
Solving Large-scale Modelica Models:
New Approaches and Experimental Results using OpenModelica

Willi Braun1 Francesco Casella2 Bernhard Bachmann1

1FH Bielefeld, Bielefeld, Germany, {willi.braun,bernhard.bachmann}@fh-bielefeld.org
2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy,

francesco.casella@polimi.it

Abstract
Modelica-based modeling and simulation is becoming in-
creasingly important for the development of high quality
engineering products. Therefore, the system size of in-
terest in a Modelica-based simulation is continuously in-
creasing and the traditional way of generating simulation
code, e.g. involving symbolic transformations like match-
ing, sorting, and tearing, must be adapted to this situation.
This paper describes recently implemented sparse solver
techniques in OpenModelica in order to efficiently com-
pile and simulate large-scale Modelica models. A proof
of concept is given by evaluating the performance of se-
lected benchmark problems.
Keywords: Modelica, large-scale, sparse solver tech-
niques

1 Introduction
The design and safe operation of modern large-scale
cyber-physical systems requires the ability to model and
simulate them efficiently. The Modelica language is op-
timally suited for the modelling task, thanks to the high-
level declarative modelling approach and to the powerful
object-oriented features such as inheritance and replace-
able objects. On the other hand, as noted in (Casella,
2015), until recently the development of Modelica tools
has been focused on the modelling of moderate-sized
models, optimizing the simulation code as much as pos-
sible by means of structural analysis and symbolic pro-
cessing of the system of equations.

Large system models are usually characterized by a
high degree of sparsity, since each component interacts
only with a few neighbours, so that each differential-
algebraic equation in the model only depends on a hand-
ful of variables. The availability of reliable open-source
sparse solvers (Hindmarsh et al., 2005; Davis and Natara-
jan, 2010) and of cheap computing power and memory
even on low-end workstations opens up the possibility of
tackling much large system models, featuring hundreds of
thousands or possibly millions of equations, exploiting the
sparsity of such models for their solution.

In particular, the interest in the use of Modelica for
the modelling and simulation of national- and continental-
sized power generation and transmission systems recently

motivated a first exploratory effort in this direction, using
OpenModelica as a development platform, see (Casella
et al., 2016). The methods implemented for the power sys-
tem studies also allowed to efficiently simulate the cool-
ing blanket of the future DEMO nuclear fusion reactor,
which requires the modelling of thousands of individual
heat-exchanging pipes, see (Froio et al., 2016).

The goal of this paper is threefold: to discuss different
strategies for the simulation of large-scale Modelica mod-
els using sparse solvers; to describe an implementation
of such strategies in the OpenModelica Compiler (OMC),
using open-source solvers; finally, to present and dis-
cuss the performance obtained in a number of benchmark
cases. The numerical methods are discussed in Section 2.
The simulation performance is analyzed on three sets of
benchmarks: the ScalableTestSuite library (Casella, 2015;
Casella and Sezginer, 2016), some large power system
models (Casella et al., 2016), and large high-fidelity mod-
els of the cooling system of the future DEMO nuclear fu-
sion plant (Froio et al., 2017); results are reported in Sec-
tion 3. Finally, Section 4 concludes the paper and gives an
outlook to future work.

2 Solving Modelica Models
2.1 ODE mode
2.1.1 Symbolic Transformation Steps

In common Modelica tools the compile process can be
summarized with the following steps, which are also ex-
plained in (Cellier and Kofman, 2006):

Flattening The Modelica model is transformed by the
front-end into a flat representation, consisting essen-
tially of lists of variables, functions, equations and
algorithms.

Pre-Optimization In this phase a basic structural anal-
ysis of the differential-algebraic equations (DAE) is
performed, e.g. detecting the potential states and dis-
crete variables, eliminating alias variables.

Causalization This is a basic step in a Modelica Com-
piler, the so-called BLT-Transformation. Matching,
sorting, and index reduction algorithms are applied

DOI
10.3384/ecp17132557

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

557



in order to causalize the DAE and transform it to a
system of ordinary differential equations (ODE).

