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Solving multiobjective optimization problems with decision

uncertainty: an interactive approach

Abstract

We propose an interactive approach to support a decision maker to find a most preferred ro-
bust solution to multiobjective optimization problems with decision uncertainty. A new robustness
measure that is understandable for the decision maker is incorporated as an additional objective in
the problem formulation. The proposed interactive approach utilizes elements of the synchronous
NIMBUS method and is aimed at supporting the decision maker to consider the objective function
values and the robustness of a solution simultaneously. In the interactive approach, we offer differ-
ent alternatives for the decision maker to express her/his preferences related to the robustness of
a solution. To consolidate the interactive approach, we tailor a visualization to illustrate both the
objective function values and the robustness of a solution. We demonstrate the advantages of the
interactive approach by solving example problems.

Keywords: Multiple criteria decision making, Robust solutions, Interactive methods, Handling
uncertainties, NIMBUS, Robustness measure.

1 Introduction

Practical optimization problems often involve multiple conflicting objectives. For these problems, there
does not exist a single optimal solution. Instead, there is a set of mathematically equally good Pareto
optimal solutions. A solution is Pareto optimal, if none of the objective function values can be improved
without impairing at least one of the others. Typically, a decision maker (DM) who is an expert in the
problem domain is interested in a single Pareto optimal solution depending on her/his preferences [6]
and can be assumed to provide this preference information.

In optimization, uncertainty can originate from different sources and be reflected in different elements
of the problems such as decision variables and parameters in objectives or constraints [30]. For example,
in portfolio optimization, uncertain future developments can be reflected as parameters in the objective
functions as in [21]. Furthermore, uncertainty from possible changes on government policy can be
reflected in constraints as in [13] and asset classes cannot be held exactly as planned due to for example
change of the regulations can be reflected as uncertainty in decision variables.

In conventional multiobjective optimization methods, the involvement of uncertainty in the problems
is usually ignored. As a result, the immunity to uncertainty which we call robustness of solutions is not
considered. However, the uncertainty can render the optimized solutions ineffective with undesirable
and unexpected degradation on the objective function values. Thus, the consideration on robustness of
solutions is as relevant as that of multiple objectives for practical problems.

When robustness is considered, a multiobjective optimization method has to find Pareto optimal
solutions without knowing the behavior of the uncertain data exactly. Consequently, a DM has to
understand the consequences of the involved uncertainty in addition to considering multiple conflicting
objectives simultaneously. In addition, the DM also needs to learn the possible trade-off between the
objective function values and robustness.

In recent years, different approaches have been developed sharing the common goal of identifying
solutions both with respect to multiple conflicting objectives and being sufficiently immune to the uncer-
tainty (see e.g., [2], [9], and [29]). However, in this paper, we do not assume the availability of probability
distribution information as in [2] because such information is not always available. On the other hand,
we do not expect any deep understanding on the problem from the DM to judge a fuzzy membership as
in [29]. Instead, we aim at supporting the DM to learn about the problem, its attainable solutions, and
the consequences of uncertainty and eventually find a most preferred solution.

Different multiobjective optimization methods (see e.g., [17], [26] and [27]), can be classified into
a priori, a posteriori, and interactive methods (see e.g., [17]). Interactive methods has demonstrated
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advantages in supporting a DM to iteratively find a most preferred solution. With interactive methods,
the DM does not need to know her/his preferences before knowing the attainable solutions as in so
called a priori methods. (S)he is not expected to make a choice among a (large) set of solutions as in
a posteriori methods which can be cognitively challenging. Instead, the DM guides the solution process
by specifying her/his preferences in each iteration based on a given Pareto optimal solution. During this
process, the DM is provided the opportunity to learn about the problem and its attainable solutions.
The possibility of learning demonstrates strong potential for us to utilize to achieve the aim. Thus, we
concentrate on exploiting interactive methods to support the DM to make a well-informed decision.

As mentioned before, uncertainty can be reflected in different elements of a multiobjective opti-
mization problem. For problems with parameter uncertainty, different so-called robust Pareto optimal
solutions (see summary in [14] and [30]) have been defined and some solution methods have been pro-
posed in [5] and [9]. There have been also attempts to support the DM with interactive methods e.g., in
[13] and [21]. We concentrate on decision uncertainty [10] in this paper because of the lack of research
efforts in supporting the DM to find a most preferred solution for this type of problems.

By incorporation of robustness, we mean the analysis on the consequences of decision uncertainty in
the objective function values. In the literature, there exist at least three different strategies to incorporate
robustness in solving problems with decision uncertainty, but none of them concentrate on supporting
the DM. The first type of strategy is to combine additional objectives, which quantify the robustness of
a solution, with the original objectives as in [1] and [11]. The changes in the objective function values
due to the uncertainty are optimized simultaneously with the original objectives to compute a set of
solutions. From these solutions, the DM is expected to select one based on her/his preferences.

Second, problems with decision uncertainty can be transformed to deterministic ones by modifying the
objectives. In [10], the concept of regularization robustness is extended to multiobjective optimization
problems to derive a regularized robust counterpart of the uncertain problem. In [8], the original objective
functions are replaced by the so-called mean effective objective functions. In [16] and [28], the original
objective functions are replaced by their approximated mean and variance functions.

Third, a robustness measure can be used as an additional constraint as in [8], [12] and [15] where only
solutions whose measured robustness satisfies predefined thresholds are considered feasible. Alternatively,
a set of Pareto optimal or near-Pareto-optimal solutions can be compared based on their measured
robustness as in [3] and [25].

Even though the first type of strategy allows the DM to consider multiple objectives and robustness
simultaneously, additional objective functions can bring additional cognitive load to the DM. For example,
when the deviation of the value of each objective function is combined with the original objectives as in
[1], the DM has to consider double amount of objectives simultaneously. Thus, the amount of additional
objective functions should be minimized. To support the DM to make a well-informed decision, the
information exchange in the interactive solution process should be understandable, i.e., (s)he should
understand the provided information and can express her/his preferences conveniently. So the DM
should be informed on the objective function values during the solution process. For this purpose, the
original objective functions should be preserved. Thus, the second type of strategy is not well fitted for
interactive methods. In addition, robustness measure as a constraint as in the third type of strategy
does not provide the opportunity for the DM to consider it simultaneously with the objectives and (s)he
cannot directly specify her/his preferences. In addition, robustness measure as such should have an
understandable meaning to the DM. Thus, with the focus on supporting the DM to learn about the
problem and the consequences of uncertainty, we need further developments.

