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ABSTRACT

We investigate parallel Gauss elimination for sparse matrices, especially those
arising from the discretization of PDEs. We propose an approach which combines
minimum degree ordering, nested dissection, domain decomposition and multifront
techniques. Neither symbolic factorization nor explicit representation of elimination
trees are needed. An effective and economic dynamic data structure is presented
along with a grid based subtree~subcube assignment strategy which enhances load
balancing, high parallelism and low communication cost The algorithm is imple­
mented on the NCUBE/7
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I. INTRODUCTION

We consider parallel Gauss elimination for sparse matrices with emphasis on those

arising from the discretization of partial differential equations (PDEs). This emphasis

arises because we need modules in our PELLPACK (paraIlel ELLPACK) software

[Houstis and Rice, 1989]. There have been many good techniques for general sparse

sparse matrices (eg., [Duff, Gould. Lescrenier and Reid. 1987], [Geist and Ng, 1988],

[George, Heath, Liu and Ng, 19881, [George and Ng, 1988], [Johnson and Dongarra,

1987] and [Rice, 1986]. Most of them are for the Cholesky factorization of symmetric

positive definite mabices. Algorithms for general sparse matrices are usually very com­

plicated, [Ng, 1989] surveys the recent achievements in this active field. Manices from

PDE problems usually have special sparse structures even though they may be nonsym­

metric. We seek to exploit these structures and still remain able to handle completely

general problems. Our approach is to combine well known techniques for sparse
solvers, such as minimum degree ordering, nested dissection, domain decomposi­

tion (substructure) and multifront, so as to exploit their advantages and minimize

their disadvantages to some degree. We avoid the usual symbolic factorization and

the explicit representation of the elimination tree structure. An effective and economic

dynamic data structure is used instead.. We also suggest a grid based subtree~

subcube assignment strategy which enhances load balancing, high parallelism and low

communication cost on hypercube machines. Some other issues in implementation like

pipelining and broadcasting are also considered.. The algorithm is implemented on the

NCUBEi7.

IL ELIMINATION TREES

Elimination trees have been extensively used in developing parallel sparse solvers.

In general, a balanced.. shon and many branched ttee shape leads to good parallelism.

The two main factors of elimination trees affecting these characteristics are ordering

and lack of symmetry.

In factoring sparse matrices, one wants an ordering which produces low fill-in.

Two well known orderings are minimum degree and nested dissection. The former

has the advantage of minimum fill-in, but generates very tall and thin trees, while the

latter has moderate fill-in and generates well shaped trees. In addition, nested dissec­

tion prefers PDE problems with regular grids and irregular grids could reduce its

effectiveness dramatically. There are some efforts on optimizing tree shapes from the

minimum degree ordering by reordering, rotating and so on [Lewis, Peyton, PotheD,
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1989], [Liu, 1988].

For symmetric poslOve definite matrices elimination trees are defined by the

nonzero structures of their Cholesky factors. If A is a nonsymmetric matrix one usually

defines its elimination tree by the strucrure of the Cholesky factor Lc of ATA. There is

also a modified symbolic factorization which generates a stIucrure for L + U [George

and Ng, 1988]. This structure contains all possible pivotings in actually factoring A

into LU with the properties that the strucmre of L is contained in that of UT and the

structure of U is contained in that of Lr. Then the elimination tree can be defined by

U. It is obvious that this approach could introduce extra, unnecessary fill-in and cause

the tree to be unbalanced. Recall in solving POE problems that lack of symmetry of[en

occurs locally from treating boundary conditions. This local lack of symmetry can

affect tree sttucrores globally in the above process.

Of course, the approaches mentioned above are intended for general purposes and

effective for general sparse matrices. For the special sparse stI"Ucnrres in PDE applica­

tions we propose to mix nested dissection with minimum degree using domain decom­

position. This geometric approach is different from the usual algebraic one in the sense

that elimination trees are in condensed form. Each node contains a group of unknowns

which are grouped according to the number of processors available. Nested dissection

is applied globally and the minimum degree ordering is used locally. Local nonsym­

metry does not affect the global tree structures. Also, it is unnecessary to perform sym­

bolic factorization.