Post-Optimization In this phase further optimization
processes are applied on the equation system, e.g.
the optimization of algebraic loops, like tearing, or
the generation of corresponding symbolic Jacobians.

Code-Generation The final step after the symbolic ma-
nipulation is the target code generation for the opti-
mized system in order to perform the simulation.

For this description and without lack of generality, and
for clarity of the presentation, only the continuous part of
the DAE is considered in the following. The result of the
Flattening is the equation system:

F(t, ẋ(t),x(t),u(t),y(t), p) = 0, t ∈ [t0, t f ]

x(t0) = x0
(1)

where ẋ(t) ∈ Rnx are the potential state derivatives, x(t) ∈
Rnx are the potential states, u(t) ∈ Rnu are the inputs and
y(t) ∈ Rny are the algebraic variables. For simplicity, the
initial conditions of the DAE states are given by x0. Intro-
ducing z = (ẋ y), denoting the unknowns of the DAE, and
v = (x u), denoting the known variables, the DAE can be
re-written as

F(z,v) = 0 (2)

that is basically the result of the Pre-Optimization.
The conceptual idea of the DAE Causalization com-

monly used in Modelica tools is to get an ordering of the
unknowns z(t), which enables to solve them sequentially

z = G(v) ∈ Rnx+ny (3)

If index reduction is necessary, some of the potential states
and state derivatives become algebraic and the number of
equations might change. The general form of the causal-
ized system consists of a sequence of assignment state-
ments including implicit systems of equations (algebraic
loops)

0 = gi(zi,z1, . . . ,zi−1,x,u), i = 1, . . . ,k (4)

where
z = (z1, . . . ,zk), zi ∈ Rni ,

k

∑
i=1

ni = nx +ny.

Finally, the ODE may be re-written

ẋ = f (x,u, p, t) (5)
ŷ = h(x,u, p, t) (6)

where ŷ are the outputs of the system. Note that the other
algebraic variables of y are considered to be internal to the
ODE in this representation.

In the Post-Optimization mainly algebraic loops are
torn down (Täuber et al., 2014) and the symbolical Jaco-
bians are determined where applicable. Also the sparsity
pattern of equation (5) is detected, which can be employed
for the numerical jacobian calculation of the integration
method (see also (Braun et al., 2012)).

2.1.2 Numerical Solving Process

For the simulation of the generated ODE equation (5) a
numerical integration method for solving the differential
equations as well as linear and non-linear system solvers
for the implicit equations (4) are needed . In the next sec-
tion the utilized methods and the exploitation scope for
sparsity are described.

The numerical integration can be performed with ex-
plicit or implicit methods, whereby the implicit ap-
proaches are used in a Modelica environment more often,
since most problems arising in practice are stiff. For ex-
plicit methods the next step can be calculated by

x(t +δ t) = Φ(x(t),u, p, t,δ t, f ), (7)

whereby Φ is calculated by explicitly evaluating the func-
tion f in formula (5). Therefore, sparse methods can only
be applied for calculating the solution of algebraic loops
with respect to equation (4). The handling of sparse alge-
braic loops is described below.

For implicit methods the next step has to be calculated
by

x(t +δ t) = Ψ(x(t +δ t),u, p, t,δ t, f ), (8)

whereby the evaluation of Ψ involves the solution of a
non-linear system using equation (5). The most widely
used method for solving such non-linear systems is New-
ton’s method and the core of it is to solve consecutive a
linear system of the form

J · (x(t +δ t)− x(t)) =−F (9)

where F denotes the residual form of equation (8) and J
is the corresponding Jacobian matrix. The solution of this
linear system offers some potential to gain performance
for large-scale systems. Firstly, the matrix J can be calcu-
lated by exploiting the sparsity of the system, both numer-
ically and symbolically. Naturally, this includes the stor-
age of the matrix in a suitable sparse format to reduce the
memory consumption. Secondly, in order to solve equa-
tion (9) sparse linear solvers (e.g. sparse LU factorization)
can be utilized. For that purpose several methods have
been developed and made publicly available (Davis and
Natarajan, 2010; Davis, 2004).