Motivated by the gaps in the literature, we quantify the robustness of solutions with a single un-
derstandable robustness measure to capture the consequences of decision uncertainty in the multiple
objectives in the problem. Together with the original multiple objectives, we add the robustness mea-
sure as an additional objective to give the DM the opportunity of considering robustness and objective
function values simultaneously and, thus, balancing between robustness and desirable objective function
values. Our goal is not to develop a totally new interactive method but to enhance the existing ones
when decision uncertainty is involved in the problem. As an example, we utilize elements of synchronous
NIMBUS [20]. But our approach can also be used in for example reference point-based methods [32].

To support the DM to learn about the consequences of the uncertainty during an interactive solution
process, a robustness measure should include the following desired properties: 1. The numerical value
should reflect how the uncertainties in decision variables can affect the objective function values. Based
on the value, the DM can consider how ’robust’ a solution is. 2. With the computed numerical value,
the DM should be able to specify her/his preferences conveniently. Based on these desired properties,
we first identify and analyze the robustness measures in the literature that are closest to them. Then
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we propose an alternative robustness measure which meets both of the desired properties, and can thus
better support the DM in an interactive approach.

The rest of the paper is organized as follows: in Section 2, we present some basic concepts, introduce
the NIMBUS method briefly, and discuss robustness measures that are closest to the desired properties.
Then in Section 3, we present a robustness measure that can be understandable for the DM and propose
the interactive approach, which is followed by numerical examples where we demonstrate the advantages
of our approach by solving two problems in Section 4. Finally, we conclude the paper in Section 5.

2 Background

2.1 Multiobjective optimization and decision uncertainty

Deterministic multiobjective optimization problems are defined in the form

minimize or maximize {f1(x), ..., fk(x)}
subject to x ∈ S,

(1)

with objective functions (objectives) fi : S → R to be simultaneously optimized, where 1 ≤ i ≤ k and
k ≥ 2. The decision vectors (which consist of decision variables as their components) x = (x1, ..., xn)T

belong to the nonempty feasible region S ⊂ R
n. Objective vectors f(x) = (f1(x), ..., fk(x))T consist of

objective function values which are the images of the decision vectors. The image of the feasible region
is called the feasible objective region Z = f(S). If all the objective functions are minimized, a solution
x̄ is said to be Pareto optimal if there does not exist another solution x ∈ S such that fi(x) ≤ fi(x̄) for
all i = 1, ..., k and the inequality is strict for at least one index j. If some of the objectives fi is to be
maximized, it is equivalent to minimize −fi.

For (1), the set of Pareto optimal solutions usually contains more than one elements. Mathematically,
Pareto optimal solutions are incomparable. The DM is expected to identify the most preferred one
among them as the final solution. Only one DM is assumed to be involved in the solution process in
this paper. It is often useful for the DM to know the ranges of the objective function values in the
set of Pareto optimal solutions. The ideal objective vector z∗ = (z∗1 , ...., z

∗
k)T and the nadir objective

vector znad = (znad1 , ..., znadk )T give the bounds of the objective function values. The ideal objective
vector is formed by the individual optima of each objective function in the feasible region. The utopian
objective vector z∗∗, which is strictly better than z∗, is defined for computational reasons. In practice,
z∗∗i is set as z∗i − ǫ for i = 1, ..., k if fi is to be minimized, where ǫ > 0 is a small scalar. The nadir
objective vector, which represents the worst objective function values, can be approximated for example
by a so-called pay-off table (see e.g., [17] for further details). If the objective function values are with
different magnitudes, the nadir and utopian objective vectors can be used to normalize them.

In this paper, we consider multiobjective optimization problems with decision uncertainty. By decision
uncertainty, we mean that a computed solution, which we refer to as the base solution xb, cannot be
guaranteed to be implemented exactly. Instead, the implementation can involve small perturbations
∆x, i.e., the implemented solution is from the set {xb + ∆x|∆x ∈ Ω} where Ω is the set of all possible
perturbations in the neighborhood of the base solution. We assume that Ω is a hyperbox and 0 ∈ Ω,
which does not have to be sysmetric. We refer to the corresponding objective vector f(xb) as the
base objective vector whose components are the base objective function values. The type of uncertain
multiobjective optimization problems considered is of the form:

minimize or maximize {f1(x + ∆x), ..., fk(x + ∆x)}
subject to x ∈ S

x + ∆x ∈ S, for all ∆x ∈ Ω.

(2)

In the formulation, x is the decision vector and ∆x is the unknown possible perturbation within the
hyperbox Ω. To solve this problem, we consider all the possible values ∆x ∈ Ω and search for a most
satisfactory base solution xb for the DM. By a most satisfactory base solution, we mean that the DM is
satisfied with the base objective function values (f1(xb), ..., fk(xb))T and the objective function values
when perturbations occur, i.e., (f1(xb + ∆x), ..., fk(xb + ∆x))T for all ∆x ∈ Ω.

2.2 NIMBUS

As mentioned in Section 1, we utilize elements of the NIMBUS method to build our interactive approach.
As mentioned in [20], one can always derive a reference point from the preference information utilized in
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NIMBUS, and thus, our approach to be proposed can also be used with reference point based methods. In
NIMBUS, given the current Pareto optimal solution xc, the DM directs the interactive solution process
by specifying preferences as a classification of the objectives. The classification indicates how the current
objective function values f(xc) should change to be more desired by the DM. The DM can classify the
objective functions into up to five different classes including:

I< for those to be improved (i.e., decreased in case of minimizing, increased in case of maximizing),

I≤ for those to be improved until some desired aspiration level ẑi,

I= for those that are satisfactory at their current level,

I≥ for those that may be impaired until a bound ǫi, and

I♦ for those that are temporarily allowed to change freely.

Each objective is assigned to one of the classes described above. Some objectives must be allowed
to be impaired to enable improvements in others because of the nature of the Pareto optimality. If
aspiration levels or bounds are used, the DM is expected to provide them.