For simplicity. we consider solving problems on a rectangular domain 0.. The

approach can be easily extended to general domains. Suppose we have p (= 22d ) pro­

cessors available. By domain decomposition n. is divided into p subdomains

nij, i, j = 1. 2, ...• P1/2 as shown in Figure 2.1.

(211 (2'2 (213 (2'4

(22' (222 (223 (224

(231 Q32 (2" (234

u" U,2 u" n.,.,

Figure 2.1. Domain decomposition of a recrangle for d := 2.
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In principle. one can put a local grid on each subdomain and apply a discretization

appropriate for local problem properties. Thus the local solutions Uij only depend on

unknowns at grid points of anijo So the standard domain decomposition (or substruc­

ture) approach is as follows [Farhat, Wilson, Powell, 1987]. First, all interior

unlrnowns Uij are eliminated locally. This step is obviously totally parallel. Notice

that the elimination within each subdomain occurs in a single processor and therefore it

is essentially a sequential computation. Any efficient ordering can be used here. So we

propose the minimum degree ordering at this step without worrying about its unsatis­

factory effect on parallelism.. Second. all processors participate in eliminating interface

unknowns as in dense solvers. The resulting matrix structure is shown in Figure 2.2.

All

A I2

'.
'..

C.

I~J···..

GJ
B AIIF

Figure 2.2. General matrix pattern from domain decomposition. The blocks Aij relate

the interior unlrnowns Ujj of the problem, B and C link these to the inter­

face unknowns which are related through the matrix AlTP.

We notice that the resulting matrix is block symmerric in some sense due to the domain

decomposition technique even though locally symmetry might not occur. However, this
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standard domain decomposition does not exploit the further sparse structure for the

interface part (E, C, AlTF).

We achieve funher efficiency by exploiting the considerable structure within the

interlace unknowns. The nested dissection approach is applied now since it exploits

parallelism well, the number of interface unlmowns in the interface set is only of order

o (N1I2) if the total number of unknowns is N. At this second step parallelism becomes

more important than fill-in. We use one way nested dissection to partition the interface

set into several levels for a hypercube machine. each level consisting of several groups

of nodes in the elimination tree. The partition is illustrated by Figure 2.3 along with

the numbering of the elimination tree nodes (groups of unknowns). It is sometimes

convenient to treat a group of unknowns in the subdomain interface as a subdomain.

This approach can also be viewed as a variant of incomplete nested dissection. If

nested dissection were used for the local ordering within subdomains then this leads to

an ordinary nested dissection ordering.

@) B@ @ B@

I • ! 1 j • !

@) B@ @ B@
I . I

@) B@ @B@
! • ! J I , I

@) 8@ €>8@

Figure 2.3. Partition of the subdomain IDterfaces in Figure 2.1 using one way nested

dissection. The circles (16-31) represent the 16 groups of interior

unknowns and the boxes represent groups of interface unlmowns. All

boxes of the same size are on the same level of the elimination tree.

The PDE discretization process leads to a local dependence or boundary depen­

dence property for interfaces. For example. if we consider the union of subdomains

16, 17,8 as a generated subdomain n'g then the local interior solution set U'g is

uniquely determined by unknowns at grid points on an'g. This relation holds similarly

for groups at higher levels of the elimination tree for the unlalowns arising in PDE
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applications. Thus we obtain a condensed binary elimination tree as shown in Figure
2.4 which reflects the local dependency.

This elimination tree has the following properties:

(a) Each node corresponds [0 one subdomain, local ordering and lack of symmetry
do not affect the tree structure.

(b) Eliminating a node only has effects on irs ascendants.

(c) The eliminations of the descendent nodes of a given node are independent of
one another.

Properties (b) and (c) hold for alI elimination trees. These properties are used in the
parallel LU factorization in following sections.

Figure 2.4. Condensed elimination tree produced by domain decomposition and nested

dissection. The numbering of nodes corresponds to the groups of UD­
knowns in Figure 2.3.

