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Solving Large Instances of the RSA Problem in

Flexgrid Elastic Optical Networks

Mirosław Klinkowski, Mateusz Żotkiewicz, Krzysztof Walkowiak, Michał Pióro, Marc Ruiz, and Luis Velasco

Abstract—We present an optimization procedure that mixes
advanced large scale optimization methods and heuristics to
solve large instances (with over 1.7 million integer variables)
of the routing and spectrum allocation (RSA) problem – a basic
optimization problem in flexgrid elastic optical networks. We
formulate the problem as a mixed-integer program for which
we develop a branch-and-price algorithm enhanced with such
techniques as problem relaxations and cuts for improving lower
bounds for the optimal objective value, and an RSA heuristic for
improving the upper bounds. All these elements are combined
into an effective optimization procedure. The results of numerical
experiments run on network topologies of different dimensions
and with large demand sets show that the algorithm performs
well and can be applied to the problem instances that are difficult
to solve using commercial solvers such as CPLEX.

Index Terms—branch and price, cuts, elastic optical net-
works, large-scale optimization, mixed-integer programming,
relaxations, routing and spectrum allocation.

I. INTRODUCTION

The use of advanced transmission and modulation tech-

niques, spectrum-selective switching technologies, and flexible

frequency grids (flexgrids), will allow next-generation optical

networks to be spectrally efficient and, in terms of optical

bandwidth provisioning, scalable and elastic [2], [3], [4].

Among key concepts implemented in flexgrid elastic optical

networks (EONs) we can distinguish distance-adaptive mod-

ulation format assignment [5] and multi-carrier (i.e., super-

channel, abbreviated as SCh) transmission [6]. The former

technology allows applying an adequate optical format to a

transmitted signal in a function of quality of the transmission

path (e.g., estimated as signal-to-noise ratio), thus improving

spectral efficiency of the network. In the latter, a high-capacity

SCh transmitted over the network may consist of a number of

optical carriers (OCs) each carrying a fraction of aggregated

traffic.
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A basic concern in the design and operation of EONs is

the problem of routing and spectrum allocation (RSA). RSA

consists in finding optical paths (lightpaths), tailored to the

actual width of the transmitted signal, for a set of end-to-

end demands that compete for spectrum resources. The RSA

optimization problem is NP-hard [7], [8], [9], which means

that there is no known algorithm that could deterministically

solve it in polynomial time. Consequently, providing globally

optimal RSA solutions in large network scenarios – in terms

of network size, number of demands, and spectrum width – is

very challenging.

In the literature, mixed-integer programming (MIP) formu-

lations (e.g., [7], [8], [10]), metaheuristics (e.g., [3], [11],

[12]), and heuristics (e.g., [8], [13]), have been proposed

to solve RSA. (Meta)heuristics can produce locally optimal

solutions, however, without guarantees for global optimality.

On the contrary, MIP formulations can be solved to optimality.

A common approach is to use a standard branch-and-bound

(BB) method, which is implemented in MIP solvers, for

instance, in CPLEX [14]. The resolution of MIP models using

BB can be still difficult and time-consuming due to a large set

of involved integer variables.

In the paper, we are aiming at developing exact optimization

methods for the considered problem. Applying exact methods,

although difficult already for medium size networks, is impor-

tant because of the following reasons:

• even if exact solutions are obtainable only for small

networks instances, they can serve as benchmarks for

evaluating heuristic methods,

• when an exact method delivers only a suboptimal solution

for a certain network instance, the quality (optimality gap)

of the solution is known,

• exact methods can be run after heuristic approaches

taking the heuristic results as upper bounds; in this way,

they might improve returned solutions.

Thus, building on our previous study [1], we develop an

efficient optimization algorithm capable of producing optimal

solutions to large RSA problem instances. To achieve it, we

apply several optimization approaches – including problem

relaxation and application of cuts, both techniques used with

the aim to improve lower bounds, as well as a search for

upper bound solutions by means of a hybrid greedy RSA and

simulated annealing algorithm – that are combined and built

into a branch-and-price (BP) framework. Evaluation results

obtained for three national and continental size networks of

up to 28 nodes, 200 of demands, 4 THz of spectrum, and two

different traffic types (unicast and anycast) – leading to the
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RSA problem instances of over 1.7 million integer variables

– show the effectiveness of the method in terms of processing

times and memory requirements. To the best of our knowledge,

this study is among the first works that aim at efficiently

solving large instances of RSA to optimality.

To position our work, we discuss state of the art approaches

for solving RSA. Afterwards, we describe our contributions.

A. Related works

Analytical studies [9] and [15] considered the complexity

of the offline spectrum allocation (SA) problem. Using results

from graph coloring theory, it was shown in [15] that the SA

problem in chain (path) networks, in which no routing deci-

sions are involved, is NP-hard. An approximation algorithm

to solve SA in ring networks with a performance bound of

(4+2ǫ) was proposed in [15]. Eventually, in [9] it was shown

that SA can be viewed as a problem of scheduling tasks on

multiprocessor systems, and it is solvable in polynomial time

on paths with at most three links, but NP-hard for paths

with four or more links. Both [9] and [15] indicate that SA is

harder than the wavelength assignment problem in fixed-grid

wavelength division multiplexing (WDM) optical networks,

which can be solved in polynomial time on paths.

