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Abstract

Multi-leader-common-follower games arise when modeling two or more competitive
firms, the leaders, that commit to their decisions prior to another group of com-
petitive firms, the followers, that react to the decisions made by the leaders. These
problems lead in a natural way to equilibrium problems with equilibrium constraints
(EPECs). We develop a characterization of the solution sets for these problems and
examine a variety of nonlinear optimization and nonlinear complementarity formu-
lations of EPECs. We distinguish two broad cases: problems where the leaders can
cost-differentiate and problems with price-consistent followers. We demonstrate the
practical viability of our approach by solving a range of medium-sized test problems.

Keywords: Nash games, Stackelberg games, nonlinear programming, nonlinear
complementarity, NCP, MPEC, equilibrium problems with equilibrium constraints.

AMS-MSC2000: 90C30, 90C33, 90C55, 49M37, 65K10.

1 Introduction

Nash games [23, 24] model competitive behavior among a set of players that make si-

multaneous decisions. A Nash equilibrium is a set of strategies in which each individual

player has chosen an optimal strategy given the strategies chosen by the other players.

A Stackelberg (single-leader-follower) game [31, 20] arises when one player, the leader,

commits to a strategy, while the remaining players, the followers, react to the strategy

selected by competing among themselves. That is, the reaction of the followers is a Nash
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equilibrium parametrized by the decision variables for the leader. The leader chooses an

optimal strategy knowing how the followers will react. Between these two extremes is

the multi-leader-follower game in which multiple competitive firms commit to their deci-

sions prior to a number of competitive followers that react to the decisions made by the

leaders. Multi-leader-follower games can be further differentiated into those in which the

follower responses are constrained to be common across all leaders and those in which

the followers respond differently to each leader. We consider only the former, the multi-

leader-common-follower game. Problems of this type arise, for example, in the analysis of

deregulated electricity markets [13, 4] in which some of the large energy producers are the

leaders and the smaller energy producers and independent system operator are the fol-

lowers. One formulation of multi-leader-common-follower games uses the novel modeling

paradigm of equilibrium problems with equilibrium constraints (EPECs). This paradigm

was introduced in [27] and further developed in [7] in the context of modeling competi-

tion in European electricity markets. In this paper, we characterize the solution sets for

EPECs, describe practical approaches for solving them, and apply these techniques to

several medium-sized problems.

Optimality conditions for EPECs are studied in [21] in the context of multiobjective

optimization. Early algorithmic work on EPECs has focused on diagonalization tech-

niques such as Gauss-Jacobi and Gauss-Seidel methods. Such methods solve a cyclic

sequence of single-leader-follower games until the decision variables of all leaders reach a

fixed point. In [32], Su proposes a sequential nonlinear complementarity problem (NCP)

approach for solving EPECs. This approach is related to the relaxation technique used

when solving mathematical programs with equilibrium constraints (MPECs) that relaxes

the complementarity conditions and drives the relaxation parameter to zero [29].

In this paper, we develop several EPEC reformulations that simultaneously solve the

optimization problems for all leaders by exploiting the insight gained from applying non-

linear solvers to MPECs. In particular, we derive a (nonsquare) NCP formulation of the

EPEC based on the equivalence between the Karush-Kuhn-Tucker (KKT) conditions of

the individual MPECs and strong stationarity. This NCP formulation is analyzed fur-

ther, and we derive equivalent MPEC and nonlinear programming (NLP) formulations.

We also introduce the notion of price consistency and show that, for a restricted class

of multi-leader-common-follower games, the EPEC reduces to a square NCP that can be

solved by applying standard NCP methods.

This paper is organized as follows. The next section briefly derives single-leader-

follower games and reviews recent progress in solving them. Section 3 extends these ideas

to multi-leader-common-follower games and discusses a characterization of the solution

set. Section 4 introduces a new equilibrium concept and shows how equilibrium points can

be computed reliably for general multi-leader-common-follower games by solving nonlinear
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optimization problems. Section 5 introduces an alternative price-consistent formulation

that gives rise to a square nonlinear complementarity problem. This formulation, however,

is valid only for a restricted class of multi-leader-common-follower games. Section 6

explores the different formulations of equilibrium points and investigates the suitability

of nonlinear solvers.

2 Single-Leader-Follower Games

In this section, we briefly review pertinent properties of single-leader-follower games.

These properties are extended in Section 3 when solving multi-leader-common-follower

games.

The single-leader-follower game is played by a leader that commits to a decision and a

number of competitive followers that react to the decision made. That is, given a strategy

x for the leader, the ` followers choose their strategies such that

w∗j ∈

 argmin
wj≥0

bj(x, ŵj)

subject to cj(x,wj) ≥ 0

 ∀j = 1, . . . , `, (2.1)

where ŵj = (w∗1, . . . , w
∗
j−1, wj, w

∗
j+1, . . . , w

∗
` ). Each player its own objective and con-

straints, which need not be the same for all players. This problem is a Nash game

parametrized by the decision made by the leader. If (2.1) is convex and satisfies a con-

straint qualification for each follower, then the condition that each follower chooses an

optimal strategy is equivalent to the parametric nonlinear complementarity problem

0 ≤ wj ⊥ ∇wj
bj(x,w)−∇wj

cj(x,wj)zj ≥ 0 ∀j = 1, . . . , `

0 ≤ zj ⊥ cj(x,wj) ≥ 0 ∀j = 1, . . . , `,
(2.2)

where the complementarity condition ⊥ means that componentwise either the left or the

right inequality is active. This parametric NCP is the collection of KKT conditions for

the optimization problems solved by the followers. By defining variables yj = (wj, zj) and

functions

hj(x, yj) =

(
∇wj

bj(x,w)−∇wj
c(x,wj)zj

cj(x,wj)

)
,

and by introducing slack variables s, one can write this parametric NCP as

h(x, y)− s = 0

0 ≤ y ⊥ s ≥ 0,
(2.3)

where h(x, y) = (h1(x, y1), . . . , h`(x, y`)).
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The leader selects a strategy by optimizing its own objective function f(x, y) subject

to its own set of constraints g(x) ≥ 0 and the parametrized NCP (2.3):

minimize
x≥0,y,s

f(x, y)

subject to g(x) ≥ 0

h(x, y)− s = 0

0 ≤ y ⊥ s ≥ 0.

(2.4)

That is, the leader makes an optimal decision knowing how the competitive followers will

react to that decision. Problem (2.4) is an MPEC. The left graph of Figure 1 shows an

example of a single-leader-follower game arising in the analysis of electricity markets in

which one large electricity producer acts as the leader, with a number of smaller producers

acting as followers that play a Nash game with the independent system operator.

A number of limitations arise when writing a Nash game using complementarity con-

straints. If the problems solved by the followers either are nonconvex or do not satisfy

a constraint qualification, then (2.1) and (2.3) are not equivalent. In fact, the solutions

to (2.3) include all stationary points of (2.1); some players may be at a saddle point, a

local maximizer, or a local minimizer that is not a global minimizer for their optimization

problem at solutions to (2.3). Thus, a solution to (2.4) may not correspond to a solution

to the single-leader-follower game in these situations. Moreover, if a constraint qualifi-

cation is not satisfied by each optimization problem in (2.1), then (2.3) may not have a

solution because the multipliers zj may not exist, even though (2.1) can have a solution.

We accept these limitations because it is not clear at present how they can be avoided in

practice.