An advantage to this approach is that the trees generated are so simple that it is

not necessary to store their structure. Searching a tree is also very easy using the fol­
lowing relations for node i.

left son = 2i

right SOn = 2i + I

parent = rit2]

(2.1.)

(2.1b)

(2.1c)
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III. PARALLELISM AND ASSIGNMENT STRATEGY

(a) Potential parallelism. There are several kinds of potential parallelism here.

First, elimination steps in independent nodes can execute simultaneously. By an elimi­

nanon step we mean those operations for eliminating an unknown, such as local pivot­

ing within the node it resides, generating and broadcasting multipliers, and communi­

cating the fill-in information caused by this elimination step. We call this the outer

parallelism. Secon~ if there are several processors available for a single node, we can

also exploit inner parallelism within the node. This does not occur at leaf nodes

because each leaf node has only one processor even though it represents a sparse sub­

problem For leaf nodes we can choose the most efficient sequential sparse solver

based on the minimum degree ordering. For the higher level nodes we see that the

subproblems become more dense and there are more processors than nodes. So various

efficient parallel dense solvers can be applied to exploit the inner parallelism. Third.
the modification task in elimination is independent for different equations just as for

dense matrices. Finally, fourth. modifications, even on the same equation. due to

independent descendent nodes can be performed in arbitrary order.

Local pivoting strategies within nodes can be used without affecting the global

parallelism. However. we do not employ pivoting in the following because usually it is

not required for systems resulting from the discretization of elliptic problems (it is

never necessary for symmetric definite matrices). Our approach could be modified for

those occasional problems where local pivoting is required.

(b) Assignment Strategy. By assigning a grid point to a processor we mean

assigning both the problem data and the factorization subtask associated with this point.

That is. the equation at this point is stored in the assigned processor and manipulations

in modifying and eliminating the associated unknown are also assigned to the same pro­

cessor. In order to achieve high parallelism, load balancing and low communication we

want to (a) avoid assigning independent nodes to the same processor. and (b) assign

processors to a single node so as to have minimal communication connection. The

standard \Vr3pping assignment used for dense matrices is not as effecdve here even

though it achieves load balancing. [George. Liu, Ng, 1987] proposes a subtree­

subcube assignment which is very satisfactory. To apply their scheme to our con­

densed trees, we observe that they only consider the global assignment issue. They

simply employ wrap mapping for assigning a subtree to points within each node. We

call this assignment subtree-subcube with local wrapping. Recall the following two

irnponant facts. First. eliminating an unknown in a node need not affect all of i[s



-7-

ascendant nodes. Second, even when effects occur in some ancestor nodes, they need

not affect all equations in them. Geometrically, the effect of elimination spreads in a

multifrontal manner. However, one cannot represent these properties completely by

elimination trees and yet they may affect the parallel efficiency very much. This obser·

vanan suggests that grid point assignment should be made in a multifrontal manner.

Specifically it is best to have a processor responsible only for those grid points located

at the fronts of some nodes to which the processor has been assigned. If several pro­

cessors (usually a subcube) correspond to the same set of points. then local wrapping

can be applied within this set. We call this the grid based subtree.subcllbe assign­

ment which is defined more precisely as follows.

Let us denote the levels in the tree from bottom to top by 0, 1.51' X, 1st Y. 2nd X,

2nd
, •••• i tk

X. i th Y and so on. The first step is to map the given hypercube to a two

dimensional grid (for domain decomposition) by the well-mown gray code such that

adjacent processors are direcdy connected.. It is natural to assign Qij to processor Pij •

Next, we subdivide each node on the i th x level and the i Jh y level into 2i - 1 and i seg­

ments, respectively. This subdivision of segments corresponds to the natural geometric

segments in domain decomposition. We take care of the intersection points of adjacent

segments in each node by adding an intersection point to its left (top) segment for the

x(y) direction. Then we assign each segment on i Jh x(y) level to the closest 2i proces­

sors in the x(Y) direction. The assignment within each segment uses wrapping. This

scheme is illustrated in Figure 3.1.