As already noted, heuristic methods do not guarantee global

optimality; thus, MIP formulations and algorithms should

be applied in the search for optimal RSA solutions. In the

literature, both node-link (NL) [16], link-route (LR) [7], and

link-lightpath (LL) [10] modeling approaches for formulating

RSA as an MIP problem have been utilized. Compact NL

formulations involve a set of so-called flow conservation

constraints, which determine the routes of traffic flows. Both

LR and LL formulations get rid of these constraints and,

instead, they use a set of allowable routing paths. Note that

in general the set of possible routing paths between a pair

of nodes grows exponentially with network size. If the set of

allowable paths in LR and LL formulations consists only of

a subset of all possible paths, then these formulations may

produce suboptimal solutions. The difference between LR and

LL comes from the way they deal with spectrum assignment.

While LR makes use of dedicated constraints that allocate non-

overlapping segments of spectrum (called frequency slices),

LL utilizes a set of allowable lightpaths with pre-defined

frequency channels (also referred to as frequency slots). LR

and LL are sometimes called slice-based and channel-based

models [17], respectively.

There are several studies that focus on the complexity of

MIP formulations of RSA in terms of the number of involved

variables and constraints, and the computation times required

to solve them using MIP solvers [16], [17], [18], [19]. Even

though solvable in moderate-size networks with fixed-size

spectrum demands (a 10-node network with 45 demands was

evaluated in [16]), NL models are complicated and difficult

to solve in distance-adaptive EONs [20]. Indeed, in such

networks, the size of allocated spectrum is not fixed but

depends on routing and, to account for it, additional variables

and constraints should appear in NL models. The evaluation

performed in [17] and [19] indicates that LR and LL models

are also not scalable and their complexity increases in a

function of the available spectrum (in case of LL) and the

number of demands (in case of LR). As discussed in the survey

concerning spectrum management techniques for EONs [21],

the practical applicability of MIP models for RSA problems

have been limited so far to relatively small problem instances –

in terms of either: network size, number of demands, spectrum

width, the number of routes, or topology type.

To make large instances of RSA tractable by MIP formu-

lations, decomposition methods can be applied [22]. Such

methods usually involve the dynamic addition of variables

(columns) and/or constraints (cutting planes, cuts) to the MIP

model. Decomposition methods have been utilized in opti-

mization of fixed-grid WDM optical networks. For instance, a

branch-and-price method involving column generation (CG)

was effectively applied to solve a routing and wavelength

allocation (RWA) problem in WDM optical networks [23]. As

well, appropriate cutting planes were developed for multi-layer

WDM network design problems [24]. Contrarily, the appli-

cation of decomposition methods in optimization of flexgrid

EONs has not been thoroughly studied so far. Among few

works that can be found in the literature, there are paper [25]

proposing a CG algorithm for dynamic generation of lightpaths

for LL formulations, which was subsequently applied to a re-

optimization problem in [26], and paper [27] developing a

kind of clique cuts for strengthening LL formulations. Still,

in both works RSA solutions were generated using a heuristic

approach instead of an exact method.

B. Contributions

As a natural next step of the above studies, in this work, we

present an exact branch-and-price (BP) optimization algorithm

that involves CG and is able to produce optimal RSA solutions

for a given (large) set of allowable routing paths. With respect

to existing works (e.g., refer to a survey in [21]), which rely

on standard BB methods capable of solving RSA only in

small networks, we demonstrate how to combine various op-

timization techniques into an effective optimization procedure

solving large RSA problem instances.

The BP algorithm has several significant improvements,

with respect to its preliminary version presented in [1], in-

cluding among others:

• development of a new type of cuts that improve the

estimation of lower bounds,

• reduction of processing complexity of heuristics by con-

sidering a reduced set of properly selected routes,

• several changes in the core of BP related to: selection of

branching variables, selection of nodes to be processed,

and processing order of optimization procedures.

Eventually, the new algorithm is applicable also to distance-

adaptive EONs realizing super-channel transmission. In this

work, we assume a fully transparent EON in which neither

spectrum conversion nor signal regeneration is performed in

intermediate nodes. Still, the considered MIP formulation (in

Sec. II) and the proposed optimization algorithm (in Sec. III)

could be adapted to translucent EON scenarios. Such exten-

sions are left for future work.
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TABLE I: Notation.

Sets and parameters

V set of nodes E set of links
D set of demands S set of all frequency slices, S = {1, 2, ..., S}
L(d) set of lightpaths allowable for demand d P(d) set of routing paths allowable for demand d
L set of all allowable lightpaths, L =

⋃
d∈D

L(d) P set of all allowable paths, P =
⋃

d∈D
P(d)

L(e, s) set of lightpaths routed through link e and slice s P(e) set of paths routed through link e
E(l) set of links of lightpath l S(l) set of slices of lightpath l
d(l) demand realized by lightpath l d(p) demand realized by path p
n(d, p) number of slices requested by demand d on path p R (R+) set of real (non-negative real) numbers

Variables

xdl binary, xdl = 1 when demand d uses lightpath l; xdl = 0 otherwise
yes binary, yes = 1 when slice s is allocated in link e; yes = 0 otherwise
ys binary, ys = 1 when slice s is allocated in any network link; ys = 0 otherwise

In the remainder of this paper, in Section II, we present an

MIP formulation of the considered RSA optimization problem

and discuss relevant techniques that are useful in solving

such problems. In Section III, we describe the optimization

algorithm. The algorithm is evaluated in Section IV using the

results of numerical experiments. Finally, in Section V, we

conclude this work.

II. BACKGROUND

In this section, we formulate the RSA problem using the

LL modelling approach. Although the model is not novel,

we describe it once more for the sake of consistency of the

work. Besides, for the readers less familiar with optimization

methods, we discuss briefly the techniques suitable to solving

the problem.

