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[lecture NOTES]

W
e describe the use 
of splines for solv-
i n g  n o n l i n e a r 
model estimation 
problems, in which 

nonlinear functions with unknown 
shapes and values are involved, by con-
verting the nonlinear estimation 
 problems into linear ones at a higher-
dimensional space. This contrasts with 
the typical use of the splines [1]–[3] for 
function interpolation where the func-
tional values at some input points are 
given and the values corresponding to 
other input points are sought for via 
interpolation. The technique described 
in this column applies to arbitrary non-
linear estimation problems where one or 
more one-dimensional nonlinear func-
tions are involved and can be extended 
to cases where higher-dimensional non-
linear functions are used.

The benefit of using the approach 
described here is obvious. Many real-
world systems can only be appropriately 
modeled with nonlinear functions, while 
the estimation problem is much simpler 
if only linear functions are involved. It is 
thus highly desirable if a nonlinear esti-
mation problem can be transformed into 
a linear estimation problem at a different 
space. In this column we use the cubic 
spline (i.e., piecewise third-order polyno-
mials) [1], [2] to illustrate the technique. 
However, the same approach can be used 
with other types of spline as illustrated at 
the end. We demonstrate the applications 
of the technique in signal processing and 
pattern recognition with an example.

RELEVANCE
The topics presented here extend the 
standard cubic spline interpolation 

 algorithms by finding a direct relation-
ship between the interpolated values and 
those at the spline knots (i.e., the given 
or to be estimated input/output points) 
for an arbitrary nonlinear function. This 
direct relationship can be formulated as 
an inner product of location-dependent 
weights and the values at the knots. The 
approach presented here may find prac-
tical applications within pattern 
 recognition, classification, system com-
bination, speech recognition, and signal 
processing. Some existing applications 
are  briefly discussed.

PREREQUISITES 
The prerequisites consist of basic calcu-
lus and basic linear algebra. Optimization 
techniques could also be useful but not 
necessary.

BACKGROUND
Splines are piecewise or multiple-seg-
ment functions with pieces or segments 
connected smoothly with each other, 
where the connecting points are called 
knots or control points. Splines are typi-
cally used to approximate the values of a 
nonlinear function y 5 f 1x 2  within the 
range 3x1,  xN 4 by interpolating the val-
ues  a t  kno t s  5 1xi,  yi 2 | i 5 1, c,
N; xi , xi116. Spline interpolation has 
two properties that make it attractive: 
the interpolation value depends only on 
the nearby knots, and the interpolation 
accuracy can be improved by increasing 
the number of knots. 

A widely used spline is the cubic 
spline in which a third-order polynomi-
al is used to interpolate adjacent knots

y 1x 2 5 fi 1x 2 5 si, 0 1 si, 1 1x 2 xi 2
 1 si, 2 1x 2 xi 2 2 1 si, 3 1x 2 xi 2 3 
 4 x[ 3xi,  xi11 4,  i 5 1, 2, c, N 2 1 (1)

with the constraint that the function is 
continuous in the first- and second-order 
derivatives at all knots

 y 1xi 2 5 yi

 for  i 5 1, 2, c, N  (2)
 yi11 5 y 1xi11 2 5 fi 1xi11 2
 5 fi11 1xi11 2
 for  i 5 1, 2, c, N 2 1 (3)
 yi11

r 5 y r 1xi11 2 5 f i
r 1xi11 2

 5 f i11
r 1xi11 2

 for  i 5 1, 2, c, N 2 1  (4)
yi11
s 1xi11 2 5 y s 1xi11 2 5 f i

s 1xi11 2
 5 f i11

s 1xi11 2  
 for  i 5 1, 2, c, N 2 1 (5)

It can be easily verified that the above 
formulation can be rewritten as [1], [2]

 y 1x 2 5 ayj 1 byj11 1 cyj
s 1 dyj11

s , (6)

where 3xj, xj11 4 is the segment to which 
the input value x belongs

 a 5
xj11 2 x

xj11 2 xj
 , (7)

 b 5 1 2 a 5
x 2 xj

xj11 2 xj
 , (8)

 c 5
1
6
1a3 2 a 2 1xj11 2 xj 2 2, and (9)

 d 5
1
6
1b3 2 b 2 1xj11 2 xj 2 2 (10)

are interpolation parameters, and yj
s is 

the second-order derivative of y with 
respect to x at point xj at the boundary 
between two adjacent segments. 

