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Abstract

This paper analyzes the use of a grid-based genetic algorithm (GrEA)
to solve a real-world instance of a problem from the telecommunication
domain. The problem, known as automatic frequency planning (AFP),
is used in GSM networks (Global System for Mobile communications) to
assign a number of fixed frequencies to a set of GSM transceivers located
in the antennae of a cellular phone network. Real data instances of the
AFP are very difficult to solve due to the NP-hard nature of the prob-
lem, so combining grid computing and metaheuristics comes out as a way
to provide satisfactory solutions in a reasonable amount of time. GrEA
has been deployed on a grid with up to 300 processors to solve an AFP
instance of 2,612 transceivers. The results not only show that significant
running times reductions are achieved, but that the search capability of
GrEA outperforms clearly that of the equivalent non-grid algorithm.

Keyworkds: Frequency assignment problem; real-world problem solv-
ing; grid computing; genetic algorithms

1 Introduction

Frequency assignment is a well-known problem in Operations Research (Aardal,
van Hoesel, Koster, Mannino and Sassano 2007) and it is of great importance
in real GSM networks (Global System for Mobile communications) (Mouly and
Paulet 1992). In these networks, the available frequency band is slotted into
channels (or frequencies) that have to be allocated to the elementary transceivers
(TRXs) installed in the base stations of the network. This problem is known as
Automatic Frequency Planning (AFP), Frequency Assignment Problem (FAP),
or even Channel Assignment Problem (CAP) (Eisenblätter 2001). An optimal

∗Corresponding author. Email: flv@lcc.uma.es
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frequency assignment allows the capacity of the networks to be increased by
avoiding the interferences provoked by channel reuse due to the limited available
radio spectrum, thus improving the quality of service for subscribers and an
income for the operators as well.

The AFP problem is an NP-hard problem (Hale 1980) which is even more
difficult to be addressed when defined in the context of GSM networks. In such
scenario, solving the problem properly requires realistic and precise interference
information from a real-world GSM network in order for an accurate frequency
plan to be computed. This information has to consider actual technologies cur-
rently used by GSM operators such as frequency hopping (Eisenblätter 2001).
This leads to further difficulties for telecommunication companies which, along
with the complexity of the problem itself and the large size of real-world net-
works, need accurate physical models of the GSM system (antennae, propaga-
tion, etc.). In this context, solving the AFP problem is a task demanding both
numerical and computational power in order to overcome the difficulties for find-
ing satisfactory solutions. The approach used in this work to cope with these
two practical requirements lies in using metaheuristics and grid computing.

Metaheuristics (Blum and Roli 2003) are a broad family of approximate
techniques that can be used to solve optimization problems. Contrary to exact
techniques, metaheuristics do not guarantee to find optimal solutions to the
problems, but they allow to reach good compromise solutions in a reasonable
amount of time. A metaheuristic can be defined a high level strategy which
controls a number of subordinated techniques (usually heuristics) in the search
for an optimum. These techniques are nowadays widely used. Among them,
Evolutionary Algorithms (EAs) and, in particular a subfamily of them, Genetic
Algorithms (GAs), have become very popular.

On the other hand, grid computing (Berman, Fox and Hey 2003, Foster and
Kesselman 1999) encompasses a number of issues related to the use of large-scale
distributed systems as a unique parallel computer. Grid computing systems are
a natural evolution of distributed systems in the way that the infrastructure
provided by the Internet allows hundreds and thousands of computers to be
joined, leading to a computing power that even supercomputers are unable to
provide; this way, algorithms which otherwise would be considered as unfeasible
can be executed in a reasonable amount of time.

In this paper, the performance of a distributed metaheuristic, a genetic algo-
rithm named GrEA, Grid-based Evolutionary Algorithm (Nebro, Luque, Luna
and Alba 2008), is analyzed. GrEA is designed to be executed in a grid com-
puting system based on Condor (Thain, Tannenbaum and Livny 2003), a grid
computing software. This algorithm has been applied to solve a real-world in-
stance of the AFP problem which corresponds to Denver (CO, USA), a city of
more than half a million people. This network is composed of 2,612 TRXs which
have to be assigned with 18 different available frequencies, so leading to a huge
search space of size 182,612 ≈ 5.11e3,263. A novel formulation of the problem pre-
sented in (Luna, Blum, Alba and Nebro 2007) has been used, which is directly
imported from real-world GSM frequency planning as currently conducted in
the industry.
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Even though the instances of any formulation of the problem are potentially

very large (e.g., the size of current cellular networks is continuously increas-
ing), few works approach this problem with parallel algorithms for addressing
the highly increasing computational resources required. In the field of EAs,
Crompton et al. (Crompton, Hurley and Stephens 1993, Crompton, Hurley and
Stephens 1994) presented a distributed GA (Alba and Troya 1999) that uses two
different encodings for the individuals and different recombination operators.
However, no details on the parallel computing platform are given. A parallel
GA for hybrid channel assignment is proposed by Kwok in (Kwok 2000). The
algorithm runs on a cluster composed of twelve Linux workstations. Many other
works exist in which the search model is parallel (Alba and Tomassini 2002), but
the execution is carried out on sequential machines, e.g., (Alabau, Idoumghar
and Schott 2002, Matsui, Watanabe and Tokoro 2005, Weinberg, Bachelet and
Talbi 2001). This is also a typical scenario in actual telecommunication com-
panies, where single computers —most times laptops— are used to perform the
optimization. Going one step further here, the AFP problem has been tackled
in a grid computing platform with the aim of solving a very large instance of
the problem in an affordable wall clock time.