A. RSA problem formulation

The considered EON network is represented by graph G =
(V, E) where V is the set of optical nodes and E is the set

of fiber links. In each link e ∈ E , the same bandwidth (i.e.,

optical frequency spectrum) is available and it is divided into

set S = {s1, s2, . . . , s|S|} of frequency slices of a fixed width.

The set of node-to-node (traffic) demands to be realized in the

network is denoted by D.

In the LL model, a notion of a lightpath is used. A lightpath

is understood as pair (p, c), where p is a spatial route and c is a

frequency slot. The route is a path through the network from

the source node to the termination node of a demand (p ⊆
E), while the frequency slot is a set of contiguous slices (the

property called the spectrum contiguity constraint) assigned

to the lightpath (c ⊆ S). Frequency slot c should be wide

enough to carry the bit-rate of demand d on path p, if it is

supposed to satisfy this demand. Note that the width of c (i.e.,

|c|) may differ in the function of the length of path p. This fact

allows us to model the previously mentioned distance-adaptive

transmission, where the best possible modulation format is

selected for each candidate path. Frequency slot c is the same

for each link belonging to the routing path. This property is

called the spectrum continuity (SC) constraint. It is assumed

that sets of allowable lightpaths L(d) for each demand are

given. Finally, let L be the set of all allowable lightpaths, i.e.,

L =
⋃

d∈DL(d). The notation has been gathered in Table I.

Under the above assumptions, the RSA problem simplifies

to selecting one of the allowable lightpaths for each demand

in such a way that no two demands use the same slice on

the same link. As a consequence, each lightpath is assigned a

binary variable xdl, d ∈ D, l ∈ L(d), where xdl = 1 indicates

that lightpath l is actually set-up and it carries the traffic of

demand d. Besides, each binary variable yes, e ∈ E , s ∈ S,
indicates if there is a used lightpath allocated on slice s of link

e. Eventually, the use of slice s in the network is indicated by

a binary variable ys, s ∈ S . The MIP formulation of RSA is

as follows:

minimize z =
∑

s∈S
ys (1a)

∑

l∈L(d)
xdl = 1 d ∈ D (1b)

∑

l∈L(e,s)
xd(l)l = yes e ∈ E , s ∈ S (1c)

yes ≤ ys e ∈ E , s ∈ S, (1d)

where L(e, s) is the set of lightpaths routed through link e
and slice s, and d(l) is the demand realized by lightpath l.
Optimization objective (1a) minimizes the number of the slices

actually used (equal to the sum of variables ys). Constraint

(1b) assures that each demand will use exactly one lightpath

from the set of allowable lightpaths. Constraint (1c) assures

that there are no collisions of the assigned resources, i.e., no

two lightpaths use the same slice on the same link. Finally,

constraint (1d) defines variables ys that indicate whether slice

s is used on at least one link.

In Section III, we will make use of the linear relaxation

(referred to as LP) of (1). After getting rid of auxiliary

variables yes, the relaxation can be written in the following

form:

minimize zlb =
∑

s∈S
ys (2a)

[λd]
∑

l∈L(d)
xdl = 1 d ∈ D (2b)

[πes ≥ 0]
∑

l∈L(e,s)
xd(l)l ≤ ys e ∈ E , s ∈ S (2c)

[σs ≥ 0] ys ≤ 1 s ∈ S. (2d)

Above, all (primal) variables ys and xdl are non-negative and

continuous. Symbols λd, πes, σs denote the dual variables

associated with the respective constraints. In the following,

the linear relaxation (2) will be called the master problem.
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Fig. 1: A general framework of the branch-and-price algorithm for the RSA problem.

B. Solving MIP problems

Efficient solving of MIP formulations, such as (1), heav-

ily relies on using professional general-purpose MIP solvers

available on the market. The modern solvers often perform

astonishingly efficient and outperform specialized computer

programs implemented for specific problems. The solvers ap-

ply sophisticated branching, bounding and cutting techniques

in combination with extremely efficient linear programming

solvers – all these techniques implemented within a standard

BB method – and are constantly improved.

Improving the quality of MIP formulations and applying

appropriately tailored decomposition techniques to MIP prob-

lems can substantially improve the performance of optimiza-

tion algorithms beyond the straightforward use of the solvers

[22]. In particular, techniques such as adding valid inequalities

(VE, called also cut generation) and column generation (CG)

are of interest here. Adding VEs during the BB process leads

to the so called branch-and-cut method while CG – to the

so called branch-and-price method (combination of the two

is called branch-and-cut-and-price method, see [28]). VEs are

used to strengthen the MIP formulations and thus improving

the lower bounds in the BB process while CG is required

for generating paths in the so-called path-flow formulations of

networks optimization problems.

Despite these promising developments, heuristic optimiza-

tion methods are still important and even unavoidable for

efficient solving MIP problems. Their importance is three-fold.

First, heuristic methods usually do not require optimization

solvers. Second, heuristics are able to deliver feasible solutions

even for very large-scale networks in a reasonable time. Even

though the so obtained solutions can be far from being optimal,

they provide upper bounds for the optimal objective value.

This is particularly valuable when exact solution methods are

not available. Finally, heuristic solutions can speed up the

exact BB algorithm just because they give the upper-bounding

information in a short time.

III. BRANCH-AND-PRICE OPTIMIZATION ALGORITHM

In this section, we develop an optimization algorithm for

problem (1). The algorithm is of the branch-and-price (BP)

type, so it is a combination of the BB and CG methods (see

Sec. II-B). In the BB method, a tree of linear subproblems,

called restricted master problems (RMPs), related to the master

problem is generated through a branching process. In partic-

ular, at each BB node a subset of variables is bounded in

the RMP by means of extra constraints. For a minimization

problem (such as problem (1)), the optimal solution of each

RMP provides a lower bound (LB) for all the solutions below

the considered BB node so it is used either to discard certain

BB nodes or to update the upper bound (UB) whenever this

solution happens to be integral (i.e., feasible for MIP).