In the NIMBUS method, new Pareto optimal solutions are computed by solving a scalarized problem,
which includes preference information given by the DM in the classifications. In this paper, we use one of
the four scalarized problems of the synchronous NIMBUS method [20], which has the form (for minimizing
the objectives):

minimize max
i∈I<

j∈I≤

{wi(fi(x) − z∗i ), wj(fj(x) − ẑj)} + ρ

k
∑

i=1

wifi(x)

subject to x ∈ S

fi(x) ≤ fi(x
c) for all i ∈ I< ∪ I≤ ∪ I=,

fi(x) ≤ ǫi for all i ∈ I≥,

(3)

where xc is the current Pareto optimal solution, z∗ is the ideal objective vector, ẑi are the aspiration levels
for the objective functions in I≤, ǫi are the bounds of allowed impairment for the objective functions in
I≥, ρ > 0 is a small scalar bounding the trade-offs, and the coefficients wi (1 ≤ i ≤ k) are constants
used for scaling the objectives. The value of wi is based on the estimated ranges, i.e., 1

znad
i

−z∗∗
i

, for

normalizing the objective function values.
The DM can compare the two Pareto optimal solutions before and after the classification, so that

(s)he can learn how attainable her/his desired changes were. For more information about the method
and the proof of Pareto optimality, see [20]. In addition, the NIMBUS method provides the DM an
opportunity to generate intermediate solutions and to save interesting solutions during the iterative
solution process. The DM can return to a saved solution any time or select one as the most preferred
solution from the set of saved solutions.

We shall return to the NIMBUS method and discuss our interactive approach for solving multiob-
jective optimization problems with decision uncertainty in Section 3. In what follows, we discuss the
robustness measures from the literature.

2.3 Robustness measures from the literature

As discussed in Section 1, objective functions are assumed to have a meaning to the DM and, thus,
the original objective functions should be preserved to allow the DM to consider their values together
with the robustness simultaneously. Furthermore, the DM should also be able to learn their possible
trade-offs. For this purpose, naturally, a robustness measure should be used as an additional objective to
the problem formulation, i.e., we solve a multiobjective optimization problem by combining the original
objectives and a robustness measure as its objectives. By employing an additional objective, the DM
can consider balancing between robustness and objective function values.

We have identified three robustness measures in the literature that are closest to the desired properties
to be used in the interactive solution process as listed in the introduction. These measures quantify the
robustness of a base solution and were originally used as additional constraints, but they can be used as
an additional objective as well.
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In [8], the measure involves sampling and the difference between the base objective vector and the
average function values of samples in the neighborhood of a base solution is used to measure its robustness:

R1(xb) =
‖fp(x) − f(xb)‖

‖f(xb)‖
, (4)

where ‖ · ‖ is the Euclidean norm. The so-called mean effective objective vector fp(x) consists of the
average objective function values of the samples in the neighborhood. According to the definition, the
smaller the value of R1(xb) is, the more robust the solution is. We can adopt this measure as an additional
objective to be minimized.

In [11], a measure, which is also based on studying samples in the neighborhood of a base solution,
is defined for each objective function to capture robustness:

fR2

i (xb) =
1

H

H
∑

h=1

|f̃i(x
h) − f̃i(x

b)|

‖xh − xb‖
, (5)

where xh is a sample and H is the total number of samples. The notation f̃i is used to indicate that the
objective function values are normalized within their ideal and nadir values. This measure studies how
much the objective function value changes relative to the perturbation of a base solution. Based on the
robustness measure of each objective function, so-called global robustness measures which include all k
objectives are defined as R2(xb) = max

i=1,....,k
fR2

i (xb), and R2(xb) = 1
k

∑k

i=1 f
R2

i (xb). We can adopt either

as an additional objective to be minimized.
In [12] and [15], given a base solution and the maximum acceptable changes from the base objective

function values, the radius of the smallest hyper-sphere centered on the base solution is calculated to
measure its robustness by solving a single-objective optimization problem:

minimize ‖∆x‖p
subject to max( |∆fi|

∆f0,i
) = 1.

(6)

This measure studies how much perturbation, i.e., the optimal value of ∆x, is allowed in the base
solution for the objective function values to be acceptable. The constraint, where ∆fi is a function of
∆x, states that the maximum change in the objective function values has to be equal to the pre-specified
acceptable level ∆f0,i. The optimized objective function value of (6) is the value of the robustness
measure, which we refer to as R3(xb). A bigger value R3(xb) means that the more robust the base
solution is. We can adopt this measure as an additional objective to be maximized.

Table 1: Summary of different robustness measures

measures R1(xb) R2(xb) R3(xb)

parameters Ω, H Ω, H lower and upper bounds of ∆x, value of ∆f0,i
randomness involved random random exact and stable

We summarize the characteristics of the three measures in Table 1. The required parameters to com-
pute the robustness measures are presented in the first row. The randomness involved in the computed
values of the robustness measures is presented in the second row.

The three measures are based on the study of the neighborhood of a base solution and they require
some parameters. As shown in the table, the size of the neighborhood, which is represented by Ω in (2),
is commonly required. For measures R1(xb) and R2(xb), the number of samples (H) in the neighborhood
is needed. There were no clear guidelines how these parameters should be set in the papers where the
measures were originally proposed. For R3(xb), the acceptable levels of change from base objective
function values ∆f0,i are required. This parameter is said to be set by the user, which can be understood
as the DM in our context.

Unfortunately, all the existing robustness measures have some shortcomings. As can be seen in
the definitions of the measures, the numerical values do not have a direct meaning on how robust a
solution is for the DM except the intuitive indication based on if the measure should be minimized
or maximized. With the numerical values, the DM cannot formulate and specify her/his preferences
conveniently during the interactive solution process. In the interactive solution process, the DM can
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only specify her/his preferences on the measures based on this intuition which does not help the DM to
formulate her/his preferences clearly. The purpose of using an additional objective to incorporate the
robustness is to support the DM to find a most preferred solution by simultaneously considering the
base objective function values and the robustness of a solution. We can summarize that none of the
robustness measures meets our needs well. To communicate the meaning of robustness to the DM in a
more understandable way and to allow the DM to formulate and specify preferences conveniently, it is
desirable to formulate a new robustness measure. We propose such a measure in the next section.

3 Interactive approach for solving problems with decision un-

certainty

3.1 A new robustness measure

As discussed before, we incorporate a robustness measure to the problem formulation by adding an
additional objective. None of the measures identified from the literature fully meets the desired properties
to be incorporated in an interactive solution process. In this section, we first describe a new robustness
measure which is suitable to be used in an interactive approach. Then we propose the interactive
approach tailored to solve multiobjective optimization problems with decision uncertainty.