Let’s verify the equivalence of (1) and 
(6) by checking the boundary conditions. 
From (6) we get

 
dy

dx
5

yj11 2 yj

xj11 2 xj
2

3a2 2 1
6

 1xj11 2 xj 2

 3 yj
s 1

3b2 2 1
6

1xj11 2 xj 2yj11
s ,

 (11)
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d2y

dx2 5 ayj
s 1 byj11

s . (12)

Given x 5 xj, from the right segment 
we have 

 a 5
xj11 2 xj

xj11 2 xj
5 1, (13)

 b 5 1 2 a 5 0, (14)

 c 5
1
6
1a3 2 a 2 1xj11 2 xj 2 2 5 0, (15)

and

 d 5
1
6
1b3 2 b 2 1xj11 2 xj 2 2 5 0,  (16)

and so

 y 1xj 2 5 ayj 1 byj11 1 cyj
s 1 dyj11

s 5 yj,
 (17)

 y r1xj2 5
yj11 2 yj

xj11 2 xj
2

1
3
1xj11 2 xj 2  yj

s 

 2
1
6

 1xj11 2 xj 2  yj11
s , and (18)

 ys1xj25 ayj
s 1 byj11

s 5 yj
s. (19)

Similarly, from the left segment we 
have

 a 5
xj 2 xj

xj 2 xj21
5 0, (20)

 b 5 1 2 a 5 1, (21)

 c 5
1
6
1a3 2 a 2 1xj11 2 xj 2 2 5 0, (22)

and

 d 5
1
6
1b3 2 b 2 1xj11 2 xj 2 2 5 0,  (23)

and so

 y 1xj 2 5 ayj21 1 byj 1 cyj21
s 1 dyj

s 5 yj,
 (24)

 yr1xj25 yj 2 yj21

xj 2 xj21
1

1
6

 1xj 2 xj21 2  yj21
s  

  1
1
3
1xj 2 xj21 2  yj

s, (25)

 ys1xj25 ayj21
s 1 byj

s 5 yj
s. (26)

Comparing (17) to (24) and (19) to (26), 
we can clearly see that the function and 
the second-order derivatives are contin-
uous across segments. The continuity of 
the first-order derivative can be forced 
by choosing appropriate yj

s s.
Note that (6) cannot be solved without 

additional constraints. These additional 
constraints are typically provided as bound-
ary conditions. Under the boundary condi-
tion one, the first-order derivatives of y 
over x at knots x1 and xN are provided as 
z1 and zN, respectively. Under the boundary 
condition two, the second-order derivatives 
of y over x at knots x1 and xN are set to 
zero. The splines with boundary condition 
two are often called natural splines.

In the next several paragraphs, we 
further rewrite (6) by replacing the sec-
ond-order derivatives with functions of 
knot values so that the values of the 
function only depend on the knots. The 
reason to rewrite (6) to the new formula 
is to find a direct relationship between 
the function values and the knots so that 
we may convert a function estimation 
problem into a knots estimation prob-
lem. This new formulation forms the 
basis for our objective of converting non-

linear estimation problems into linear 
ones at a higher-dimensional space.

SOLUTION UNDER BOUNDARY 
CONDITION ONE
Under boundary condition one the 
 first-order derivatives at boundaries are 
provided as z1 and zN respectively. By 
enforcing the first-order derivative conti-
n u i t y  c o n s t r a i n t s ,  w e  o b t a i n
ys 5 3y1

s
c yj

s
c yN

s 4 t as the 
solution to the linear system of equations

 A1y
s 5 B1, (27)

where A1 is defined in (28) at the bottom 
of the page and

B1 5 I z1 2
y2 2 y1

x2 2 x1

y3 2 y2

x3 2 x2
2

y2 2 y1

x2 2 x1

(
yj11 2 yj

xj11 2 xj
2

yj 2 yj21

xj 2 xj21

(
yN 2 yN21

xN 2 xN21
2

yN21 2 yN22

xN21 2 xN22

zN 2
yN 2 yN21

xN 2 xN21

Y. (29)

Note that B1 can be rewritten as 

 B1 5 C1 1 D1 y (30)

w h e r e  C1 5 3zi   0  c  0  zN 4T,  y 5

3y1  y2  c  yN 4T,  and D1 is defined in (31) 
at the top of the next page.