Now, in BP each RMP is solved using a CG procedure.

Namely, BP is initiated with a limited set of problem variables

(columns) and at each node of the BB search tree, additional

variables are generated and included into RMP. Since in large

problems most columns are irrelevant for the problem (their

corresponding variables equal zero in any optimal solution),

the processing complexity can be decreased by excluding

these columns from the formulation. Note that an unalterable

(possibly complete) set of columns is included into each RMP

in a standard BB method. Finally, to improve the BB search in

BP, we implement additional procedures that aim at improving

lower and upper bound of a solution.

The details of BP are presented in the following subsections.

Due to space limitations, we restrict the formal description to

the necessary minimum.

A. Branch-and-price framework

Let zlb and zub denote, respectively, a lower and an upper

(local) bound on the optimal solution that are estimated at a

given BB node. Let zLB be the lowest lower bound among

all the nodes that are left for processing and zUB be the best

(global) upper bound found.

The optimization procedure starts with an initialization

phase, in which an initial RSA solution is found using the

heuristic described in Sec. III-D, and a master node of the BB

tree is created. The initial solution is used to set up zub; thus,

also zUB , of the master node, and to determine the size of

set S , which is required for the RMP (see formulation (1)).

Besides, zlb := zLB := 0 is assumed in the master node.

Next, at each BB node, the following actions are performed:

1) If zUB ≤ zlb then discard the node.

2) Solve a relaxed problem (see Sec. III-C). If the solution

is greater than zlb then update zlb. If zUB ≤ zlb then

discard the node.

3) Initialize RMP and solve it using CG (see Sec. III-B).

If the solution of RMP is integral and lower than zUB

then update zUB and close the node. Otherwise, if the

solution is greater than zlb then update zlb.

4) Search for a feasible RSA solution and its value zub

using a heuristic (see Sec. III-D). If zub < zUB then set

zUB := zub. If zUB = zlb then discard the node.

5) Create two child nodes by branching on selected vari-

ables (see Sec. III-E).
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After either discarding or completing the node processing,

a next node to be processed is selected (see Sec. III-F). The

BB search is terminated whenever there are no nodes left for

processing. The algorithm is illustrated in Fig. 1.

B. Solving RMP with column generation

At a BB node, the RMP is initiated with a set of allowable

lightpaths L that either represent the initial RSA solution (in

the master node) or have been used/generated at its parent

node. This set is iteratively extended with new lightpaths that

are provided by CG. A key element of CG is to formulate and

solve a pricing problem (PP). Generally, PP concerns finding

new lightpaths (whose respective variables xdl will form new

columns in the matrix formulation of problem (2)) not present

in the current RMP formulation that, when included into RMP,

will potentially improve objective function (2a) in the next CG

iteration.

In order to define the pricing problem PP, we first formulate

the problem dual to the LP relaxation (2), using the dual

variables specified on the left-hand sides of constraints (2b)-

(2d):

maximize
∑

d∈D λd −
∑

s∈S σs (3a)
∑

e∈E πes ≤ 1 + σs s ∈ S (3b)

λd −
∑

e∈E(l)(
∑

s∈S(l) πes) ≤ 0 d ∈ D, l ∈ L(d), (3c)

where λd ∈ R, d ∈ D, πes ∈ R+, e ∈ E , s ∈ S , and σs ∈
R+, s ∈ S . In (3c), E(l) and S(l) denote, respectively, the set

of links and the set of slices used by lightpath l.
It can be shown that the left-hand side of (3c), i.e.,

λd −
∑

e∈E(l)(
∑

s∈S(l) πes) (4)

represents the so-called reduced cost of primal variable xdl.

Let λ∗, π∗, σ∗ be the vectors representing an optimal dual

solution obtained for the current RMP. Certainly, for such

an optimal dual solution all the values (4) are non-positive.

Nevertheless, there may be lightpaths outside of the set of

lightpaths assumed for the current RMP that can have positive

reduced cost for λ∗, π∗, σ∗, so that adding such paths to

the problem can decrease the minimum value of the primal

objective (2a) and thus to decrease the maximum value of the

dual objective (3a) (recall that the values of the optimal primal

and dual objectives are always equal to each other).

Consequently, PP is defined as a problem of finding, for

each demand d ∈ D, a new lightpath l for which its reduced

cost (4) is positive (and the largest). When found, new variable

xdl representing this lightpath is included into the primal

problem. In our CG implementation, at each iteration and for

each demand, we seek for and include into set L a lightpath

with the largest positive reduced cost. If no such lightpath

exists for all demands, the CG procedure terminates and the

RMP is solved. For details the reader is referred to [25].

Observe that for a given demand d, the minuend of

the reduced cost (i.e., λ∗
d) is fixed for any lightpath re-

alizing this demand. On the contrary, the subtrahend (i.e.,
∑

e∈E(l)(
∑

s∈S(l) πes)) depends on the lightpath l in hand.

Therefore, since in the pricing problem we are looking for a

lightpath with a positive reduced cost, we just have to look for

a lightpath with the smallest value of the subtrahend. Noting

that πes represents the cost of using slice s on link e, the new

lightpath for demand d has to be the cheapest (i.e., shortest)

with respect to these costs. Note that after solving RMP, the

optimal values of dual variables λ∗
d and π∗

es are obtained

directly from the LP solver, along with the optimal values

of the primal variables; thus, the faced problem is simply the

shortest path problem.