We propose a robustness measure which can deliver the meaning of robustness to the DM in a more
understandable way. Our robustness measure investigates the ranges of objective function values in the
neighborhood Ω of a base solution xb. The existence of the ranges of the objective function values is a
consequence of the uncertainty in the decision variables. In the form of the ranges, the DM can get the
information on how the objective function values change. In other words, the ranges characterized by
best and worst objective function values describe the variations due to the possible perturbations in the
decision variables. For an objective function fi, the range of its value in the neighborhood can be defined
as ri(x

b) = max∆x∈Ω fi(x
b + ∆x) − min∆x∈Ω fi(x

b + ∆x). We refer to these ranges as ri ranges. As
discussed before, we want to introduce only one additional objective not to introduce too much cognitive
load. We can use the maximum range, i.e., the upper bound, of all objective functions to measure the
robustness of a solution as an objective to be minimized. So our robustness measure is:

R4(xb) = maxi[
ri(x

b)

znad
i

−z∗∗
i

], i = 1, ..., k, (7)

where the lower and upper bounds of the neighborhood Ω are provided by the DM when the problem is
formulated. As an expert in the application domain, the DM is more likely to know reasonable bounds
than others. When compared to the robustness measures discussed in Section 2, Ω has the same meaning
as in the measures R1(xb) and R2(xb). In this measure, the lower and upper bounds do not have to be
symmetric around the base solution.

As can be seen in (7), we need to solve 2k additional single-objective optimization problems to
compute the value. In principle, this can provide the DM exact measurements of the ri ranges. If
approximated ri ranges can be accepted by the DM, similar sampling techniques as presented in [8] and
[11] for measures R1(xb) and R2(xb) can be applied. For the rest of the paper, we refer to fi as an active
objective function if i gives the maximum for R4(xb) in (7).

The computed value of R4(xb) is the percentage of the ri range with respect to the ideal and nadir
values of the active objective function. With the help of the ideal and nadir values, this numerical value
can tell the DM how much the objective function varies in its own range, which is a concrete expression
on the consequences of the uncertainty. The DM can also learn without much effort that the ri ranges of
the other objective functions are smaller than this value. In addition, by computing the value of R4(xb),
the ri ranges of all the objective function values in the neighborhood are also available, which we will
utilize to support the DM in the interactive solution process. We will discuss how we can utilize the
ri ranges and develop an appropriate visualization to improve the understandability of the robustness
measure in the next subsection where we discuss the proposed interactive approach.

3.2 An interactive approach for solving multiobjective optimization prob-

lems with decision uncertainty

We incorporate robustness into the problem formulation (1) by adding the measure R4(xb) as an ad-
ditional objective. In [31], Pareto optimality to the original problem of a Pareto optimal solution to a
problem formulated with an additional objective is summarized. A solution remains Pareto optimal or
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not depending on how the objectives conflict with one another in the new problem with an additional
objective. So whether the robust solutions found by our approach are Pareto optimal to the original
problem depends on the problem itself and the consequences of uncertainty. However, as argued in [4],
the robustness of a solution and the corresponding values of the original objectives usually conflict with
each other. To gain robustness, sacrifices on the objective function values can be necessary. Furthermore,
by learning the trade-offs between the objective function values and robustness, it is a conscious choice
for the DM if objective function values are sacrificed.

As mentioned before, we build our interactive approach by utilizing the elements of the synchronous
NIMBUS method. We follow the interactive solution process of the NIMBUS method where the DM is
expected to specify her/his preferences by classifying the objective functions as described in Section 2.2.
Our goal is to support the DM to find a base solution with most satisfactory base objective function
values and objective function values when the perturbations occur. This involves differences from the
original NIMBUS method, in which the goal is to support the DM to find a most preferred Pareto optimal
solution. Because of the specific robustness consideration, we tailor some components of the NIMBUS
solution process to support the DM to consider the base objective function values and the robustness of
a solution simultaneously.

The numerical value of the robustness measure R4(xb) is used to capture the robustness of a base
solution. It is the percentage of the ri range of the active objective function for a base solution in its
given neighborhood within the range of that objective. With the information of ideal and nadir values,
the DM can combine the numerical value of R4(xb) and the ranges of the active objective function to
have a concrete understanding on the robustness of the solution.

Based on the definition of R4(xb), the ri ranges (in percentage) of other objective functions are
guaranteed to be smaller. This allows the DM to indirectly specify her/his preferences on the ri range of
a specific objective function by providing the desired value for R4(xb). By doing so, the DM has specified
the desired maximum ri ranges for all the original objective functions, in which the specific objective
function is included. The DM is more likely to learn about these facts without much cognitive effort
than learning a numerical value without a direct meaning on the consequences of decision uncertainty.
In addition, since the ri range of each objective function is naturally available with the computation of
R4(xb), we will utilize this information when we present a solution to the DM.

f2

f1

z ∗
1 znad

1

z ∗
2 znad

2

z c
2

z c
1

z c
2

z c
1

Figure 1: Original IND-NIMBUS visualization
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z ∗
1 znad

1

z ∗
2 znad

2

z c
2

z c
1

z c
2

z c
1

Figure 2: Visualization with robustness information

Visualization can be used to support the DM in studying the trade-offs between optimality and
robustness. To visually present a solution to the DM, we tailor a visualization method for presenting the
base objective function values and the robustness information simultaneously. An additional component
is added to one of the visualizations used in the IND-NIMBUS framework (see [18] and [23]). An example
of the visualization in IND-NIMBUS is shown in Figure 1 with two objective functions to be minimized.
Each objective function is visualized as a horizontal bar within the range of its ideal and nadir objective
values. The colored part of the bar illustrates the current objective function value zc

i , which starts from
the ideal value towards the nadir objective value. The DM can classify an objective function e.g., by
sliding the endpoint of the colored bar. Instead of adding an additional bar for the value of R4(xb), we
superimpose the ri ranges on top of the corresponding bars of the k (original) objective functions.

An example of the tailored visualization method is presented in Figure 2. The ri range of each
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objective function is presented as a gray shadow around the current base objective function value. The
ri range indicating the robustness of the current active objective function is highlighted with a frame
to inform the DM that (s)he should pay attention to it and can specify her/his preferences. When we
visualize a solution as a part of a solution process, the numerical values of the upper and lower bounds of
variation in each objective function value will be shown in the corresponding places of the gray shadow.
The value of the objective fk+1 will be shown in the upper right corner of the highlighted frame. This
visualization can further help the DM to understand the robustness of the base solution concretely
together with the value of R4(xb) because it can illustrate how the uncertainties in the decision variable
are reflected in each objective function.