The formulation presented does not allow the constraints of each follower to depend

on the strategy chosen by the other followers so that the standard notion of a Nash game

is recovered. Generalized Nash and Stackelberg games are obtained when the constraints

are allowed to depend on the choices made by the other players. Thus, cj(x,wj) becomes

cj(x,w), and g(x) can also depend on the responses becoming g(x, y). In this case, the

MPEC (2.4) becomes

minimize
x≥0,y,s

f(x, y)

subject to g(x, y) ≥ 0

h(x, y)− s = 0

0 ≤ y ⊥ s ≥ 0,

(2.5)

where h is now defined to take cj(x,w) into account. Difficulties associated with the

solutions to generalized Nash games are discussed in [27]. Some test problems in Section 6

are derived from generalized Nash and Stackelberg games.

One attractive solution approach to (2.4) or (2.5) is to replace the complementarity

condition by a nonlinear inequality, such as yT s ≤ 0 or Y s ≤ 0, where Y is the diagonal
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Figure 1: Structure of single-leader-follower games and multi-leader-common-follower

games

matrix with y along its diagonal. This equivalent nonlinear program can then be solved

by applying standard NLP solvers. Unfortunately, this NLP violates the Mangasarian-

Fromovitz constraint qualification (MFCQ) at any feasible point [29]. This failure of

MFCQ implies that the multiplier set is unbounded, the central path fails to exist, the

active constraint normals are linearly dependent, and linearizations can become inconsis-

tent arbitrarily close to a solution [11]. In addition, early numerical experience with this

approach was disappointing [2]. As a consequence, solving MPECs as NLPs has been

commonly regarded as numerically unsafe.

The failure of MFCQ in the equivalent NLP can be traced to the formulation of the

complementarity constraint as Y s ≤ 0. Consequently, algorithmic approaches have fo-

cused on avoiding this formulation. Instead, researchers have developed special-purpose

algorithms for MPECs, such as branch-and-bound methods [2], implicit nonsmooth ap-

proaches [25], piecewise SQP methods [19], and perturbation and penalization approaches

[6] analyzed in [30]. All of these techniques, however, require significantly more work than

a standard NLP approach.

Recently, researchers have shown that MPECs can be solved reliably and efficiently

by replacing the complementarity constraint with Y s ≤ 0 and applying standard non-

linear optimization solvers [1, 3, 10, 11, 16, 17, 18, 28]. The key observation in proving

convergence of such an approach is that strong stationarity [29] is equivalent to the KKT

conditions of the equivalent NLP. The notion of strong stationarity is presented in the

context of the general MPEC (2.5) and the NLP reformulation

minimize
x≥0,y,s

f(x, y)

subject to g(x, y) ≥ 0

h(x, y)− s = 0

y ≥ 0, s ≥ 0, Y s ≤ 0.

(2.6)
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Definition 2.1 A point (x, y, s) is called a strongly stationary point of the MPEC (2.5)

if and only if there exist multipliers χ ≥ 0, λ ≥ 0, µ, ψ, σ such that

∇xf(x, y)−∇xg(x, y)λ−∇xh(x, y)µ− χ = 0

∇yf(x, y)−∇yg(x, y)λ−∇yh(x, y)µ− ψ = 0

µ− σ = 0

g(x, y) ≥ 0

h(x, y)− s = 0

x, y, s ≥ 0

xTχ = 0 and g(x, y)Tλ = 0 and yTψ = 0 and sTσ = 0

if yi = si = 0 then ψi, σi ≥ 0.

(2.7)

The multipliers on the simple bounds ψi and σi are nonnegative only if yi = si = 0,

as is consistent with the observation that yi > 0 implies si = 0, and σi is therefore the

multiplier on an equality constraint whose sign is not restricted.

Fletcher et al. [11] have shown that strong stationarity is equivalent to the KKT

conditions of the equivalent NLP (2.6). That is, there exist multipliers χ ≥ 0, λ ≥ 0, µ,

ψ ≥ 0, σ ≥ 0, ξ ≥ 0 such that

∇xf(x, y)−∇xg(x, y)λ−∇xh(x, y)µ− χ = 0

∇yf(x, y)−∇yg(x, y)λy −∇h(x, y)µ− ψ + Sξ = 0

µ− σ + Y ξ = 0

0 ≤ g(x, y) ⊥ λ ≥ 0

h(x, y)− s = 0

0 ≤ x ⊥ χ ≥ 0

0 ≤ y ⊥ ψ ≥ 0

0 ≤ s ⊥ σ ≥ 0

0 ≤ −Y s ⊥ ξ ≥ 0.

(2.8)

These strong stationarity conditions are used in Section 3 to derive nonlinear formulations

of EPECs.

When an MPEC constraint qualification is satisfied, multipliers for the equivalent NLP

(2.6) exist and form a ray. Moreover, SQP methods converge to a minimum norm multi-

plier corresponding to the base of the ray [11]. The aim of this paper is to demonstrate

that strong stationarity can be applied within the context of multi-leader-common-follower

games to define equilibrium points, thus making EPECs amenable to approaches based

on nonlinear optimization or nonlinear complementarity.

We conclude this section by recalling the definition of an MPEC constraint qualifica-

tion. This constraint qualification will be used when constructing equilibrium conditions

for multi-leader-common-follower games.
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Definition 2.2 The MPEC (2.5) satisfies an MPEC linear independence constraint qual-

ification (MPEC-LICQ) if the NLP (2.6) without the complementarity condition Y s ≤ 0

satisfies an LICQ.

3 Multi-Leader-Common-Follower Games

Multi-leader-common-follower games arise when two or more competitive leaders commit

to decisions and the common competitive followers react to the decisions made. The right

graph of Figure 1 shows an example of a multi-leader-common-follower game in which two

large electricity producers act as leaders, with a number of smaller producers acting as

followers that play a Nash game with the independent system operator. Such games can

be modeled as equilibrium problems with equilibrium constraints. The aim is to find an

equilibrium point where no leader can improve its objective given the strategies chosen by

the other leaders and the reaction of the followers. The followers compute an equilibrium

point where no follower can improve its objective given the strategies committed to by

the leaders and those selected by the other followers. This goal is achieved by extending

strong stationarity (Definition 2.1) to equilibrium problems with equilibrium constraints.

Let k > 1 be the number of leaders, and denote by xi, i = 1, . . . , k, the decision

variables for leader i. The leader variables are abbreviated by x = (x1, . . . , xk). The

optimization problem solved by leader i gives rise to the following MPEC:

minimize
xi≥0,y,s

fi(x̂i, y)

subject to gi(x̂i, y) ≥ 0

h(x̂i, y)− s = 0

0 ≤ y ⊥ s ≥ 0,

where x̂i = (x∗1, . . . , x
∗
i−1, xi, x

∗
i+1, . . . , x

∗
k). The multi-leader-common-follower game is then

defined as a solution to the following collection of MPECs:

(x∗i , y
∗, s∗) ∈


argmin
xi≥0,y,s

fi(x̂i, y)

subject to gi(x̂i, y) ≥ 0

h(x̂i, y)− s = 0

0 ≤ y ⊥ s ≥ 0

 ∀i = 1, . . . , k. (3.1)

Asserting the existence and uniqueness of a solution to the multi-leader-common-

follower game is difficult because each optimization problem solved is nonconvex. A

further complication is the common decision variables, (y∗, s∗), which appear in the opti-

mization problem solved by each leader. The solution set, however, can be characterized

by the intersection of the solution sets for a series of related generalized Nash games.
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In particular, let S denote the set of Nash equilibria for the multi-leader-common-

follower game (3.1). This solution set includes only the primal variables and does not

include multipliers on the constraints. Associated with this game, one can construct k

related games, where the common decision reached by the followers is attached to exactly

one leader. For player ī ∈ {1, . . . , k}, this game has the following form:

(x∗ī , y
∗, s∗) ∈


argmin
xī≥0,y,s

fī(x̂ī, y)

subject to gī(x̂ī, y) ≥ 0

h(x̂ī, y) = s

0 ≤ y ⊥ s ≥ 0


(3.2a)

x∗i ∈


argmin
xi≥0

fi(x̂i, y
∗)

subject to gi(x̂i, y
∗) ≥ 0

h(x̂i, y
∗) = s∗

∀i = 1, . . . , k, i 6= ī. (3.2b)

Let Sī denote the set of Nash equilibria for each modified game (3.2). Again, this so-

lution set includes only the primal variables and does not include multipliers on the

constraints. Then, we have the following characterization of the Nash equilibria to multi-

leader-common-follower games.