For calculating the solution of algebraic loops with re-
spect to equation (4) the same sparse solution methods can
be utilized to gain some performance.

2.2 Simulation in DAE mode
An other way to go is to pass-through the whole system of
equation (2) directly to an DAE solver, instead of using the
ODE solver for integration and solve the implicit parts of
equation (5) explicitly by algebraic solvers. Due to the fact
that the index reduction is an important step for better con-
vergence to the solution (Brenan et al., 1996), it is prefer-
able to pass the system with index 1 (eq. (3)). Also, if
the simulation is performed with equation (3), some time

Solving large-scale Modelica models: new approaches and experimental results using OpenModelica

558 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132557



consuming steps in the Post-Optimization compiling pro-
cess, which deal with algebraic loops, namely tearing and
the generation of symbolic Jacobians, can be skipped. A
DAE solver is always an implicit solver and has to solve
an non-linear system, which is usually solved using some
variants of the Newton’s method (Brenan et al., 1996).
Thus, all the local implicit algebraic loops are solved all
together by the global routine. One effect of using equa-
tion (3) instead of solving equation (5) is that the Jacobian
matrix gets bigger, since the integration method needs to
solve for the variables x, ẋ and y instead only for x. But
this also preserves the sparse structure of the equation sys-
tem with respect to Modelica models. In the ODE mode
the corresponding Jacobian matrix is more dense due to
the fact that the algebraic variables y are considered as in-
ternal variables.

Note, that in the current status of the DAE mode im-
plementation it is still mandatory to generate the causal-
ized code for proper handling of synchronous events and
discrete variables. Therefore, OpenModelica generates
currently an additional system in DAE mode. However,
it is possible to skip unnecessary compiling steps by
some specific compiler flags, which are documented in
the OpenModelica User’s Guide (Open Source Modelica
Consortium).

2.3 Implementation in OpenModelica
The default simulation in OpenModelica is performed by
solving system (5) using DASSL as a pure ODE solver.
Hereby, the implicit parts (algebraic loops) are solved ex-
plicitly with algebraic equation solvers, the linear parts
with lapack and the non-linear parts with a newton-based
solver implemented in OpenModelica (Bachmann et al.,
2015).

For the simulation of large scale Modelica models the
most important part is a suitable sparse linear solver as
depicted in section 2.1.2. Currently, one of the best under
public domain available direct sparse linear solver for un-
symmetric problems is the KLU solver (Davis and Natara-
jan, 2010) from the sparse matrix suite SuiteSparse. This
solver is designed for solving sequences of unsymmetric
sparse linear systems that arise from differential-algebraic
equations, occurring when simulating electronic circuits.
In fact, the linear systems arisen when simulating Model-
ica models are in general unsymmetric and often sparse,
both in ODE and DAE mode. The open-source software
family called SUNDIALS offers as a DAE solver the IDA
solver (Hindmarsh et al., 2005). The IDA solver stands
for Implicit Differential-Algebraic solver and is based on
DASSL, but is written in ANSI-standard C. Further, for
the solution of the underlying non-linear system at each
time step, the IDA solver offers an interface to the sparse
linear solver KLU. Furthermore, the SUNDIALS suite in-
cludes also a newton-based non-linear solver KINSOL,
which is also able to use the KLU solver for the underling
linear system. Through the connection of SUNDIALS and
SuiteSparse suite to the OpenModelica environment it is

now possible to rely on sparse methods at every step of
the numerical simulation process.

3 Performance Results
3.1 Benchmarks from the ScalableTestSuite

3.1.1 Test set-up

The ScalableTestSuite (Casella, 2015; Casella and
Sezginer, 2016) contains a number of different benchmark
models, whose size can easily be chosen by setting one or
more Integer parameters. The benchmarks are designed
to stress some aspect of the code generation and execu-
tion, e.g. by possessing large implicit systems of alge-
braic equations, large number of states, large number of
event-generating functions, etc. Please refer to the library
documentation for further details.

