
encoding the forward operator using a invertible neural network, also called
a reversible residual network (Gomez, Ren, Urtasun and Grosse 2017). The
reconstruction operator is then obtained as the inverse of the invertible
neural network for the forward operator. However, it is unclear whether
this is a clever approach to problems that are ill-posed, since an inverse of
the forward operator is not stable. Another approach is that of Yoo et al.
(2017), who apply an AutoMap-like architecture for non-linear reconstruc-
tion problems in diffuse optical tomography. Here the forward problem is
the Lippman–Schwinger equation, but only a single fully connected layer is
used in the backprojection step. Yoo et al. (2017) exploit the intrinsically
ill-posed nature of the forward problem to argue that the mapping induced
by the auto-encoder step is low-rank and therefore sets an upper bound on
the dimension of the hidden convolution layers. The above approaches can
also to some extent be seen as further refinements of methods in Section 4.2.

However, neither of the above efforts address the challenge of finding suf-
ficient supervised training data necessary for the training. Furthermore,
any changes to the acquisition protocol or instrumentation may require re-
training, making the method impractical. In particular, due to the lack of
training data, fully learned Bayes estimation is inapplicable to cases when
data are acquired using novel instrumentation. A practical case would be
spectral CT, where novel direct counting energy resolving detectors are be-
ing developed.

5.1.4. Learned iterative schemes

The idea here is to choose an architecture for Rθ : Y → X in (5.7) that
contains an explicit expression for the data likelihood, which accounts for
how a model parameter gives rise to data. This requires us to embed an
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explicit forward operator A : X → Y into the architecture for Rθ, which
is somewhat tricky since Rθ and A are mappings that go in the reverse
direction compared to each other.

One approach is presented by Mousavi and Baraniuk (2017), who suggest
a CNN architecture (DeepInverse) adapted for solving a linear inverse prob-
lem. The architecture involves a fully connected layer (that is not learned)
to represent the normal operator A∗ ◦A : X → X followed by convolutional
layers as in a regular CNN with ReLU activation, but here one dispenses
with the downsampling (max-pooling operation) that is common in a CNN.
The usefulness is limited, however, since the normal operator needs to have a
certain structure for the sake of computational efficiency, for example when
inverting the Fourier transform, which results in a block-circulant matrix.

Another class of methods is that of learned iterative schemes, which in-
clude a handcrafted forward operator and the adjoint of its derivative into
the architecture by unrolling a suitable iterative scheme (Section 4.9.4). An
early variant was presented by Yang, Sun, Li and Xu (2016), who define a
learned iterative method based on unrolling an ADMM-type scheme. The
network is trained against supervised data using a somewhat unusual asym-
metric loss, namely

`X(f, h) :=
√
‖f − h‖22/‖f‖22.

The trained network is used to invert the Fourier transform (MRI image
reconstruction). However, the whole approach is unnecessarily complex,
and it is now surpassed by learned iterative methods that have a more
transparent logic. The survey will therefore focus on these latter variants.

Learned iterative in model parameter space. In the simplest setting, Rθ in
(5.7) is given as in (4.32) with an updating operator as in (4.34) where
J := L(A( · ), g). Hence, given an initial model parameter f0 ∈ X, we
define Rθ : Y → X with θ = (θ1, . . . , θN ) as

Rθ(g) := (ΛθN ◦ · · · ◦ Λθ1)(f0), (5.11)

where Λθk := id + Γθk ◦ ∇L(A( · ), g). In the above, Γθk : X → X is learned
from supervised data (5.6) by approximately solving (5.7) using a training
algorithm as in (5.8). In contrast, ∇L(A( · ), g) : X → X is not learned: it
is derived from an explicit expression for the data likelihood. For example,
a common choice for data where the observational noise is Gaussian is

L(v, g) :=
1

2
‖v − g‖22 =⇒ ∇L(A(f), g) = [∂A(f)]∗(A(f)− g). (5.12)

The reconstruction operator Rθ : Y → X in (5.11) can now be interpreted
as a residual neural network, as popularized by He, Zhang, Ren and Sun
(2016) for image classification. Furthermore, the operators Γθk : X → X for
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Γθ1 Γθ2

∇L(A( · ), g) ∇L(A( · ), g)

Figure 5.1. Learned iterative method in model parameter space. Illustration of
the unrolled scheme in (5.11) for N = 2 in the context of CT image reconstruction
(Section 7.3.1). Each Γθ1 : X → X is a CNN, g ∈ X is the measured data, and f0

is an initial image, usually taken as zero.

k = 1, . . . , N are represented by deep neural networks with an architecture
that is usually fixed: for example, in imaging problems one selects a suitable
CNN architecture. See Figure 5.1 for an illustration of (5.11).

Following Section 4.9.1, the next level of complexity comes when the
learned component is allowed to be less constrained by removing the explicit
expression for f 7→ ∇L(A(f), g) in (5.11) while keeping expressions for the
forward operator and the adjoint of its derivative. This corresponds to
defining Rθ : Y → X as in (4.38) but with no memory, that is,

Rθ(g) := (PX ◦ΛθN ◦ . . . ◦ Λθ1)(f0, g), (5.13)

where PX : X × Y → X is the usual projection and Λθk : X × Y → X × Y
for k = 1, . . . , N is

Λθk(f, v) := Γθk(f, v, [∂A(f)]∗(v),A(f),∇Sλ(f)) for (f, v) ∈ X × Y .

Here, Γθk : X×Y ×X×Y ×X → X×Y is the updating operator that is given
by a deep neural network. The resulting deep neural network Rθ : Y → X
is learned from supervised data (5.6) by approximately solving (5.7) using
a training algorithm as in (5.8).

The constraints on the learning can be further decreased, at the expense
of increased memory footprint and computational complexity, by allowing
for some memory l > 0, that is, each of the learned updating operators
account for more than the previous iterate. This leads to an architecture
for Rθ : Y → X of the form (4.38) with updating operators as in (4.37).
A special case of this formulation is the learned gradient method of Adler
and Öktem (2017), who in turn present the recurrent inference machines of
Putzky and Welling (2017) as special case.

Another special case is variational networks. These are defined by un-
rolling an iterative scheme for minimizing an explicit objective that has a
data discrepancy component and a regularizer. The idea was introduced
by Hammernik et al. (2016) for two-dimensional Fourier inversion, where
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the objective has a regularizer based on a reaction–diffusion model. Ham-
mernik et al. (2018) develop it further: they consider a variational network
(outlined in their Figure 1) obtained by unrolling the iterations of their
equation (6). This corresponds to (5.11) with Λθk : X → X given as

Λθk := id + ωk∇[L(A( · ), g) + Sφk( · )] for θk = (ωk, φk).

The regularizer Sφk : X → R is chosen as the FoE model (see also Sec-
tion 4.3.2):

Sφk(f) :=
∑
j

Φk,j(f ∗Kk,j) for φk = (Φk,j ,Kk,j),

where the (potential) functionals Φk,j : X → R and the convolution kernels
Kk,j ∈ X are all parametrized by finite-dimensional parameters, so φk is a
finite-dimensional parameter. See also Chen et al. (2019), who essentially
apply the approach of Hammernik et al. (2018) to CT reconstruction. An-
other variant of variational networks is that of Bostan, Kamilov and Waller
(2018), who unroll a proximal algorithm for an objective with a TV regular-
izer and replace the scalar soft-thresholding function with a parametrized
variant (see Bostan, Kamilov and Waller 2018, equation (8)). This yields
a proximal algorithm that uses a sequence of adjustable shrinkage func-
tions in addition to self-tuning the step-size. In particular, unlike Mousavi
and Baraniuk (2017), the method presented here does not rely on having a
structured normal operator. A further variant of a variational network is
given by Aggarwal, Mani and Jacob (2019), who unroll a gradient descent
scheme for minimizing an objective whose regularizer is given by a CNN
(see Aggarwal, Mani and Jacob 2019, equation (7)). A similar approach
is also considered by Zhao, Zhang, Wang and Gao (2018a), who unroll an
ADMM scheme and stop iterates according to a Morozov-type stopping cri-
terion (not a fixed number of iterates), so the number of layers depends on
the noise level in data.

Remark 5.1. An interesting aspect of the variational network of Ham-
mernik et al. (2016) is that Λθk can be interpreted as a gradient des-
cent step in an optimization scheme that minimizes an objective functional
f 7→ L(A(f), g) + Sφk(f). In particular, if φk is the same for all k, then
increasing the number of layers by N → ∞ will in the limit yield a MAP
estimator instead of a Bayes estimator.

Other applications of the learned gradient method include those of Gong
et al. (2018) for deconvolution, Qin et al. (2019) for dynamic cardiac two-
dimensional MRI (here one needs to exploit the temporal dependence),
Hauptmann et al. (2018) for three-dimensional PAT, and Wu, Kim and Li
(2018a) for three-dimensional CT reconstruction. The challenge in three-
dimensional applications is to manage the high computational and memory
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cost for the training of the unrolled network. One approach is to replace
the end-to-end training of the entire neural network and instead break down
each iteration and train the sub-networks sequentially (gradient boosting).
This is the approach taken by Hauptmann et al. (2018) and Wu et al.
(2018a), but as shown by Wu et al. (2018a), the output quality has minor im-
provements over learned post-processing (Section 5.1.5), which also scales to
the three-dimensional setting. A better alternative could be to use a revers-
ible residual network architecture (Gomez et al. 2017, Ardizzone et al. 2018)
for a learned iterative method, since these are much better at managing
memory consumption in training (mainly when calculating gradients using
backpropagation) as networks grow deeper and wider. However, this is yet
to be done.

Learned iterative in both model parameter and data spaces. The final en-
hancement to the learned iterative schemes is to introduce an explicit learned
updating in the data space as well. To see how this can be achieved, one
can unroll a primal–dual-type scheme of the form

v0 = g and f0 ∈ X given

vk+1 = Γd
θdk

(vk,A(fk), g))

fk+1 = Γm
θmk

(fk, [∂A(f)]∗(vk+1))

for k = 0, . . . , N − 1. (5.14)

Here,

Γm
θmk

: X ×X → X and Γd
θdk

: Y × Y × Y → Y

are the updating operators. This corresponds to defining Rθ : Y → X with
θk = (θm

k , θ
d
k) as in (5.13), where Λθk : X × Y → X × Y is given by

Λθk(f, v) := (Γm
θmk

(f, [∂A(f)]∗(Γd
θdk

(v,A(f), g))),Γdata
θdk

(v,A(f), g))). (5.15)

This is illustrated in Figure 5.2, and similar networks are also suggested by
Vogel and Pock (2017) and Kobler et al. (2017), who extend the approach of
Hammernik et al. (2018) by parametrizing and learning the data discrepancy
L. Applications are for inverting the two-dimensional Fourier transform
(two-dimensional MRI image reconstruction). See also He et al. (2019),
who unroll an ADMM scheme with updates in both reconstruction and
data spaces and apply that to two-dimensional CT reconstruction.

Finally, allowing for some memory in both model parameter and data
spaces leads to the learned primal–dual scheme of Adler and Öktem (2018b),
which is used for low-dose two-dimensional CT reconstruction. The robust-
ness of this approach against uncertainties in the image and uncertainties
in system settings is empirically studied by Boink, van Gils, Manohar and
Brune (2018). The conclusion is that learning improves pure knowledge-
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A A

Figure 5.2. Learned iterative method in both model parameter and data spaces.
Illustration of the operator obtained by unrolling the scheme in (5.14) for N = 3
in the context of CT image reconstruction (Section 7.3.1).

based reconstruction in terms of noise removal and background identifica-
tion, and more variety in the training set increases the robustness against
image uncertainty. Robustness against model uncertainty, however, is not
readily obtained. An application of a learned primal dual scheme to breast
tomosynthesis is given by Moriakov et al. (2018). To outperform existing
reconstruction methods, one needs to encode the information about breast
thickness into the learned updates for both primal and dual variables.

Further remarks. Successively reducing the constraints on the neural net-
work architecture in the learned iterative scheme allows for larger model
capacity, but training such a model also requires more training data. The
well-known universal approximation property of deep neural networks (see
Cybenko 1989, Hornik, Stinchcombe and White 1989, Hornik 1991, Barron
1994) implies that the learned iterative schemes in their most unconstrained
formulation can approximate a Bayes estimator arbitrarily well given enough
supervised data and neural network parameters (model capacity). This does
not necessarily hold for the more constrained network architectures, such
as those used by the variational networks of Hammernik et al. (2018). See
also Section 8.2.1 for remarks on approximation properties of certain deep
neural networks.

Unrolling an iterative scheme is a central theme in learned iterative meth-
ods, and it allows one to construct a deep neural network from an iterative
scheme that is stopped after N steps. Here, a larger N simply means adding
more layers, i.e. increasing the model capacity. The same idea is used to
solve an optimization problem more rapidly (Section 4.9), but here the train-
ing is unsupervised and the loss is given by the objective that we seek to
minimize. Such an architecture can be used for computing a Bayes estimator
when trained using a supervised data or a MAP estimator when trained us-
ing unsupervised data. The same holds also for the GAN approach taken in
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Mardani et al. (2017b) (Section 5.1.6), which uses the same architecture as
learned iterative methods but a different loss, that is, it computes a different
estimator.

5.1.5. Learned post- and/or pre-processing

One of the earliest applications of deep learning in inverse problems in ima-
ging was as a post-processing tool. Here, an established non-learned recon-
struction method is followed by a deep neural network that is trained to
‘clean up’ noise and artefacts introduced by the first inversion step. The
first inversion step is typically performed using a pseudo-inverse of the for-
ward operator, e.g. backprojection or FBP in CT or a zero-filling solution in
MRI. This initial reconstruction method can be seen as a way to account for
how data are generated, whereas the learning part acts only on the model
parameter instead of data.

As one might expect, a vast number of papers apply deep learning to
images obtained from some kind of image reconstruction. In principle, all
of these qualify as a learned post-processing scheme. We will not attempt to
prove a (near-complete) survey of these since the learning part is not directly
related to the inverse problem. Instead we mention some key publications
from imaging that have image reconstruction as their main theme, followed
by a characterization of the estimator one seeks to approximate when using
learned post-processing.

Selected publications focusing on image reconstruction. We start with sur-
veying work related to learned post-processing for CT image reconstruction.
Early approaches used a CNN to map a sparse-view CT reconstruction to a
full-view one, as in Zhao, Chen, Zhang and Jin (2016). A similar approach
to mapping low-dose CT images to normal-dose images (denoising) is that
of Chen et al. (2017b), who train a CNN on image patches. See also Chen
et al. (2017a) for an approach that uses a residual encoder–decoder CNN
(RED-CNN) trained on image patches for the same purpose.