Theorem 3.1 Let S denote the set of Nash equilibria for the multi-leader-common-

follower game (3.1), and let Sī denote the set of Nash equilibria for (3.2). Then,

S = ∩kī=1Sī. (3.3)

Proof. Select a point in (x∗, y∗, s∗) in S. For each ī = 1, . . . , k, (x∗i , y
∗, s∗) solves the

optimization problem in (3.1) for player ī. Therefore, (3.2a) also holds for player ī. One

can then show that for each i = 1, . . . , k, x∗i is a solution to (3.2b). In particular, if it

were possible to obtain a lower objective function value for this problem, then (x∗i , y
∗, s∗)

would not be optimal for (3.1). Hence, (x∗, y∗, s∗) ∈ ∩kī=1Sī.
For the opposite, select a point (x∗, y∗, s∗) in ∩kī=1Sī. This point is optimal for each

optimization problem in (3.1) because of the intersection. Hence, (x∗, y∗, s∗) ∈ S. 2

Similar characterizations can be obtained if we seek only local solutions or strongly sta-

tionary points for each optimization problem in (3.1).

Each Nash subgame still contains a nonconvex optimization problem. However, the

nonconvexity appears in only one optimization problem. Therefore, it may be easier to

prove the existence of a solution to each Nash subgame. The difficulty then becomes

establishing that the intersection of the solution sets is nonempty. The following result is

obtained for two special cases.
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Corollary 3.2 If (3.2) has a unique Nash equilibrium for some ī, then the multi-leader-

common-follower game (3.1) has either no Nash equilibrium or a unique Nash equilibrium.

Moreover, if (3.2) has no Nash equilibrium for some ī, then the multi-leader-common-

follower game (3.1) also has no Nash equilibrium.

Proof. The proof follows from the intersection characterization of solutions to multi-

leader-common-follower games in Theorem 3.1. 2

Note that a square nonlinear complementarity problem is obtained by writing down the

strong stationarity conditions for each Nash subgame. Algorithms for solving nonlinear

complementarity problems can then be applied to solve the Nash subgame. For this

characterization to be computationally tractable, however, one would need to compute all

solutions for each Nash subgame and then take the intersection. Computing all solutions

to a Nash game is not currently possible for moderately sized problems. Moreover, this

result give no indications that multipliers exist on the constraints or that they are unique.

4 NCP and NLP Formulations

One computationally attractive way to solve the multi-leader-common-follower game (3.1)

is to follow the same formalism as in the derivation of the complementarity problem (2.2)

for Nash games. Formally, we replace each MPEC in (3.1) by its strong stationarity con-

ditions and concatenate the equivalent KKT conditions (2.8) for all leaders i = 1, . . . , k.

Note that the optimization problems are nonconvex because of the presence of com-

plementarity constraints. Hence, we can compute only strongly stationary points for

each optimization problem with this method. This approach formulates the multi-leader-

common follower game as a (nonsquare) nonlinear complementarity problem. A range

of other formulations as nonlinear programming problems are then derived. We start by

constructing the NCP formulations.
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4.1 NCP Formulations of Multi-Leader-Common-Follower Games

The concatenation of the strong stationarity conditions for each leader produces the fol-

lowing NCP formulation of the multi-leader-common-follower game (3.1).

∇xi
fi(x, y)−∇xi

gi(x, y)λi −∇xi
h(x, y)µi − χi = 0 ∀i = 1, . . . , k (4.1a)

∇yfi(x, y)−∇ygi(x, y)λi −∇yh(x, y)µi − ψi + Sξi = 0 ∀i = 1, . . . , k (4.1b)

µi − σi + Y ξi = 0 ∀i = 1, . . . , k (4.1c)

0 ≤ gi(x, y) ⊥ λi ≥ 0 ∀i = 1, . . . , k (4.1d)

h(x, y)− s = 0 (4.1e)

0 ≤ xi ⊥ χi ≥ 0 ∀i = 1, . . . , k (4.1f)

0 ≤ y ⊥ ψi ≥ 0 ∀i = 1, . . . , k (4.1g)

0 ≤ s ⊥ σi ≥ 0 ∀i = 1, . . . , k (4.1h)

0 ≤ −Y s ⊥ ξi ≥ 0 ∀i = 1, . . . , k (4.1i)

The multipliers χi, ψi, and σi can be eliminated to produce a reduced, but equivalent,

model. Note that the multipliers on the followers’ constraints, (ψi, σi, ξi), can have dif-

ferent values for each leader. This formulation corresponds to a scenario in which the

cost of the followers’ actions can be different for each leader. That is, the leaders cost

differentiate. In contrast, in Section 5, we discuss conditions on the structure of the game

(3.1) that allow us to enforce a price-consistent formulation in which all the multipliers

(µi, ψi, σi, ξi) are the same for every leader.

Formally, this approach to EPECs is analogous to the formulation of the Nash game

(2.1) as the complementarity problem (2.3). Unlike a Nash game, however, the MPEC

(2.4) is always nonconvex because of the presence of complementarity constraints. There-

fore, no simple equivalence exists between the solution set of the NCP defined by (4.1) and

the solution set of the multi-leader-common-follower game (3.1). Moreover, this NCP is

typically not square because equations (4.1a), (4.1b), (4.1c), and (4.1e) cannot be uniquely

matched to the free variables xi, y, s, and µi. Hence, this problem is harder to solve than

standard Nash games.

In [32], (4.1) is solved by adding a smoothing parameter to the original complemen-

tarity condition, replacing (4.1i) by

−te ≤ −Y s ⊥ ξi ≥ 0,

where e is a vector of ones and t↘ 0. In contrast, we attack (4.1) directly by exploiting

recent advances in nonlinear solvers for MPECs.

We can simplify (4.1) by noting that the complementarity condition Y s ≤ 0 in (4.1i)

is always active because y and s are nonnegative. Moreover, the constraint Y s ≤ 0 can
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be replaced by 0 ≤ y ⊥ s ≥ 0. This formulation has the advantage that it makes the

complementarity constraint transparent for the nonlinear solver, allowing, for example,

different techniques to deal with the complementarity condition. Thus, we can replace

the constraints (4.1g)–(4.1i) by the following set of inequalities:

0 ≤ y ⊥ ψi ≥ 0

0 ≤ s ⊥ σi ≥ 0

0 ≤ y ⊥ s ≥ 0

ξi ≥ 0

∀i = 1, . . . , k. (4.2)

An alternative formulation is to replace (4.1g)–(4.1i) with the equivalent set of conditions:

0 ≤ ψi + s ⊥ y ≥ 0

0 ≤ σi + y ⊥ s ≥ 0

ψi, σi, ξi ≥ 0

∀i = 1, . . . , k. (4.3)

Another source of degeneracy is the fact that the multipliers form a ray and are therefore

not unique. This redundancy can be removed by adding a complementarity constraint

that forces the multipliers for each leader to be basic (and therefore unique), such as

0 ≤ ψi + σi ⊥ ξi ≥ 0.