As discussed later in Sec. III-E, the lightpaths in the

current L may not be permitted at some BB nodes as their

corresponding variables xdl are set to 0. Still, the lightpaths

corresponding to these variables can be solutions to PP. To

alleviate this problem, we assume that the lightpaths have their

routes restricted to a large predefined set of P =
⋃

d∈D P(d)
where P(d) is the set of routes predefined for demand d. Then

the lightpaths l that are considered for demand d at a given

BB node are those with xdl > 0 that have the route in P(d)
and the slots (appropriate for the selected route) formed from

the set of slices that are not set to 0 in the considered BB

node.

The above assumption regarding a predefined set of candi-

date routes facilitates the search for a new lightpath l by PP

in distance-adaptive EONs. Indeed, set E(l) is known once

the route for l is set, and the feasible slots specified by set

S(l) can be easily enumerated. Denoting the set of all such

feasible lighpaths by Lc, we can easily calculate the reduced

cost (4) for each l ∈ Lc\L and select the best one. Note that

in [25] the frequency slot width is assumed to be fixed for

each demand and the PP can be solved using a shortest path

algorithm on a network graph putting κe =
∑

s∈S(l) πes as

the link metric. If distance-adaptive transmission is used, then

the channel width depends on the (geographical length) of the

routing path and the CG algorithm from [25] cannot be applied

without appropriate adjustments.

Finally, note that z is integer in (1). Therefore, z ≥ ⌈zlb⌉
holds. Since z represents the number of used slices in the

network and we optimize the width of used spectrum, at

least ⌈zlb⌉ consecutively indexed variables ys should equal

1. Hence, we can strengthen the RMP with the following

equalities:

ys = 1, s ∈ {1, 2, . . . , ⌈zlb⌉}.

Moreover, it is advantageous to add the following set of

inequalities to (1):

ys ≥ ys+1, s ∈ S \ {S}. (5)

Inequalities (5) force vectors y = (y1, y2, ..., yS) to be non-

increasing, i.e., of the form y = (1, 1, ..., 1, 0, 0, ..., 0), and

thus eliminate symmetric solutions (in terms of y, for example

solutions of the form y = (0, 0, ..., 0, 1, 1, ..., 1)). At the same

time, the dual problem to the accordingly modified linear

relaxation (2) remains similar to (3), leading to the same

pricing problem.

C. Improving lower bounds

Instead of using a linear relaxation of the problem (RMP)

to obtain an LB it is generally more profitable to solve a
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Fig. 2: Example of a clique of routes; (a) clique {p1, p2, p3}
with flows {x1, x2, x3} traversing links e1, e2, e3 adjacent to

node v; (b) zlb obtained for the SC-relaxed problem (6); (c)

zlb for problem (6) enhanced with the clique cut (7).

simplified MIP problem that does not take spectrum continuity

(SC) constraints into account. The problem can be formulated

as follows:

minimize zlb (6a)
∑

p∈P(d)
xdp = 1 d ∈ D (6b)

∑

p∈P(e)
n(d(p), p) · xd(p)p ≤ zlb e ∈ E , (6c)

where P(e) is the set of routes traversing link e, d(p) is

the demand realized by path p, xdp is a binary variable that

indicates if allowable path p is used to realize demand d,

zlb expresses the (integer) number of slices required in the

most utilized link, and n(d, p) denotes the number of slices

requested by demand d on path p. The routing variables xdp

that correspond to restricted lightpaths (see Sec. III-E) are also

restricted in problem (6).

The LB obtained using formulation (6) may be further

improved if we assume that the SC constraint is preserved

within a subset of routes. Namely, let clique κ ⊆ P denote

such a subset of allowable routes that each pair of routes in κ
has at least one common link, i.e., pi ∩ pj 6= ∅, ∀pi, pj ∈ κ.

Now let the SC constraint holds for all routes in κ, i.e., certain

subsets of slices, unaltered in consecutive links, are allocated

on those routes. Since the allocated spectrum cannot overlap

in network links and each pair of routes in κ has at least

one common link, these allocated subsets of slices must be

disjoint. As a result, the LB on the number of used slices in

the network (zlb) must be at least equal to the sum of slices

allocated on each route belonging to clique κ. Formally, this

inequality can be expressed as:
∑

p∈κ
n(d(p), p) · xd(p)p ≤ zlb, (7)

and it may improve the value of zlb when included into

formulation (6). We refer to inequality (7) as the clique cut.

In Fig. 2(a), we show an exemplary clique of routes

{p1, p2, p3} traversing links e1, e2, and e3 adjacent to node v.

If SC is relaxed, the spectrum segments allocated on routes

p1, p2, and p3 are not fixed, but they may vary in consecutive

links, as it occurs on links e1 and e2 for route p2 in Fig. 2(b).

Consequently, zlb equals the sum of spectrum segments on

the most loaded link, which is either e2 or e3. Now, if SC is

preserved for the considered clique of routes, then they allocate

pairwise not-overlapping segments of spectrum (see Fig. 2(c)).

As a result, zlb is limited by the sum of spectrum segments

of all the routes, according to the clique cut (7).

The total number of cliques existing in a given set of

allowable routes P may be large and not all of them may be

useful, i.e., some of them may not lead to the improvement of

zlb when included into formulation (6). For instance, each set

P(e) represents a clique but it appears already as constraint

(6c) in formulation (6). As a counterexample, let E(v) be a

subset of links adjacent to network node v and of cardinality

|E(v)| = 3, and let clique κ(E(v)) be formed by the routes

traversing any two links in E(v). As shown in the example in

Fig. 2, clique κ(E(v)) may improve zlb.