The contributions of the present work can be summarized in the following
points:

• A grid-based genetic algorithm has been used to solve a complex instance
of the AFP problem. To the best of our knowledge, this is the first time
this kind of problem is addressed with grid technologies (using up to 300
processors).

• An accurate statistical analysis has been carried out to validate the ob-
tained results.

• The study indicates that search capabilities of GrEA outperforms that of
the sequential counterpart.

• As a result of the experiments, the best solution to the considered problem
known so far has been obtained.

The rest of the paper is structured as follows. In the next section, the reader
is provided with details on the frequency planning in GSM networks. Section 3
details GrEA, the Grid-based GA approach. Some implementations details are
given in next section. In Section 5 the experimental results are presented and
analyzed. Finally, the conclusions and lines of future work are included in
Section 6.

2 Frequency assignment in GSM networks

In the following, a brief description of the GSM architecture is provided first,
whereby the basic terminology of the problem is introduced. Next, the de-
tails on the frequency planning task in GSM networks are given. Finally, a
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Figure 1: Outline of the GSM network architecture.

precise mathematical formulation of the AFP model addressed in this paper is
presented.

2.1 The GSM system

An outline of the GSM network architecture is shown in Figure 1. As can be
seen, GSM networks consist of many different components. The most relevant
ones to frequency planning are the Base Transceiver Stations (BTSs) and the
transceivers (TRXs). Essentially, a BTS is a set of TRXs. In GSM, one TRX is
shared by up to eight users in TDMA (Time Division Multiple Access) mode.
The main role of a TRX is to provide conversion between the digital traffic data
on the network side and radio communication between the mobile terminal and
the GSM network. The site at which a BTS is installed is usually organized in
sectors: one to three sectors are typical. The area in which each sector operates
defines a cell.

The solid lines connecting components in Figure 1 carry both traffic informa-
tion (voice or data) as well as the “in-band” signaling information. The dotted
lines are signaling lines. The information exchanged over these lines is necessary
for supporting user mobility, network features, operation and maintenance, au-
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thentication, encryption, and many other functions necessary for the network’s
proper operation.

2.2 Frequency planning in GSM networks

The frequency planning is the last step in the layout of a GSM network. Prior
to tackling this problem, the network designer has to address some other issues:
where to install the BTSs or how to set configuration parameters of the antennae
(tilt, azimuth, etc.), among others (Mishra 2004). Once the sites for the BTSs
are selected and the sector layout is decided, the number of TRXs to be installed
per sector has to be fixed. This number depends on the traffic demand that the
corresponding sector has to hold. Frequency planning lies in the assignment of
a channel (a frequency) to every TRX (Eisenblätter 2001). The optimization
problem arises because the usable radio spectrum is generally very scarce and,
consequently, frequencies have to be reused by many TRXs in the network.

The multiple use of a same frequency may cause interferences that may
reduce the quality of service (QoS) down to unsatisfactory levels. Indeed, sig-
nificant interference may occur if the same or adjacent channels are used in
neighboring, overlapping cells. The point here is that computing this level of
interference is a difficult task which depends not only on the channels, but also
on the radio signals and the properties of the environment. The more accurate
the measure of the interference in a given GSM network, the higher the quality
of the frequency plan that can be computed for this network. Several ways of
quantifying this interference exist, ranging from theoretical methods to exten-
sive measurements (Kuurne 2002). They all result in a so-called interference
matrix, denoted by M . Each element M(i, j) of M indicates the degradation
of the network quality if cells i and j operate on the same frequency. This is
called co-channel interference. Apart from co-channel interference, a so-called
adjacent-channel interference may exist, which occurs when two TRXs operate
on adjacent channels (i.e., one TRX operates on channel f and the other on
channel f +1 or f−1). An accurate interference matrix is therefore an essential
requirement for frequency planning because the ultimate goal of any frequency
assignment algorithm will be to minimize the sum of the interferences.

In real-life situations, additional complicating factors such as separation con-
straints among cells, or advanced interference reduction techniques such as fre-
quency hopping or dynamic power control may be considered. The interested
reader is referred to (Eisenblätter 2001) for a more detailed description of fre-
quency planning in actual GSM networks.