 A1 5 I2
x2 2 x1

3
2

x2 2 x1

6
0 c

x2 2 x1

6

x3 2 x1

3

x3 2 x2

6
0

( ( ( (

c 0
xj 2 xj21

6

xj11 2 xj21

3

( ( ( (

0 c c 0

0 c c c

c c 0

c c 0

( ( (
xj11 2 xj

6
0 c

( ( (
xN21 2 xN22

6

xN 2 xN22

3

xN 2 xN21

6

0
xN 2 xN21

6

xN 2 xN21

3

Y (28)
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[lecture NOTES] continued

D1 5 I 1
x2 2 x1

2
1

x2 2 x1
0 c

1
x2 2 x1

2
1

x2 2 x1
2

1
x3 2 x2

1
x3 2 x2

0

( ( ( (

c 0
1

xj 2 xj21

1
xj 2 xj21

2
1

xj11 2 xj

( ( ( (

0 c c 0

0 c c c

c c 0

c c 0

( ( (
1

xj11 2 xj
0 c

( ( (
1

xN21 2 xN22
2

1
xN21 2 xN22

2
1

xN 2 xN21

1
xN 2 xN21

0
1

xN 2 xN21
2

1
xN 2 xN21

Y
(31)

If the knots are evenly distributed, i.e., 
xj11 2 xj 5 h for any j, A1 and D1 can be 
simplified to

A1 5 I2
h
3

2
h
6

0 ccc 0

h
6

2h
3

h
6

0 cc 0

( ( ( ( ( ( (

c 0
h
6

2h
3

h
6

0 c

( ( ( ( ( ( (

0 c c 0
h
6

2h
3

h
6

0 c cc 0
h
6

h
3

Y
5 h I2

1
3

2
1
6

0 ccc 0

1
6

2
3

1
6

0 cc 0

( ( ( ( ( ( (

c 0
1
6

2
3

1
6

0 c

( ( ( ( ( ( (

0 c c 0
1
6

2
3

1
6

0 c cc 0
1
6

1
3

Y.

 (32)

SOLUTION UNDER BOUNDARY 
CONDITION TWO
Under boundary condition two, the 
second-order derivatives at the bound-

aries equal to zero, i.e., y1
s 5 yN

s 5 0. 
Under this condition and by forcing 
the first-derivative continuity con-
straints, we have 

D1 5 I 1
h

2
1
h

0 c c c 0

1
h

2
2
h

1
h

0 c c 0

( ( ( ( ( ( (

c 0
1
h

2
2
h

1
h

0 c

( ( ( ( ( ( (

0 c c 0
1
h

2
2
h

1
h

0 c c c 0
1
h

2
1
h

Y

 A2 5 Ix2 2 x1

6
0 0 c

x2 2 x1

6

x3 2 x1

3

x3 2 x2

6
0

( ( ( (

c 0
xj 2 xj21

6

xj11 2 xj21

3

( ( ( (

0 c c 0

0 c c c

 

c c 0

c c 0

( ( (
xj11 2 xj

6
0 c

( ( (
xN21 2 xN22

6

xN 2 xN22

3

xN 2 xN21

6

0 0
xN 2 xN21

6

Y (35)
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5
1
h

 G 1 2 1 0 c c c 0
1 2 2 1 0 c c 0

( ( ( ( ( ( (
c 0 1 2 2 1 0 c

( ( ( ( ( ( (
0 c c 0 1 2 2 1
0 c c c 0 1 2 1

W.

 (33)
 A2y

s 5 B2, (34)

where A2 is defined in (35) on the 
 previous page and

 

B2 5 I 0
y3 2 y2

x3 2 x2
2

y2 2 y1

x2 2 x1

(
yj11 2 yj

xj11 2 xj
2

yj 2 yj21

xj 2 xj21

(
yN 2 yN21

xN 2 xN21
2

yN21 2 yN22

xN21 2 xN22

0

Y.

  

  
 
 
  (36)

Note that B2 can be rewritten as

 B2 5 D2y (37)

where D2 is defined in (38) at the top of 
the page.