This section reports the performance of a selection of
nine benchmark models, each one coming in three differ-
ent sizes.The results obtained with four different numeri-
cal solution strategies are presented and compared. Note
that the current set of benchmarks does not include sys-
tems with large implicit systems of nonlinear equations –
these will be added in the final version of the paper.

The first solution strategy, labelled OD in the result ta-
ble, is the default approach to solving Modelica models
implemented in the OpenModelica tool (see section 2).
The DAEs are turned into ODEs by solving them for the
derivatives, using the BLT transformation to do so effi-
ciently, applying symbolic index reduction if the system
has index greater than one. The implicit equations in the
BLT corresponding to strong components in the depen-
dency graph are solved with dense linear and nonlinear
equation solvers, using tearing to reduce the size of the
implicit part of the problem and thus somehow exploiting
sparsity. The ODEs are then solved by the DASSL BDF
integrator, using a dense linear solver for its internal oper-
ations.

The second strategy, labelled OS, still resorts to causal-
ization; however, the implicit equations corresponding to
the strong components in the BLT are solved by the Kin-
sol/KLU sparse solvers, while the ODEs are solved by
the IDA BDF integrator, relying on the KLU sparse lin-
ear solver internally.

In this case, tearing is not applied to solve the implicit
equations corresponding to strong components in the BLT.
The rationale behind this decision is that on the one hand,
the sparse solver already vastly reduces the computational
complexity, if the system is highly sparse. On the other
hand, tearing very large systems might take a dispropor-
tionately large amount of time by the compiler back-end,
so that the time savings at run time are likely to be more
than offset by the much longer code generation time. In
fact, this trade-off would itself deserve to be studied, but
that goes beyond the scope of the present paper.

The third strategy, labelled DA, is to only apply sym-
bolic index reduction (if needed) to the DAEs, and then

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132557

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

559



use the sparse IDA solver directly to solve them over time.
The fourth strategy, labelled DD, is a variant of the for-

mer one, in which the subset of the DAEs that is strictly
required to be solved in order to compute the state vari-
ables at the next time step is identified and passed to the
sparse IDA solver. Once the new time step has been com-
puted and accepted as valid by the error estimation rou-
tine, the remaining equations are solved for the remain-
ing variables by OpenModelica-generated code, exploit-
ing the usual BLT decomposition to solve them efficiently.

This strategy can be advantageous because it avoids
computing unnecessary variables during the internal
solver iterations, particularly when tentatively computing
a step that may then be rejected by the error estimation
routine. Also, it is often the case that the dependencies
in the systems are such that, once the variables required
to advance the states have been computed, the remaining
ones can be computed by explicit assignments. Further-
more, these are only computed once instead of getting un-
necessarily involved many times in the iterative solution
of the implicit sparse nonlinear DAEs.

As to the initialization problem, with the first strategy
the standard dense linear and nonlinear solvers with tear-
ing are used; with the other three, the sparse solvers Kin-
sol/KLU without tearing are used instead.

All tests were carried out on the Open Source Mod-
elica Consortium continuous testing infrastructure, using
the development version 1.12.0 of OpenModelica. The
computer used to run the tests is a 16-core Intel i7-6900K
CPU @ 3.20 GHz, with 132 GB RAM.

3.1.2 Results and discussion

Table 1 reports some selected results, showing the num-
ber of equations NE, number of states NS and the run-
ning times of the simulations in seconds, including the
time spent for initialization, for the four above-mentioned
strategies. The full online report for each strategy can be
retrieved by clicking on the corresponding label in the ta-
ble headings of the PDF file.

Note that all the employed solvers are stiff and equipped
with automatic order and step-size adaptation, with rel-
ative tolerance set to 10−6, so that accuracy of the sim-
ulation results is comparable and the comparison among
simulation times is fair and meaningful.