2.3 Mathematical formulation

Let T = {t1, t2, . . . , tn} be a set of n transceivers, and let Fi = {fi1, . . . , fik} ⊂ N

be the set of valid frequencies that can be assigned to a transceiver ti ∈ T ,
i = 1, . . . , n. Note that k —the cardinality of Fi— is not necessarily the same
for all the transceivers. Furthermore, let S = {s1, s2, . . . , sm} be a set of given
sectors (or cells) of cardinality m. Each transceiver ti ∈ T is installed in exactly
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one of the m sectors. Henceforth we denote the sector in which a transceiver
ti is installed by s(ti) ∈ S. Finally, given is a matrix M = {(µij , σij)}m×m

,
called the interference matrix. The two elements µij and σij of a matrix entry
M (i, j) = (µij , σij) are numerical values greater than or equal to zero. In fact,
µij represents the mean and σij the standard deviation of a Gaussian probability
distribution describing the carrier-to-interference ratio (C/I) (Walke 2002) when
sectors i and j operate on a same frequency. The higher the mean value, the
lower the interference and thus the better the communication quality. Note that
the interference matrix is defined at sector (cell) level, because the transceivers
installed in each sector all serve the same area.

A solution to the problem is obtained by assigning to each transceiver ti ∈ T

one of the frequencies from Fi. A solution (or frequency plan) is henceforth
denoted by p ∈ F1×F2× · · ·×Fn, where p(ti) ∈ Fi is the frequency assigned to
transceiver ti. The objective is to find a solution p that minimizes the following
cost function:

C(p) =
∑

t∈T

∑

u∈T,u6=t

Csig(p, t, u) . (1)

In order to define the function Csig(p, t, u), let st and su be the sectors in which
the transceivers t and u are installed, that is, st = s(t) and su = s(u), respec-
tively. Moreover, let µstsu

and σstsu
be the two elements of the corresponding

matrix entry M(st, su) of the interference matrix with respect to sectors st and
su. Then, Csig (p, t, u) =















K if st = su, |p(t)− p(u)| < 2
Cco(µstsu

, σstsu
) if st 6= su, µstsu

> 0, |p(t)− p(u)| = 0
Cadj(µstsu

, σstsu
) if st 6= su, µstsu

> 0, |p(t)− p(u)| = 1
0 otherwise.

(2)

K >> 0 is a very large constant defined by the network designer so as to make
it undesirable allocating the same or adjacent frequencies to transceivers serving
the same area. Furthermore, function Cco(µ, σ) is defined as follows:

Cco(µ, σ) = 100

(

1.0−Q

(

cSH − µ

σ

))

(3)

where

Q(z) =

∫ ∞

z

1√
2π

e
−x

2

2 dx (4)

is the tail integral of a Gaussian probability distribution function with zero mean
and unit variance, and cSH is a minimum quality signalling threshold. Function
Q is widely used in digital communication systems because it characterizes the
error probability performance of digital signals (Simon and Alouini 2005). This
means that Q

(

cSH−µ

σ

)

is the probability of the C/I ratio being greater than
cSH and, therefore, Cco(µstsu

, σstsu
) computes the probability of the C/I ratio
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in the serving area of sector st being below the quality threshold due to the
interferences provoked by sector su. That is, if this probability is low, the C/I
value in the sector st is not likely to be degraded by the interfering signal coming
from sector su and thus the communication quality yielded is high. (Note that
this fits with the definition of a minimization problem.) On the contrary, a high
probability —and consequently a high cost— causes the C/I mostly to be below
the minimum threshold cSH and thus incurring in low quality communications.

As function Q has no closed form for the integral, it has to be evaluated
numerically. For this purpose, the complementary error function E has been
used:

Q(z) =
1

2
E

(

z√
2

)

(5)

In (Press, Flannery, Teukolsky and Vetterling 1992), a numerical method
is presented that allows the value of E to be computed with a fractional error
smaller than 1.2 · 10−7. Analogously, function Cadj(µ, σ) is defined as

Cadj(µ, σ) = 100
(

1.0−Q
(

cSH−cACR−µ
σ

))

= 100
(

1.0− 1

2
E

(

cSH−cACR−µ

σ
√

2

))

.
(6)

The only difference between functions Cco and Cadj is the additional constant
cACR > 0 (adjacent channel rejection) in the definition of function Cadj. This
hardware specific constant measures the receiver’s ability to receive the wanted
signal in the presence of an unwanted signal at an adjacent channel. Note that
the effect of constant cACR is that Cadj(µ, σ) < Cco(µ, σ). This makes sense, since
using adjacent frequencies (channels) does not provoke such a strong interference
as using the same frequencies.

Our model ultimately aims at measuring the overall signalling performance
of the GSM network. The keystone of this model is to be found in the definition
of the interference matrix, which includes the entire probability distribution of
the C/I ratio This definition, which is directly imported from real world GSM
frequency planning as currently conducted in the industry (and not generated
in a computer by sampling random variables), allows not only the computation
of high performance frequency plans, but also the prediction of QoS. Indeed,
both the definition of the interference matrix and the subsequent computations
to obtain the cost values are motivated by real-world GSM networks since they
are related to the computation of the BER (Bit Error Rate) performance of
Gaussian Minimum Shift Keying (GMSK), the modulation scheme used for
GSM (Simon and Alouini 2005).