Combining these observations, we obtain the equivalent conditions:

0 ≤ ψi + s ⊥ y ≥ 0

0 ≤ σi + y ⊥ s ≥ 0

0 ≤ ψi + σi ⊥ ξi ≥ 0

∀i = 1, . . . , k. (4.4)

We now arrive at the following NCP formulation of a multi-leader-common-follower game.

∇xi
fi(x, y)−∇xi

gi(x, y)λi −∇xi
h(x, y)µi − χi = 0 ∀i = 1, . . . , k (4.5a)

∇yfi(x, y)−∇ygi(x, y)λi −∇yh(x, y)µi − ψi + Sξi = 0 ∀i = 1, . . . , k (4.5b)

µi − σi + Y ξi = 0 ∀i = 1, . . . , k (4.5c)

0 ≤ gi(x, y) ⊥ λi ≥ 0 ∀i = 1, . . . , k (4.5d)

h(x, y)− s = 0 (4.5e)

0 ≤ xi ⊥ χi ≥ 0 ∀i = 1, . . . , k (4.5f)

0 ≤ ψi + s ⊥ y ≥ 0 ∀i = 1, . . . , k (4.5g)

0 ≤ σi + y ⊥ s ≥ 0 ∀i = 1, . . . , k (4.5h)

0 ≤ ψi + σi ⊥ ξi ≥ 0 ∀i = 1, . . . , k. (4.5i)
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This formulation is not a square NCP because y and s are matched with multiple inequal-

ities in (4.5g) and (4.5h), respectively.

The derivation in this section motivates the following definition. A similar definition

regarding (4.1) can be found in [32].

Definition 4.1 A solution of (3.1) is called an equilibrium point of the multi-leader-

common-follower game. A solution (x∗, y∗, s∗, χ∗, λ∗, µ∗, ψ∗, σ∗, ξ∗) of (4.1) or (4.5) is

called a strongly stationary point of the multi-leader-common-follower game (3.1).

The following proposition shows that equilibrium points are strongly stationary pro-

vided an MPEC-LICQ holds.

Proposition 4.1 If (x∗, y∗, s∗) is an equilibrium point of (3.1) and if every MPEC of

(3.1) satisfies an MPEC-LICQ, then there exist multipliers (χ∗, λ∗, µ∗, ψ∗, σ∗, ξ∗) such

that (4.1) and (4.5) hold.

Proof. The statement follows directly from [29] and can also be found in [32]. If MPEC-

LICQ holds, then there exist multipliers for the optimization problem solved by every

leader, and (4.1) and (4.5) follow. 2

We note that both (4.1) and (4.5) are degenerate in the sense that the constraints

violate any constraint qualification because of the presence of complementarity conditions.

In addition, the Jacobian is singular whenever any component of both y and s is zero.

This fact makes it difficult to tackle (4.5) with standard NCP solvers. In the next section

we derive more robust formulations of the NCP that resolve the redundancy in (4.1) and

can be solved by using standard nonlinear optimization techniques.

4.2 NLP Formulations of Multi-Leader-Common-Follower Games

The redundancy inherent in the NCP formulation (4.1) can be exploited to derive nonlin-

ear programming formulations of the multi-leader-common-follower game. This section

introduces two other formulations of the NCP (4.1). The first formulation is based on the

idea of forcing the EPEC to identify the basic or minimal multiplier for each leader. This

formulation results in an MPEC. The second formulation penalizes the complementarity

constraints and results in a well-behaved nonlinear optimization problem.

One difficulty with the NCP (4.1) is the existence of an infinite number of multipliers.

Since the multipliers form a ray, however, there exists a minimum norm multiplier [11].
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The first reformulation aims to find this particular multiplier by minimizing the `1-norm

of the multipliers on the complementarity constraints, giving rise to the following MPEC.

minimize
x,y,s,λ,µ,ψ,σ,ξ

k∑
i=1

eT ξi

subject to ∇xi
fi(x, y)−∇xi

gi(x, y)λi −∇xi
h(x, y)µi − χi = 0 ∀i = 1, . . . , k

∇yfi(x, y)−∇ygi(x, y)λi −∇yh(x, y)µi − ψi + Sξi = 0 ∀i = 1, . . . , k

µi − σi + Y ξi = 0 ∀i = 1, . . . , k

0 ≤ gi(x, y) ⊥ λi ≥ 0 ∀i = 1, . . . , k

h(x, y)− s = 0

0 ≤ xi ⊥ χi ≥ 0 ∀i = 1, . . . , k

0 ≤ y ⊥ ψi ≥ 0 ∀i = 1, . . . , k

0 ≤ s ⊥ σi ≥ 0 ∀i = 1, . . . , k

0 ≤ y ⊥ s ≥ 0

ξi ≥ 0 ∀i = 1, . . . , k

(4.6)

This reformulation violates standard constraint qualifications because it is an MPEC.

However, recent developments show that MPECs like (4.6) can be solved reliably and

efficiently by using standard NLP solvers [1, 10, 11]. We could also use the alternative

reformulations of the complementarity constraints in (4.3) and (4.4) to obtain an MPEC.

The next formulation aims to avoid this difficulty by minimizing the complementarity

constraints. This formulation of the multi-leader-common-follower game follows an idea

of Moré [22] and minimizes the complementarity conditions in (4.1d) and (4.1f)–(4.5i).

After introducing slacks ti to gi(x, y) ≥ 0, one can write this problem as follows.

minimize
x,y,ν,µ,ξ

Cpen :=
k∑
i=1

(
xTi χi + tTi λi + yTψi + sTσi

)
+ yT s

subject to ∇xi
fi(x, y)−∇xi

gi(x, y)λi −∇xi
h(x, y)µi − χi = 0 ∀i = 1, . . . , k

∇yfi(x, y)−∇ygi(x, y)λy −∇ih(x, y)µi − ψi + Sξi = 0 ∀i = 1, . . . , k

µi − σi + Y ξi = 0 ∀i = 1, . . . , k

gi(x, y) = ti ∀i = 1, . . . , k

h(x, y) = s

y ≥ 0, s ≥ 0

χi ≥ 0, λi ≥ 0, ψi ≥ 0, σi ≥ 0, ξi ≥ 0 ∀i = 1, . . . , k

xi ≥ 0, ti ≥ 0 ∀i = 1, . . . , k

(4.7)

In this problem, the complementarity conditions have been moved into the objective by a

penalty approach, and the remaining constraints are well behaved. A penalty parameter of

one is always adequate because the multi-leader-common-follower game has no objective
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function. We could also use the other reformulations of the complementarity constraints

in (4.3) and (4.4) when deriving an NLP.

The following theorem summarizes the properties of the formulations introduced in

this section.

Theorem 4.1 If (x∗, y∗, s∗, t∗, χ∗, λ∗, µ∗, ψ∗, σ∗, ξ∗) is a local solution of (4.6), then it

follows that (x∗, y∗, s∗) is a strongly stationary point of the multi-leader-common-follower

game (3.1). If (x∗, y∗, s∗, t∗, χ∗, λ∗, µ∗, ψ∗, σ∗, ξ∗) is a local solution of (4.7) with Cpen = 0,

then it follows that (x∗, y∗, s∗) is a strongly stationary point of the multi-leader-common-

follower game (3.1).

Proof. The proof follows directly from the developments above. 2

5 Price-Consistent Formulations

The NCP and NLP formulations of multi-leader-common-follower games can be applied to

any game satisfying the assumptions in Proposition 4.1. To reduce the number of variables

and constraints in these formulations, which may make the problem more tractable, one

can make a price-consistency assumption. This technique restricts the solutions considered

to those for which the multipliers (prices) on the common constraints are the same. Hence,

the price-consistent problem may have no solution, while (4.1) has a solution. Any solution

to the price-consistent problem, however, is also a solution (4.1). By further restricting the

type of multi-leader-common-follower games considered, more reductions in the number

of variables and constraints can be realized. In the most restrictive cases, a square NCP

or standard MPEC results.