Denoising low-dose CT images can also be done using a U-Net, as in Jin,
McCann, Froustey and Unser (2017). Another variant is to use the U-Net
on directional wavelets (AAPM-Net), as in Kang, Min and Ye (2017). This
method came second in the 2016 AAPM Low Dose CT Grand Challenge.6

It has since been further developed and refined in a series of publications:
for example, Kang, Chang, Yoo and Ye (2018) and Kang and Ye (2018)
modify the AAPM-Net architecture by using a wavelet residual network
(WavResNet), which is a deep CNN reinterpreted as cascaded convolution
framelet signal representation. Another drawback of AAPM-Net is that

6 The method that won was a variational method with a non-local regularizer (Kim,
Fakhri and Li 2017), but that approach has a run-time that scales very poorly with
problem size.
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it does not satisfy the frame condition and it overly emphasizes the low-
frequency component of the signal, which leads to blurring artefacts in the
post-processed CT images. To address this, Han and Ye (2018) suggest a
U-Net-based network architecture with directional wavelets that satisfy the
frame condition. Finally, Ye et al. (2018) develop a mathematical frame-
work to understand deep learning approaches for inverse problems based on
these deep convolutional framelets. Such architectures represent a signal
decomposition similar to using wavelets or framelets, but here the basis is
learned from the training data. This idea of using techniques from applied
harmonic analysis and sparse signal processing to analyse approximation
properties of certain classes of deep neural networks bears similarities to
Bölcskei, Grohs, Kutyniok and Petersen (2019) (see Section 8.2.1) and the
scattering networks discussed in Section 4.5 as well as work related to multi-
layer convolutional sparse coding outlined in Section 4.4.2.

Yet another CNN architecture (Mixed-Scale Dense CNN) is proposed
in Pelt, Batenburg and Sethian (2018) for denoising and removing streak
artefacts from limited angle CT reconstructions. Empirical evidence shows
that this architecture comes with some advantages over encoder–decoder
networks. It can be trained on relatively small training sets and the same
hyper-parameters in training can often be re-used across a wide variety of
problems. This removes the need to perform a time-consuming trial-and-
error search for hyper-parameter values.

Besides architectures, one may also consider the choice of loss function,
as in Zhang et al. (2018), who consider CNN-based denoising of CT images
using a loss function that is a linear combination of squared L2 and multi-
scale structural similarity index (SSIM). A closely related work is that of
Zhang and Yu (2018), which uses a CNN trained on image patches with a
loss function that is a sum of squared L2 losses over the patches. The aim
here is to reduce streak artefacts from highly scattering media, such as metal
implants. A number of papers use techniques from GANs to post-process
CT images. Shan et al. (2018) use a conveying path-based convolutional
encoder–decoder network. A novel feature of this approach is that an initial
three-dimensional denoising model can be directly obtained by extending
a trained two-dimensional CNN, which is then fine-tuned to incorporate
three-dimensional spatial information from adjacent slices (transfer learning
from two to three dimensions). The paper also contains a summary of deep
learning network architectures for CT post-processing listing the loss func-
tion (squared L2, adversarial or perpetual loss). A similar approach is taken
by Yang et al. (2018c), who denoise CT images via a GAN with Wasserstein
distance and perceptual similarity. The perceptual loss suppresses noise by
comparing the perceptual features of a denoised output against those of
the ground truth in an established feature space, while the generator fo-
cuses more on migrating the data noise distribution. Another approach is
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that of You et al. (2018a), who use a generator from a GAN to generate
high-resolution CT images from low-resolution counterparts. The model is
trained on semi-supervised training data and the training is regularized by
enforcing a cycle-consistency expressed in terms of the Wasserstein distance.
See also You et al. (2018b) for similar work, along with an investigation of
the impact of different loss functions for training the GAN.

For PET image reconstruction, da Luis and Reader (2017) use a CNN
to denoise PET reconstructions obtained by ML-EM. A more involved ap-
proach is presented in Yang, Ying and Tang (2018a), which learns a post-
processing step for enhancing PET reconstructions obtained by MAP with
a Green smoothness prior (see Yang, Ying and Tang 2018a, equation (6)).
More precisely, this is supervised training on tuples consisting of ground
truth and a number of MAP solutions where one varies parameters defin-
ing the prior. The training seeks to learn a mapping that takes a set of
small image patches at the same location from the MAP solutions to the
corresponding patch in the ground truth, thereby resulting in a learned
patch-based image denoising scheme. A related approach is that of Kim
et al. (2018), who train a CNN to map low-dose PET images to a full-dose
one. Both low-dose and full-dose reconstructions are obtained using ordered
subsets ML-EM. Since the resulting trained CNN denoiser produces addi-
tional bias induced by the disparity of noise levels, one considers learning
a regularizer that includes the CNN denoiser (see Kim et al. 2018, equa-
tion (8)). The resulting variational problem is solved using the ADMM
method.

Concerning MRI, most learned post-processing applications seek to train
a mapping that takes a zero-filling reconstruction7 obtained from under-
sampled MRI data to the MRI reconstruction that corresponds to fully
sampled data. For example, Wang et al. (2016) use a CNN for this pur-
pose, and the deep learning output is either used as an initialization or as
a regularization term in classical compressed sensing approaches to MRI
image reconstruction. Another example is that of Hyun et al. (2018), who
use a CNN to process a zero-filling reconstruction followed by a particu-
lar k-space correction. This outperforms plain zero-filling reconstruction as
well as learned post-processing where Fourier inversion is combined with a
trained denoiser based on a plain U-Net architecture.

Similar to CT image processing, there has been some work on using GANs
to post-process MRI reconstructions. One example is that of Quan, Mem-
ber, Nguyen-Duc and Jeong (2018), who use a generator within a GAN
setting to learn a post-processing operator that maps a zero-filling recon-
struction image to a full reconstruction image. Training is regularized using

7 Zero-filling reconstruction is computed by setting to zero all Fourier coefficients that are
not measured in the MRI data, and then applying a normal inverse Fourier transform.
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a loss that includes a cyclic loss consistency term that promotes accurate in-
terpolation of the given under-sampled k-space data. The generator consists
of multiple end-to-end networks chained together, where the first network
translates a zero-filling reconstruction image to a full reconstruction image,
and the following networks improve accuracy of the full reconstruction im-
age (refinement step). Another approach using a generator from a trained
GAN is given by Yang et al. (2018b), who use a U-Net architecture with
skip connections for the generator. The loss consists of an adversarial loss
term, a novel content loss term considering both squared L2 and a percep-
tual loss term defined by pre-trained deep convolutional networks. There is
also a squared L2 in both model parameter and data spaces, and the latter
involves applying the forward operator to the training data to evaluate the
squared L2 in data space. See Yang et al. (2018b, equation (13)) for the full
expression.

We conclude by mentioning some approaches that involve pre-processing.
For CT imaging, deep-learning-based pre-processing targets sinogram in-
painting, which is the task of mapping observed, sparsely sampled, CT pro-
jection data onto corresponding densely sampled CT projection data. Lee
et al. (2019) achieve this via a plain CNN whereas Ghani and Karl (2018)
use a generator from a trained conditional GAN. A CNN is also used by
Hong et al. (2018) to pre-process PET data. Here one uses a deep residual
CNN for PET super-resolution, that is, to map PET sinogram data from
a scanner with large pixellated crystals to one with small pixellated crys-
tals. The CNN-based method was designed and applied as an intermediate
step between the projection data acquisition and the image reconstruction.
Results are validated using both analytically simulated data, Monte Carlo
simulated data and experimental pre-clinical data. In a similar manner,
Allman, Reiter and Bell (2018) use a CNN to pre-process photoacoustic
data to identify and remove noise artefacts. Finally, we cite Huizhuo, Jin-
zhu and Zhanxing (2018), who use a CNN to jointly pre- and post-process
CT data and images. The pre-processing amounts to sinogram in-painting
and the post-processing is image denoising, and the middle reconstruction
step is performed using FBP. The loss function for this joint pre- and post-
processing scheme is given in Huizhuo et al. (2018, equation (3)).

Characterizing the estimator. Here we consider post-processing; one can
make analogous arguments for pre-processing. To understand what learned
post-processing computes, consider the supervised learning setting. Learned
post-processing seeks to approximate the Bayes estimator for the model
parameter conditioned on the initial reconstruction, which is a different
estimator from the one considered in deep direct Bayes estimation (Sec-
tions 5.1.2–5.1.4).
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Stated formally, let h be a X-valued random variable defined as h :=
A†(g), where g is the Y -valued random variable generating data. Also,
let A† : Y → X denote the fixed initial reconstruction operator that is
not learned. We now seek the Bayes estimator for the conditional random
variable (f | h = h), where h = A†(g) with data g ∈ Y being a single
sample of g. This yields a reconstruction operator R : Y → X given as
R := Bσ ◦A† with Bσ : X → X solving

Bσ ∈ arg min
B : X→X

E(f,h)∼σ[`X(f,B(h))], (5.16)

where `X : X ×X → R is a fixed loss function. In the above, σ denotes the
joint law for (f,h), which is clearly unknown. It can, however, be replaced
by its empirical counterpart given from supervised training data,

Σm := {(f1, h1), . . . , (fm, hm)} ⊂ X ×X, (5.17)

where (fi, hi) are generated by (f,h) ∼ σ. Furthermore, considering all pos-
sible estimators (non-randomized decision rules) B : X → X in the minim-
ization in (5.16) is computationally unfeasible. To address this, we consider
a family {Bθ}θ∈Θ of estimators that is parametrized by a finite-dimensional
parameter in Θ. Restricting attention to such a parametrized family of
estimators yields the following empirical risk minimization problem:

θ̂ ∈ arg min
θ∈Θ

1

m

m∑
i=1

`X(fi,Bθ(hi)), (5.18)

with (fi, hi) ∈ Σm as in (5.17).
Now, consider the case when the initial reconstruction method A† : Y →

X is a linear sufficient statistic, that is,

E[f | g = g] = E[f | A†(g) = A†(g)].

For example, the operators given by the FBP and the backprojection are
both linear sufficient statistics. If in addition the loss function is the squared
L2-norm, thenR := Bσ ◦A† is also a Bayes estimator for (f | g = g), that is,
the reconstruction obtained from learned post-processing coincides with the
one from deep direct Bayes estimation. Note, however, that this holds in
the limit of infinite amount of training data and infinite model capacity.
In fact, as we shall see in Section 7.3, when applied to finite number of
training data and finite model capacity, learned post-processing differs from
deep direct Bayes estimation.

5.1.6. Other estimators

Learning using a supervised GAN. Some recent work uses a GAN in a super-
vised learning setting, which leads to a training problem of the type (5.3).
For example, Mardani et al. (2017b) defines the variant of (5.3) where `X
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is the L1-norm, `PX
is the Pearson χ2-divergence, which can be evaluated

using a least-squares GAN (Mao et al. 2016), and Rθ : Y → X is given by
an architecture adapted to MRI. Use of a 1-norm in the generator loss mo-
tivates the reference made to ‘compressed sensing’ made by the authors. See
also Mardani et al. (2017a) and Schwab, Antholzer and Haltmeier (2018)
for further work along these lines: for example, Schwab et al. (2018) more
formally treat the manifold projection step that in Mardani et al. (2017b)
is specially tailored for MRI imaging.

It is not easy to identify what estimator the above really corresponds to,
but clearly the generator (after training) resembles a MAP estimator where
the prior is given implicitly by the supervised training data. To some extent,
one may view the above as a supervised variant of Section 4.7 that uses a
GAN to learn a regularizer (prior) from unsupervised data.

Deep direct estimation of higher-order moments. As described in Adler and
Öktem (2018a), one can train a deep neural network to directly approximate
an estimator involving higher-order moments, such as pointwise variance
and correlation. The starting point is the well-known result

Ew[w | g = · ] = min
h: Y→W

E(g,w)[‖h(g)−w‖2W ]. (5.19)

In the above, w is any random variable taking values in some measur-
able Banach space W and the minimization is over all W -valued measur-
able maps on Y . This is useful since many estimators relevant for uncer-
tainty quantification are expressible using terms of this form for appropriate
choices of w.

Specifically, Adler and Öktem (2018a) consider two (deep) neural net-
works Rθ∗ : Y → X and hφ∗ : Y → X with appropriate architectures that
are trained according to

θ∗ ∈ arg min
θ
{E(f,g)∼µ[‖f −Rθ(g)‖2X ]},

φ∗ ∈ arg min
φ
{E(f,g)∼µ[‖ hφ(g)− (f −Rθ∗(g))2‖2X ]}.

The joint law µ above can be replaced by its empirical counterpart given
from supervised training data (fi, gi), so the µ-expectation is replaced by an
averaging over training data. The resulting networks will then approximate
the conditional mean and the conditional pointwise variance, respectively.

As already shown, by using (5.19) it is possible to rewrite many estimat-
ors as minimizers of an expectation. Such estimators can then be approx-
imated using the direct estimation approach outlined here. This should
coincide with computing the same estimator by posterior sampling (Sec-
tion 5.2.1). Direct estimation is significantly faster, but not as flexible as
posterior sampling since each estimator requires a new neural network that
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specifically trained for that estimator. Section 7.7 compares the outcomes
of the two approaches.

5.2. Deep posterior sampling

The idea here is to use techniques from deep learning to sample from the
posterior. This can then be used to perform various statistical computations
relevant to solving the inverse problem.

Approaches to sampling from high-dimensional distributions that do not
use neural networks are very briefly surveyed in Section 3.5.2. A drawback
of these approaches is that they require access to an explicit prior, so they
do not apply to cases where no explicit prior is available. Furthermore,
despite significant algorithmic advances, these methods do not offer com-
putationally feasible means for sampling from the posterior in large-scale
inverse problems, such as those arising in three-dimensional imaging. Here
we survey an alternative method that uses conditional GAN for the same
purpose (Section 5.2.1). This approach has very desirable properties, so it
does not require access to an explicit prior, and it is computationally very
efficient.

Remark 5.2. Deep Gaussian mixture models (Viroli and McLachlan 2017)
are multi-layered networks where the variables at each layer follow a mixture
of Gaussian distributions. Hence, the resulting deep mixture model consists
of a set of nested (non-linear) mixtures of linear models. Such models can
be shown to be universal approximators of probability densities and they
can be trained using ML-EM techniques. This is an interesting approach
for sampling from the posterior in Bayesian inversion, but it is yet to be
used in this context.