3 Using GrEA for solving the AFP problem

This section is devoted to presenting the algorithmic approach used for solving
the AFP problem described in Section 2. Next, GrEA is introduced along with
the representation of the individuals, the genetic operators applied, and a local
search algorithm used to improve the solutions.
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3.1 GrEA

GrEA (Nebro et al. 2008) is a steady state GA (ssGA) following the mas-
ter/worker parallel model. It has been developed on top of Condor (Thain et al.
2003) and the MW framework (Linderoth, Kulkarni, Goux and Yoder 2000).
GrEA is also a hybrid algorithm (Talbi 2002) since a local search method, which
was specially designed for this AFP problem in (Luna et al. 2007), is applied
to the individuals that are generated after the recombination and mutation op-
erators. The basic idea is that a master process executes the main loop of the
ssGA and the workers perform the function evaluations and the local search step
in an asynchronous way. Contrary to a sequential ssGA, GrEA performs sev-
eral individual evaluations in parallel; ideally, there should be as many parallel
evaluations as available processors in the grid.

Algorithm 1 Pseudo-code for GrEA-master

1: population← ∅
2: Initialize taskList

3: while not stoppingCondition do

4: Receive task

5: individual← task.individual

6: Insert individual into population

7: while new available workers do

8: newIndividual← GA step()
9: newTask←new Task(newIndividual)

10: taskList.add(newTask)
11: end while

12: end while

For better describing the algorithm, let us call GrEA-master the part of the
algorithm corresponding to the master process, as opposed to the worker coun-
terpart, named GrEA-worker. The pseudo-code of GrEA-master is described in
Algorithm 1. GrEA-master starts by creating an empty population (line 1) and
generating a task list, each task containing an randomly generated individual
(line 2). The tasks in the list are sent to the available workers by the underlying
Condor system (see Section 4.2). After these two steps, GrEA-master works in
a reactive way: when a task is received from a worker (line 4), the individual
contained in that task is extracted (line 5), and it is inserted into the population
(line 6). Then, for each new available worker detected, the following steps are
carried out: first, a GA step (selection, recombination, and mutation) is exe-
cuted (line 8), producing a new individual; second, this individual is added to
a new task (line 9); finally, this task is inserted into the task list which is ready
to be sent to a worker (by Condor).

The mission of GrEA-worker is to receive an individual, evaluate it, and
apply the local search. Since the local search may modify the individual, it has
to be returned back to the GrEA-master. The pseudo-code of GrEA-worker is
included in Algorithm 2.
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Algorithm 2 Pseudo-code for GrEA-worker

1: while true do

2: Receive task

3: individual← task.individual

4: newIndividual← LocalSearch(individual)
5: newTask←new Task(newIndividual)
6: Return newTask

7: end while

Salient features of GrEA are the awareness of new processors and fault toler-
ance. These characteristics play a key role in order to make GrEA a grid-enabled
algorithm. Thus, whenever a new processor is detected by GrEA, a GA step is
performed and a new individual is obtained for evaluation in the worker that
will be deployed in the new processor. Concerning fault tolerance, crashes in
GrEA-master are automatically managed by Condor by using checkpointing;
faults in the processes running GrEA-worker are simply ignored because they
do not affect the working principles of the genetic algorithm. For further details,
the reader is referred to (Nebro et al. 2008).

3.2 Solution encoding and genetic operators

As defined in Section 2.3, a solution to the problem is obtained by assigning
to each transceiver ti ∈ T one of the frequencies from Fi, the set of valid
frequencies for TRX ti. A solution is therefore encoded as an array of integer
values, p, where p(ti) ∈ Fi is the frequency assigned to transceiver ti. That is,
the solutions manipulated by GrEA are tentative frequency plans of the given
AFP problem instance.

As to the genetic operators, binary tournament has been used as the selection
scheme. This operator works by randomly choosing two individuals from the
population and the one having the best (lowest) fitness is selected. GrEA applies
uniform crossover (UX) in which every allele of the offspring (i.e., the frequency
of each TRX) is chosen randomly from one of the two parents with a probability
of 0.5. Finally, the mutation operator used is random mutation, in which the
frequencies of a set of randomly chosen TRXs of the solution are reassigned
with a random valid frequency. Note that the two operators always assign valid
frequencies to each TRX and no repair step is required.