With a solution presented in terms of the base objective function values and the ri ranges as in Figure
2, the DM can specify her/his preferences for a more desired solution. In the original NIMBUS method,
the DM is expected to classify all the objective functions and provide the aspiration levels and bounds
for the corresponding classes of objective functions. In our approach, the DM can choose to follow the
original NIMBUS method to classify the objective function for robustness in the same way as for the
original objective functions. Alternatively, the DM can also choose to classify the original objective
functions but specify lower and upper bounds of the ri range on the current active objective function.
In this case, we say that the DM chooses to adjust the ri range. Once the adjusted ri range has been
specified by the DM, we convert it as a NIMBUS classification by calculating the desired aspiration level.
We return later to this technical detail on converting an adjusted ri range to a proper classification later.

Compute a starting
 solution and present it

to the DM

DM: classify the k+1 objective 
functions 

DM: do you wish
 to  adjust the range of

 the current active objective 
function

 Visualize objective 
function values and 

robustness simultaneously

Solve (3) and present the solution
to the DM

DM: are you satisfied 
With the solution

Terminate

No

Yes

DM: adjust the range 
and classify other 

objectives 

Convert the range to 
a classification 

Yes

No

Figure 3: Flowchart of the interactive approach

With the tailored visualization and the multiple available ways of expressing the preferences on the
robustness of a solution, our interactive approach, as shown in the flowchart in Figure 3, starts from
computing an initial solution and presenting it to the DM with the tailored visualization. The multiple
ways to specify preferences on the robustness measure are available for the DM in the highlighted inter-
mediate step. Based on the specified preferences by the DM, we convert the preferences as classifications
if necessary, then compute a new solution by solving the scalarized problem (3) and present it to the DM.
If the DM is not satisfied with the solution, the solution process continues as in the original NIMBUS
method. In this way, the DM iteratively guides the solution process towards a most preferred robust
solution.

This interactive approach has four advantages which aim at providing better support to the DM in
the solution process. First, the meaning of the numerical value of the robustness measure R4(xb) is
understandable for the DM, because it is the percentage of maximum possible change in the objective
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function values with respect to the ideal and nadir values. Second, the ri range presented to the DM
provide an opportunity for the DM to observe and understand how the uncertainties in the decision
variables affect the objective function values, i.e., the consequences of uncertainty. In addition, the ri
range are presented together with the base objective function values. So the DM can consider both of
them at the same time. Third, we provide multiple alternatives for the DM to specify her/his preferences
concerning the robustness of a more desired solution. So in the solution process, the DM can choose a
comfortable way in each iteration of the solution process. Fourth, with the robustness measure incorpo-
rated as an addition objective function, the DM can find an acceptable balance between the robustness
and the objective function values of a solution and gain insights on how they are interdependent.

As mentioned before, the DM can classify all the objectives. If (s)he does so, we can proceed directly
by solving (3) for a new solution. Alternatively, the DM can pay special attention to the active objective
function and adjust the ri ranges. In this case, we need to convert the adjusted ri range to a NIMBUS
classification. The close relationship between the desirable aspiration level of an objective function and
the classification of it was discussed in [19] and [20]. Here we have fk+1 = R4(xb). Depending on the
adjusted ri range, we have five different types of conversion:

• The adjusted ri range is smaller than the current one: it means that the DM wishes to have a more
robust solution and fk+1 is classified as to be improved to an aspiration level, i.e., fk+1 ∈ I≤ with
a value ẑk+1, where ẑk+1 is the calculated aspiration level based on the adjusted ri range ;

• The adjusted ri range is greater than the current one: it means that the DM can accept a less
robust solution and fk+1 is classified as to be impaired until an upper bound, i.e., fk+1 ∈ I≥ with
a value ǫk+1, where ǫk+1 is the calculated bound based on the adjusted ri range in the same way
as for the aspiration level;

• The adjusted ri range is the same as the current one: it means that the DM wishes to have a
solution as robust as the current one and fk+1 is classified as fk+1 ∈ I=;

• The DM has adjusted the ri range to be 0: it means that the DM wishes to have a solution as
robust as possible and fk+1 is classified as fk+1 ∈ I<.

• The DM does not specify any adjustments for the ri range. This means that (s)he can accept any
value in fk+1. So fk+1 ∈ I♦.

After the conversion, we can use the resulting classification to compute a new solution for the DM.

4 Numerical results

4.1 River pollution problem

In this section, we illustrate the solution process of a multiobjective optimization problem with decision
uncertainty with the proposed interactive approach. The river pollution problem considered was orig-
inally presented in [22] as a deterministic problem. In the problem, a fishery and a city are polluting
water in a river. The city is located downstream from the fishery. Both the city and the fishery have
their own pollution treatment plants. We consider the following formulation:

maximize f1(x + ∆x) = 4.07 + 2.27(x1 + ∆x1)
maximize f2(x + ∆x) = 2.60 + 0.03(x1 + ∆x1) + 0.02(x2 + ∆x2) + 0.01

1.39−(x1+∆x1)2
+ 0.30

1.39−(x2+∆x2)2

maximize f3(x + ∆x) = 8.21 − 0.71
1.09−(x1+∆x1)2

minimize f4(x + ∆x) = −0.96 + 0.96
1.09−(x2+∆x2)2

minimize f5(x + ∆x) = R4(x)
subject to 0.3 ≤ x1, x2 ≤ 1.0,

for all ∆x1 ∈ [x1 − 0.1, x1 + 0.1] and ∆x2 ∈ [x2 − 0.1, x2 + 0.1],
(8)

where there are four original objectives and the fifth objective function represents robustness. The
decision variables x1 and x2 represent the proportional amount of biochemical oxygen demanding material
to be removed from water in the treatment plants after the fishery and the city, respectively. The more
biochemical oxygen demanding material is removed, the more the quality of water will improve. The
unknown possible perturbations are represented by ∆x1 and ∆x2 . The information on the neighborhood
near the base solution, i.e., lower and upper bounds of the perturbations, is provided by the DM. The
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first and second objective functions describe the quality of water after the fishery and after the city,
respectively, and the third objective function describes the percentage of return on investment at the
fishery. The fourth objective represents the addition of tax rate in the city. The fifth objective is
the robustness measure presented in (7). We consider uncertainties originating from the operations of
the pollution treatment plants. As a result, the amount of removed biochemical oxygen demanding
material can involve perturbations from the base values. Consequently, the objective function values
can be different from their base values. We solve this problem with the proposed interactive approach
interacting with a DM.