Recent work using conditional GAN for the same purpose (Section 5.2.1)
gives very promising results. We do not cover deep Gaussian mixture models
(Viroli and McLachlan 2017), which are multi-layered networks where, at
each layer, the variables follow a mixture of Gaussian distributions. Thus,
the deep mixture model consists of a set of nested mixtures of linear models,
which globally provide a non-linear model able to describe the data in a very
flexible way. These are universal approximators of probability densities that
are trainable using ML-EM techniques. This is an interesting approach that
is yet to be used in the context of inverse problems.

5.2.1. Conditional GAN
The approach taken was first introduced by Adler and Öktem (2018a), and
it is a special case of variational Bayes inference (Section 3.5.2) where the
variational family is parametrized via GAN. More precisely, the idea is to
explore the posterior by sampling from a generator that has been trained
using a conditional Wasserstein GAN discriminator.
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To describe how a Wasserstein GAN can be used for this purpose, let
data g ∈ Y be fixed and assume that Πg

post, the posterior of f at g = g,
can be approximated by elements in a parametrized family {Gθ(g)}θ∈Θ of
probability measures on X. The best such approximation is defined as
Gθ∗(g), where θ∗ ∈ Θ solves

θ∗ ∈ arg min
θ∈Θ

`PX
(Gθ(g),Πg

post). (5.20)

Here, `PX
: PX ×PX → R quantifies the ‘distance’ between two probabil-

ity measures on X. We are, however, interested in the best approximation
for ‘all data’, so we extend (5.20) by including an averaging over all possible
data. The next step is to choose a distance notion ` that is desirable from
both a theoretical and a computational point of view. For example, the
distance should be finite, and computational feasibility requires it to be dif-
ferentiable almost everywhere, since this opens up using stochastic gradient
descent (SGD)-type schemes. The Wasserstein 1-distanceW (Section 8.2.7)
has these properties (Arjovsky et al. 2017), and sampling from the posterior
Πg

post can then be replaced by sampling from the probability distribution
Gθ∗(g), where θ∗ solves

θ∗ ∈ arg min
θ∈Θ

Eg∼σ[W(Gθ(g),Πg
post)]. (5.21)

In the above, σ is the probability distribution for data and the random
variable g ∼ σ generates data.

Observe now that evaluating the objective in (5.21) requires access to
the very posterior that we seek to approximate. Furthermore, the dis-
tribution σ of data is often unknown, so an approach based on (5.21) is
essentially useless if the purpose is to sample from an unknown posterior.
Finally, evaluating the Wasserstein 1-distance directly from its definition is
not computationally feasible.

On the other hand, as we shall see, all of these drawbacks can be circum-
vented by rewriting (5.21) as an expectation over the joint law (f,g) ∼ µ.
This makes use of the Kantorovich–Rubinstein duality for the Wasserstein
1-distance (see (B.2)), and one obtains the following approximate version of
(5.21):

θ∗ ∈ arg min
θ∈Θ

{
sup
φ∈Φ

E(f,g)∼µ
[
Dφ(f,g)− Ez∼η[Dφ(Gθ(z,g),g)]

]}
. (5.22)

Here, Gθ : Z × Y → X (generator) is a deterministic mapping such that
Gθ(z, g) ∼ Gθ(g), where z ∼ η is a ‘simple’ Z-valued random variable in the
sense that it can be sampled in a computationally feasible manner. Next,
the mapping Dφ : X×Y → R (discriminator) is a measurable mapping that
is 1-Lipschitz in the X-variable.
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At first sight, it might be unclear why (5.22) is better suited than (5.21)
to sampling from the posterior, especially since the joint law µ in (5.22) is
unknown. The advantage becomes clear when one has access to supervised
training data for the inverse problem, i.e. i.i.d. samples (f1, g1), . . . , (fm, gm)
generated by the random variable (f,g) ∼ µ. The µ-expectation in (5.22)
can then be replaced by an averaging over training data.

To summarize, solving (5.22) given supervised training data in X × Y
amounts to learning a generator Gθ∗(z, ·) : Y → X such that Gθ∗(z, g) with
z ∼ η is approximately distributed as the posterior Πg

post. In particular,

for given g ∈ Y we can sample from Πg
post by generating values of z 7→

Gθ∗(z, g) ∈ X in which z ∈ Z is generated by sampling from z ∼ η.
An important part of the implementation is the concrete parametrizations

of the generator and discriminator:

Gθ : Z × Y → X and Dφ : X × Y → R.

We use deep neural networks for this purpose, and following Gulrajani et al.
(2017), we softly enforce the 1-Lipschitz condition on the discriminator by
including a gradient penalty term in the training objective function in (5.22).
Furthermore, if (5.22) is implemented as is, then in practice z is not used by
the generator (so called mode-collapse). To solve this problem, we introduce
a novel conditional Wasserstein GAN discriminator that can be used with
conditional WGAN without impairing its analytical properties: see Adler
and Öktem (2018a) for more details.

We conclude by referring to Section 7.7 for an example of how the con-
ditional Wasserstein GAN can be used in clinical image-guided decision
making.

6. Special topics

In this section we address several topics of machine learning that do not
strictly fall within the previously covered contexts of functional analytic or
statistical regularization. In Section 6.1 we discuss regularization methods
that go beyond pure reconstructions. These reconstructions include – at
least partially – the decision process, which typically follows the solution
of inverse problems, for example examination of a CT reconstruction by a
medical expert. Then Section 6.2.1 aims at investigating the connections
between neural networks and differential equations, and Section 6.2 dis-
cusses the case where the forward operator is incorrectly known. Finally,
Section 6.2.2 discusses total least-squares approaches, which are classical
tools for updating the operator as well as the reconstruction based on meas-
ured data. We are well aware that this is still very much an incomplete
list of topics not covered in the previous sections. As already mentioned
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in Section 1, we apologize for our ignorance with respect to the missing
material.

6.1. Task-adapted reconstruction

Estimating a model parameter in an inverse problem is often only one of
many steps in a procedure where the reconstructed model parameter is used
in a task. Consider a setting where the task is given by an operator T : X →
D (task operator) which maps a model parameter f to an element in some set
D (decision space). Such tasks were introduced in Louis (2011) within the
functional analytic framework (Section 2), and image segmentation served
as the prime example.

A wider range of tasks can be accounted for if one adopts the statistical
view as in Adler et al. (2018). Here we introduce aD-valued random variable
d and interpret T as a non-randomized decision rule that is given as a Bayes
estimator. The risk is given through the task loss `D : D ×D → R and the
optimal task operator is the Bayes estimator with respect to the task loss,
that is,

Topt ∈ arg min
T : X→D

E(f,d)[`D(T(f),d)]. (6.1)

In practice we restrict ourselves to a parametrized family of tasks Tφ : X →
D with φ ∈ Φ, typically given by deep neural networks. There are essentially
three ways to combine a neural network Rθ : Y → X for reconstruction
with a neural network Tφ : X → D for the task that is given by (6.1). The

approaches differ in the choice of loss used for learning (θ̂, φ̂) ∈ Θ× Φ in

T
φ̂
◦ R

θ̂
: Y → D. (6.2)

Sequential training. The optimal parameter (θ̂, φ̂) ∈ Θ × Φ in (6.2) is
given as 

θ̂ ∈ arg min
θ∈Θ

Ef,g[`X(Rθ(g), f)],

φ̂ ∈ arg min
φ∈Φ

Eg,d[`D(Tφ ◦ Rθ̂(g),d)].

The training data are samples (fi, gi) generated by (f,g) for computing θ̂

and (gi, di) generated by (g,d) for computing φ̂.

End-to-end training. The optimal parameter (θ̂, φ̂) ∈ Θ × Φ in (6.2) is
given by directly minimizing the loss for the task, that is,

(φ̂, θ̂) ∈ arg min
(φ,θ)∈Θ×Φ

Eg,d[`D(Tφ ◦ Rθ(g),d)].

The training data are samples (gi, di) generated by (g,d).
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Task-adapted training. This refers to anything in between sequential
and end-to-end training. More precisely, (θ̂, φ̂) ∈ Θ×Φ in (6.2) is given by
minimizing the following joint expected loss (risk):

(θ̂, φ̂) ∈ arg min
(θ,φ)∈Θ×Φ

E(f,g,d)[(1−C)`X(Rθ(g), f) +C`D(Tφ ◦Rθ(g),d)]. (6.3)

The parameter C ∈ [0, 1) above is a tuning parameter where C ≈ 0 cor-
responds to sequential training and C → 1 to end-to-end training. The
training data are samples (fi, gi, di) generated by (f.g,d).

Task-adapted training is a generic approach to adapting the reconstruc-
tion to a task with a plug-and-play structure for adapting to a specific
inverse problem and a specific task. The former can be achieved by us-
ing a suitable neural network architecture, such as one given by a learned
iterative method (Section 5.1.4). For the latter, note that the framework
can handle any task that is given by a trainable neural network. This
includes a wide range of tasks, such as semantic segmentation (Thoma
2016, Guo, Liu, Georgiou and Lew 2018), caption generation (Karpathy
and Fei-Fei 2017, Li, Liang, Hu and Xing 2018a), in-painting (Xie, Xu and
Chen 2012), depixelization/super-resolution (Romano, Isidoro and Milanfar
2017b), demosaicing (Syu, Chen and Chuang 2018), image translation (Wol-
terink et al. 2017), object recognition (Sermanet et al. 2013, He et al. 2016,
Farabet, Couprie, Najman and LeCun 2013) and non-rigid image registra-
tion (Yang, Kwitt, Styner and Niethammer 2017, Ghosal and Ray 2017,
Dalca, Balakrishnan, Guttag and Sabuncu 2018, Balakrishnan et al. 2019).
Section 7.6 shows the performance of task-adapted reconstruction for joint
tomographic image reconstruction and segmentation of white brain matter.

The importance of task-adapted reconstruction is also emphasized in the
editorial of Wang, Ye, Mueller and Fessler (2018), which explicitly points
out the potential in integrating reconstruction in an end-to-end workflow
for medical imaging. They even coin the notion of ‘rawdiomics’, which
is task-adapted reconstruction with the task corresponding to radiomics.8

Most approaches to radiomics include some kind of classification that is
performed by deep learning, and repeatability and reproducibility are among
the main challenges (Rizzo et al. 2018, Traverso, Wee, Dekker and Gillies
2018). Typically, trained classifiers fail when confronted with images that
are acquired using an acquisition protocol that is not represented in training
data. This becomes especially problematic in multicentre studies where
images are acquired using varying acquisition protocols and/or equipment.
Clearly, the natural option is to include the information on how the images
are generated, which naturally leads to task-adapted reconstruction.

8 Radiomics seeks to identify distinctive imaging features between disease forms that
may be useful for predicting prognosis and therapeutic response for various conditions.
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6.2. Non-perfect forward operators

As already discussed in Section 1, classical inverse problems are based on
a mathematical formulation of the forward operator A. Those models are
typically derived from physical first principles or other well-established laws
and expert descriptions. These models are never complete. In most cases
these models are regarded as sufficiently accurate to capture the main prop-
erties and a more detailed model would not help the reconstruction process
in the presence of noisy data. However, there are certain cases, for example
emerging new technologies, where models are still underdeveloped. Here
one can aim to obtain an at least partially updated operator based on sets
of test data.

Secondly, such a data-driven approach to model updates might also be
necessary if one has a complete but very complex forward operator. The
complexity of the model might lead to numerically very costly computations,
which, for example in the case of optoacoustic tomography, are beyond any
limits required for routine clinical applications. In this case one might resort
to a much simpler analytical model, which is then updated using data-driven
approaches. A third line of motivation for using partially learned operators
refers to models that use so-called measured system matrices. These system
matrices determine the linear forward operator experimentally, and hence
their accuracy is limited by measurement accuracy.

6.2.1. Learning physics

Several recent papers have discussed the application of deep learning in
forward problems: see Khoo, Lu and Ying (2017), Raissi and Karniadakis
(2017), Sirignano and Spiliopoulos (2017), Tompson, Schlachter, Sprech-
mann and Perlin (2017), E, Han and Jentzen (2017) and Wu, Zhang, Shen
and Zhai (2018).

Several authors have drawn the comparison between neural networks and
PDEs. For example ‘PDE-Net’ (Long, Lu, Ma and Dong 2018) proposes
designing a feed-forward neural network with convolution filters represent-
ing spatial derivatives up to a certain order, and multiplied by spatially
varying weights. Training this system on dynamic data obtained with ac-
curate numerical models allowed the discovery of appropriate PDEs for dif-
ferent physical problems. Other examples include learning coefficients of a
PDE via optimal control (Liu, Lin, Zhang and Su 2010), as well as deriving
CNN architectures motivated by diffusion processes (Chen et al. 2015) (com-
pare also Section 4.3.2 and in particular (4.7) for learned reaction–diffusion
equations), deriving stable architectures by drawing connections to ordinary
differential equations (Haber and Ruthotto 2017) and constraining CNNs
(Ruthotto and Haber 2018) by the interpretation as a partial differential
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equation. Another fascinating approach to learning first-principles physical
models from data is that of Lam, Horesh, Avron and Willcox (2017).

6.2.2. Total least-squares

A widely used approach to integrating operator updates into regularization
schemes for inverse problems can be formulated by generalized Tikhonov
functionals. This is motivated by the total least-squares (TLS) approach
(Golub and Van Loan 1980) (also known as ‘errors-in-variable regression’
in the statistical literature). One extension includes a regularization result-
ing in an approach called regularized total least-squares (R-TLS) (Golub,
Hansen and O’Leary 1999, Markovsky and Van Huffel 2007), which for lin-
ear operators A = A aims to learn an operator correction δA from the
data by

arg min
δA,f

1

2
‖(A+δA)f − g‖2 +

α

2
‖L f‖2 +

β

2
‖δA ‖2F, (6.4)

where the operator norm is the Frobenius norm (typical choice β = 1). The
linear operator (matrix) L is included in order to allow for more general
regularization terms; for simplicity one may choose the identity L = I.

In the TLS literature, the minimization in (6.4) is commonly formulated

with respect to Ã, i.e. defined by Ã := A+δA. This formulation uses a
single data point g for simultaneously computing an operator update and
for computing an approximation to the inverse problem. This is a heavily
under-determined problem, which, however, leads to good results, at least
for some applications: see Gutta et al. (2019), Kluth and Maass (2017)
and Hirakawa and Parks (2006). The regularized TLS approach has been
analysed by Golub et al. (1999), for example, who prove an equivalence
result to classical Tikhonov regularization (Golub et al. 1999, Theorem 2.1),
which we restate here.