It is well known that randomized genetic operators, and especially classi-
cal recombination operators, perform very badly in GAs for solving frequency
assignment problems (Crisan and Mühlenbein 1998, Dorne and Hao 1995). How-
ever, when combined with an accurate local search method (hybridization), they
achieve a good intensification/diversification tradeoff. This is the approach fol-
lowed in this work: the highly randomized UX and random mutation are de-
voted to explore new regions of the search space, while the local search (see next
section) is designed to seek for accurate solutions located in these regions.
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3.3 Local search

In order for a GA to perform well on AFP problems, its hybridization with
a local search algorithm is almost mandatory. Indeed, the most recent and
efficient GAs for solving several flavors of the problem are endowed with some
kind of local search: a probabilistic Tabu Search in (Alabau et al. 2002), an
adaptation of Markov Decision Processes in (Idoumghar and Schott 2006), the
CAP3 method in (Kim, Smith and Lee 2007), or others specifically designed for
the problem being solved (Colombo 2006, Matsui, Watanabe and Tokoro 2003).
The usage of local search turned out also to be essential in ACO algorithms
for solving frequency assignment problems (Graham, Montemani, Moon and
Smith 2007), and particularly in the version of the AFP problem used, as shown
in (Luna et al. 2007).

Algorithm 3 Pseudo-code for the local search

1: input: a solution p, a number of steps d

2: improved ← true

3: k ← 1
4: while k ≤ d and improved = true do

5: improved ← false

6: Rank every TRX ti with CC(p, ti)
7: for i← 1 to n do

8: Replace frequency p(ti) with the frequency from Fi that most reduces
the objective function value

9: if the objective function value was reduced then improved = true

10: Update CC(p, ti)
11: end for

12: k ← k + 1
13: end while

14: output: a possibly improved solution p

The local search method used in this work is included in Algorithm 3. It first
ranks the TRXs with respect to their component cost, CC. Given a frequency
plan p and a TRX t, CC(p, t) is defined as

CC(p, t) =
∑

u∈T,u6=t

Csig(p, t, u) (7)

that is, CC(p, t) is the value with which TRX t contributes to the total cost
of the frequency plan p (Eq. (2) defines Csig). This ranking allows the TRXs
incurring in the strongest interference to be assigned in the beginning so as to
quickly fix low quality assignments and to lead to further improvements. Then,
all the TRXs are traversed and the frequency that most reduces the AFP cost of
the entire plan (Eq. 1) is chosen (line 8). In the solved AFP instance, this would
require 2, 612 × 18 = 47, 016 evaluations of the AFP cost at each step, which
makes the local search unaffordable. Therefore, rather than using Eq. 1 for
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computing the new objective function value, an incremental cost function has
been used because the increase of the AFP cost caused by the setting p(ti) = f

can be computed as follows:

∆(p, p(ti) = f) =
∑

t∈T̂

(Csig(p, t, ti) + Csig(p, ti, t)) . (8)

Finally, the component cost of each TRX is updated and a new iteration
starts (line 10 of Algorithm 3) so as to reassign again first those TRXs that
most contribute to the AFP cost. Parameter d indicates for how many steps this
algorithm should be maximally executed. After some preliminary tests with the
instance solved in this work (see Section 5.2), the local search converges towards
a local minimum after six steps and this is the value used for the subsequent
experimentation.

4 Implementation details

In this section a brief introduction to Condor is given as well as details about
how the MW library is used to implement GrEA.

4.1 Condor

Condor is a Grid system software package designed to manage distributed col-
lections (pools) of processors spread among a campus or other organizations
(Thain et al. 2003). Each machine is supposed to have an owner, who can spec-
ify the conditions under which jobs are allowed to run; by default, a Condor job
stops when a workstation’s owner begins using the computer. Hence, Condor
jobs use processor cycles that otherwise would be wasted. Compared to other
grid computing software, Condor is easy to install and to administrate, and ex-
isting programs do not need to be modified or re-compiled to be executed under
Condor (they must only be re-linked with the Condor library).

Salient features of Condor includes remote system calls, job checkpointing,
and process migration. Furthermore, Condor pools can be composed of het-
erogeneous machines, and several pools can be combined using Globus (Foster
and Kesselman 1997) and Condor-G (Frey, Tannenbaum, Foster, Livny and
Tuecke 2001).

4.2 The MW library

GrEA has been implemented using MW (Linderoth et al. 2000), a software
library that enables the development of master-worker parallel applications on
top of Condor using C++.

An MW application consists mainly of subclassing three base classes: MW-
Task, MWDriver, and MWWorker. A MWTask represents the unit of work to
be computed by a worker. It includes the inputs and outputs to be marshaled
to and from the workers. In this implementation, the input is an integer array

11

Page 11 of 28

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
(the permutation representing an individual) and the output is a real value con-
taining the fitness value plus another integer array (because the individual can
be modified by an improvement method). The MWWorker provides the context
for the task to run; in concrete, in GrEA the subclass of MWWorker contains
the GrEA-worker code. Finally, the MWDriver subclass manages the whole
process: creating tasks, receiving the results of the computations, and deciding
when the computation is complete. The GrEA-master code is executed in this
subclass.

The MW framework works with Condor to find computing resources for
the available tasks, handle communication between the nodes, re-assign tasks if
their current machine fails, and globally manage all the parallel computations.
That is, MW generates tasks whose computation is subsequently managed by
Condor. MW provides hooks to save the state of the driver, so that if the driver,
or its machine crashes, the computation can make progress upon driver restart.