The derivation of the price-consistent problem begins by constructing a standard Nash

game with three types of players: the leaders, the followers, and markets. The markets

set the prices on the resource constraints. In particular, the strong stationarity conditions

for the multi-leader-common-follower game (4.1) correspond exactly to Nash equilibria for
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the following game:

x∗i ∈
{

argmin
xi≥0

fi(x̂i, y
∗)− (λ∗i )

Tgi(x̂, y
∗)− (µ∗i )

T (h(x̂i, y
∗)− s∗)

}
∀i = 1, . . . , k

(y∗, s∗) ∈
{

argmin
y≥0,s≥0

fi(x
∗, y)− (λ∗i )

Tgi(x
∗, y)− (µ∗i )

T (h(x∗, y)− s) + σ∗i s
Ty
}

∀i = 1, . . . , k

(λ∗, µ∗, σ∗) ∈

{
argmin
λ≥0,µ,σ≥0

k∑
i=1

(
λTi gi(x

∗, y∗) + µTi (h(x∗, y∗)− s∗)− σi(s
∗)Ty∗

) }
.

(5.1)

Hence, any solution to (5.1) is a solution to the strong stationarity conditions for the

original multi-leader-common-follower game (4.1). This problem is not a standard Nash

game because y∗ and s∗ must be optimal for multiple (nonconvex) optimization problems.

Note that as in Section 3, the solutions to (5.1) can be characterized by the intersection

of the solutions for k Nash games.

The markets differentiate the resource prices for each player in (5.1). If we assume

the multipliers on the common constraints are the same, that is, the prices are set by an

independent entity that cannot price discriminate, then we need only one set of prices for

these constraints, rather than one set of prices for each follower. This restriction leads to

the following game:

x∗i ∈
{

argmin
xi≥0

fi(x̂i, y
∗)− (λ∗i )

Tgi(x̂i, y
∗)− (µ∗)T (h(x̂i, y

∗)− s∗)
}

∀i = 1, . . . , k

(y∗, s∗) ∈
{

argmin
y≥0,s≥0

fi(x
∗, y)− (λ∗i )

Tgi(x
∗, y)− (µ∗)T (h(x∗, y)− s) + σ∗sTy

}
∀i = 1, . . . , k

(λ∗, µ∗, σ∗) ∈

{
argmin
λ≥0,µ,σ≥0

k∑
i=1

λTi gi(x
∗, y∗) + µT (h(x∗, y∗)− s∗)− σ(s∗)Ty∗

}
.

(5.2)

We have now reduced the size of the problem by eliminating a large number of multipliers

(µ, σ) on the common complementarity constraints. To reduce the problem further, we

need to make an additional assumption on the class of games considered:

[A1] The general constraints for each leader i consist of a set of constraints independent

of other decision variables and a set of constraints common across all players. That

is,

gi(x, y) =

[
ḡi(xi)

g̃(x, y)

]
for some functions ḡi(xi) and g̃(x, y).
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This assumption is not very restrictive and is commonly satisfied by the problems of

interest. If Assumption [A1] is not satisfied, then we can solve reduced versions of (4.1),

(4.5), (4.6), and (4.7) with common multipliers (µ, σ). With this assumption, we can

impose a consistent set of prices on the general constraints to reduce the number of

multipliers (λ) leading to the price-consistent multi-leader-common-follower game:

x∗i ∈
{

argmin
xi≥0,ḡi(xi)≥0

fi(x̂i, y
∗)− (λ∗)T g̃(x̂i, y

∗)− (µ∗)T (h(x̂i, y
∗)− s∗)

}
∀i = 1, . . . , k

(y∗, s∗) ∈
{

argmin
y≥0,s≥0

fi(x
∗, y)− (λ∗)T g̃(x∗, y)− (µ∗)T (h(x∗, y)− s) + σ∗sTy

}
∀i = 1, . . . , k

(λ∗, µ∗, σ∗) ∈
{

argmin
λ≥0,µ,σ≥0

λT g̃(x∗, y∗) + µT (h(x∗, y∗)− s∗)− σ(s∗)Ty∗
}
.

(5.3)

Note that the independent constraints ḡi(xi) ≥ 0 have been included in the optimization

problem for leader i. As before, this problem is not a standard Nash game, because of

the presence of the y and s variables that must be simultaneously optimal for several

optimization problems. We can, however, construct k related Nash games in which the

solution set to (5.3) is the intersection of the solution sets to the related Nash games.

To produce a more standard Nash game, we need to make a rather restrictive assump-

tion on the form of the objective function.

[A2] The objective function for leader i consists of a term separable in x and y and a

term common across all leaders. That is,

fi(x, y) = f̄i(x) + f̃(x, y)

for some functions f̄i(x) and f̃(x, y).

If Assumption [A1] is satisfied and Assumption [A2] is not, then we can solve reduced

versions of (4.1), (4.5), (4.6), and (4.7) with common multipliers (λ, µ, σ) but cannot make

further reductions. When Assumptions [A1] and [A2] are satisfied, we are left with the

reduced price-consistent multi-leader-common-follower game:

x∗i ∈
{

argmin
xi≥0,ḡi(xi)≥0

f̄i(x̂i) + f̃(x̂i, y
∗)− (λ∗)T g̃(x̂i, y

∗)− (µ∗)T (h(x̂i, y
∗)− s∗)

}
∀i = 1, . . . , k

(y∗, s∗) ∈
{

argmin
y≥0,s≥0

f̃(x∗, y)− (λ∗)T g̃(x∗, y)− (µ∗)T (h(x∗, y)− s) + σ∗sTy
}

(λ∗, µ∗, σ∗) ∈
{

argmin
λ≥0,µ,σ≥0

λT g̃(x∗, y∗) + µT (h(x∗, y∗)− s∗)− σ(s∗)Ty∗
}
,

(5.4)
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where y and s need be optimal for only a single optimization problem. The station-

arity conditions for this Nash game form a square nonlinear complementarity problem.

Applying the inverse operation to σ leads to the equivalent formulation:

x∗i ∈
{

argmin
xi≥0,ḡi(xi)≥0

f̄i(x̂i) + f̃(x̂i, y
∗)− (λ∗)T g̃(x̂i, y

∗)− (µ∗)T (h(x̂i, y
∗)− s∗)

}
∀i = 1, . . . , k

(y∗, s∗) ∈

 argmin
y,s

f̃(x∗, y)− (λ∗)T g̃(x∗, y)− (µ∗)T (h(x∗, y)− s)

subject to 0 ≤ y ⊥ s ≥ 0


(λ∗, µ∗) ∈

{
argmin
λ≥0,µ

λT g̃(x∗, y∗) + µT (h(x∗, y∗)− s∗)
}
,

(5.5)

where σ is the multiplier on the complementarity constraint when writing the strong

stationarity conditions. This development motivates the following definition.

Definition 5.1 The game (5.5) is called a price-consistent multi-leader-common-follower

game.

The NCP formulation of the price-consistent multi-leader-common-follower game (5.5) is

defined as follows.