Theorem 6.1. The solution f̂γ to the problem

min
Ã,f
{‖Ãf − g‖2 + ‖Ã− A ‖2F}, subject to ‖L f‖ = γ

is a solution (AT A+λIIn + λL L
T L)f = AT g where

λI = −‖g − A f‖2

1 + ‖f‖2
and λL = µ(1 + ‖f‖2).

In the above, µ is the Lagrange multiplier in

L(Ã, f, µ) = ‖Ãf − g‖2 + ‖Ã− A ‖2F + µ(‖L f‖2 − γ2).

The two parameters are related by

λLγ
2 = yδ,T (g − A f) + λI
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and the residual fulfils

‖Ãf − g‖2 + ‖Ã− A ‖2F = −λI .

Golub et al. (1999) conclude that if ‖L fγ‖ < γ solves the R-TLS problem,
then it also solves the TLS problem without regularization. Moreover, this
approach has been extended to include sparsity constrained optimization
(Zhu, Leus and Giannakis 2011), which equivalent formulation then reads

arg min
δA,f

{
1

2
‖(A+δA)f − g‖2 + α‖f‖1 +

β

2
‖∂ A ‖2F

}
.

The previous sparsity-promoting approach, as well as the original R-TLS
approach, can be easily extended if sets of training data (fi, gi) are available.
One either aims for a two-stage approach to first update the operator and
then solve the inverse problem with some new data point g, or one can
integrate both steps at once leading to

arg min
δA,f

{∑
i

1

2
‖(A+δA)fi−gi‖2+

1

2
‖(A+δA)f−g‖2+

α

2
‖L f‖2+

β

2
‖δA ‖2F

}
.

Total least-squares is still an active field of research: see e.g. Markovsky
and Van Huffel (2007) and Beck, Sabach and Teboulle (2016). Alternative
problem formulations of the R-TLS problem in terms of given error bounds
‖y−g‖ ≤ δ and ‖A− Ã‖ ≤ ε (instead of ‖L f‖ ≤ γ as choosing an appropri-
ate γ can be challenging) were further investigated by Lu, Pereverzev and
Tautenhahn (2009) and Tautenhahn (2008). One further extension of the
R-TLS is to include a regularization with respect to parameters determining
the operator (operator deviation). This was considered in a general Hilbert
space setting (Bleyer and Ramlau 2013) for image deblurring (see Buccini,
Donatelli and Ramlau 2018, who call it ‘semi-blind’).

For the purposes of the present review article we highlight the properties
of TLS for applications in MPI: see Section 7.5, Knopp, Gdaniec and Möddel
(2017) and Kluth (2018) for further information on MPI. The following is a
brief summary of the results in Kluth and Maass (2017). We seek to recon-
struct a five-point phantom consisting of a glass capillary with a diameter
of 1.1 mm filled with tracer with a concentration of 0.5 mol/l provided
by the GitHub project page of Knopp et al. (2016). The data-driven re-
constructions (obtained by using a measured noisy forward operator) are
shown in Figure 6.1(a–d). We obtain smoothed reconstructions of the five
points, which is typical for Tikhonov regularization: see Figure 6.1(a). In
contrast, the minimization with sparsity constraints is able to obtain a bet-
ter localization of the tracer. Signal energy from regions filled with tracer
which are not included in the system matrix used may cause a larger con-
centration value than the expected 0.5 mol/l. Using the total least-squares
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(a) Tikhonov, LS (b) sparsity, LS (c) Tikhonov, TLS (d) sparsity, TLS

(e) Tikhonov, LS (f) sparsity, LS (g) Tikhonov, TLS (h) sparsity, TLS

Figure 6.1. Reconstructions of a five-point phantom (pixel size 1 mm) provided by
Knopp et al. (2016) obtained using Tikhonov (with α = 0.1× 10−6) and sparsity-
promoting (with α = 0.1) regularization with and without TLS. (a–d) Results from
using a measured noisy forward operator. (e–h) Results from a knowledge-driven
forward operator. Figure adapted from Kluth and Maass (2017).

approach further improves the localization in the sparse reconstruction for
the data-based system matrices: see Figure 6.1(d).

A simplified model was fitted to measured data to obtain a knowledge-
driven forward operator. As can be seen in Figure 6.1(e), using Tikhonov
regularization results in a reconstruction of the five dots with additional
background artefacts. Using the total least-squares approach in this set-
up increases the contrast in concentration values but background artefacts
are not significantly reduced. In contrast to the data-based reconstruction
with Tikhonov regularization, the sparse knowledge-driven reconstruction
in Figure 6.1(f) has a similar quality in terms of localization of the dots.
By using the total least-squares approach, in Figure 6.1(h), the localization
of the dots can be further improved such that the localization is similar in
quality compared to the data-based sparse reconstruction.

6.2.3. Learned Landweber

Another approach to including a learning component into a forward operator
is presented by Aspri, Banert, Öktem and Scherzer (2018). The starting
point is to consider the iteratively regularized Landweber iteration (Scherzer
1998) (see also Kaltenbacher, Neubauer and Scherzer 2008), which amounts
to computing the following iterative updates:

fk+1 := fk − [∂A(fk)]∗(A(fk)− g)− λk(fk − f0), (6.5)
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where f0 ∈ X is an initial guess that incorporates a priori knowledge about
the unknown ftrue we seek. Next, one can introduce a data-driven damping
factor in the above Landweber iteration:

fk+1 := fk − [∂A(fk)]∗(A(fk)− g)− λk[∂ B(fk)]∗(B(fk)− g). (6.6)

The (possibly non-linear) operator B : X → Y can now be represented by a
deep neural network that can be trained against supervised data by com-
paring the final iterate in (6.6) (iterates are stopped following the Morozov
discrepancy principle (4.1)) against the ground truth for given data.

Convergence and stability for the scheme in (6.6) in infinite-dimensional
Hilbert spaces is proved by Aspri et al. (2018). This theoretical results
are complemented by several numerical experiments for solving linear in-
verse problems for the Radon transform and a non-linear inverse problem
of Schlieren tomography. In these examples, however, Aspri et al. (2018)
restrict attention to a linear operator B.

6.3. Microlocal analysis

Microlocal analysis is a powerful mathematical theory for precisely describ-
ing how the singular part of a function, or more generally a distribution, is
transformed under the action of an operator. Since its introduction to the
mathematical community with the landmark publications by Sato (1971)
and Hörmander (1971), it has proved itself useful in both pure and ap-
plied mathematical research. It is now a well-developed theory that can
be used to study how singularities propagate under certain classes of oper-
ators, most notably Fourier integral operators, which include most differ-
ential and pseudo-differential operators as well as many integral operators
frequently encountered in analysis, scientific computing and the physical
sciences (Hörmander 1971, Candès, Demanet and Ying 2007).

The crucial underlying observation in microlocal analysis is that the in-
formation about the location of the singularities (singular support) needs to
be complemented by specifying those ‘directions’ along which singularities
may propagate. Making this precise leads to the notion of the wavefront set
of the function (or distribution).

Role in inverse problems. Microlocal analysis is in particularly useful in
inverse problems for a variety of reasons.

First, in many applications it is sufficient to recover the wavefront set
of the model parameter from noisy data. For example, in imaging this
would correspond to recovering the edges of the image from data. Such
applications frequently arise when using imaging/sensing technologies where
the transform is a pseudo-differential or Fourier integral operator (Krishnan
and Quinto 2015). It turns out that one can use microlocal analysis to
precisely describe how the wavefront set in data relates to the wavefront
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set for the model parameter, and this explicit relation is referred to as the
(microlocal) canonical relation. Using the canonical relation one can recover
the wavefront set from data without solving the inverse problem, a process
that can be highly non-trivial.

Second, the canonical relation also describes which part of the wavefront
set one can recover from data. This was done by Quinto (1993) for the case
when the two- or three-dimensional ray transform is restricted to parallel
lines, and by Quinto and Öktem (2008) for an analysis in the region-of-
interest limited angle setting. Faber, Katsevich and Ramm (1995) derived
a related principle for the three-dimensional ray transform restricted to lines
given by helical acquisition, which is common in medical imaging. Similar
principles hold for transforms integrating along other types of curves, e.g.
ellipses with foci on the x-axis and geodesics (Uhlmann and Vasy 2012).

Finally, recovering the wavefront set of the model parameter from data is
a less ill-posed procedure than attempting to recover the model parameter
itself. This was demonstrated in Davison (1983), where the severely ill-posed
reconstruction problem in limited angle CT becomes mildly ill-posed if one
settles for recovering the wavefront. See also Quinto and Öktem (2008) for
an application of this principle to cryo-electron tomography.

Data-driven extraction of the wavefront set. The above motivates the in-
verse problems community to work with the wavefront set. One difficulty
that has limited use of the wavefront set is that it is virtually impossible
to extract it numerically from a digitized signal. This is due to its defini-
tion, which depends on the asymptotic behaviour of the Fourier transform
after a localization procedure. An alternative possibility is to identify the
wavefront set after transforming the signal using a suitable representation,
e.g. a curvelet or shearlet transform (Candès and Donoho 2005, Kutyniok
and Labate 2009). This requires analysing the rate of decay of transformed
signal, which again is unfeasible in large-scale imaging applications.

A recent paper (Andrade-Loarca, Kutyniok, Öktem and Petersen 2019)
uses a data-driven approach to training a wavefront set extractor applicable
to noisy digitized signals. The idea is to construct a deep neural network
classifier that predicts the wavefront set from the shearlet coefficients of
a signal. The approach is successfully demonstrated on two-dimensional
imaging examples where it outperforms all conventional edge-orientation
estimators as well as alternative data-driven methods including the current
state of the art. This learned wavefront set extractor can now be combined
with a learned iterative method using the framework in Section 6.1.

Using the canonical relation to guide data-driven recovery. In a recent paper
Bubba et al. (2018) consider using the aforementioned microlocal canonical
relation to steer a data-driven component in limited angle CT reconstruc-
tion, which is a severely ill-posed inverse problem.
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Bubba et al. develop a hybrid reconstruction framework that fuses a
knowledge-driven sparse regularization approach with a data-driven deep
learning approach. The learning part is only applied to those parts that are
not possible to recover (invisible part), which in turn can be characterized
a priori through the canonical relation. The theoretically controllable sparse
regularization is thus applied to the remaining parts that can be recovered
(visible part).

This decomposition into visible and invisible parts is achieved numerically
via the shearlet transform, which allows us to resolve wavefront sets in phase
space. The neural network is then used to infer unknown shearlet coefficients
associated with the invisible part.

7. Applications

In this section we revisit some of the machine learning methods for inverse
problems discussed in the previous sections, and demonstrate their applic-
ability to prototypical examples of inverse problems.

7.1. A simple example

We start the applications part of the paper by considering the exemplar
inverse problem of ill-conditioned matrix inversion. This example should
highlight the particular difficulties of applying learning to solve an ill-posed
inverse problem. Surprisingly, even small 2 × 2 examples cannot be solved
reliably by straightforward neural networks! The results of this section are
based on Maass (2019).

This small-scale setting allows a somewhat complete analysis of the neural
network; in particular, we can prove the shortcomings of such neural nets if
the condition number of the matrix and the noise level in the data are in a
critical relation. To be precise, in our most basic example we set

Aε(f) = Aε ·f where Aε =

(
a11 a12

a21 a22

)
=

(
1 1
1 1 + ε

)
.

This matrix has eigenvalues λ1 = 2 + ε/2 + O(ε2) and λ2 = ε/2 + O(ε2),
with corresponding orthogonal eigenvectors

u1 =

(
1
1

)
+O(ε2) and u2 =

(
1
−1

)
+O(ε2).

The ill-posedness of the problem, or rather the condition number of Aε, is
controlled by 1/ε. Typical values we have in mind here are ε = 10−k for
k = 0, . . . , 10.

We now compare two methods for solving the inverse problem of recov-
ering f from g = Aε ·f + e. The first is classical Tikhonov regularization,
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which only uses information about the operator Aε. Here, given data g we
estimate ftrue by RTik

σ (g), where

RTik
σ (g) := (A∗ε ◦Aε +σ2 id)−1 ◦ A∗ε(g) = (ATε ·Aε +σ2 I)−1 · ATε ·g. (7.1)

The second inversion is based on a trained neural network, that is, given
data g we estimate ftrue by RNN

W∗(g) where RNN
W∗ : Y → X is a trained neural

network with W∗ given by

W∗ ∈ arg min
W

1

m

m∑
i=1

‖RNN
W (g(i))− f (i)‖2. (7.2)

In the above, (f (i), g(i)) ∈ X × Y with i = 1, . . . ,m, where coefficients in
f (i) are i.i.d. samples of a N(0, 1) distributed random variable, and g(i) :=
A f (i) + e(i), where e(i) ∈ R2 are i.i.d. samples of a N(0, σ2) distributed
random variable. This approach is fully data-driven and does not use any
explicit knowledge about the operator A.

Both methods are evaluated using a different set of test data and results
are compared by computing the mean error:

ETik :=
1

n

n∑
i=1

‖RTik
σ (g(i))−f (i)‖2 and ENN :=

1

n

n∑
i=1

‖RNN
W (g(i))−f (i)‖2,

for n test pairs (f (i), g(i)) ∈ X×Y with g(i) := A f (i) +e(i) as in the training
set above but clearly distinct from the training examples.

The design of the network is crucial. We use a minimal network which
allows us to reproduce a matrix vector multiplication. Hence the network is
– in principle – capable of recovering the Tikhonov regularization operator
or even an improvement of it. We use a network with a single hidden layer
with four nodes. We restrict the eight weights connecting the two input
variables with the first layer by setting

w1 = −w3= w11, w2= −w4 = w12,

w5 = −w7= w21, w6= −w8 = w22,

as depicted in Figure 7.1. We obtain a neural network depending on four
variables w11, w12, w21, w22 and the network acts as a multiplication of the
matrix

W =

(
w11 w12

w21 w22

)
with the input vector z = (z1, z2). We denote the output of such a neural
network by RNN

W (z) = Wz.
For later use we define (2×m) matrices X,Y and E that store the vectors

f (i), g(i) and e(i) column-wise, so the training data can be summarized as

Y = Aε ·X+E . (7.3)
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w1

w3

w5

w7

w2

w4

w6

w8

1

−1

1

-1

1

Figure 7.1. The network design with eight parameters, a setting that yields a
matrix–vector multiplication of the input.