MW can run with one of several RMComm (Resource Management and
Communication) implementations. This layer implements communication be-
tween the master and the workers, and the management of the worker ma-
chines. There are several choices, including communicating via PVM, sockets,
and shared files. We have chosen the last option because it is the most ro-
bust; for example, if the driver (master) crashes, the workers can continue their
computation, which is not possible using PVM and sockets. Although process
communication using files is rather slow, this application is not intensive in data
exchanges, and the communication costs can be acceptable if the computation
time is long enough.

4.3 Grid platform details

In the experiments the computers of seven laboratories of the Computer Science
Department of the University of Málaga have been used. Many of them are
equipped with PCs having modern Intel Core 2 Duo, 3 GHz processors. This
means that each processor has two cores, so Condor assumes that there are
two processors per computer. For the sake of clarity, the term processor will
be used throughout the paper, although the correct term is core. The Condor
pool also includes slower single-core machines with Pentium 4 at 1.66 GHz and
AMD Athlon at 1.1 GHz and 2.0 GHz. Up to 300 processors have been used,
being all interconnected through a 100 Mbps Fast Ethernet network. The code
is written in C++, and all the machines run different flavors of Linux (Fedora
Core, Debian, SuSE, etc.).

5 Results

This section presents the experiments conducted to evaluate GrEA. First, some
details of the algorithm settings are given and, second, the GSM network in-
stance used is described. Finally, the experiments are presented from the point
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Figure 2: Topology of the GSM network used.

of view of both parallelism (the parallel efficiency, the workers used, and the
tasks computed per minute are analized in detail) and numerical accuracy.

5.1 Experimental setup

The results of running the sequential counterpart of GrEA has been included
here. It is a standard ssGA which uses the same operators (selection, crossover,
mutation, and local search). The aim is to test the performance of GrEA in
terms of both the parallelism of the grid-based approach and its numerical
accuracy. The parameter settings of these two GAs are detailed in Table 1.

Because of the stochastic nature of GAs, 30 independent runs of GrEA have
been done, but only ten runs of ssGA were performed due to time constraints
(each execution lasts more than five days on a Pentium IV at 2.8 GHz). Work-
ing with real problems and grids is very hard, and thus a small number of
independent runs is usually reported (Kuś 2007, Lim, Ong, Jin, Sendhoff and
Lee 2007, Melab, Cahon and Talbi 2006). The same is done here with ssGA, but
reporting on 30 independent runs for GrEA, a value considered as a minimum
for statistical significance.

5.2 GSM instance used

The GSM network used here has 711 sectors with 2,612 TRXs to be assigned
a frequency; the constants in Equations 2, 3, and 6 were set to K = 100 000,
cSH = 6 dB, and cACR = 18 dB, respectively. Each TRX has 18 available
channels (from 134 to 151). Figure 2 displays the network topology, every
triangle representing a sectorized antenna in which operate several TRXs.

This GSM network is currently operating in Denver (CO, USA), a 400 km2

city with more than 500,000 people, so its solution is of great practical interest.
The data source to build the interference matrix based on the C/I probability
distribution uses thousands of Mobile Measurement Reports (MMRs) (Kuurne
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Figure 3: Number of workers during a typical GrEA execution.

2002) rather than propagation prediction models. MMRs are a more accurate
data source, as they capture the call location pattern in the network and do not
rely on predictions. These properties make this GSM problem more realistic
than standard available benchmarks (FAP Web 2008). Indeed, the most similar
available instances are the COST 259 benchmark, but the basic traffic load is
drawn at random according to an empirically observed distribution, and signals
are predicted with several propagation models. The Philadelphia, CELAR and
GRAPH instances (FAP Web 2008) are even simpler.

5.3 Parallel performance

In this section the performance of GrEA is analyzed when solving the considered
AFP network. Table 2 summarizes the best value, the mean, x̄, and the standard
deviation, σn, of several performance measures.

Although the Condor pool is composed of 300 processors at most, a max-
imum number of 282 have been used, and 235 on average. This is typical
behaviour of grid computing systems, where the number of available processors
is dynamic, and they have to be shared among different users.

If the average number of active workers is considered, it is around 140 on
average. This is a consequence of the behaviour of GrEA under Condor/MW.
Whenever an MW application has tasks to be computed, it asks the Condor
system for available workers. The way MW asks for more workers to Condor is
by requesting a predefined number of them. This fixed number is configurable
and it has been set up to be 100 workers. This value corresponds to the set of
initial tasks created to evaluate the initial population, thus guaranteeing that
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there will be in the beginning one worker for each task. This effect can be
observed in Fig. 3. It can be seen that, at the beginning of the computation,
the number of worker tasks increase up to 100; after a few minutes, another
100 processors are requested to the grid system. Finally, the algorithm obtains
the rest of available processors. Although the total number of processors are
roughly constant (about 220 in the execution depicted in Fig. 3), the average
number of them is affected by the initial stage of the algorithm.