In this work, we generate a set of cliques κ(E(v)) by

enumerating all the above defined subsets E(v) for all v ∈ V .

Then we strengthen formulation (6) with the set of inequalities

(7) representing these cliques. As shown in Sec. IV-A1, even

using such a simple set of cliques may lead to better zlb

and may decrease the overall algorithm computation time

for certain problem instances. The development of a general

algorithm for dynamic clique generation is left for future

studies.

D. Search for upper bound solutions

In each BB node, we run a greedy first-fit (FF) RSA

algorithm that processes demands one-by-one, according to

a given demand order, and allocates them with the lowest

possible slice index (primary goal) and on the shortest routing

path (secondary goal). The demand order is being optimized

by applying a standard simulated annealing (SA) algorithm,

in a similar way as in [29]. In such FF-SA heuristic, the

FF procedure is capable of producing feasible RSA solutions

quickly, while SA explores the feasible solution space in the

search for (locally) optimal solutions. The obtained solutions

provide UBs on the solution of problem (1).

The set of paths accessible to FF-SA consists of either:

• all allowable paths P if FF-SA is run in the initialization

phase of BP, or

• a limited set of paths if FF-SA is run as a node heuristic.

The limited set of paths is being constructed during the

processing of BB nodes. At each node, this set is inherited

from the parent node and is expanded with: (a) routes found

after solving the relaxed problem (6) and (b) routes that are

active in the RMP solution and carry the whole traffic flow of

their demands. The use of a limited set of paths decreases

the complexity of FF-SA since a relatively smaller set of

routes has to be processed when compared to the case in

which all routes in P were accessible by the heuristic. As

shown in Sec. IV-A, this approach is effective and it allows

for decreasing the overall computation time of BP.

Finally, FF-SA obeys restrictions imposed on using selected

routing paths and lightpaths (see Sec. III-E).

E. Branching

In the branching step, two child nodes (denoted as Ω0 and

Ω1) of the currently processed (parent) node are created. For a

certain demand, we appropriately select a subset of lightpaths
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Fig. 3: Branching on a route and a lightpath.

(referred to as restricted) from the set of candidate lightpaths.

For this demand, we enforce that only the restricted lightpaths

can be used in Ω1 (i.e., they are imposed) and none of these

lightpaths can be used in Ω0 (i.e., they are prohibited), as well

as in their descendants. The columns generated at the parent

node are passed to the child nodes. Also, the values of zlb

and zub of the child nodes are initiated with the corresponding

values of the parent node.

We allow two kinds of branching, namely, for selected

demand d we impose/prohibit either (a) a routing path (b) a

lightpath (see Fig. 3). In details, if case (a) is applied, then for

demand d none of the lightpaths routed through the branching

path is allowed in Ω0 and, contrarily, only these lightpaths

can be used in Ω1. Formally, it is expressed as
∑

l∈L(p) xdl

equals to either 0 (in Ω0) or 1 (in Ω1) for branching path p
of demand d, where L(p) is the set of lightpaths that use path

p. If case (b) is applied, then only the branching lightpath is

allowable for d in Ω1 (i.e., xdl = 1) and this lightpath cannot

be used in Ω0 (i.e., xdl = 0). In BP, we apply rule (a) until

each demand has its route restricted and next we use rule (b).

We use the following procedure to select both the demand

and its path/lightpath (for rule (a)/(b), respectively) on which

branching is performed. First, we look for a link in the

network which has the highest number of both shared and

under-utilized slices in the optimal solution to RMP. The

branching path/lightpath is the one carrying the largest flow

through that link in the RMP solution. If there are more

such paths/lightpaths, one with the largest number of hops is

selected. Eventually, the branching demand is the one related

to that path/lightpath.

F. Node selection

A BB node to be processed is selected (arbitrarily) among

the so-far generated nodes for which zlb = zLB (a primary

condition), the improvement in zub in the two preceding

ancestor nodes is the largest (secondary condition), and zub

is minimal (tertiary condition).

IV. NUMERICAL RESULTS

In this section, we evaluate the BP algorithm in two national

size networks, namely, a generic German network of 12 nodes

and 20 links (DT12) and a generic British network of 22 nodes

and 35 links (BT22), as well as in a European network of 28
nodes and 41 links (EURO28), presented in Fig. 4.

Fig. 4: Network topologies: DT12, BT22, and EURO28; data

center nodes v1, v2, v3, v4 marked in BT22.

We assume the flexgrid of 12.5 GHz granularity. The trans-

mission is bi-directional and realized using SChs and polar-

ization division multiplexing. An SCh consists of a number of

OCs, each OC occupying 37.5 GHz, and a guard-band of 12.5
GHz. For OCs, we consider three modulation formats: BPSK,

QPSK, and 16QAM, of the transmission reach 3400, 2000,

and 500 km [30], and the carried bit-rate 50, 100, and 200
Gbit/s per OC, respectively. We consider that the OCs forming

an SCh use the same modulation format. The aggregated

capacity of an SCh is assumed to be either 100, 200, or

400 Gbit/s; e.g., a long-range 200 Gbit/s SCh is composed of

four BPSK-modulated OCs. To generate allowable paths, we

apply a k-shortest path algorithm with k = 30 (per demand),

and we exclude the paths of length exceeding the maximum

transmission reach.