First of all, it is apparent how the adoption of sparse
solvers turns out to be beneficial for 7 out of 9 bench-
mark models, reducing the simulation times by factors
ranging from about 2 (SteamPipe and OneDHeatTrans-
ferTT_Modelica) to about 60 (TransmissionLineEqua-
tions_N_1280). It is also not significantly harmful in the
remaining two.

Although the models in the ScalableTestSuite might be
somewhat artificial and thus possibly bring higher benefits
than real-life models, in the author’s opinion this result is
a clear indication that sparse solvers are the recommended
option to simulate large-scale Modelica models.

The improvement in performance can be ascribed both

to the more efficient solution of the large implicit systems
of equations involved in the solution process, and proba-
bly also to the lower number of time-consuming memory
cache misses, due to the much smaller memory footprint
of the simulation executable.

For some models, a large fraction of the simulation time
is spent computing the right-hand-sides of the equations,
rather then solving them, as in the case of the SteamPipe,
where most of the time is spent computing the steam prop-
erties. In these cases, the adoption of a sparse solver can-
not change the situation dramatically. On the contrary,
sparse methods can bring huge benefits to models like
TransmissionLineEquations, which have a large number
of state variables, and an easy-to-compute right-hand side
of the ODEs, with a very sparse Jacobian.

The advantage of using a sparse DAE solver over a
sparse ODE solver is instead much less clear, and depends
a lot on the specific case.

The multi-body models StringModelica, a suspended
string modelled as a chain of rigid bodies and free rota-
tional joints, and FlexibleBeamModelica, a cantilevered
beam modelled as a chain of rigid bodies with elastic rota-
tional joints, perform much better with the DAE solver, for
reasons currently under investigation; also the SimpleAd-
vection models show a factor 2 improvement when using
the DAE solver.

In other cases, such qas TransmissionLineEquations
and PowerSystemStepLoad, the advantage is more lim-
ited. The TransmissionLineModelica model turns out to
be five time faster with the sparse ODE solver than with
the full DAE solver (DA strategy). The penalty is reduced
to about a factor 2 when using the more advanced DD
strategy, which is understandable, as the model is built
with basic Resistor and Capacitor models from the Model-
ica Standard Library and thus has a lot of redundant equa-
tions.

Finally, it seems that the DA strategy never turns out
to provide any substantial advantage over the second best
choice.

3.2 Large-scale power generation and trans-
mission system models

The interest in Modelica modelling of national- and
continental-size power generation and transmission sys-
tems is growing. A first feasibility study in this field was
reported in (Casella et al., 2016). The relevant features of
the benchmark models are reported here for convenience;
the interested reader is referred to the above-mentioned
reference for background information and more details.

Three benchmark test cases from that study are con-
sidered in this paper, whose main features are reported in
Table 3. Note that the size of these models is much larger
than the typical size of the ScalableTestSuite examples re-
ported in the previous section.

RETE_C is a model of the Irish power generation and
high-voltage power transmission system, while RETE_E
and RETE_G are a medium- and a high-fidelity model

Solving large-scale Modelica models: new approaches and experimental results using OpenModelica

560 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132557



Table 1. Simulation times of ScalableTestSuite benchmarks in seconds.

Benchmark NE NS OD OS DA DD

SimpleAdvection_N_3200 6402 3199 20.81 4.851 3.087 2.561
SimpleAdvection_N_6400 12802 6399 104.9 13.27 6.107 6.781
SimpleAdvection_N_12800 25602 12799 642.2 41.15 19.17 18.38

SteamPipe_N_640 8966 1280 169.2 148.4 158.7 139.3
SteamPipe_N_1280 17926 2560 395.8 316.8 357.8 302.9
SteamPipe_N_2560 35846 5120 1165 651.0 801.9 679.9

TransmissionLineEquations_N_320 642 640 4.344 0.5742 0.2626 0.3563
TransmissionLineEquations_N_640 1282 1280 23.52 1.133 0.8848 0.7923
TransmissionLineEquations_N_1280 2562 2560 241.1 6.099 4.973 4.621