An advantage of using grid computing systems is to solve, in a reasonable
amount of time, problems which otherwise would be considered as unfeasible.
In Table 2 it can be observed that the average total CPU time reported by
Condor (i.e., the sum of the computing time of all the processors) is near to
8 days, while the wall clock time is 1.36 hours (more than 139 times faster).
These values clearly state the benefits of using the proposed approach.

The parallel performance reported by Condor is about 72% (a parallel effi-
ciency of 0.72), which can be considered as an excellent result in a grid platform.
However, the computation/communication could be improved by using a more
computing intensive local search. Additional experiments have been done with
10 and 20 local search steps (d = 10 and d = 20), and the parallel performance
grew up to 81% and 90%, respectively. The point here is that the local search
strategy is so accurate that it reaches a local optimum after five or six iterations,
and therefore the numerical results are similar to the ones reported in this work.
It is clear then that there is room for increasing the efficiency of GrEA.

The last two rows of Table 2 include the computing times of the sequential
ssGA when solving the considered AFP problem (about 5.4 days), as well as
the parallel efficiency against the average wall clock time required by GrEA.
When comparing both ssGA and GrEA, the efficiency goes down to 41.28%.
The explanation is twofold. On the one hand, ssGA has been compiled with
several optimization options to speedup the computation as much as possible,
and some of them are related to the type of processor of the machine where the
program runs; these options are disabled in GrEA due to the heterogeneity of
the processors in the grid. On the other hand, there are processors in the grid
platform that are much slower (see Section 4.3) than the one used to run ssGA,
a Pentium 4 at 2.8 GHz, so therefore workers spend longer times to compute the
same tasks thus delaying the entire computation. However, in practical terms,
ssGA requires more than fives days to solve the problem while the grid only
needs one hour and a half, so the benefits of this approach still holds.

The throughput (tasks computed per minute) of GrEA when solving the
AFP problem is analyzed next. In Fig. 4 it can be observed that this number
remains almost constant around 630 tasks per minute. This contrasts with the
behaviour of the algorithm reported in (Nebro et al. 2008), where the throughput
dropped in time due to the computation time of the tasks decreasing when the
search progressed (from 30 seconds at the beginning down to two seconds at
60% of the computation). This issue does not appear when evaluating the AFP,
so it is not necessary to dynamically adjust the computation grain as in (Nebro
et al. 2008).
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Figure 4: Tasks per minute computed by GrEA.

5.4 Accuracy

In this section the numerical efficiency of GrEA is compared to both ssGA
and the algorithm which reported the best results for this problem so far, the
ACO presented in (Luna et al. 2007) (its parameterization is detailed in the
given reference). Even though the GAs and the ACO algorithm are not directly
comparable (the ACO execution time was limited to 30 minutes because other
measures were used), the previous results on the problem cannot be ignored and
they are included both for completeness and for showing the competitivity of
this proposals.

Table 3 includes the best (lowest), the mean, x̄, and the standard deviation,
σn, of the resulting AFP costs reached by the three algorithms. As stated be-
fore, 30 independent runs for GrEA and 10 for ssGA have been run. For the
ACO algorithm, the results reported in (Luna et al. 2007) have been used. An
accurate statistical analysis has been performed here in order to numerically
compare the algorithms with confidence (Dems̆ar 2006, Sheskin 2003). Firstly,
a Kolmogorov-Smirnov test is performed in order to check whether the values of
the results follow a normal (gaussian) distribution or not. If the distribution is
normal, the Levene test checks for the homogeneity of the variances. If samples
have equal variance (positive Levene test), an ANOVA test is done; otherwise
a Welch test is performed. For non-gaussian distributions, the non-parametric
Kruskal-Wallis test is used to compare the medians of the algorithms. Fig. 5
summarizes the statistical analysis. A confidence level of 95% is always consid-
ered (i.e., significance level of 5% or p-value under 0.05) in the statistical tests,
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Figure 5: Statistical analysis performed in this work.

which means that the differences are unlikely to have occurred by chance with
a probability of 95%. The result tables show x̄ and σn because all the samples
follow a gaussian distribution. The cell having the best result has a gray colored
background.

To further analyze the results statistically, a post-hoc testing phase has
been included in Table 4 which allows for a multiple comparison of the sam-
ples. The multcompare function provided by Matlab c© has been used. This
function chooses the most appropriate type of critical value to be used in
the multiple comparison, which ranges from the more conservative HSD or
Tukey-Kramer method to less conservative Scheffe’s S procedure (Hochberg
and Tamhane 1987). The same confidence level has been kept for this testing
phase (α = 0.05). The “+”symbols in the table point out that all pairwise
comparisons among the algorithms are significant.

The first conclusion that can be drawn from the results is that the two GAs
outperform the ACO algorithm. As stated before, this is somehow expected
because the computational effort used in the GAs is pretty much larger than the
ACO one. The improvements are noticeable in both the best solution (88,345.95
down to 83,991.30) and the average solution (90,382.56 down to 84,936.32). If
σn is considered as a measure of robustness, GrEA and ssGA also outperform
the ACO approach.