As in similar works on that topic (e.g., [8], [7]), our focus

is on optimizing the spectrum width required to allocate a

certain set of traffic demands. Traffic demands are symmetric

with randomly generated end nodes and uniformly distributed

bit-rates between 10 and 400 Gbit/s. Since in this work we do

not assume signal regeneration, we consider the end node pairs

with at least one allowable route between them. The evaluated

number of demands |D| ∈ {50, 60, 80, 100, 150, 200}, for each

|D| we evaluate 10 demand sets, and the results are averaged

if not mentioned differently. The demands are unicast (one-to-

one), apart from the last set of experiments, in which anycast

(one-to-nearest) traffic is studied.

As a reference, we use a standard BB method of CPLEX

v.12.5.1 applied to problem (1). CPLEX is run with its default

settings (all types of cuts and heuristics enabled) and in a par-

allel mode (8 threads). CPLEX in paraller mode is also used

in BP, as an LP solver in column generation (see Sec. III-B)

and as an MIP solver in the search for lower bounds (see

Sec. III-C). The rest of procedures of BP, such as processing

of BB nodes and heuristics, are run in a sequential way (1
thread). The algorithms are implemented in C++. Numerical

experiments are performed on a 2.7 GHz i7-class machine

with 8 GB RAM. We set a 1-hour run-time limit. To find the

number o slices S, we run the FF-SA heuristic, as described in

Sec. III. We report among others: processing times (T , in sec.),

best solutions found (zUB), lower bounds (zLB), optimality

gaps calculated as ∆ =
(

zUB − zLB
)

/zUB .
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TABLE II: Comparison of lower bounds in selected problem

instances (i1, i2, i3) in EURO28; TBP in seconds.

RMP MIP MIP&cuts

|D| zLB TBP zLB TBP zLB TBP zUB

i1 50 117.667 3600 118 78 120 58 120
i2 100 242.879 3600 246 115 251 64 251
i3 100 245.667 3600 246 3600 247 1111 247

TABLE III: BP performance (averaged, in BT22) for FF-SA

using either all allowable paths P or a limited set of paths.

FF-SA (P) FF-SA (a limited set of paths)

|D| TBP ∆ kheur TBP ∆ kheur

60 500 0.14% 30 74 0% 1.56
80 506 0.34% 30 206 0% 1.56
100 614 0% 30 144 0% 1.73
150 3478 0.55% 30 933 0.12% 1.78

A. Effectiveness of BP procedures

We begin with evaluating the effectiveness of the BP pro-

cedures that estimate solution lower and upper bounds.

1) Lower bounds: In Table II, we compare the LBs ob-

tained in a master node after solving: (a) RMP, (b) SC-

relaxed MIP problem (i.e., problem (6)), and (c) MIP problem

(6) facilitated with clique cuts (i.e., inequality (7)), for three

selected problem instances (denoted as i1, i2, i3). We can see

that the objective value of the RMP (zLB) is the lowest, while

the use of MIP and cuts allows for a better LB estimation.

Consequently, the zLB values are closer to upper bound solu-

tions (zUB) and the computation times (TBP ) are significantly

reduced. Finally, we report that in 90% of evaluated problem

instances in EURO28, LB estimation methods (b) and (c) have

provided the same LBs.

2) Upper bounds: Here, we evaluate the FF-SA node

heuristic. In particular, we analyze the impact of having a

limited set of routing paths accessible for the heuristic (this

set is defined in Sec. III-D) on the overall BP performance.

In a reference scenario, we assume that the complete set of

allowable paths |P| is accessible for FF-SA.

In Table III, we can see that the use of a limited set of

paths in FF-SA, instead of the complete set |P|, improves

considerably the average BP run-time (TBP ). Note that this

limited set, being constructed during BP execution, consists of

less than 2 paths per demand on average (kheur). It is much

less than in the reference scenario in which kheur = 30. In

Table III, we also show average optimality gap ∆. If ∆ ≥ 0,

then it means that some problem instances could not be solved

within the given 1-hour run-time limit. As we can see, there

are much more such cases in the reference scenario than in a

scenario in which a limited set of paths is used. Eventually,

we would like to report that BP has been able to solve some

small problem instances (DT12, |D| ≤ 20) without using a

node heuristic.

B. Branch-and-bound vs. branch-and-price

Next, we compare BP with a standard BB method of

CPLEX. In Fig. 5, we can see that BP has been able to solve

Fig. 5: Status of RSA solutions obtained with BB (CPLEX)

and BP; the value on bars corresponds either to the average

computation time (for optimal) or optimality gap (for feasible).

TABLE IV: The size of RSA problem instances (averaged), in

terms of the number of integer variables and constraints, for

unicast demands and k ∈ {10, 30} of allowable routing paths.

variables constraints

|D| k = 10 k = 30 k = 10 k = 30

DT12 50 35854 99870 3122 3094
100 143790 411280 6048 6044
200 606104 1738912 12524 12484

BT22 50 34315 95682 5006 4957
100 137381 398672 9865 9837
200 554845 1635236 19772 19716

EURO28 100 162457 203087 19608 19608
150 384502 485315 30375 30326

almost 98% (39 out of 40) of analyzed problem instances in

DT12 and BT22 networks and |D| ∈ {50, 100}. At the same

time, BB has not found any feasible solution in almost 68%
of problem instances (unknown solution status in Fig. 5). As

shown in Table IV, these problem instances may consist of

over 400000 integer variables and almost 10000 constraints.