The training of such a network for modelling the forward problem is equi-
valent (using the Frobenius norm for matrices) to minimizing the expected
mean square error

min
W

1

n

n∑
i=1

‖W f (i) − g(i)‖2 = min
W

1

n
‖WX−Y ‖2, (7.4)

and the training model (7.2) for the inverse problem simplifies to

min
W

1

n

n∑
i=1

‖W g(i) − f (i)‖2 = min
W

1

n
‖WY−X ‖2. (7.5)

In the next paragraph we report some numerical examples before analysing
these networks.

Testing error convergence for various values of ε. We train these networks
using a set of training data (f (i), g(i))i=1,...,m with m = 10 000, i.e. g(i) =

Aε f (i) + e(i). The network design with restricted coefficients as described
above has four degrees of freedom w = (w11, w12, w21, w22). The cor-
responding loss function is minimized by a gradient descent algorithm,
that is, the gradient of the loss function with respect to w is computed
by backpropagation (Rumelhart, Hinton and Williams 1986, Martens and
Sutskever 2012, Byrd, Chin, Nocedal and Wu 2012). We used 3000 itera-
tions (epochs) of this gradient descent to minimize the loss function of a
network for the forward operator using (7.4) or, respectively, for training a
network for solving the inverse problem using (7.2). The MSE errors on the
training data were close to zero in both cases.

After training we tested the resulting networks by drawing n = 10 000
new data vectors f (i) as well as error vectors e(i). The g(i) were computed
as above. Table 7.1 lists the resulting values using this set of test data
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Table 7.1. The errors of the inverse net with an ill-conditioned matrix Aε (i.e. ε�1)
are large and the computed reconstructions with the test data are meaningless.

Error/choice of ε 1 0.1 0.01 0.0001

NMSEfwd 0.002 0.013 0.003 0.003
NMSEinv 0.012 0.8 10 10

for the network trained for the forward problem and the inverse problem,
respectively:

NMSEfwd :=
1

n

n∑
i=1

‖W f (i) − g(i)‖2,

NMSEinv :=
1

n

n∑
i=1

‖W f (i) − g(i)‖2.

We observe that training the forward operator produces reliable results,
as does the network for the inverse problem with ε ≥ 0.1. However, training
a network for the inverse problem with an ill-conditioned matrix Aε with
ε ≤ 0.01 fails. This is confirmed by analysing the values of w and of the
resulting matrix W after training. We would expect that in training the
forward problem will produce values for W such that W ∼ Aε and that
training the inverse problems leads to W ∼ RTik

σ (g) for some regularization
parameter σ. For the forward problem, the difference between W and Aε
is of order 10−3 or below, but for ε ≤ 0.01 the training of the inverse
problem leads to a matrix that has no similarity to the Tikhonov regularized
inverse. Using a network with a single internal layer but with more nodes
and no restriction on the structure of the weights did not yield any significant
improvements.

Analysis of trivial neural networks for inverse problems. In this section we
analyse the case where the application of the neural network is strictly
equivalent to a matrix–vector multiplication, that is, training of the network
is given by (7.5). The optimal W in (7.5) is given by

WT = (YYT )−1 YXT . (7.6)

Standard arguments show that, together with that hypothesized in the
numerical discussion above, the W in (7.6) coincides with the Tikhonov
regularizers RTik

σ (g) from (7.1). This is not a surprising result since (7.6)
coincides with the classical maximum a posteriori (MAP) estimator of stat-
istical inverse problems. However, analysing the variance E[‖W−T ‖2],
where T = (ATε ·Aε +σ2 I)−1 · ATε is the Tikhonov reconstruction matrix,
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reflects the ill-posedness of the problem. Indeed, as is demonstrated in a
series of numerical tests in Maass (2019), the deviation of W from T will be
arbitrarily large if ε and σ are both small. Of course, we can also give this
a positive meaning: the noise level acts as a regularizer, and large σ yields
more stable matrices W. See Maass (2019) for details.

This small example clearly illustrates that one needs to have some insight
into the nature of inverse problems for successfully applying deep learn-
ing techniques. Performance of practical examples of more targeted deep
learning approaches to inverse problems will be discussed in the following
Sections 7.3, 7.4, 7.6 and 7.7.

7.2. Bilevel learning for total variation image denoising

In (4.4) bilevel learning of TV-type regularizers was discussed as a way to
make functional analytic regularization more data-driven. In what follows,
we showcase some results of this learning approach for the case of image
denoising, i.e. A = id.

(a) too low β, high oscillation (b) optimal β (c) too high β, almost TV

(d) too low α, low β: good
match to noisy data

(e) too low α, optimal β: op-
timal TV2-like behaviour

(f) too high α, high β: bad
TV2-like behaviour

Figure 7.2. (a–c) Effect of choosing β on total generalized variation (TGV)2 de-
noising with optimal α. (d–f) Effect of choosing α too large in TGV2 denoising.
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Optimal TV-regularizers for image denoising. The regularization effect of
TV and second-order TV approaches heavily depends on the choice of regu-
larization parameters θ = α (i.e. = (α, β) for second-order TV approaches).
In Figure 7.2 we show the effect of different choices of α and β in TGV2

denoising. In what follows we show some results from De los Reyes et al.
(2017) applying the learning approach from (4.4) with the smoothed regu-
larizer (4.6) to find optimal parameters in TV-type reconstruction models.
The regularization effect of TV and second-order TV approaches heavily
depends on the choice of regularization parameters θ = α (i.e. = (α, β) for
second-order TV approaches).

The first example is TGV denoising of an image corrupted with white
Gaussian noise with PSNR of 24.72. The red dot in Figure 7.3 plots
the discovered regularization parameter θ̂ = (α̂, β̂) reported in Figure 7.4.
Studying the location of the red dot, we may conclude that the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm managed to find a nearly op-
timal parameter in very few iterations: see Table 7.2. Although the op-
timization problem for (α, β) is non-convex, in all of our experiments we
observed commendable convergence behaviour of the BFGS algorithm: see
De los Reyes et al. (2017) for further examples.

To test the generalization quality of the bilevel learning model in De los
Reyes et al. (2017), optimal parameters were cross-validated when tested for
image denoising on the Berkeley segmentation data set (BSDS300) (Martin,
Fowlkes, Tal and Malik 2001). A dataset of 200 images was selected and
split into two halves of 100 images each. Optimal parameters were learned
for each half individually, and then used to denoise the images of the other
half. The results for TV denoising with L2-loss function and data fidelity
are reported in Table 7.3. The results for TGV denoising are reported in
Table 7.4. In both experiments the parameters seem to be robust against
cross-validation, both in terms of their optimal value, and average PSNR
and SSIM (Wang, Bovik, Sheikh and Simoncelli 2004) quality measures of
the denoised image.

Bilevel learning of the data discrepancy term in mixed noise scenarios. In
the examples in the previous paragraph we considered bilevel parameter
learning for TV-type image denoising, assuming that the noise in the image
is normally distributed and consequently an L2-data discrepancy term is
the appropriate choice to take. The bilevel learning model (4.4), however, is
capable of linear combinations of data discrepancy terms as in (4.5) which
might be appropriate in situations of multiple noise distributions in the
data: see e.g. Lanza, Morigi, Sgallari and Wen (2014), De los Reyes and
Schönlieb (2013), Calatroni et al. (2017) and Calatroni (2015) and references
therein. Calatroni et al. (2017) also considered infimal convolutions of data
discrepancy functions.
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Figure 7.3. Contour plot of the objective functional in TGV2 denoising in the
(α, β)-plane.

(a) data, noisy image (b) TGV2 (c) ICTV (d) TV

Figure 7.4. Optimal denoising results for TGV2, ICTV and TV, all with L2
2 as

data discrepancy.

Table 7.2. Quantified results for the parrot image (s := image width/height in
pixels = 256), using L2

2 discrepancy.

Denoise Initial (α, β) Result (α̂, β̂) Objective SSIM PSNR Its Figure

TGV2 (α̂TV/s, α̂TV) (0.058/s2, 0.041/s) 6.412 0.890 31.992 11 7.4(b)

ICTV (α̂/s, α̂TV) (0.051/s2, 0.041/s) 6.439 0.887 31.954 7 7.4(c)

TV 0.1/s 0.042/s 6.623 0.879 31.710 12 7.4(d)
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Table 7.3. Cross-validated computations on the BSDS300 data set (Martin
et al. 2001) split into two halves of 100 images each. TV regularization with L2-
discrepancy and fidelity function. ‘Learning’ and ‘validation’ indicate the halves
used for learning α and for computing the average PSNR and SSIM, respectively.
Noise variance σ = 10.

Validation Learning α Average PSNR Average SSIM

1 1 0.0190 31.3679 0.8885
1 2 0.0190 31.3672 0.8884
2 1 0.0190 31.2619 0.8851
2 2 0.0190 31.2612 0.8850

Table 7.4. Cross-validated computations on the BSDS300 data set (Martin et al.
2001) split into two halves of 100 images each. TGV2 regularization with L2-
discrepancy. ‘Learning’ and ‘validation’ indicate the halves used for learning α and
for computing the average PSNR and SSIM, respectively. Noise variance σ = 10.

Validation Learning ~α Average PSNR Average SSIM

1 1 (0.0187, 0.0198) 31.4325 0.8901
1 2 (0.0186, 0.0191) 31.4303 0.8899
2 1 (0.0186, 0.0191) 31.3281 0.8869
2 2 (0.0187, 0.0198) 31.3301 0.8870

Figures 7.5 and 7.6 present denoising results with optimally learned para-
meters for mixed Gaussian and impulse noise and for mixed Gaussian and
Poisson noise, respectively. See Calatroni et al. (2017) for more details.
The original image has been corrupted with Gaussian noise of zero mean
and variance 0.005 and then a percentage of 5% of pixels has been corrup-
ted with impulse noise. The parameters have been chosen to be γ = 104,
µ = 10−15 and the mesh step size h = 1/312. The computed optimal weights

are λ̂1 = 734.25 and λ̂2 = 3401.2. Together with an optimal denoised image,
the results show the decomposition of the noise into its sparse and Gaussian
components: see Calatroni et al. (2017) for more details.

Remark 7.1. When optimizing only a handful of scalar parameters, as in
the examples discussed above, bilevel optimization is by no means the most
efficient approach for parameter learning. In fact, brute force line-search
methods are in this context still computationally feasible as the dimension-
ality of the parameter space being explored is small. However, even in
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(a) (b) (c) (d) (e)

Figure 7.5. Optimized impulse-Gaussian denoising: (a) original image, (b) noisy
image with Gaussian noise of variance 0.005 and (c) with 5% of pixels corrup-
ted with impulse noise, (d) impulse noise residuum, (e) Gaussian noise residuum.

Optimal parameters λ̂1 = 734.25 and λ̂2 = 3401.2.

(a) (b) (c)

Figure 7.6. Optimized Poisson–Gauss denoising: (a) original image, (b) noisy image
corrupted by Poisson noise and Gaussian noise with mean zero and variance 0.001,
(c) denoised image. Optimal parameters λ̂1 = 1847.75 and λ̂2 = 73.45.

this small parameter example, investigating bilevel optimization methods
is instructive, as it tells us something about the mathematical properties
of parameter learning for the typically considered non-smooth variational
regularization problems and the numerical approaches with which they can
be tackled. Insight gained from this becomes particularly important when
going to more advanced parametrizations, for instance when optimizing spa-
tially varying regularization parameters (Van Chung et al. 2017) or different
discrete parametrizations, as considered in Sections 4.3.2, 4.4 or 4.7.

7.3. Learned iterative reconstruction for computed tomography (CT) and
photoacoustic tomography (PAT)

Learned iterative reconstruction schemes (Section 5.1.4) have been success-
fully applied to several large-scale inverse problems in imaging, such as
image reconstruction in magnetic resonance imaging (MRI), CT and PAT.
We will show examples from CT taken from Adler and Öktem (2017, 2018b)
and PAT taken from Hauptmann et al. (2018).
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7.3.1. CT image reconstruction

The learned primal–dual scheme in Adler and Öktem (2018b) is here tested
on the two-dimensional CT image reconstruction problem, and its perform-
ance is evaluated in a simplified setting as well as a more realistic setting.

The forward operator for pre-log data is expressible in terms of the ray
transform of (2.5), and for log data it is given by the ray transform of
(2.6). The model parameter is a real-valued function defined on a domain
Ω ⊂ R2. This function represents the image we seek to recover and we
assume X ⊂ L2(Ω) is a suitable vector space of such functions.

This data set is used to train both the learned post-processing and learned
iterative methods, where the former is filtered backprojection (FBP) recon-
struction followed by a trained denoiser with a U-Net architecture and the
latter is the learned primal–dual method in Adler and Öktem (2018b). Both
networks were trained using the squared L2-loss. The other two knowledge-
driven reconstruction methods are the standard FBP and (isotropic) TV-
regularized reconstruction. The FBP reconstructions is applied to log data
using a Hann filter; the TV reconstruction was solved using 1000 iterations
of the classical primal–dual hybrid gradient algorithm. The filter bandwidth
in the FBP and the regularization parameter in the TV reconstruction were
selected in order to maximize the PSNR.

In the simplified setting shown in Figure 7.8 (see also the summary in
Table 7.5) the images are 128× 128 pixel step functions, and we use super-
vised training data consisting of about 50 000 pairs of images and corres-
ponding data as in Figure 7.7. Noise is 5% additive Gaussian. The images
in the training data are randomly generated using a known probability dis-
tribution, and corresponding tomographic data (sinogram) are simulated
with 5% additive Gaussian noise. This is a relatively small-scale problem,
which allows us to also compute the conditional mean reconstruction us-
ing Markov chain Monte Carlo (MCMC) techniques (Section 3.5.2). The
conditional mean reconstruction is useful since the learned iterative method
approximates it. The same holds for learned post-processing since FBP
is a linear sufficient statistic: see the discussion in Section 5.1.5. Hence,
neither learned post-processing nor learned iterative will outperform the
conditional mean, irrespective of the amount of training data and model ca-
pacity, that is, the conditional mean reconstruction serves as a theoretical
limit for what one can recover.

In the realistic setting shown in Figure 7.9 (see also the summary in
Table 7.5) the images are clinical CT scans. We use supervised training
data consisting of about 2000 pairs of images from nine patients, and cor-
responding pre-log data are simulated with a Poisson noise corresponding to
104 incident photons per pixel before attenuation, which would correspond
to a low-dose CT scan. Unfortunately we cannot compute the conditional
mean as in the simplified setting, but we could compare against another
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Figure 7.7. Example from supervised training data used to train the learned iter-
ative and learned post-processing methods used in Figure 7.8.