But the really interesting fact that Table 3 shows is that GrEA has computed
more accurate frequency plans (lower AFP costs) than its sequential counter-
part, ssGA, and with statistical confidence, as the “+” symbols of Table 4 show
(indeed, this is the only actual goal of companies). The relevance of these results
arises because these two algorithms share the same operators and parameter set-
tings, and they also use the same computational effort. The only difference is
the asynchronism introduced in GrEA, in which individuals evaluated by slower
processors are returned back when several iterations (with individuals sent to
faster processors) have proceeded. This means a higher diversity in the search
is introduced, especially in the early steps, which later guides the algorithm
towards high quality solutions (Alba and Troya 2001). Figure 6 graphically
displays this fact by including the best AFP cost of a typical run of GrEA and
ssGA. In the left-hand side of the figure the evolution of the fitness during the
entire computation (50,000 iterations) is shown. It can be seen that GrEA gets
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Figure 6: Evolution of the AFP cost in GrEA and ssGA during (a) the whole
execution and (b) the 1,000 first iterations.
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stuck later than ssGA and from then they both improve the solution slightly. In
Fig. 6b the first 1,000 generations of the same execution have been enlarged in
order to show the higher diversity in GrEA at the beginning of the computation.
Indeed, ssGA outperforms GrEA in the first 500 iterations, but it finds difficul-
ties to continue after that (see the flat regions during iterations 500 and 700).
In the meanwhile, GrEA keeps improving the solution. Within the context of
this work, it can be concluded that deploying a ssGA on the grid is not only a
way of reducing the computational time, but also of improving the underlying
search models which allow the algorithm to compute more accurate solutions.

6 Conclusions and future works

This work addresses a real-world instance of the AFP problem. The considered
instance has a huge search space, so the approach has been to combine the use
of metaheuristics (numerically powerful) and grid computing (computationally
powerful). In particular, the algorithm GrEA has been used. It is a a grid-
enabled GA that runs on a grid platform composed up to 300 processors.

The problem has been first analized from the point of view of its solution
by a sequential GA; thus, issues such as the problem representation, genetic
operators (selection, mutation, crossover), and local search strategy, have been
addressed. A very accurate formulation has been used, which is rarely found in
the literature of this problem. Second, the GrEA algorithm has been applied
to solve a complex AFP instance corresponding to an actual city in the USA
(Denver).

The experiments carried out reveal that ssGA requires about fives days of
computation in a modern PC, while executing GrEA in the grid reduces the
times to one hour and a half. The overall parallel efficiency obtained is around
72%, which is a quite satisfactory value considering the number of processors
used and that the shared files in Condor is being used as the message passing
mechanism. This value also suggests that there is more room for improve-
ment; for example, more steps in the local search could bring a better compu-
tation/communication ratio.

While the reduction of the computing time from several days to less than
two hours is an interesting result in practical terms, it is also remarkable that
the search capability of the GrEA algorithm outperforms that of the equivalent
sequential GA. The fact that better (lower) fitness values can be obtained in
the parallel algorithm would allow us to reduce the computing time even more
in order to have high quality solutions in shorter times; this can be useful
in real scenarios, where telecommunication companies need to perform many
simulations to achieve a satisfactory frequency plan for large cities (like Los
Angeles, with more than 40,000 TRXs).

As future work, we are interested to use GrEA to solve even more larger
instances of the AFP (e.g., the aforementioned Los Angeles instance). The use
of this algorithm to solve other problems from the telecommunication domain,
such as ACP (Automatic Cell Planing), is a matter of future research.
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Table 1: Parameter settings of the GAs
Parameter Value

Population size 100 individuals
Representation Integer (array of size 2,612)
Crossover operator Uniform Crossover (pc = 0.5)
Mutation operator Random (pm = 0.01)
Local Search Steps 6
Selection method Binary Tournament
Replacement strategy Worst Individual
Stopping Condition 50,000 iterations
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Table 2: Performance measures of GrEA.
Measure Best value x̄ σn

Max Number of Workers 282 235 24
Average Number of Active Workers 164 140 10

Total CPU Time (s)
659,149 680,274 8,476

(7.62 days) (7.87 days)

Wall Clock Time (s)
4,094 4,879 429

(1.14 hours) (1.36 hours)
MW Parallel Performance 73.44% 71.79% 0.72%

Sequential ssGA Time (s)
463,014 473,259 12,321

(3.36 days) (5.48 days)
Average Parallel Efficiency 41.28%
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Table 3: Numerical efficiency of the algorithms.
AFP Cost

Algorithm Best (min) x̄ σn

ACO 88,345.95 90,382.56 935.31
ssGA 85,463.20 86,234.68 523.75
GrEA 83,991.30 84,936.32 375.89
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Table 4: Post-hoc tests of the results.
ssGA +
GrEA + +

ACO ssGA
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