TransmissionLineModelica_N_320 6755 642 3.677 1.100 3.337 1.937
TransmissionLineModelica_N_640 13475 1282 29.15 2.090 11.63 7.59
TransmissionLineModelica_N_1280 26915 2562 235.0 9.012 47.80 20.96

FlexibleBeamModelica_N_16 5949 32 26.74 21.65 14.4 9.611
FlexibleBeamModelica_N_32 10877 64 111.9 64.87 38.12 28.30
FlexibleBeamModelica_N_64 20733 128 1819 393.8 n.a. 65.47

StringModelica_N_16 5887 34 1.801 1.410 0.4385 1.012
StringModelica_N_32 10783 66 9.710 10.02 1.541 1.897
StringModelica_N_64 20575 130 86.48 25.91 3.756 n.a.

PowerSystemStepLoad_N_16_M_4 1059 193 0.2272 0.1477 0.1329 0.4610
PowerSystemStepLoad_N_32_M_4 3139 385 0.7197 0.632 0.4116 0.5558
PowerSystemStepLoad_N_64_M_4 10371 769 2.713 2.961 2.277 2.867

OneDHeatTransferTT_Modelica_N_320 3190 318 0.322 0.2358 0.1794 0.3176
OneDHeatTransferTT_Modelica_N_640 6390 638 0.9237 0.3579 0.4711 0.4736
OneDHeatTransferTT_Modelica_N_1280 12790 1278 1.822 1.038 0.9342 1.058

HeatingSystem_N_20 103 41 16.76 20.26 n.a. n.a.
HeatingSystem_N_40 203 81 113.7 155.6 n.a. n.a.
HeatingSystem_N_80 403 161 827.2 831.5 n.a. n.a.

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132557

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

561



Table 2. Number of synchronous generators, transmission lines,
transformers and equations of the benchmark models

Network Gen’s Lines Trafo’s Equations
RETE_C 74 369 583 56386
RETE_E 267 1458 1202 157022
RETE_G 407 6833 2824 593886

of the Italian high-voltage power generation and transmis-
sion system, with an equivalent simplified representation
of the interconnection to the pan-European grid.

These models have a peculiar feature, i.e., their DAE
representation is highly sparse, but their ODE representa-
tion is dense, because all the synchronous generators in-
teract instantaneously with each other, due to the phasor-
based algebraic description of the transmission network.
As a consequence, the use of implicit ODE solvers is
not recommended, because the corresponding Jacobian is
very large and dense.

At the time of the writing of (Casella et al., 2016), the
sparse DAE solver only worked on the smallest test case,
so for the larger ones a variant of the the OD strategy was
employed, using an explicit Runge-Kutta solver to avoid
computing the dense Jacobian. Linearized load models
were required in order to use the linear sparse solver KLU
to compute the causalized equations. However, this ap-
proach was clearly sub-optimal, because a) realistic load
models are non-linear and b) the system models are sig-
nificantly stiff. Using fully implicit sparse DAE solvers
with variable step size is clearly preferrable from a perfor-
mance point of view.

In this paper, we can now report the simulation perfor-
mance obtained with the DA strategy, using an Intel Xeon
CPU E5-2650 server running at 2.30GHz with 72 GB of
RAM installed. All simulations start with the system in
steady-state, then at time t = 1 s a big load is disconnected
from the grid, causing an imbalance between generated
and consumed power. The system undergoes a transient
with some voltage and frequency oscillations, until the
voltage and frequency controllers re-establish a new equi-
librium in about 10-15 seconds. The simulation time span
is 20 seconds, in order to check that the system actually
returns to steady-state.

Performance results are reported in Table 2. It is worth
noting that these results were obtained with a first imple-
mentation of the DA strategy; the authors are confident
that the optimization of the IDA solver parameters and
a more thorough scaling of the problem, which is badly
scaled due to the use of SI units, could further improve the
performance significantly.