(a) ground truth (b) filtered backprojection (c) total variation

(d) learned post-processing (e) learned iterative (f) conditional mean

Figure 7.8. Reconstructions of the Shepp–Logan phantom using different methods.
The window is set to [0.1, 0.4], corresponding to the soft tissue of the modified
Shepp–Logan phantom. We can see that the learned iterative method does indeed
approximate the Bayes estimator, which here equals the conditional mean.
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(a) data: pre-log sinogram (b) ground truth (c) filtered backprojection

(d) total variation (e) learned post-processing (f) learned iterative

Figure 7.9. Reconstructions of a 512 × 512 pixel human phantom along with two
zoom-in regions indicated by small circles. The left zoom-in has a true feature
whereas texture in the right zoom-in is uniform. The window is set to [−200, 200]
Hounsfield units. Among the methods tested, only the learned iterative method
(learned primal–dual algorithm) correctly recovers these regions. In the others, the
true feature in the left zoom-in is indistinguishable from other false features of the
same size/contrast, and the right-zoom in has a streak artefact. The improvement
that comes with using a learned iterative method thus translates into true clinical
usefulness.

approach for computing the conditional mean, namely a sampling-based
approach based on a conditional generative adversarial network (GAN) (see
Section 5.2.1 and in particular Figure 7.16).

7.3.2. PAT reconstructions

Photoacoustic tomography (PAT) is a novel ‘imaging from coupled physics’
technique (Arridge and Scherzer 2012) that can obtain high-resolution three-
dimensional in vivo images of absorbed optical energy by sensing laser-
generated ultrasound (US) (Wang 2009, Beard 2011, Nie and Chen 2014,
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Table 7.5. Summary of results shown in Figures 7.8 and 7.9 where an SSIM score of 1 corresponds to a perfect match. Note that the
learned iterative method (learned primal–dual algorithm) significantly outperforms TV regularization even when reconstructing
the Shepp–Logan phantom. With respect to run-time, the learned iterative method involves calls to the forward operator, and
is therefore slower than learned post-processing by a factor of ≈ 6. Compared with TV-regularized reconstruction, all learned
methods are at least two orders of magnitude faster.

Results for Figure 7.8 Results for Figure 7.9

Method PSNR (dB) SSIM Parameters PSNR (dB) SSIM Parameters

Filtered backprojection 19.75 0.597 1 33.65 0.823 1
Total variation 28.06 0.928 1 37.48 0.946 1
Learned post-processing 29.20 0.943 107 41.92 0.941 107

Learned iterative 38.28 0.988 2.4× 105 44.11 0.969 2.4× 105

Conditional expectation 45.46 0.993 0 – – –
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Valluru, Wilson and Willmann 2016, Zhou, Yao and Wang 2016, Xia and
Wang 2014). In the setting considered here, data are collected as a time
series on a two-dimensional sensor Y = [Γ ⊂ R2] × [0, T ] on the surface of
a domain X = Ω ⊂ R3. Several methods exist for reconstruction, including
filtered backprojection-type inversions of the spherical Radon transform and
numerical techniques such as time-reversal. As in problems such as CT
(Section 2.2.4) and MRI (Section 2.2.5), data subsampling may be employed
to accelerate image acquisition, which leads consequently to the need for
regularization to prevent noise propagation and artefact generation. The
long reconstruction times ensuing from conventional iterative reconstruction
algorithms have motivated consideration of machine learning methods.

The deep gradient descent (DGD) method (Hauptmann et al. 2018) for
PAT is an example of a learned iterative method (see Section 5.1.4). The
main aspects can be summarized as follows.

• Each iteration adds an update by combining measurement information
delivered via the gradient ∇L(g,A fk) = A∗(A fk − g) with an image
processing step

fk+1 = Gθk(∇L(g,A fk), fk), (7.7)

where the layer operators Gθk correspond to convolutional neural net-
works (CNNs) with different, learned parameters θk but with the same
architecture. The initialization for the iterations was the backprojec-
tion of the data f0 = A∗ g.

• The training data were taken from the publicly available data from
the ELCAP Public Lung Image Database.9 The data set consists of
50 whole-lung CT scans, from which about 1200 volumes of vessel
structures were segmented, and scaled up to the final target size of
80× 240× 240. Out of these volumes 1024 were chosen as the ground
truth ftrue for the training and simulated limited-view, subsampled
data, using the same measurement set-up as in the in vivo data. Pre-
computing the gradient information for each CNN took about 10 hours.

• Initial results from training on synthetic data showed a failure to ef-
fectively threshold the noise-like artefacts in the low absorption re-
gions (see Figure 7.10). This effect was ameliorated by simulating the
effect of the low absorbing background as a Gaussian random field
with short spatial correlation length. The synthetic CT volumes with
the added background were then used for the data generation, i.e.
giback = A f iback + ε, whereas the clean volumes ftrue were used as ref-
erence for the training.

9 http://www.via.cornell.edu/databases/lungdb.html
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(a) DGD f5 (b) TV reconstruction from full data,
λ = 2× 10−4

Figure 7.10. Reconstruction from real measurement data of a human palm, without
adjustments of the training data. The images shown are top-down maximum in-
tensity projections. (a) Result of the DGD trained on images without added back-
ground. (b) TV reconstruction obtained from fully sampled data.

• The results were further improved using transfer training with a set
of 20 (fully sampled) measurements of a human finger, wrist and palm
from the same experimental system. To update the DGD an additional
five epochs of training on the pairs {greal, fTV} were performed with a
reduced learning rate taking only 90 minutes. The effect of the updated
DGD is shown in Figure 7.11.

7.4. Adversarial regularizer for CT

In Section 4.7 the concept of training a regularizer that is parametrized
with a neural network in an adversarial manner has been presented. In
what follows, we present numerical results as they are reported in Lunz
et al. (2018). There, the performance of the adversarial regularizer for two-
dimensional CT reconstruction is considered, that is, A is the ray transform
as in (2.6). CT reconstruction is an application in which functional analytic
inversion (see Section 2), and in particular the variational approach from
Sections 2.5 and 2.6, is very widely used in practice. Here, it serves as a
prototype inverse problem with non-trivial forward operator.

We compare the performance of TV-regularized reconstruction from Sec-
tion 2.6 and (2.12), post-processing as in Section 5.1.5 (see in particular
Gupta et al. 2018), regularization by denoising (RED) in Section 4.6 and
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(a) initialization f0 = A∗(gre) (b) updated DGD f̂5

(c) TV subsampled, λ = 5× 10−5 and 20
iterations

(d) TV fully sampled, λ = 2× 10−4 and 20
iterations

Figure 7.11. Example of real measurement data of a human palm. Volumetric
images are shown using top-down maximum intensity projections. (a) Initializa-
tion from subsampled data, and (b) the DGD Gθ̂k after five iterations. (c) TV
reconstruction of subsampled data with an emphasis on the data fit. (d) Reference
TV reconstruction from fully sampled limited-view data. All TV reconstructions
were computed with 20 iterations.
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Table 7.6. CT reconstruction on the LIDC dataset using various methods. Note
that the learned post-processing and RED methods require training on supervised
data, while the adversarial regularizer only requires training on unsupervised data.

High noise Low noise

Method PSNR (dB) SSIM PSNR (dB) SSIM

Knowledge-driven
Filtered backprojection 14.9 0.227 23.3 0.604
Total variation 27.7 0.890 30.0 0.924

Supervised
Learned post-processing 31.2 0.936 33.6 0.955
RED 29.9 0.904 32.8 0.947

Unsupervised
Adversarial regularizer 30.5 0.927 32.5 0.946

the adversarial regularizer from Section 4.7 on the LIDC/IDRI database
(Armato et al. 2011) of lung scans.

We used a simple eight-layer convolutional neural network with a total of
four average pooling layers of window size 2× 2, leaky ReLU (α = 0.1) ac-
tivations and two final dense layers for all experiments with the adversarial
regularizer algorithm. Training and test measurements have been simulated
by taking the ray transform of the two-dimensional CT slices, adding Gaus-
sian white noise, and under-sampling the data by storing only 30 angles in
the forward operator. Results are reported in Table 7.6 and Figure 7.12.

In Table 7.6 we see that TV is outperformed by the learned regulariza-
tion techniques by a large margin. The reconstructions achieved by the ad-
versarial regularizer are at least as good in visual quality as those obtained
with supervised machine learning methods, despite having used unsuper-
vised data only. The ability of the adversarial regularizer to be trained in
an unsupervised fashion could be interesting for its application to practical
inverse problems, where ground truth data are often scarce or unavailable.
Further results of the adversarial regularizer and discussion can be found in
Lunz et al. (2018).

7.5. Deep learning for magnetic particle imaging (MPI)

MPI is an imaging modality based on injecting ferromagnetic nanoparticles,
which are then transported by the blood flow. Reconstructing the resulting
spatial distribution c(x) of those nanoparticles is based on exploiting the
non-linear magnetization behaviour of ferromagnetic nanoparticles (Gleich
and Weizenecker 2005).
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(a)

(b)

(c) (d)

Figure 7.12. Exemplar CT reconstructions on the LIDC dataset under low-noise
corruption. (a, b) Left to right: ground truth, FBP, TV, post-processing and
adversarial regularization. (c,d) Data (CT sinograms): (c) data used for recon-
structions in (a); (d) data used for reconstructions in (b).

More precisely, one applies a magnetic field, which is a superposition of a
static gradient field, which generates a field-free point (FFP), and a highly
dynamic spatially homogeneous field, which moves the FFP in space. The
magnetic moment of the nanoparticles in the neighbourhood of the field-
free point will oscillate, generating an electromagnetic field whose voltages
can be measured by so-called receive coils. The time-dependent measure-
ments v�(t) in the receive coils are the data for the inversion process, i.e.
for reconstructing c(x).

MPI benefits from a high temporal resolution and a potentially high spa-
tial resolution which makes it suitable for several in vivo applications, such
as imaging blood flow (Weizenecker et al. 2009, Khandhar et al. 2017),
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instrument tracking (Haegele et al. 2012) and guidance (Salamon et al.
2016), flow estimation (Franke et al. 2017), cancer detection (Yu et al. 2017)
and treatment by hyperthermia (Murase et al. 2015). However, real-time
applications are still far from being realized; also, the mathematical found-
ation of such dynamic inverse problems (see Schmitt and Louis 2002, Hahn
2015, Schuster, Hahn and Burger 2018) is just developing.

Due to the non-magnetic coating of the nanoparticles, which largely sup-
presses particle–particle interactions, MPI is usually modelled by a lin-
ear Fredholm integral equation of the first kind describing the relationship
between particle concentration and the measured voltage. After subtracting
the voltage induced by the applied magnetic field one obtains a measured
signal in the `th receive coil as

y`(t) = S`c(t) :=

∫
Ω
c(x) s`(x, t) dt,

where s` denotes the kernel of the linear operator. Combining the meas-
urements of all receive coils yields – after discretization – a linear system of
equations Sc = g. Typically, the rows of S are normalized, resulting in the
final form of the linearized inverse problem denoted by

A c = g. (7.8)

This is a coarse simplification of the physical set-up, which neglects non-
linear magnetization effects of the nanoparticles as well as the non-homo-
geneity of the spatial sensitivity of the receive coils and also the small but
non-negligible particle–particle interactions. Hence this is a perfect set-up
for exploiting the potential of neural networks for matching complex and
high-dimensional non-linear models.

We test the capability of the deep imaging prior approach to improving
image reconstruction obtained by standard Tikhonov regularization. For
the experiments we use datasets generated by the Bruker preclinical MPI
system at the University Medical Center, Hamburg–Eppendorf.

We use the deep image prior network introduced by Ulyanov et al. (2018),
specifically their U-Net architecture. Our implementation is based on Tensor-
Flow (Abadi et al. 2015) and Keras (Chollet et al. 2015), and has the follow-
ing specifications. Between the encoder and decoder part of the U-Net our
skip connection has four channels. The convolutional encoder goes from the
input to 32, 32, 64 and 128 channels, each with strides of 2 × 2 and filters
of size 3× 3. Then the convolutional decoder has the mirrored architecture
plus first a resize-nearest-neighbour layer to reach the desired output shape
and second an additional ReLU convolutional layer with filters of size 1.
The number of channels of this last layers is three for data set 1 (DS1) to
accommodate three slices (three two-dimensional scans, one above another)
of a two-dimensional phantom centred at the central slice of the three. The
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(a) phantom (4 mm) (b) Kaczmarz (c) `1-regularization (d) DIP

(e) phantom (2 mm) (f) Kaczmarz (g) `1-regularization (h) DIP

Figure 7.13. MPI reconstructions of two phantoms using different methods: (a)–
(d) phantom with 4 mm distance between tubes containing ferromagnetic nano-
particles; (e)–(h) phantom with 2 mm distance. The methods used are Kaczmarz
with L2-discrepancy (λ̃ = 5 × 10−4), `1-regularization (λ̃ = 5 × 10−3) and DIP
(η = 5 × 10−5) for both cases. Photos of phantoms taken by T. Kluth at the
University Medical Center, Hamburg–Eppendorf.

input of the network is given by a fixed Gaussian random input of size
1× 32× 32.

For comparison with our deep inverse prior MPI reconstructions, we also
compute sparse and classical Tikhonov reconstructions. We produce the
Tikhonov reconstruction, usually associated with the minimization of the
functional

‖A c− g‖2 + λ‖c‖2, (7.9)

via the algebraic reconstruction technique (Kaczmarz) as generalized to al-
low for the constraint x ≥ 0 by Dax (1993). We produce the sparsity
reconstruction, usually associated with the minimization of the functional

‖A c− g‖2 + λ‖c‖1, (7.10)

by simply implementing this functional in TensorFlow and minimizing it
via gradient descent. In the end we set all negative entries to 0.

We start by presenting direct comparisons of the Kaczmarz, sparsity and
DIP reconstructions in Figure 7.13. Beneath each image we state the para-
meters we used for the reconstruction λ̃ = ‖A ‖2Fλ, where ‖ · ‖F denotes the
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True End-to-End Sequential
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10�0.7
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Figure 7.14. Joint tomographic reconstruction and segmentation of grey matter.
Images shown using a [−100, 100] HU window and segmentation using a [0, 1] win-
dow. The choice C = 0.9 seems to be a good compromise for good reconstruction
and segmentation, so clearly it helps to use a loss that includes the reconstruction
and not only the task.