Even after both increasing the run-time limit (3 hours) and

reducing the set of allowable paths (k = 10 per demand); thus,

reducing the size of problem instances (see Table IV), BB

has difficulties with producing optimal solutions. Moreover,

the average time to find an optimal solution in BP is at least

one order of magnitude lower than that in BB. The problem

instances consisting of over 1.6 million integer variables and

about 20000 constraints, as for |D| = 200, k = 30 in

BT22, have made CPLEX run out of memory. Eventually,

for BP and |D| = 100 the average computation times are

surprisingly higher in DT12 than in larger BT22 network. To

explain this phenomenon, we may have to analyze detailed

computation time results shown in Table V. In the discussed

scenario, the overall time spent by the RSA node heuristic in

the search for upper bound solutions (TUB) is much higher

in DT12 than in BT22 (we have 72.8% · 253sec. ≈ 184sec.
vs. 45.9% · 143sec. ≈ 65sec.). Such algorithm performance

may result from both the availability of a larger number of

links in BT22, and hence relatively smaller chance of conflicts

when allocating spectrum resources to demands, and a smaller
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TABLE V: BP performance – detailed results.

Solution and its status Computation time and its distribution

Network |D| zLB zUB ∆ δ optimal / feasible / unknown T [sec.] T init TRMP TLB TUB

DT12 50 74.6 74.6 0.0% 0 100% / 0% / 0% 115 9.1% 8.1% 5.8% 76.9%
100 146.3 146.3 0.0% 0 100% / 0% / 0% 253 14.4% 11.3% 1.5% 72.8%
150 232.8 232.8 0.0% 0 100% / 0% / 0% 920 9.8% 15.4% 1.0% 73.8%
200 302.6 302.9 0.1% 0.3 70% / 30% / 0% 2107 7.2% 14.9% 1.1% 76.8%

BT22 50 68.4 68.6 0.4% 0.2 90% / 10% / 0% 461 2.1% 8.0% 19.9% 70.0%
100 134.5 134.5 0.0% 0 100% / 0% / 0% 143 26.6% 25.8% 1.6% 45.9%
150 187.3 187.5 0.1% 0.2 90% / 10% / 0% 927 8.1% 18.2% 1.5% 72.2%
200 269.7 269.8 0.0% 0.1 90% / 10% / 0% 1557 9.2% 22.6% 1.5% 66.7%

EURO28 50 119.7 120.2 0.4% 0.5 80% / 20% / 0% 744 0.8% 16.9% 1.4% 80.8%
100 225 225.6 0.3% 0.6 80% / 20% / 0% 1446 1.5% 30.4% 0.4% 67.6%
150 355.8 356.2 0.1% 0.4 70% / 30% / 0% 2143 2.2% 39.5% 0.3% 58.1%

TABLE VI: BP with anycast demands in BT22.

DCs |D| zLB zUB ∆ δ T

2 50 33.2 33.3 0.3% 0.1 362
80 51.8 51.8 0% 0 55
100 62.7 62.7 0% 0 310
150 96.7 96.8 0.1% 0.1 1001

3 50 23.8 23.8 0% 0 6
100 45 45 0% 0 47

number of slices that are subject to processing (compare zUB

for DT12 and BT22 in Table V).

C. Analysis of BP performance

Now, we analyse the performance of BP in details in all

three networks. In Table V, we can see that the average LB

(zLB) and UB (zUB) values are either equal or very close,

and the relative optimality gap (∆) is near to 0%. In practice,

the average absolute difference between zUB and zLB (δ) is

well below 1 frequency slice, even for large problem instances

that utilize almost the whole available spectrum in network

links (i.e., for zUB close to 320 slices) and involve over 1.7
million integer variables (see |D| = 200, k = 30 for DT12

in Table IV). The percentage of optimal solutions is high (at

least 70%) and always a feasible solution is found. The average

algorithm computation time (T ) is between 115 and 2200 sec-

onds, depending on the number of demands. The estimation of

LBs by solving MIP problem (6), especially for larger problem

instances, takes a small percentage of time (TLB ≈ 1− 2%).

On the contrary, searching for UB solutions is the most time

consuming procedure of BP (TUB ≈ 60−80%). Solving RMP

may require TRMP ≈ 15 − 35% of the algorithm time. The

initialization phase, which among others includes the search

for an initial solution using FF-SA, takes between some to

several percents of the BP time (T init ≤ 10% in most cases).

D. Anycast traffic demands

Finally, we evaluate BP in an EON with anycast traffic

demands. Anycasting is used, among others, in content-deliver

networks, in which certain content is replicated in a number

of data centers (DCs). Similarly as in [12], we consider

that lightpath connections deliver the requested (aggregated)

content from DC to client nodes. The flexibility of anycasting

in selecting a most convenient DC to which a lightpath is

established, involves a large set of allowable routes/lightpaths,

which may increase the RSA problem complexity. The eval-

uation is performed in BT22 for: (a) 2 DCs located in nodes

v1 and v3, and (b) 3 DCs located in nodes v1, v2, and v4,

as shown in Fig. 4. Traffic demands are randomly generated,

as described at the beginning of this section. In Table VI, we

can see that BP has been able to solve almost all considered

problem instances (58 out of 60), and only for remaining 2
problem instances (for 2 DCs and |D| ∈ {50, 150}) near-

optimal solutions have been found with the absolute difference

between zUB and zLB (δ) being equal to only 1 frequency

slice. Eventually, we can see that both spectrum requirements

(zUB) and algorithm computation time (T ) decrease if more

DCs are available in the network.

V. CONCLUDING REMARKS

We have presented a branch-and-price optimization algo-

rithm for the routing and spectrum allocation problem in

distance-adaptive elastic optical networks. We have shown that

an appropriate use of advanced mathematical programming

methods and dedicated optimization procedures allows to

produce optimal and near-optimal solutions to large RSA

problem instances. The performance of BP might be further

improved by implementing parallel processing of its BB nodes

and its heuristics, as well as by using other types of cuts and

heuristics, for instance, those implemented in CPLEX.
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