∇xi
f̄i(x) +∇xi

f̃(x, y)−∇xi
ḡi(xi)ρi −∇xi

g̃(x, y)λ−∇xi
h(x, y)µ− χi = 0 ∀i = 1, . . . , k

∇yf̃(x, y)−∇yg̃(x, y)λ−∇yh(x, y)µ− ψ + Sξ = 0

µ− σ + Y ξ = 0

0 ≤ ḡi(xi) ⊥ ρi ≥ 0 ∀i = 1, . . . , k

0 ≤ g̃(x, y) ⊥ λ ≥ 0

h(x, y)− s = 0

0 ≤ xi ⊥ χi ≥ 0 ∀i = 1, . . . , k

0 ≤ y ⊥ ψ ≥ 0

0 ≤ s ⊥ σ ≥ 0

0 ≤ −Y s ⊥ ξ ≥ 0

(5.6)

Other versions of this NCP can be posed by replacing the complementarity conditions
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with (4.2), (4.3), or (4.4). For example, the bounded multiplier version would be

∇xi
f̄i(x) +∇xi

f̃(x, y)−∇xi
ḡi(xi)ρi +∇xi

g̃(x, y)λi −∇xi
h(x, y)µ− χi = 0 ∀i = 1, . . . , k

∇yf̃(x, y)−∇yg̃(x, y)λi −∇yh(x, y)µ− ψ + Sξ = 0

µ− σ + Y ξ = 0

0 ≤ ḡi(xi) ⊥ ρi ≥ 0 ∀i = 1, . . . , k

0 ≤ g̃(x, y) ⊥ λ ≥ 0

h(x, y)− s = 0

0 ≤ xi ⊥ χi ≥ 0 ∀i = 1, . . . , k

0 ≤ ψ + s ⊥ y ≥ 0

0 ≤ σ + y ⊥ s ≥ 0

0 ≤ ψ + σ ⊥ ξ ≥ 0.

(5.7)

Both (5.6) and (5.7) are square NCPs without side variables and constraints, while the

formulations using (4.2) and (4.3) for the complementarity constraints would have side

variables. Moreover, χi can be eliminated from both (5.6) and (5.7) to produce further

reduced models, and ψ and σ can be eliminated from (5.6).

By making a further simplifying assumption on the underlying model, we can establish

an interesting relationship between price consistency and a multiobjective optimization

problem. We start by defining complete separability.

Definition 5.2 We say that the multi-leader-follower game (3.1) is completely separable

if the general constraints consist of a set of constraints independent of other decision

variables and a set of constraints common across all players, that is,

gi(x, y) =

[
ḡi(xi)

g̃(x, y)

]
,

and the objective function consists of a separable term and a term common across all

leaders, that is,

fi(x, y) = f̄i(xi) + f̃(x, y),

for all i = 1, . . . , k.

Note that this definition differs from [A1] and [A2] in that the objective function

must now be separable in xi and y for all i = 1, . . . , k. The following proposition relates

completely separable, price-consistent multi-leader-common-follower games to a standard

MPEC.
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Proposition 5.1 Assume that the multi-leader-common-follower game is completely sep-

arable. Then it follows that the first-order conditions (5.6) of the game (5.5) are equivalent

to the strong stationarity conditions of the following MPEC:

minimize
x≥0,y,s

k∑
i=1

f̄i(xi) + f̃(x, y)

subject to ḡi(xi) ≥ 0 ∀i = 1, . . . , k

g̃(x, y) ≥ 0

h(x, y)− s = 0

0 ≤ y ⊥ s ≥ 0.

(5.8)

Proof. The proof follows by comparing the strong-stationarity conditions of the MPEC

(5.8) with the first-order conditions of (5.6). 2

Problem (5.8) minimizes the collective losses for the leaders and can be interpreted

as finding a particular solution to a multiobjective optimization problem by minimizing

a convex combination of all leaders’ objectives. As a consequence, existence results can

be derived for completely separable EPECs by showing the existence of a solution to

the price-restricted MPEC (5.8). This observation provides a starting point for deriving

existence results for certain classes of EPECs.

If there are no followers, that is, we are really solving a Nash game, problem (5.8)

reverts to a standard nonlinear programming problem. Some traffic equilibrium models,

for example, use this equivalence to reduce the problem of computing equilibrium traffic

patterns to solving a single multicommodity network flow problem [9].

By introducing the price-consistent restriction, we produce a model that may be easier

to solve than the original. Because price consistency is a restriction, any solution to the

restricted model is a solution to the unrestricted version. However, the restricted model

may not have a solution, while the unrestricted model may have a solution. Therefore,

one would attempt to first solve the price-consistent multi-leader-common-follower game if

possible and then resort to one of the general NCP or NLP reformulations from Section 4

if no solution is found.

The following example of a generalized Nash game shows the different possible results

for the price-consistent formulation:

minimize
x1

x2
1 + ax1x2 subject to x1 + x2 = c

minimize
x2

x2
2 + bx1x2 subject to x1 + x2 = c,

where a, b, and c are parameters. One can show that every point (x1, c − x1) is an

equilibrium point of the multi-leader-common-follower game (3.1). However, the price-
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consistent game can have zero, one, or an infinite number of solutions. In particular, the

price-consistent game has the following:

1. A unique equilibrium if a+ b 6= 4.

2. An infinite number of equilibria (x1, c− x1, 2c) when a = b = 2.

3. An infinite number of equilibria (x1, c − x1, 2x1 − ax1) when a + b = 4, a 6= b, and

c = 0.

4. No equilibrium when a+ b = 4, a 6= b, and c 6= 0.

In the last case, one player would make an infinite profit, while the other an infinite loss as

x1 goes to infinity and x2 goes to minus infinity. Moreover, if a = b, the price-consistent

game is computing a first-order critical point for the single optimization problem:

minimize
x1,x2

x2
1 + x2

2 + ax1x2 subject to x1 + x2 = c.

This problem is unbounded below but has the unique critical point ( c
2
, c

2
, c + ca

2
) corre-

sponding to a maximizer when a > 2, an infinite number of solutions (x1, c−x1, 2c) when

a = 2, and a unique solution ( c
2
, c

2
, c+ ca

2
) when a < 2.

6 Numerical Experience

This section provides numerical experience in solving medium-scale EPECs with up to

a few hundred variables. The numerical solution of EPECs is a novel area; there are

no established test problem libraries and few numerical studies. We begin by describing

the test problems and then provide a detailed comparison of our formulations with the

diagonalization approach and the approach of [32]. All problems are available online at

http://www-unix.mcs.anl.gov/~leyffer/MacEPEC/.

6.1 Description of Test Problems

The test problems fall into three broad classes: randomly generated problems, academic

test problems, and a more realistic model that arose from a case study of the interaction

of electric power and NOx allowance markets in the eastern United States [4].

The AMPL models of all test problems identify the NCPs (4.1) and (4.5), the MPEC

(4.6), and the NLP (4.7) formulations as *-NCP.mod, *-NCPa.mod, *-MPEC.mod, and

*-NLP.mod, respectively. The price-consistent models (5.6) and (5.7) are labeled *-PC.mod

and *-PCa.mod. The diagonalization techniques are also implemented in AMPL. The Gauss-

Jacobi iteration is identified by *-GJ.mod and the Gauss-Seidel iteration by *-GS.mod.

The NCP smoothing technique of [32] is identified by the addition of *-NCPt.mod.
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6.1.1 Randomly Generated EPECs

Randomly generated test problems are usually a poor substitute for numerical experi-

ments. However, the fact that solving EPECs is a relatively new area means there are few

realistic test problems. Thus, in order to demonstrate the efficiency of our approach on

medium-sized problems, we decided to include results on randomly generated problems.