3.3 Large-scale models of nuclear fusion reac-
tor components

The development of a conceptual design of the European
Demonstration Fusion Power Reactor (EU DEMO) is one
of the goals defined in the EU fusion roadmap Horizon

Table 3. Simulation performance with DA strategy

Network Rel. tol. No. of steps Sim. time [s]
RETE_C 10−4 39 0.96
RETE_C 10−6 146 3.18
RETE_E 10−4 140 8.80
RETE_E 10−6 364 15.22
RETE_G 10−4 221 59.95
RETE_G 10−6 615 123.19

2020. The future DEMO reactor aims at demonstrating
industrial-scale electrical power production from nuclear
fusion processes.

Politecnico di Torino, in cooperation with Politecnico
di Milano, is developing a global thermal-hydraulic model
of the entire system, using Modelica. One important part
of that is the breeding blanket cooling system, in which
pressurized water flows through a very complex and large
system of tubes, collecting the heat generated from the nu-
clear fusion process and delivering it to a standard steam
generator and turbine system, similar to those used for tra-
ditional PWR nuclear power plants. The breeding blan-
ket cooling system is highly modular and has a repetitive
structure, but its sub-components have different geometric
features, so that it necessary to simulate each and every
tube individually. As a result, models of this system can
have a very large size. The interested reader can refer to
(Froio et al., 2017) for more details.

The model reported in the above-mentioned reference
has 289126 equations and 20772 states. The simulation of
a transient of interest for the study of such system requires
64 s with the DD strategy and 146 s with the DA strategy.

The model has been benchmarked and validated against
more detailed 3D CFD models. Given the simulation
times shown above, which are obviously much faster than
those of the CFD simulation, the model is suitable for use
in parametric optimization studies, aimed at the optimal
design of the coolant flow distribution.

4 Conclusion
This paper introduces methods and strategies to solve
large-scale Modelica models and reports the performance
of their implementation in OpenModelica on selected
benchmark problems.

The main result of this study is that the use of sparse
solvers is almost always beneficial, sometimes very sub-
stantially, over the traditional use of dense solvers sup-
ported by thorough symbolic manipulation. The compari-
son between sparse DAE solvers and sparse ODE solvers
has many different outcomes, depending on the specific
problems at hand.

Another interesting result is that we have demonstrated
the feasibility of using such sparse solvers to successfully
simulate Modelica models of industrially relevant systems
with size up to over half a million DAEs.

Solving large-scale Modelica models: new approaches and experimental results using OpenModelica

562 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132557



Further developments of this work are already planned.
First of all, it would be interesting to using the DAE solver
to simultaneously handle the differential equations and the
nonlinear algebraic implicit equations corresponding to
strong components of the BLT, while still exploiting the
BLT to compute the residuals of the DAEs by sequences of
explicit assignments. This would combine the advantages
of the sparse ODE and sparse DAE approaches discussed
in this paper, avoiding the nested iterations of the non-
linear strong components solver and of the implicit ODE
solver, possibly further improving the results reported in
this paper on some classes of models.

It will also be necessary to further optimize the code
generation for use with sparse solvers, as the current im-
plementation is such that the code generation time is typi-
cally much larger than the simulation time, particularly for
very large models. Radically new approaches to the code
generation process are needed to break the one million
equation barrier with reasonable executable code sizes and
code generation times.

Last, but not least, although the handling of hybrid
models with DAE sparse solvers is already implemented
in OpenModelica, it has not been specifically optimized
for efficient handling of large-size models. Such optimiza-
tion would be another interesting research direction.

5 Acknowledgments
The presented work is partly financed by the PARADOM
project, that is funded by the Federal Ministry of Ed-
ucation and Research (BMBF) under the support code
01IH15002B.

CESI S.p.A. is gratefully acknowledged for making the
power system models available for this study.

References
B. Bachmann, W. Braun, L. Ochel, and V. Ruge. Sym-

bolical and numerical approaches for solving nonlin-
ear systems. Annual OpenModelica Workshop 2015,
2015. URL https://www.openmodelica.org/
images/docs/openmodelica2015/
OpenModelica2015-talk04-Bernhard-
Bachmann-NLSinOpenModelica.pdf.