The individual optima of the original objectives were calculated to form the ideal objective vector z∗ =
(6.34, 3.45, 7.50, 0)T . The nadir objective vector was approximated as znad = (4.75, 2.85, 0.32, 9.70)T . To
get started, we set the ideal value of the robustness measure as 0, which means the perturbations of the
base solution do not affect the objective function value at all. We set the nadir value as 1, which indicates
that the ri range of the active objective function in the neighborhood is as large as the range between
the ideal and nadir values.

TA

ROI

WQ(C)

WQ(F)

0.0 9.97

0.32 7.5

2.85 3.44

4.75 6.34

0.36

1.4
0.75 3.18

6.46
6.945.16

3.08
3.223.01

5.95
6.175.72

Figure 4: Intial solution

TA

ROI

WQ(C)

WQ(F)

0.0 9.97

0.32 7.5

2.85 3.44

4.75 6.34

0.4

0.31
0.16 0.56

6.12
6.83.69

2.94
2.982.91

6.04
6.265.81

Figure 5: Iteration 1

Initialization: We first introduced our robustness measure to the DM in terms of what the value of
f5 means and what the ri ranges in the visualization mean. Then we computed and presented an initial
solution z0 = (5.95, 3.08, 6.46, 1.40, 0.36)T with the tailored visualization method to the DM as shown
in Figure 4. The initial solution was calculated as in the NIMBUS method.

In Figure 4, the bars present the water quality after the fishery WQ(F), water quality after the city
WQ(C), return on investment of the fishery (ROI), and the additional tax rate in the city (TA). The
colored part of a bar illustrates the current value of the corresponding objective (also given numerically)
accompanied by the ideal and nadir values at its endpoints. The ri range, where the values of its lower
and upper bounds are presented at the endpoints, is superimposed on top of the corresponding bar to
present how uncertainties in the solution can affect the objective function value. For the current active
objective function, we highlight its ri range and mark the current value of the robustness measure in red
on the upper right corner. As discussed before, the objective function value of f5 was not presented in its
own bar. Instead, we presented the ri ranges within the bars of the corresponding objective functions.
The DM was asked to choose a preferred way to express her preferences.

The DM chose to adjust the ri range of the current active objective function f2. With the adjusted
ri range, we calculated an aspiration level ǫ5 = 0.45 and converted it to a classification as allowing the
value of f5 to be impaired till 0.45. The adjusted ri range is represented as a broken line in the first
illustration of Figure 4. When considering the initial solution z0, the DM wanted to improve the quality
of water after the fishery slightly and reduce the additional tax rate to 2% in the city. At the same time,
the quality of water after the city was allowed to be impaired till 2.9 and the return on investment of the
fishery was also allowed to reduce till 6%. In the NIMBUS notation, the DM provided the classification
for iteration 1: I≤ = {f1, f4} with aspiration level ẑ1 = 5.8, and ẑ4 = 2; I≥ = {f2, f3, f5} with the
bounds ǫ2 = 2.9, ǫ3 = 6, and ǫ5 = 0.45. The aspiration levels and bounds are denoted by dots in Figure
4.

Iteration 1: Based on the classification, a new solution z1 = (6.04, 2.94, 6.12, 0.31, 0.40)T was cal-
culated by solving the scalarized problem (3) and presented to the DM as in Figure 5. Based on z1, the
DM could see that her preferences in iteration 1 were satisfied. However, she thought that better quality
of water after the city should be achieved at the same time of maintaining the same quality of water after
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the fishery at the current level. In addition, she wished to maintain the current value of the maximum
ri range, i.e., no change to the robustness. Keeping in mind that some objectives have to be impaired in
order to achieve better quality of water after the city, the DM allowed the return on investment of the
fishery to reduce to 6% and the additional tax rate in the city till 1%. In other words, the DM gave her
preference as: I≥ = {f3, f4} with bounds ǫ3 = 6, and ǫ4 = 1; I= = {f1, f5}; I≤ = {f2} with ẑ2 = 3.1.

TA

ROI

WQ(C)

WQ(F)

0.0 9.97

0.32 7.5

2.85 3.44

4.75 6.34

0.39

0.98
0.54 1.94

6.12
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3.03
3.142.97

6.04
6.265.81

Figure 6: Iteration 2
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3.04
3.142.97
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6.085.63

Figure 7: Iteration 3

Iteration 2: According to this classification, a new solution z2 = (6.04, 3.03, 6.12, 0.98, 0.39)T was
calculated and presented to the DM as in Figure 6. The DM was not satisfied and wanted to make a new
classification. Based on z2, the DM noticed that the additional tax rate in the city almost approached
her specified upper bound and she did not wish to have worse quality of water after the city. So she
decided to keep the current quality of water after the city. As an exploration of a more robust solution,
she wanted to reduce the percentage of the ri range of the active objective function to 0.3 and allow the
quality of water after the fishery to decrease to 5.8, return on investment of the fishery to 5.5% and the
additional tax rate in the city to increase till 2%. The DM’s classification in NIMBUS notation was:
I= = {f2}; I≤ = {f5} with aspiration level ẑ5 = 0.3; I≥ = {f1, f3, f4} with bounds ǫ1 = 5.8, ǫ3 = 5.5,
and ǫ4 = 2.

Iteration 3: Based on the classification, the new solution computed was z3 = (5.86, 3.04, 6.7, 1.04, 0.29)T

as visualized in Figure 7. The DM noticed that her preferences were not fully satisfied. So she tried with
another classification, i.e., she did not want to have worst quality of water after the city and wanted to
reduce the ri range of the active objective function to 0.25. She continued by allowing the water quality
after the fishery to be impaired till 5.8 and the return on investment of the fishery till 5.5%. The DM’s
classification was: I= = f4; I≤ = {f2, f5} with ẑ2 = 3.15, and ẑ5 = 0.25; I≥ = {f1, f3} with bounds
ǫ1 = 5.8, and ǫ3 = 5.5.
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WQ(C)

WQ(F)

0.0 9.97

0.32 7.5

2.85 3.44

4.75 6.34
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Figure 8: Iteration 4
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Figure 9: Final solution

Iteration 4: Based on this classification, z4 = (5.86, 3.04, 6.70, 1.04, 0.29)T was computed and vi-
sualized as in Figure 8. Based on z4, the DM noticed that the quality of water after the city did not
improve as she wanted and the ri range of the active function value did not reduce as she wished either.
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So she decided to accept the values of these two objectives. In addition, the return on investment of the
fishery approached the bound, but the quality of water after the fishery was much better than the value
she could accept. So she thought she could have a better return on investment by having a worse but
acceptable quality of water after the fishery. In order to guarantee the operation of the water treatment
plant in the city, thus maintaining the quality of water after the city, she decided to allow up to 2% of
additional tax in the city. In NIMBUS notation, the DM specified the classification to compute z5 as:
I= = {f2, f5}; I≤ = {f3} with an aspiration level ẑ3 = 6.2; I≥ = {f1, f4} with bounds ǫ1 = 5.5, and
ǫ4 = 2.