We have written a random EPEC generator in matlab that generates a random EPEC

instance and writes the data to an AMPL file. Each leader is a quadratic program with

equilibrium constraints (QPEC) and follows ideas from [12]. We note that [32] has a

more sophisticated generator that follows ideas from [14]. Each leader i = 1, . . . , k has

variables xi ∈ Rn, where we assume for simplicity that all leaders have the same number

of variables. Leader i’s problem is the QPEC

minimize
xi≥0,y,s

1
2
xTGix+ gTi x

subject to bi − Aixi ≥ 0

Nx+My + q = s

0 ≤ y ⊥ s ≥ 0,

where the data for leader i is given by the following randomly generated vectors and

matrices: gi, the objective gradient; Gi, the objective Hessian, a positive definite nk×nk
matrix; Ai, the p × n constraint matrix on the controls xi; and bi, a random vector for

which bi−Aie ≥ 0. The data for the follower is given byN , anm×nk matrix; M , anm×m
diagonally dominant matrix; and the vector q. These problems satisfy Assumptions [A1]

and [A2], so a price-consistent version can be generated, but the problem is not completely

separable.

The data is generated randomly from a uniform (0, 1) distribution and is scaled and

shifted to lie in a user-defined interval. The generated problems are sparse so that large-

scale EPECs can be generated and solved. The AMPL model files are EPEC-*.mod. We

have generated three datasets, each containing ten instances. The characteristics of each

dataset are shown in Table 1. Note that the data is deliberately output in single precision

because, in our experience, this heuristic usually increases degeneracy.

6.1.2 Academic Test Problems

ex-001 is a small EPEC having an equilibrium point. Assumptions [A1] and [A2] are

satisfied by this problem, so price-consistent formulations exist. The AMPL models are

ex-001-*.mod.

example-4 is a small EPEC from [27], similar to ex-001 but designed to illustrate a

situation where each Stackelberg game has a solution but no solution exists for the multi-

leader-common-follower game. In particular, this problem is infeasible. Moreover, it
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Table 1: Details of Randomly Generated Datasets

Datasets

Parameter 01–10 11–20 21–30

Number of leaders, l 2 2 4

Number of leader constraints, p 4 8 8

Number of follower variables, m 16 32 32

Number of leader variables, n 8 16 16

Coefficient range of Ai [−4, 4] [−4, 4] [−4, 4]

Coefficient range of N [0, 8] [0, 8] [0, 8]

Coefficient range of b [0, 8] [0, 8] [0, 8]

Coefficient range of gi [−6, 6] [−6, 6] [−6, 6]

Coefficient range of q [−4, 4] [−4, 4] [−4, 4]

Density of G 0.2 0.2 0.05

Density of Ai 0.4 0.4 0.2

Density of N 0.2 0.2 0.1

Density of M 0.2 0.2 0.1

violates Assumption [A2], so there is no square price-consistent model. The AMPL models

are ex-4-*.mod.

outrata3 is an EPEC generated from the MPEC models in [15, 26]. The control variables

from all leaders enter the lower-level problem by averaging over the leaders. This trick

ensures that the EPEC does not separate into individual MPECs. All Stackelberg players

have the same constraints but different objective functions, and the problem violates

Assumption [A2]. The AMPL models are outrata3-*.mod.

outrata4 is derived from outrata3 so that the objective functions satisfy Assumption

[A2]. A price-consistent solution to this model exists. The AMPL models are contained in

outrata4-*.mod.

6.1.3 Electricity Market Models

This model is an electric power market example from [27]. It has two electricity firms

(leaders) competing in a market, an arbitrager (follower) that exploits the price differential

between regions, and an independent system operator (ISO). Unlike the formulation in

[27], however, we enforce the response of the followers to be identical for all leaders.

Each leader maximizes profit subject to capacity constraints, the arbitrager’s optimal-

ity conditions, and a market clearing condition. This optimization problem is an MPEC.

The competition between leaders gives rise to a complementarity problem obtained by
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Figure 2: Network topology of electric-3.dat

writing down the strong stationarity conditions for each leader, the ISO’s optimality con-

ditions, and the market clearing condition.

The models are denoted by electric-*.mod. There are three data instances. The

first, electric-1.dat is the small 3-node example from [27]. Problem electric-2.dat is

another small 3-node example. The data for electric-3.dat is a larger 14-node example

derived from real data of the PJM region [4]. The network of electric-3.dat is shown in

Figure 2. The 14-node example results in a game with approximately 150 constraints and

160 variables, making this the largest EPEC solved to date. Price-consistent formulations

do not exist for these problems because the objective functions of the leaders violate

Assumption [A2].

6.2 Comparison of EPEC Solution Approaches

The different formulations give rise to problems of differing size, which are summarized in

Tables 2 and 3. Each triple in these tables shows the number of variables, the number of

constraints, and the number of complementarity conditions after AMPL’s presolve, which

may eliminate variables and constraints. Models PC and PCa were run without AMPL’s

presolve, because it can destroy the square structure. For the random problems, we set

option presolve eps 1E-14 to avoid error messages from AMPL’s presolve.

The benefit of the diagonalization techniques is that they do not require the strong

stationarity conditions to be written as AMPL models, a process that is potentially error

prone because the gradients and Jacobians need to be computed by hand for each MPEC.

In addition, the MPEC problems solved are much smaller than the entire EPEC. On the

other hand, each sweep of a diagonalization technique solves k MPECs.
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Table 2: Test Problem Sizes for Different Formulations

Formulation

Problem NCP NCPa MPEC NLP

ex-001 12/ 14/ 6 14/ 16/ 6 14/ 16/ 6 12/ 8/-

example-4 14/ 16/ 10 16/ 18/ 10 15/ 16/ 9 16/ 8/-

outrata3 81/105/ 56 81/ 105/ 56 80/ 92/ 44 84/ 52/-

outrata4 80/104/ 56 80/ 104/ 56 80/ 92/ 40 84/ 52/-

electric-1 153/180/110 228/ 255/110 165/168/ 86 225/117/-

electric-2 157/182/114 232/ 257/114 169/170/ 90 229/118/-

electric-3 734/806/560 1022/1094/560 806/806/488 990/502/-

random-[01-10] 193/199/ 76 204/ 231/ 97 193/199/ 76 208/120/-

random-[11-20] 375/379/137 393/ 443/183 375/379/137 416/240/-

random-[21-30] 567/494/112 592/ 642/235 567/494/112 750/472/-

We use filterMPEC [15, 10], a sequential quadratic programming (SQP) method

adapted to solving MPECs to solve the AMPL models *-MPEC.mod, *-NCP.mod, *-NCPa.mod

and *-NLP.mod. In addition, we use the NCP solver PATH [5, 8], a generalized Newton

method that solves a linear complementarity problem to compute the direction, for the

price-consistent models. We also experimented with using PATH to solve the other NCP

formulations, but our experience with these nonsquare and degenerate NCPs was rather

disappointing.

Table 3: Test Problem Sizes for Different Formulations

Formulation

Problem NCP(t) PC PCa GJ/GS

ex-001 12/ 14/ 6 8/ 8/ 3 8/ 8/ 3 3/ 2/ 1

example-4 14/ 16/ 10 n/a n/a 3/ 2/ 1

outrata3 81/105/ 56 n/a n/a 9/ 8/ 4

outrata4 80/104/ 52 28/ 28/ 16 28/ 28/ 16 8/ 7/ 4

electric-1 153/146/ 74 n/a n/a 48/ 32/12

electric-2 157/148/ 78 n/a n/a 48/ 32/12

electric-3 734/664/416 n/a n/a 230/171/72

random-[01-10] 187/219/107 136/136/ 72 136/136/ 72 29/ 19/13

random-[11-20] 371/435/211 272/272/144 272/272/144 55/ 39/23

random-[21-30] 639/824/375 352/352/192 352/352/192 70/ 31/ 6

Table 4 provides a comparison of iteration counts for the different solution approaches

for EPECs. For the NCP/MPEC/NLP formulations of Section 3 we report the number of
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major (SQP) iterations. For the price-consistent NCP formulations of Section 5 we count

the number of PATH’s major iterations (roughly equivalent to an SQP iteration). For the

sequential NCP approach we report the total number of major (SQP) iterations. Finally,

for the diagonalization methods we sum the average number of major iterations to solve

each MPEC during the Gauss-Jacobi or Gauss-Seidel process. We believe this average

provides an accurate picture of the relative performance of the diagonalization methods,

which solve smaller (single leader) subproblems. The iteration counts for the randomly

generated EPECs are averaged over the ten problem instances. Comparing CPU times

would have been problematic, because some of the algorithms are implemented as AMPL

scripts, which run significantly slower than Fortran or C. The tolerance of Gauss-Seidel

and Gauss-Jacobi were set to 10−6, and the relative tolerance of the NLP solver is 10−6.