Frobenius norm and λ is the regularization parameter as used in (7.9) or
(7.10) and η the learning rate used in training the network. For DIP we
always used early stopping after 1000 optimization steps. The images star-
ted to deteriorate slowly for more iterations. For implementation details, as
well as further numerical examples also showing the limitation of the DIP
approach, see Dittmer et al. (2018).

7.6. Task-based reconstruction

We demonstrate the framework of Section 6.1 on joint tomographic image
reconstruction and segmentation of white brain matter. Rθ is given by a
learned primal–dual method (Adler and Öktem 2018b), which incorporates
a knowledge-based model for how data are generated into its architecture,
and Tφ is given by a U-Net (Ronneberger, Fischer and Brox 2015).

Some results are shown in Figure 7.14. Note in particular that (perhaps
surprisingly) the ‘best’ segmentation is not obtained by a fully end-to-end
approach: instead they are obtained when the reconstruction loss is included
as a regularizer. Furthermore, it is clear that the reconstruction obtained for
C = 0.9 over-emphasizes image features relevant for the task, for example
white–grey matter contrast. This clearly ‘helps’ the task and also visually
shows the image features used by the joint approach.
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(a) (b)

Figure 7.15. Test data: (a) subset of CT data from an ultra-low-dose three-dimen-
sional helical scan and (b) the corresponding FBP reconstruction. Images are
shown using a display window set to [−150, 200] Hounsfield units.

7.7. Clinical image guided decision making

We show how to compute an estimator relevant for uncertainty quantifica-
tion in the context of CT image reconstruction. As a practical example, we
will compute a CT reconstruction from ultra-low-dose data (Figure 7.15(a)).
The aim is to identify a feature (a potential tumour) and then seek to es-
timate the likelihood of its presence.

Formalizing the above, let ∆ denote the difference in mean intensity in
the reconstructed image between a region encircling the feature and the
surrounding organ, which in our example is the liver. The feature is said
to ‘exist’ whenever ∆ is bigger than a certain threshold, say 10 Hounsfield
units.

To use posterior sampling, start by computing the conditional mean im-
age (top left in Figure 7.16) by sampling from the posterior using the con-
ditional Wasserstein GAN approach in Section 5.2.1. There is a ‘dark spot’
in the liver (a possible tumour) and a natural clinical question is to stat-
istically test for the presence of this feature. To do this, compute ∆ for a
number of samples generated by posterior sampling, which is the same 1000
samples used to compute the conditional mean. We estimate the probability
p that ∆ > 10 Hounsfield units from the resulting histogram in Figure 7.17
and clearly p > 0.95, indicating that the ‘dark spot’ feature exists with at
least 95% significance. This is confirmed by the ground truth image (Fig-
ure 7.17(a)). The conditional mean image also under-estimates ∆, whose
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Figure 7.16. Conditional mean and pointwise standard deviation (pStd) computed
from test data (Figure 7.15) using posterior sampling (Section 5.2.1) and direct
estimation (Section 5.1.6).

(a) (b)

5 10 15 20 25 30 35 40

(c)

Figure 7.17. (b) Suspected tumour (red) and reference region (blue) shown in the
sample posterior mean image. (c) Average contrast differences between the tumour
and reference region. The histogram is computed by posterior sampling applied to
test data (Figure 7.15); the yellow curve is from direct estimation (Section 5.1.6),
and the true value is the red threshold. (a) The normal dose image that confirms
the presence of the feature.
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true value is the vertical line in Figure 7.17(c). This is to be expected
since the prior introduces a bias towards homogeneous regions, a bias that
decreases as the noise level decreases.

To perform the above analysis using direct estimation, start by computing
the conditional mean image from the same ultra-low-dose data using dir-
ect estimation. As expected, the resulting image (top right in Figure 7.16)
shows a ‘dark spot’ in the liver. Now, designing and training a neural net-
work that directly estimates the distribution of ∆ is unfeasible in a general
setting. However, as shown in Section 5.1.6, this is possible if one assumes
pixels are independent of each other. The estimated distribution of ∆ is
the curve in Figure 7.17 and we get p > 0.95, which is consistent with the
result obtained using posterior sampling. The direct estimation approach is
based on assuming independent pixels, so it will significantly underestimate
the variance. In contrast, the approach based on posterior sampling seems
to give a more realistic estimate of the variance.

8. Conclusions and outlook

8.1. Summary

In this survey we have tried to capture the state of the art in the still
relatively young and fast-emerging field of machine learning approaches for
solving inverse problems.

Our journey has taken us from more familiar applications of data-driven
methods, such as dictionary learning (Section 4.4), bilevel learning (Sec-
tion 4.3) and learning Markov random field-type regularizers (Section 4.3.2)
to recent advances in using deep neural networks to solve inverse problems
(Sections 4.6–4.10 and 5.1). These approaches are surveyed together with
a brief account of the underlying mathematical setting (Sections 1–3), and
their performance in some key applications is shown in Section 7. Taken to-
gether, we hope this will convince the reader that inverse problems can profit
from data-driven methods. This claim is further strengthened by showing
how data-driven methods can be used to compensate for inaccuracies in the
forward model (Section 6.2) and how one can adapt the reconstruction to a
specific task (Section 6.1).

The examples in Section 7 clearly show that some of these methods are
very promising, regarding both output quality and computational feasi-
bility. Strong empirical evidence suggests that using problem-specific deep
neural networks that include knowledge-driven models outperform purely
knowledge- or data-driven approaches. In contrast, there is little rigorous
mathematical theory supporting these empirical observations, but the res-
ults clearly show that it is worth the effort to develop the necessary theory.

Below are some further key observations we believe are worth pointing
out regarding the role of deep learning in solving inverse problems.
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The functional analytic and Bayesian viewpoints. The way deep learning
is used for solving an inverse problem depends on whether one adopts the
functional analytic or the Bayesian viewpoint.

Within the functional analytic viewpoint, a deep neural network is simply
a parametrized family of operators, and learning amounts to calibrating
the parameters against example data by minimizing some appropriate loss
function.

In Bayesian inversion, a deep neural network corresponds to a statistical
decision rule, so methods from deep learning constitute a computational
framework for statistical decision making in high dimensions. For example,
many of the estimators that have previously been computationally unfeas-
ible are now computable: for example, the conditional mean seems to be
well approximated by learned iterative schemes (Section 5.1.4). Likewise, a
trained generative network can be used to sample from the posterior (Sec-
tion 5.2) in a computationally feasible manner, as shown in Section 5.2.

Computational feasibility. Essentially all methods from Bayesian inversion
and many from functional analytic regularization are computationally very
demanding. Those techniques based on unrolling an iterative scheme (Sec-
tion 4.9.1) are for designing a deep neural network that approximates a
computationally demanding operator, such as one that solves a large-scale
optimization problem.

The training of such a deep neural network may take quite some time,
but once it is trained, it is fast to evaluate. In some sense, this is a way to
redistribute the computational burden from the execution to the training.

Handling lack of training data. Inverse problems in the sciences and en-
gineering often have little training data compared to the dimensionality
of the model parameter. Furthermore, it is impractical to have a method
that requires retraining as soon as the measurement protocol changes. This
becomes an issue is medical imaging where data in multi-centre studies is
typically acquired using different CT or MRI scanners.

For these reasons, black-box machine learning algorithms (Section 7.1)
are not suitable for solving such inverse problems. On the other hand, in
these inverse problems there is often a knowledge-driven model for how
data are generated and it is important to integrate this information into
the data-driven method. Learned iterative schemes (Section 5.1.4) employ
a deep neural network that embeds this model for data into its architecture.

Encoding a priori information. In functional analytic regularization, much
of the theoretical research (Section 2) has focused on finding optimal conver-
gence rates as the noise level tends to zero. Likewise, theoretical research
in Bayesian inversion (Section 3) focuses on contraction rates for certain
classes of priors and in deriving an asymptotic closed-form characterization
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of the posterior distribution as the noise level tends to zero. Here, the reg-
ularization functional (in functional analytic regularization) and the prior
distribution (in Bayesian inversion) primarily act as a regularizers.

The above viewpoint does not acknowledge the potential that lies in en-
coding knowledge about the true model parameter into the regularization
functional or prior. Furthermore, in applications data are fixed with some
given noise level, and there is little, if any, guidance from the above theory
on which regularizer or prior to select in such a setting. Empirical evidence
suggests that instead of hand-crafting a regularization functional or a prior,
one can learn it from example data. This allows us to pick up information
related to the inverse problem that is difficult, if not impossible, to account
for otherwise.

Unrolling. A key technique in many approaches for using deep learning to
solve inverse problems is to construct problem-specific deep neural network
architectures by unrolling an iterative scheme, as outlined in Section 4.9.1.

This technique allows us to use compressed sensing theory to derive prop-
erties for certain classes of deep neural networks, for example those result-
ing from multi-layer convolutional sparse coding (ML-CSC) (Section 4.4.2).
Next, as shown in Section 4.9, the same technique is also useful in acceler-
ating the evaluation of computationally demanding operators, such as those
that solve large-scale optimization problems. Finally, unrolling is also used
to embed a knowledge-driven forward operator and the adjoint of its de-
rivative into a deep neural network that seeks to approximate an estimator
(Section 5.1).

The above principle of unrolling can be used in a much wider context
than solving an optimization problem or an inverse problem. It can be seen
as constructing a deep neural network architecture for approximating an
operator that is given implicitly through an iterative scheme. Hence, as
pointed out in Section 4.9.4, unrolling establishes a link between numerical
analysis and deep learning.

8.2. Outlook

We identify several interesting directions for future research in the context
of inverse problems and machine learning.

8.2.1. Approximation and convergence properties of deep inversion

We believe a key component of future research is to analyse the mathe-
matical–statistical approximation and convergence properties of inversion
strategies that use deep neural networks, for example statistical recovery
guarantees and generalization limits, as well as bounds on the number of
training samples necessary for reaching prescribed accuracies, and estimates
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for uncertainty in terms of stability properties and statistical confidence
statements for the algorithms used.

Convergence and stability properties of denoising by deep neural networks
can be analysed using techniques from sparse signal processing, as in Pa-
pyan et al. (2017). Likewise, techniques from applied harmonic analysis can
be used to analyse approximation properties of feed-forward deep neural
networks, as in Bölcskei et al. (2019). This paper establishes a connection
between the complexity of a function class in L2(Rd) and the complexity
(model capacity) of feed-forward deep neural networks approximating func-
tions from this class to within a prescribed accuracy. A specific focus is
on function classes in L2(Rd) that are optimally approximated by general
affine systems, which include a wide range of representation systems from
applied harmonic analysis such as wavelets, ridgelets, curvelets, shearlets,
α-shearlets and, more generally, α-molecules. The central result in Bölcskei
et al. (2019) is that feed-forward deep neural networks achieve the optimum
approximation properties of all affine systems combined with minimal con-
nectivity and memory requirements.

None of these papers, however, consider deep neural networks in the con-
text of inverse problems.

8.2.2. Robustness against adversarial attacks

Sensitivity towards adversarial attacks is a known issue that has mostly
been studied in the context of classification (Szegedy et al. 2014); see also
the surveys by Chakraborty et al. (2018) and Akhtar and Mian (2018).
However, little work has been done regarding adversarial stability of re-
construction methods for solving inverse problems that are based on deep
neural networks.

One recent work along these lines is that of Antun et al. (2019), who
extend the approach in Szegedy et al. (2014) to the case of regression. The
idea is to perturb the model parameter in a way that is hard to distinguish,
yet the data from the perturbed model parameter have a large influence on
the reconstruction. The perturbation (adversarial example) is computed by
solving an optimization and, in contrast to classification, different optimiz-
ation problems can be constructed to test for different types of instabilities.
The adversarial stability test in Antun et al. (2019) is demonstrated on MRI
image reconstruction. The paper tests two fully learned approaches given by
Zhu et al. (2018) and Schlemper et al. (2018), two learned post-processing
approaches given by Jin et al. (2017) and Yang et al. (2018b), and finally the
learned iterative approach of Hammernik et al. (2018). All approaches show
adversarial instability, which could come as a surprise for the learned iterat-
ive approach that seeks to approximate a conditional mean that is known to
be stable (Section 3.2.2). One reason for this could be that the learned it-
erative approach of Hammernik et al. (2018), which is based on variational
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networks, has a model capacity too limited to properly approximate the
conditional mean.

On a final note, a key element in Antun et al. (2019) is that data from the
perturbation model parameter is noise-free. It is known that adding white
noise to the input helps against adversarial attacks for classifiers (Cohen,
Rosenfeld and Kolter 2019). Moreover, in inverse problems one always has
noisy data, so it remains unclear whether the computed perturbation in
Antun et al. (2019) actually acts as an adversarial example when noise is
added.

Clearly, theory for robustness against adversarial attacks in the context
of inverse problems is very much an emerging field.

8.2.3. Theory for learned iterative reconstruction

More specifically, the theory of statistical regularization applied to learned
iterative methods in Section 5.1.4 is fairly incomplete, especially when in-
terested in theoretical guarantees in the presence of empirical distributions
for the data and model parameter. This will require studying estimates of
the posterior in a non-asymptotic setting. Another key element is to estim-
ate the generalization gap for learned iterative methods. Here one could
consider theory for empirical Bayes methods, but current results focus on
analysing Bayesian inversion methods where hyper-parameters defining a
hierarchical prior are selected from data (Knapik, Szabó, van der Vaart and
van Zanten 2016, Szabó, van der Vaart and van Zanten 2013).

8.2.4. ‘Convergence’ of training data

For all approaches where supervised training data are used, there is a dis-
crepancy between theoretical error estimates in the infinite-dimensional
setting and the practical case of finite-dimensional training data used in
presented data-driven inversion approaches. For instance, error estimates
are needed between solutions of a neural network trained on finitely many
samples (that describe a particular empirical distribution) and solutions
trained with infinitely many samples from a joint distribution.

8.2.5. Bespoke neural network architectures for inverse problems

In many inverse problems the model parameter space X and the data space
Y are not the same, and in particular the data g often live in non-Euclidean
spaces. On the other hand, existing data-driven inversion models, as dis-
cussed in this survey, which make use of neural networks as data-driven
parametrizations, usually employ off-the-shelf network architectures such as
U-Net, for instance. For future research it would be interesting to investig-
ate neural network architectures that are specifically designed as mappings
between non-Euclidean spaces. Some developments along these lines can
be found in the paper by Bronstein et al. (2017), who investigate how the
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notion of a CNN can be generalized to non-Euclidean structures such as
graphs and manifolds.