W. Braun, S. Gallardo Yances, K. Link, and B. Bachmann. Fast
simulation of fluid models with colored jacobians. In Pro-
ceedings of the 9th International Modelica Conference, pages
247–252, Munich, Germany, Sep. 3–5 2012. Modelica Asso-
ciation. doi:10.3384/ecp12076247.

K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solu-
tion of Initial-Value Problems in Differential-Algebraic Equa-
tions. Society for Industrial and Applied Mathematics, 1996.
doi:10.1137/1.9781611971224.fm.

F. Casella and K. Sezginer. The ScalableTestSuite Modelica
Library, 2016. URL https://github.com/casella/
ScalableTestSuite.

Francesco Casella. Simulation of large-scale models in Model-
ica: State of the art and future perspectives. In Peter Fritz-

son and Hilding Elmqvist, editors, Proceedings 11th Inter-
national Modelica Conference, pages 459–468, Versailles,
France, Sep 21–23 2015. The Modelica Association. ISBN
978-91-7685-955-1. doi:10.3384/ecp15118459.

Francesco Casella, Andrea Bartolini, Simone Pasquini, and
Luca Bonuglia. Object-oriented modelling and simulation of
large-scale electrical power systems using Modelica: a first
feasibility study. In Proceedings of the 42nd Annual Confer-
ence of the IEEE Industrial Electronics Society IECON 2016,
pages 0–6, Firenze, Italy, Oct. 24-27 2016. IEEE, IEEE.
ISBN 978-1-5090-3474-1.

F. E. Cellier and E. Kofman. Continuous System Simulation.
Springer-Verlag, 2006.

T. A. Davis. Algorithm 832: UMFPACK v4.3—an
unsymmetric-pattern multifrontal method. ACM Transac-
tions On Mathematical Software, 30(2):196–199, June 2004.
ISSN 0098-3500. doi:10.1145/992200.992206. URL http:
//dx.doi.org/10.1145/992200.992206.

T. A. Davis and E. Palamadai Natarajan. Algorithm 907: Klu, a
direct sparse solver for circuit simulation problems. ACM
Trans. Math. Softw., 37(3):36:1–36:17, September 2010.
ISSN 0098-3500. doi:10.1145/1824801.1824814. URL
http://doi.acm.org/10.1145/1824801.1824814.

Antonio Froio, Francesco Casella, Fabio Cismondi, Alessan-
dro Del Nevo, Laura Savoldi, and Roberto Zanino.
Dynamic thermal-hydraulic modelling of the eu demo
wcll breeding blanket cooling loops. Fusion Engineer-
ing and Design, in press, available online:1–5, 2017.
doi:10.1016/j.fusengdes.2017.01.062.

C. Froio, F. Casella, F. Cismondi, A. Del Nevo, L. Savoldi, and
R. Zanino. Dynamic thermal-hydraulic modelling of the eu
demo wcll breeding blanket cooling loops. In Proc. 29th Sym-
posium on Fusion Technology (abstract), Prague, Czech Re-
public, 2016.

A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban,
D. E. Shumaker, and C. S. Woodward. SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers. ACM
Transactions on Mathematical Software (TOMS), 31(3):363–
396, 2005.

Open Source Modelica Consortium. OpenModelica User’s
Guide. Online. URL https://openmodelica.org/
doc/OpenModelicaUsersGuide/latest/.

P. Täuber, L. Ochel, W. Braun, and B. Bachmann.
Practical realization and adaptation of cellier’s tearing
method. In Proceedings of the 6th International Work-
shop on Equation-Based Object-Oriented Modeling Lan-
guages and Tools, EOOLT ’14, pages 11–19, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2953-
8. doi:10.1145/2666202.2666204. URL http://
doi.acm.org/10.1145/2666202.2666204.

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132557

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

563