Termination: With the classification, z5 = (5.79, 3.04, 6.84, 1.06, 0.28)T was computed and pre-
sented to the DM as in Figure 9. The DM noticed that the values of return on investment and the
additional tax rate were better than she expected, but the quality of water after the fishery was already
on the worst acceptable value. At the same time, the quality of water after the city and the ri range of
the active objective function were maintained. So after this iteration, the DM decided to terminate the
solution process and accept z5 as the final solution.

During the solution process, the DM was able to understand the consequences of the uncertainty
via the robustness measure. Thus the final accepted solution offered a well-informed balance between
the base objective function values and the robustness. At the beginning of the solution process, the
DM chose to adjust the ri range of the active objective function because she felt it would be easier. In
the later iteration, she could directly classify f5. The DM noticed that the active objective function
changed. She assumed that by altering the ri range of the water quality after the city, the ri range of
that particular objective function would become worse. But she soon learned that the meaning of the
robustness measure specified value for the active objective function is actually an upper bound for the
ri ranges of all the four objectives.

As for the advantages mentioned in Section 3, the DM was able to understand the meaning of
the numerical value of the robustness measure. The simultaneously illustrated ri ranges and the base
objective function values helped her to consider both types of information together and then formulate
and specify her preferences. She can also easily specify preferences on the robustness of a more desired
solution. At the beginning of the solution process, she utilized the possibility to adjust the ri range to
get familiar and work with the robustness measure. By considering robustness as an objective function,
the DM learned how the robustness and base objective function values affect each other. Consequently,
she utilized this knowledge to find a satisfactory balance between the robustness and the based objective
function values of the final solution she accepted.

4.2 Procurement contract selection with pricing optimization for a process

network

Next, we illustrate the application of our interactive approach by solving a problem in procurement
contract selection with pricing optimization for a process network. We utilize the optimization model
presented in [7] as the foundation and augment it with three additional objectives. In the model,
procurement contract selection and pricing analytics are combined for multi-period, multi-site tactical
production planning. The manufacturer needs to make two key decisions: to select procurement contracts
and to set selling prices for products. For the selection of procurement contracts, the manufacturer needs
to decide whether to sign or not a particular contract with a supplier for purchasing a type of raw material.
For setting the selling prices of final products, the manufacturer is assumed to use the price-response
model (see e.g., [24]).

The problem was modeled with a single profit-focused objective in [7]. In this paper, we consider three
additional objectives for environmental responsibilities and the maintenance of strategic competence of
the manufacturer. The additional objectives include: minimizing the environmental impact scores of
selected business partners (i.e., suppliers in this case), minimizing the pollution content emitted from
the production process, and maximizing the demand in the market for the main products. Both the pol-
lution content and environmental impact scores are for the consideration of environmental responsibility.
Minimizing the pollution content emission is to improve the sustainability of the internal manufacturing
process. Minimizing the environmental impact scores of suppliers aims at a responsible choice in busi-
ness partners. Maximizing the demand in the market is to consolidate the strategic competence in the
market.

The processing network considered has been presented in Section 5.1 of [7]. We consider a time
horizon with a 3 months period and the manufacturer needed to decide whether or not to sign contracts
with two suppliers with different bulk discount contracts and two suppliers with different discount con-

12



tracts. Differing from [7], where uncertainty due to future developments was incorporated as stochastic
parameters, we consider the uncertainty in the production process. It results in perturbations of the
amount of raw materials consumed, which affect the objectives of maximizing the profit and minimizing
the pollution of the production process. The other two objectives do not involve uncertainty. All data
used can be found in [7] and in Appendix A of this paper.

We solved this problem by applying our interactive approach with a real DM. For computing solutions,
we used Gurobi R© to solve the mixed integer quadratic problem after scalarization. We first calculated
the ideal objective vector z∗ = (28.25, 0, 0, 87.88)T . The nadir objective vector was approximated as
znad = (0, 36, 12.31, 0)T . To get started, we set the ideal value of the robustness measure as 0 and the
nadir value as 1.

We initialized the solution process by first introducing our robustness measure and visualization to the
DM. The DM specified that the consumed raw materials in the product process can vary by 8% of their
base values. Then we computed and presented an initial solution z0 = (28.25, 36.0, 6.22, 53.64, 0.08)T .
The solution is visualized with our visualization method as illustrated in Figure 10. In the figure, the
objective function value of maximizing the profit under uncertainty can exceed its deterministic ideal
value. The purpose of presenting the ideal and nadir values of the objective functions is to help the
DM to get a general information on the ranges of the values of the base solution. Based on the initial
solution, the DM wanted to decrease the environmental score of selected suppliers to 30 and increase the
market demand of the main products to 75. At the same time, he also wanted to keep the pollution of
the production process at its current value and allow the profit and the robustness of the solution to be
impaired until 22 and 0.15 respectively.

Demand

Pollution

Environment

Profit

0.0 87.88

0.0 12.31

0.0 36.0

0.0 28.25
0.08

53.64

6.22

5.8 6.53

36.0

28.25

29.4227.28

Figure 10: Intial solution

Based on his preferences, a new solution was calculated and presented to him. As the interactive
solution process is described in Section 4.1 in details, we here omit the detailed description to avoid
repetitions. Instead, we summarize the preferences of the DM and the objective function values of
solutions computed in each iteration in Table 2.
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Table 2: Iterations of the interactive solution process

Iteration Solution Preferences

Initial z0 = (28.25, 36.0, 6.22, 53.64, 0.08) I≥ = {1, 5}, ǫ = {22, 0.15},
I={3}, I≤ = {2, 4}, ẑ = {30, 75}

1 z1 = (22.12, 2.0, 6.22, 53.91, 0.073) I< = {3, 5}, I≥ = {1}, ǫ1 = 20

2 z2 = (20.0, 5.0, 3.04, 28.29, 0.05) I< = {4}, I≥ = {1, 2, 3, 5},
ǫ = {20, 30, 9.5, 0.15, }