In [George, Liu, Ng, 1987] it is proved that the total amount of communication for·

subtree-subcube with local wrapping is 0 (PN). This communication order is optimal

in the sense of minimizing traffic volume for nested dissection algorithms. This order

is also valid for our grid based subtree-subcube approach as George's analysis applies

for all types of subttee-subcube assignments. If onc includes the startup communica­

tion cost as well as a cost per item that exist for hypercubes, then our grid based

subttee-subcube assignment is much more efficient We find that the cost for their

assignment is O(p31210gzp)NlI2s while our coSt is o (3/4plog2P)N l12S, where S

stands for time for startup. So we gain an 0 (p 112) reduction in startup cost by using

the multifrontal idea. This is a substantial gain for current hypercube multiprocessors

with costly communication startup. Tbis analysis is given in [Mu, Rice, 1989].
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IV. DYNAMIC DATA STRUCTURE

A common approach in recent parallel sparse solvers uses symbolic factoriz:J.rlon

as preprocessing which is then used for generating elimination trees and allocating

static data structures. In our approach the elimination trees are predefined without any
symbolic factorization. Also in PDE packages such as PELLPACK, the data structure
for LU decomposition is used only once in the whole process. Therefore we use a

dynamic data. structure that mixes the symbolic and numerical computations and which

allows tailoring the computation to the problem. This dynamic data structure can be

arranged to have minimal cost for selected problems and in addition, it has very

economical storage requirements.

,.-

~
P"

~P" P" P" p" P"

P" p" P"

P" p" 11'12- P I Pl4 p" P~ I P" P" I
.~p" P~

P~

p" Pn
P~

P~ P"
Pn P"

P"

I 1'l2. P7J. Pn '41 I 1'1'1. I'n 1'32. 1'4'2-

I" '. ,~~"~N"

~
P"

P" Pn Pn P" P"
P" p. P"

I P" P" II P" P42. I P" I P~ P~ II P" p" Ie=
P" P" P"

P"
P" P"

P~
P" p"

P" p" p"
L:

Figure 3.1. Grid based subtree-subcube assignment for 16 processors. Within the sub­

domain interfaces we show how the processors are assigned to pans of the
groups of grid points.
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The data structure has three main parts.

(a) Part 1: Sparse matrix information. This pan represents the matrix A = (A ij )

and its factorization A = LU. Pan 1 consists of five vectors in a particular processor P:

hdr_IOWU:

dimension

hdr_IOwu(I)

hdr_IOwI:

dimension

hdr_IOwI(I)

a:

= number of equations assigned to P

= pointer header for P'5 ith row in U

= number of equations assigned to P

= pointer header for P's ith row in L

dimension

a
=
=

number of nonzeros of the factors of A stored in P

list used for storing nonzero entries of matrix A

id_col:

dimension

Id_coI(i)

plr_a:

dimension

plr_a(i)

= dimension of a

= the column index of the entry in a (i)

= dimension of a

= the location of the next nonzero entry in the same row, ie.,

ifa (0 = Akl and the next nonzero in row k is A kl,. then

a (pIT_a (i)) =Akl'· We have pIT_a (i) =0 IffAkl Is

the last nonzero entry in row k.

(b) Part 2: Modification Information. This pan provides the structure describ­

ing the modification subtask for an individual processor. It is dynamically updated due

to new fill-in during the elimination process and consists of four vectors.

= number of equations of the system

= pointer to header for P"s equations depending on i 'h unknown



ptem:

dimension

id~m:

dimension

id~m

hdrad_m:

dimension

hdrad_m
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= number of nonzeros of L stored in P

= pointer to the next equation depending on the same unknown.

pr_m U) = 0 iff the end of the chain of equations depending on

the unknown is reached.

= dimension of ptem

= list of global indices of equations to be modified

= dimension of ptr_m

= list of pointers to beginning nonzero entries to be updated in

equations to be modified

(c) Part 3: Communication Information. This part defines the communication

requirements for individual processors. It is also dynamically updated due to fill-in
during the elimination process. Processor P has three vectors:

hdr_c:

dimension

hdr3(i)

ptr_c:

dimension

id~c:

dimension

idg...c

= number of equations assigned to P

= pointer to header for nonzeros in column I, if P's ith

equation has global index I

= number of nonzeros in those columns of the factored

matrix whose unknowns are assigned to P.