The column headers in Table 4 refer to the problem name and the solution ap-

proach, where NCP, NCPa, MPEC, and NLP refer to formulations (4.1), (4.5), (4.6),

and (4.7), respectively; PC and PCa refer to the price-consistent formulations (5.6) and

(5.7); NCP(t) refers to the approach in [32] with the standard sequence of smoothing

parameters t = 1, 10−1, . . . , 10−6 (except that we may terminate early if the solution is

complementary); and GJ and GS refer to the Gauss-Jacobi and Gauss-Seidel method,

respectively.

Table 4: Comparison of Iteration Counts for EPEC Methods

Solution Methods

Problem NCP NCPa MPEC NLP NCP(t) GJ GS PC PCa

ex-001 1 3 1 1 17 2.3 2 2 2

example-4 7[I] 16[I] 10[I] 35[S] 80[I] 19.6[S] 18.6[S] n/a n/a

outrata3 40[I] 41[I] 22[I] 34 69[I] CYCLE CYCLE n/a n/a

outrata4 14 24 84 11 51 13.25 2 8 7

electric-1 32[I] 65[I] 28[I] 116[I] 55[I] CYCLE 3.5 n/a n/a

electric-2 8 32 13 7 32 105.5 52.0 n/a n/a

electric-3 48 47[I] 28 70[I] 36 1.0 1.0 n/a n/a

random[01-10] 114.4 27.1 13.4 2.1 690.6 16.5 11.6 8.4 8.2

random[11-20] 38.8 47.6 19.0 6.0 1083.5 62.1 35.9 11.3 9.2

random[21-30] 20.8 34.8 17.1 3.8 192.5 47.2 30.0 10.1 8.3

In Table 4, we tag solvers that converge to an infeasible solution with [I]. Cycling in

the Gauss-Jacobi method is indicated by CYCLE. Finally, solution to spurious stationary

points that are not strongly stationary is indicated by [S]. We note, that for example-4-*,

the NCP/MPEC approaches successfully detect infeasibility, while NLP and the diago-

nalization techniques converge to spurious stationary points where one or both players
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have trivial descent directions. Thus, even though Gauss-Seidel and Gauss-Jacobi con-

verge, the result is misleading because it does not correspond to a solution. This result

is not surprising because the underlying MPEC solver is not guaranteed to converge to

strongly stationary points. Currently, no MPEC solver guarantees strong stationarity

under reasonable assumptions.

On the other hand, Gauss-Seidel is the only solver that finds a feasible point for

electric-1, while all other solvers fail to find a feasible point. In our view, these exam-

ples illustrate the need for alternative models and solution methodologies to solve these

challenging optimization problems.

6.2.1 Comparing the Performance of the Solvers

Regarding the performance of the different solvers and formulations, there appears to be

no clear overall winner, though the NLP approach is often the fastest. In particular, for

the randomly generated problems, the NLP solver can be orders of magnitude faster than

the other approaches.

We also note that the price-consistent formulations are very competitive when they

exist and have a solution. This result indicates that more research is needed to identify

robust formulations and solution tools for EPECs. A related open question concerns the

“correct” formulation and presolve for NCPs. A bad formulation can often hide structure

such as skew-symmetry that PATH can exploit during the solution.

When we compare the direct NCP approach (4.5) with the sequential NCP(t) ap-

proach, we observe that there is no benefit in smoothing the NCP formulation. The

direct approach is typically an order of magnitude faster than the sequential approach.

Contrary to intuition, the sequential NCP approach does not benefit from warm starts

(with the exception of electric-3): each NCP takes a similar number of iterations as

t is reduced. This observation is consistent with the situation in MPECs, where SQP

methods are much faster than sequential relaxation approaches that solve one NLP per

iteration for a decreasing sequence of regularization parameters. In our view, relaxation

approaches are best used in conjunction with inexact solves, such as in the context of

interior-point methods [16, 28].

6.2.2 Comparing the Solutions Obtained by the Solvers

We have also compared the primal solutions for each of the leaders in an effort to determine

whether the different solvers converge to a similar solution. For the first two examples,

ex-001 and example-4, all solvers (except for the diagonalization approaches and NLP)

obtain the same solution. However, for some of the remaining problems, the nonconvexity

of EPECs produces different solutions.
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outrata3: only NLP converges to a strongly stationary point. NCP and NCP(t) obtain

nearly feasible solutions (to within 10−5). Gauss-Seidel and Gauss-Jacobi cycle without

finding a stationary point.

outrata4: all solvers converge to strongly stationary points. However, all solutions dif-

fer. This problem is highly nonconvex, and the stationary points are at best local Nash

equilibria.

electric-1: only Gauss-Seidel converges to a strongly stationary solution. Gauss-Jacobi

enters a cycle that appears to be close to a stationary point. NLP is the only other solver

that gets close (10−2) to feasibility.

electric-2: all solvers converge to a stationary point. MPEC, NLP, GS, and GJ converge

to a solution with the same revenue for the leaders. However, NCP(t) is able to find a

stationary point that improves the revenue of both leaders.

electric-3: NCP, MPEC, NCP(t), GS, and GJ converge to the trivial solution (gen-

eration, wheeling, and sales are all zero), while NLP and NCPa fail to find a feasible

point.

random Of the 30 random problems, only two produce the same solution for all solvers.

In 29 instances, GS, GJ, PC, PCa, and NLP converge to the same solution, while the

other solvers find alternative solutions.

Our experience demonstrates the value of different solution approaches. In particular,

the NLP and the price-consistent approaches are valuable alternatives to the standard

Gauss-Seidel/Jacobi iterations. Different approaches allow us to detect multiple solutions

and infeasibility.

7 Conclusions

We have presented a characterization of the solution set to multi-leader-common-follower

games or EPECs and two novel approaches for solving them. The first approach is based

on the strong stationarity conditions of each leader, and we derive a family of NCP, NLP,

and MPEC formulations. The second approach imposes an additional restriction, called

price consistency, that results in a square nonlinear complementarity problem. Both

approaches allow the use of standard nonlinear optimization software to be extended to

EPECs. In both approaches, the EPEC is solved by a single optimization problem, unlike

traditional approaches that solve a sequence of related optimization problems.

We provide numerical results demonstrating that our new approaches are competitive

with existing methods in terms of both robustness and efficiency. The new NLP/NCP
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based approaches presented here provide a useful alternative to traditional diagonaliza-

tion techniques. In particular, the NLP and the price-consistent formulations can be

competitive with diagonalization techniques.

A number of important open research questions remain. For example, all solution

techniques for EPEC rely on efficient and robust MPEC solvers. To our knowledge,

however, no MPEC solver can guarantee convergence to strongly stationary points under

reasonable conditions. Another open question is how to formulate and presolve NCPs,

MPECs, and EPECs so that the solvers can take advantage of underlying structure such

as skew symmetry.
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