3 z3 = (20.0, 13.33, 9.50, 74.48, 0.12) I≥ = {1, 2, 4, 5},
ǫ = {20, 30, 70, 0.15}, I≤ = {3}, ẑ3 = 8

4 z4 = (20.0, 2.0, 8.71, 70.0, 0.10) I≥ = {1, 2, 4, 5},
ǫ = {20, 30, 60, 0.15}, I≤ = {3}, ẑ3 = 7.5

5 z5 = (18.23, 2.0, 7.11, 60.0, 0.095) -

After four iterations, the final solution was satisfactory. During the solution process, the DM observed
that the first objective (maximizing the profit) was more sensitive to the uncertainty in the production
process than the third objective (minimizing the pollution content emitted). The DM understood that
this is a property of the problem. This problem is a mixed-integer optimization problem and only the
raw materials consumed which are continuous decision variables involved uncertainty. With the help
of the suitable solver, our approach was able to handle the preferences of the DM and find solutions
accordingly. In addition, our approach helped the DM to understand the consequences of the involved
uncertainty and thus, supported him to consider the objective function values and the robustness of
solutions simultaneously.

5 Conclusions

In this paper, we focused supporting the DM to simultaneously consider the objective function values
and robustness of solutions for multiobjective optimization problems with decision uncertainty. Based
on the desired properties for a robustness measure to be used in an interactive approach, we introduced
a new robustness measure that can deliver the meaning of robustness in an understandable way to the
DM.

We proposed an interactive approach by utilizing elements of the synchronous NIMBUS method which
is specifically suitable for solving problems with decision uncertainty. Because of the incorporation of
robustness, we modified two components of the interactive NIMBUS solution process. We tailored a
visualization method specifically for the new robustness measure and the associated robustness infor-
mation by superimposing them on top of the bars representing the original objective functions. With
this visualization, we can help the DM to consider the objective function values and the robustness of a
solution at the same time. We also added a step to provide multiple alternatives for the DM to specify
her/his preferences on the robustness of a more desired solution. Even though we built our approach
based on NIMBUS, same idea and robustness measure can be applied to other classification based and
reference point based methods. We demonstrated the advantages of the interactive approach by solving
the river pollution problem and the problem in procurement contract selection with price optimization
in a process network. Naturally, this approach can also be used to solve a wider range of problems.

Since we made the information on the ri ranges of all objective functions available, we can further
allow the DM to directly specify preferences on robustness for all or selected objectives in the future. As
some of the objectives might be more important in considering robustness than others, we can incorporate
the information about the importance also into our robustness measure. Also, as in [21], the obtained
solution can be further analyzed to quantify how much worse the solutions are compared to the Pareto
optimal solutions of the original problem.
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A Data for the example problem in Section 4.2

The model of the problem solved is based on [7]. Originally, it has only one objective to maximize
profit. We augmented the model with three additional objectives: minimizing the environmental factors,
minimizing the emission of pollutant, and maximizing the market demand of the main product. The
objective to maximize profit (f1 in this paper) and the estimation on the demand (f4 in this paper) as
well as the related data can be found in [7]. The objective for responsible selection of suppliers has been
inspired by [33]. Using the same notation as in [7], we have

f2(x) =
1

T

T
∑

t=1

Q
∑

q=1

S
∑

s=1

G
q
s,tys,t.

In the equation, Gq
s,t represents the q-th environmental impact score of the supplier s in the planning

period t and ys,t is the binary decision variable representing whether the supplier s is selected in the
period t. The objective function is to take the average of the aggregation of all the environmental impact
scores of all selected suppliers in each period.

For the consideration of pollutant emission, we consider the amount of sulphur dioxide emitted to
the air based on the amount of sulphur content in the purchased raw materials. We have

f3(x) =
1

T

T
∑

t=1

P
∑

j=1

M
∑

c=1

Ej,tW
c
j,t.

The emission factor of the process plant j in th time period t is represented by Ej,t. The notation W c
j,t

is the amount of raw material c consumed in the plant j in the period t. The emission factor of the
plants in different time periods can be different due to variation of the heating material used. In f2 and
f3, Gq

s,t and Ej,t are parameters.
The environmental impact score G1

s,t depends on percentage the supplier s has been paying attention
to the environmental protection policies in the time period t:

G1
s,t =



















1 : 100%

2 : more than 50%

3 : less than 50%

4 : none.

The score G2
s,t depends on the percentage of sustainability of the product of the supplier s in the

time period t:

G2
s,t =



















1 : 100%

2 : more than 50%

3 : less than 50%

4 : none.

The score G3
s,t depends on the percentage of green customers’ market share of the supplier s in the

time period t:

G3
s,t =































1 : above 80%

2 : 60% to 80%

3 : 40% to 60%

4 : 20% to 40%

5 : less than 20%.
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The score G4
s,t depends on the percentage of recycling product design of the supplier s in the time

period t:

G2
s,t =



















1 : 100%

2 : more than 50%

3 : less than 50%

4 : none.

We used data presented in Table 3 for the emission factors of the processing plants. The scores of the
four candidate suppliers in our problem setting are given in Tables 4 -7 and the settings of the contracts
are given in Tables 8 and 9.

Table 3: Emission factors of processing plants

Plant Time period
1 2 3

p1 0.22 0.3 0.24
p2 0.15 0.18 0.24
p3 0.21 0.17 0.22

Table 4: Environmental impact scores of supplier 1 (discount contract)

Scores Time period
1 2 3

G1 3 2 1
G2 3 2 1
G3 2 1 2
G4 1 4 2

Table 5: Environmental impact scores of supplier 2 (bulk discount contract)

Scores Time period
1 2 3

G1 2 3 2
G2 3 2 1
G3 3 1 1
G4 1 1 2

Table 6: Environmental impact scores of supplier 3 (discount contract)

Scores Time period
1 2 3

G1 4 1 3
G2 3 3 4
G3 1 2 2
G4 2 3 1
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Table 7: Environmental impact scores of supplier 4 (bulk discount contract)

Scores Time period
1 2 3

G1 1 2 2
G2 3 2 3
G3 4 3 1
G4 4 4 4

Table 8: Discount contract suppliers

Supplier Price Discount price Threshold

S1 3.15 2.47 20
S3 3.15 2.58 20

Table 9: Bulk discount contract suppliers

Supplier Price Discount price Threshold

S2 3.06 2.38 40
S4 2.95 2.55 40
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