= pointer to the next nonzero in the column,

ptr_c (i) = 0 iff this is the last nonzero in this column

= dimension of prr_c

= list of row indices of nonzeros pointed by the

corresponding pointers in ptr_c.
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The order of the total storage requirement In this data strucrure is
6.5N log,N/p + 6p.

To show the dynamic data structure operation consider

all a" 0 0 als 0 al7
a'l all 0 a24 0 0 a,7
0 a3' a33 0 a3S a3' 0

A= a4I 0 a43 a44 0 0 a47
0 0 0 aS4 ass 0 aS7

a" a" 0 aM 0 a" 0
0 0 an 0 0 a7' a77

Suppose rows 1 and 6 are assigned to processor p. then the original matrix information
in P is as follows.

vector. a::: all. Q12. alS. at7. a6Io G62. aM. a66

vector: id_col::: 1, 2, 5, 7, 1, 2, 4. 6

vector: ptca =: 2, 3, 4, O. 6. 7. 8, 0

vectors: hdr...rowu = 1, 8, hdr_IOwl = I, 5

Fill-in during elimination just requires extending a and updating id_col and ptr_a. The
infonnation for modification and communication reads:

vector: idg..m == 6, 6, 6, ...

vector: ptr_m::: 0, 0, O. . ..

vector: hdrad_m == 5, 6. 7, '"

vector: hdr_m == I, 2, 0, 3, O. 0, 0

vector: idg..c =: I, 2, 4, 6, 3, 6, 7

vector: ptr_c == 2, 3, 4, 0, 6. 7. 0
vector: hdr_c == I, 5

This information is also dynamically updated..

V. ALGORITHM DESCRIPTION

We now give an informal description of OUI algorithm.
Algorithm

'" Algorithm for processor P for the LU factorization using mixed minimum

... degree, nested dissection by domain decomposition, and grid based
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* subtrce-Sllbcube assignment of processors

1. Local elimination in the leaf node assigned to P by minimum degree based sparse

solver

2. For I = 1 to 2d

2.1. Let nodel = the node on l-th level which is assigned to the subtree which

contains processor P.

2.2. Complete processor P modification subtasks in nodel due to eliminating

all of descendant nodes of nodel.

2.3. Perform local elimination in nodel by any parallel dense solver.

endlloop

Here levels in the tree are numbered from bottom to top by 0, I, 2, ...• 2d with

level 0 corresponding to subdomains at the leaves. By local elimination in steps 1 and

2.3 we mean performing computations to eliminate unknowns local to the current node

and modifications of the associated local equations. Only those equations in processor

P's ancestor nodes are modified where associated multipliers are available due to mani­

pulating local equations. The philosophy here is, on one hand, the pipelining idea

because it tries to stan elimination for each step as soon as possible in order to reduce

the waiting time in other processors for this message. On the other hand, it is the mul­

tifrontal idea because, for those equations where the elimination front has not arrived,

there is no necessity to immediately process the effects on them due to elimination

steps of its descendant nodes. This process causes communication in higher levels of

the subcube which are unnecessary for the current step. These communication and

modification tasks are delayed to step 22. This approach restricts communication, at

each step, to as small a subcube as possible.

There are similar pipelining tricks used for the elimination steps and manipulating

communication informanon in the local elimination phases. In addition. the broadcast

issue for communication in sparse solvers is different from that in dense solvers. In the

dense case, a very effective bcube algorithm can be used. For the sparse case. how­

ever, broadcasting usually is DOl need to the whole subcube. Several of the general pur­

pose multicasting algorithms proposed for hypercubes can be applied to sparse solvers

e.g., [Ho, Johnsson, 1986]. We can hope to develop even more effective broadcasting

algorithms for these applications since broadcasting is done in special ways even

though it is not in a complete subcuhe broadcasting.
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This algorithm has been implemented in our NCUBEn and runs successfully. We

do not present experimental data here because we have not collected enough data to

show its performance characteristics and to compare it with other approaches. These

data will be reponed later.
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