The above is also closely related to work in developing neural network
architectures that are equivariant and/or invariant to certain transforma-
tions given as group action. This is highly relevant when one seeks to solve
inverse problems whose solutions enjoy such equivariance and/or invariance.
Examples of work in this direction are those of Esteves, Allen-Blanchette,
Makadia and Daniilidis (2017), Zhao et al. (2018), Weiler et al. (2018) and
Veeling et al. (2018), but none of this is pursued in the context of inverse
problems.

Another feature of inverse problems is that one can often prescribe how
singularities in data are related to those in the model parameter (Sec-
tion 6.3). Hence it is natural to seek network architectures that encode
not only the forward operator but also such a relation. This is likely to
further improve the robustness and generalization properties.

8.2.6. Continuous notion of neural network architectures

Some of the recent attempts to build a continuous framework for neural
networks have been touched upon in Section 6.2.1. Continuous formulations
to neural networks make them amenable to the rich toolkit of functional
analysis and theoretical results as outlined in Section 2. Moreover, starting
with a continuous model such as a partial differential equation, for instance,
may give rise to new discretizations and new neural network architectures
– a development that has clearly happened before in mathematical imaging
(e.g. Perona and Malik 1990).

8.2.7. Theoretical guarantees for learning-to-optimize approaches

If a neural network is used to approximate and consequently computation-
ally speed up a knowledge-driven approach (e.g. the learning-to-optimize
methods in Section 4.9), it is important to understand the error committed
by such an approximation. What is the correct notion of such an approx-
imation error? How does it depend on the training set and the network
architecture?
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Acronyms

ADMM alternating direction method of multipliers
AutoMap automated transform by manifold approximation
BFGS Broyden–Fletcher–Goldfarb–Shanno
CG conjugate gradient
CNN convolutional neural network
CSC convolutional sparse coding
CT computed tomography
DGD deep gradient descent
DIP deep inverse prior
FBP filtered backprojection
FFP field-free point
FoE Field of Experts
GAN generative adversarial network
ICA independent component analysis
ICTV infimal-convolution total variation
ISTA Iterative Soft-Thresholding Algorithm
KL Kullback–Leibler
LISTA Learned Iterative Soft-Thresholding Algorithm
MAP maximum a posteriori
MCMC Markov chain Monte Carlo
ML-CSC multi-layer convolutional sparse coding
ML-EM maximum likelihood expectationmaximization
MPI magnetic particle imaging
MRF Markov random field
MRI magnetic resonance imaging
NETT neural network Tikhonov
P 3 Plug-and-Play Prior
PAT photoacoustic tomography
PCA principal component analysis
PDE partial differential equation
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PDHG primal–dual hybrid gradient
PET positron emission tomography
PG proximal gradient
PoE Product of Experts
PSNR peak signal-to-noise ratio
RED regularization by denoising
RIP restricted isometry property
R-TLS regularized total least-squares
SGD stochastic gradient descent
SPECT single photon emission computed tomography
SSIM structural similarity index
SVD singular value decomposition
TGV total generalized variation
TLS total least-squares
TV total variation

Appendices

A. Optimization of convex non-smooth functionals

Suppose in general that we want to optimize a problem defined as the sum
of two parts,

min
f∈X

[J (f) := Φ(f) + S(f)], (A.1)

where Φ: X → R is a continuously differentiable convex function, and
S : X → R is convex but possibly non-differentiable. We say that the com-
bined function is convex non-smooth.

A.1. Proximal methods

First we define a proximal operator for a functional S : X → R:

proxS(h) := arg min
f∈X

[
1

2
‖f − h‖2 + S(h)

]
. (A.2)

Clearly, if S is differentiable, then p = proxS(h) satisfies

h− p = ∇S |f=p. (A.3)

When S is non-differentiable, we instead have

h− p ∈ ∂ S |f=p, (A.4)

where ∂ S(f) is the subdifferential of S. This allows us to write a formal
expression for (A.2) as

proxS(h) := (id + ∂ S)−1(h). (A.5)
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A.2. Proximal gradient method for inverse problems

For inverse problems, Φ(f) corresponds to the data discrepancy L(A(f), g)
and S(f) to the regularization functional.

Now consider the minimization of f 7→ J λ(f) in (2.10). Defining [∂A(f)]
to be the Fréchet derivative of A at f , then, exploiting the first-order ne-
cessary conditions for such minima, we have

0 ∈ [∂A(f)]∗(A(f)− g) + λ∂S(f), (A.6)

which after multiplying both sides with τ , adding f on both sides and
reordering terms yields the fixed-point condition for a minimizer:

f = proxτλS(f − τ [∂A(f)]∗(A(f)− g)). (A.7)

The step length is given by 0 < τ < 2/L, where L is the Lipschitz constant
of ∇Φ (Combettes and Wajs 2005). For linear inverse problems, L can be
approximated by the largest eigenvalue of A∗A, i.e. the square of the largest
singular value of the forward operator A. For non-linear problems L(f) is
the square of the largest singular value of [∂A(f)] and thus changes over
iteration. We have the following examples.

• Multivariate Gaussian noise e ∼ N (0,Γe): the likelihood is

L(A(f), g) = ‖g −A f‖2Γe ,

and

f (n+1) ← f (n) + τλA∗ Γ−1
e (g −A f (n)).

• Poisson noise g = Poisson(A f): the likelihood is

L(A(f), g) =

∫
Ω
g lnA f −A f + g − ln g,

and

f (n+1) ← f (n) + τ A∗
(

1− g

A f (n)

)
.

The related iteration scheme to (A.7), which can also be derived by min-
imizing surrogate functionals (Daubechies et al. 2004) or by the method of
quadratic relaxation, yields the following algorithm.

Algorithm A.1 (generalized gradient projection method).

Choose f0 and iterate for k > 0.

(1) Choose τk, e.g. τk = τ constant for all k.

(2) Determine vk = fk − τk[∂A(f)]∗(A(f)− g).

(3) Determine fk+1 = proxτkλS(vk).

https://doi.org/10.1017/S0962492919000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492919000059


Solving inverse problems using data-driven models 143

This version, along with several accelerated variants incorporating a step
size selection or primal–dual iterations, has been studied intensively (Bredies,
Lorenz and Maass 2009, Nesterov 2007, Figueiredo et al. 2007).

The convergence proofs of such methods are typically based on rephrasing
the first-order necessary condition.

Theorem A.1. Assume that A : X → Y is Fréchet-differentiable and
assume that S : X → R is proper and convex. Then, a (first-order) necessary

condition for a minimizer f̂ of f 7→ Jλ(f) in (2.10) is given by

〈[∂A(f)]∗(A(f)− g), h− f〉X ≥ S(f)− S(h) for all h ∈ X,

which is equivalent to

〈[∂A(f)]∗(A(f)− g), f〉+ S(f) = min
h∈X
〈[∂A(f)]∗(A(f)− g), h〉+ S(h).

This characterization motivates the definition of an auxiliary functional

Dλ(fk) := λ(S(fk)−S(fk+1)) + 〈[∂A(fk)]∗(A(fk)− g), fk − fk+1〉, (A.8)

which is decreased during the iteration and whose minimizing f allows an
estimate in terms of the Bregman distance related to S.

A.3. Iterative Soft-Thresholding Algorithm (ISTA)

The success of proximal methods usually depends on finding a fast ‘trick’
for performing the projection for a given functional S(f). One notable
such method is for the L1-functional S(f) = λ‖f‖1 whereby the proximal
operator is the soft-thresholding (or shrinkage operator), denoted by

Sα(z) :=


z − α if z ≥ α,

0 if |z| ≤ α,

z + α if z ≤ −α.

(A.9)

We arrive at the following split method, known as the Iterative Soft-Thres-
holding Algorithm (ISTA) (Daubechies et al. 2004, Figueiredo et al. 2007):

gradient descent f (n+1/2) ← f (n) − τ∇Φ(f),

thresholding f (n+1) ← Sτλ(f (n+1/2).

(Note that the threshold is the product of τ and λ.)
Now consider applying this principle to the problem of minimizing Tikh-

onov functionals of type f 7→ J λ(f) defined in (2.10). In this case Φ(f) :=
1
2‖A(f) − g‖2 and the necessary first-order condition for a minimizer is
given by

0 ∈ A∗(A f − g) + λ∂‖f‖1.

Multiplying with an arbitrary real positive real number τ and adding f plus
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rearranging yields

f − τ A∗(A f − g) ∈ f + τλ∂‖f‖1.

Using (A.9) to invert the term on the right-hand side yields

Sτλ(f − λA∗(A f − g)) = f.

Hence this is a fixed-point condition, which is a necessary condition for
all minimizers of f 7→ J λ(f). Turning the fixed-point condition into an
iteration scheme yields

fk+1 = Sτλ(fk − τ A∗(A fk − g))

= Sτλ((id− τ A∗A)fk + τ A∗ g). (A.10)

A.4. Alternating direction method of multipliers (ADMM)

Consider solving (A.1) as a constrained problem,

f̂ = arg min
f,v

[Φ(f) + S(v)] such that f = v,

making use of the augmented Lagrangian with dual (adjoint) variable u,

J (f, v, u) = Φ(f) + S(v) + 〈u, f − v〉+
β

2
‖f − v‖22

= Φ(f) + S(v) +
β

2
‖f − v +

1

β
u‖22 −

1

2β
‖u‖22, (A.11)

which results in the sequential update sequence

f (n+1) ← prox(1/β)Φ

[
v(n) − 1

β
u(n)

]
, (A.12)

v(n+1) ← prox(1/β)S

[
f (n+1) +

1

β
u(n)

]
, (A.13)

u(n+1) ← u(n) + β(f (n+1) − v(n+1)). (A.14)

B. The Wasserstein 1-distance

Let X be a measurable separable Banach space and PX the space of prob-
ability measures on X. The Wasserstein 1-distance W : PX ×PX → R is
a metric on PX that can be defined as (Villani 2009, Definition 6.1)

W(p, q) := inf
µ∈Π(p,q)

E(f,h)∼µ[‖f − h‖X ] for p, q ∈PX . (B.1)

In the above, Π(p, q) ⊂PX×X denotes the family of joint probability meas-
ures on X × X that has p and q as marginals. Note also that we assume
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PX only contains measures where the Wasserstein distance takes finite val-
ues (Wasserstein space): see Villani (2009, Definition 6.4) for the formal
definition.

The Wasserstein 1-distance in (B.1) can be rewritten using the Kantoro-
vich–Rubinstein dual characterization (Villani 2009, Remark 6.5, p. 95),
resulting in

W(p, q) = sup
D: X→R
D∈Lip(X)

{Ef∼q[D(f)]− Eh∼p[D(h)]} for p, q ∈PX . (B.2)

Here, Lip(X) denotes real-valued 1-Lipschitz maps on X, that is,

D ∈ Lip(X) ⇐⇒ |D(f1)−D(f2)| ≤ ‖f1 − f2‖X for all f1, f2 ∈ X.

The above constraint can be hard to enforce in (B.2) as is, so following
Gulrajani et al. (2017) and Adler and Lunz (2018) we prefer the gradient
characterization

D ∈ Lip(X) ⇐⇒ ‖∂D(f)‖X∗ ≤ 1 for all f ∈ X,

where ∂ indicates the Fréchet derivative and X∗ is the dual space of X. In
our setting, X is an L2-space, which is a Hilbert space so X∗ = X, and the
Fréchet derivative becomes the (Hilbert space) gradient of D.
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A. Aspri, S. Banert, O. Öktem and O. Scherzer (2018), A data-driven iteratively
regularized Landweber iteration. arXiv:1812.00272

P. Auer, M. Herbster and M. K. Warmuth (1996), Exponentially many local minima
for single neurons. In 8th International Conference on Neural Information
Processing Systems (NIPS), MIT Press, pp. 316–322.

T. Bai, H. Yan, X. Jia, S. Jiang, G. Wang and X. Mou (2017), Volumetric computed
tomography reconstruction with dictionary learning. In 14th International
Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and
Nuclear Medicine (Fully3D 2017).

A. B. Bakushinskii (1984), ‘Remarks on choosing a regularization parameter using
the quasi-optimality and ratio criterion’, USSR Comput. Math. Math. Phys.
24, 181–182.

G. Bal, F. Chung and J. Schotland (2016), ‘Ultrasound modulated bioluminescence
tomography and controllability of the radiative transport equation’, SIAM J.
Math. Anal. 48, 1332–1347.

G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag and A. V. Dalca (2019),
‘VoxelMorph: A learning framework for deformable medical image registra-
tion’, IEEE Trans. Imaging , to appear. arXiv:1809.05231

L. Baldassarre, Y.-H. Li, J. Scarlett, B. Gözcü, I. Bogunovic and V. Cevher (2016),
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F. Natterer and F. Wübbeling (2001), Mathematical Methods in Image Reconstruc-
tion, SIAM.

R. M. Neal (2003), ‘Slice sampling’, Ann. Statist. 31, 705–767.
D. Needell and J. A. Tropp (2009), ‘CoSaMP: iterative signal recovery from incom-

plete and inaccurate samples’, Appl. Comput. Harmon. Anal. 26, 301–321.
D. Needell and R. Vershynin (2009), ‘Uniform uncertainty principle and signal

recovery via regularized orthogonal matching pursuit’, Found. Comput. Math.
9, 317–334.

Y. Nesterov (2004), Introductory Lectures on Convex Optimization: A Basic
Course, Vol. 87 of Applied Optimization, Springer.

Y. Nesterov (2007), Gradient methods for minimizing composite objective function.
CORE Discussion Papers no. 2007076, Center for Operations Research and
Econometrics (CORE), Université Catholique de Louvain.

A. Neubauer and H. K. Pikkarainen (2008), ‘Convergence results for the Bayesian
inversion theory’, J. Inverse Ill-Posed Problems 16, 601–613.

R. Nickl (2013), Statistical Theory. Lecture notes, University of Cambridge.
http://www.statslab.cam.ac.uk/˜nickl/Site/ files/stat2013.pdf

R. Nickl (2017a), ‘Bernstein–von Mises theorems for statistical inverse problems,
I: Schrödinger equation,’ J. Eur. Math. Soc., to appear. arXiv:1707.01764

R. Nickl (2017b), ‘On Bayesian inference for some statistical inverse problems with
partial differential equations’, Bernoulli News 24, 5–9.
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E. T. Quinto and O. Öktem (2008), ‘Local tomography in electron microscopy’,
SIAM J. Appl. Math. 68, 1282–1303.
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