If the knots are evenly distributed, A2 
and D2 can be simplified to

A2 5 I h
6

0 0 c c c 0

h
6

2h
3

h
6

0 c c 0

( ( ( ( ( ( (

c 0
h
6

2h
3

h
6

0 c

( ( ( ( ( ( (

0 c c 0
h
6

2h
3

h
6

0 c c c 0  0 
h
6

Y
5 h I 1

6
0 0 c c c 0

1
6

2
3

1
6

0 c c 0

( ( ( ( ( ( (

c 0
1
6

2
3

1
6

0 c

( ( ( ( ( ( (

0 c c 0
1
6

2
3

1
6

0 c c c 0  0 
1
6

Y.  

 (39)

THE UNIFIED FORM OF SOLUTIONS 
If we choose z1 5 zN 5 0 in boundary con-
dition one, then the two solutions discussed 
above can be written in the unified form

D2 5 I  0   0 0 c c c 0
1
h

2
2
h

1
h

0 c c 0

( ( ( ( ( ( (

c 0
1
h

2
2
h

1
h

0 c

( ( ( ( ( ( (

0 c c 0
1
h

2
2
h

1
h

0 c c c 0  0 0 

Y
5

1
h

 G 0  0 0 c c c 0
1 2 2 1 0 c c 0

( ( ( ( ( ( (
c 0 1 2 2 1 0 c

( ( ( ( ( ( (
0 c c 0 1 2 2 1
0 c c c 0 0 0

W
 (40)

 Amys 5 Dmy, (41)

where m 5 1 or 2. Thus

 ys 5 Am
21Dmy. (42)

Substituting (42) into (6) to eliminate 
the dependency on yj

s and y1 j112s ,  we 
have

 y 5 ayj 1 byj11 1 cy sj 1 dy sj11

 5 1Ex 1 FxAm
21Dm 2y, (43)

where

D2 5 I  0 0 0 c

1
x2 2 x1

2
1

x2 2 x1
2

1
x3 2 x2

1
x3 2 x2

0

( ( ( (

c 0
1

xj 2 xj21
2

1
xj 2 xj21

2
1

xj11 2 xj

( ( ( (

0 c c 0

0 c c c

c c 0

c c 0

( ( (
1

xj11 2 xj
0 c

( ( (
1

xN21 2 xN22
2

1
xN21 2 xN22

2
1

xN 2 xN21

1
xN 2 xN21

0 0 0

Y (38)
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[lecture NOTES] continued

 Ex 5 c0 c aj bj11
c 0 d , (44)

 Fx 5 c0 c cj dj11
c 0 d . (45)

Note that since a, b, c, d are functions of 
x, Ex and Fx are also functions of x. It is 
obvious from (43) that

 
dy

dy
5 1Ex 1 FxAm

21Dm 2T (46)

Note that Am is tridiagonal, and its 
inverse can be obtained in O 1N 2  steps. If 
evenly distributed knots are used, Am

21Dm

only needs to be evaluated once and may 
be precalculated by taking h outside of 
the equations.

As a summary, we have shown that 
the interpolated value y can be estimated 
as a linear interpolation of the values at 
knots y as 

y 5 ax
Ty,  where  ax 5 1Ex 1 FxAm

21Dm 2T.
 (47)

Equation (47) indicates that if we want 
to estimate a nonlinear function over 
some variables x, we can simplify the 
problem by converting it to estimating N  
knot values y. We will use an example to 
show how it can be used to solve model 
estimation problems where nonlinear 
functions are involved.

APPLICATION EXAMPLE

This example draws from the authors’ 
recent work on applying the result of 
(47) to a pattern recognition problem. It 
was shown in [4] that for continuous 
variables with distribution constraints, 
the solution to the popular maximum 
 entropy model in pattern recognition 
has the form of 

p 1c| x 2 5
1

Zl 1x 2  
  exp a a

i[5continuous6
l i 1 fi 1x, c 2 2 fi 1x, c 2

 1 a
j[5binary6

l j fj 1x, c 2 b  (48)

where c is the class index, Zl 1x 2  is the 
normalization term, and l i 1 fi 1x, c 2 2  is a 
nonlinear function of the extracted fea-
tures fi 1x, c 2 . Note that this nonlinear 
function can have any shape. By using 
the technique we just described we can 
approximate l i 1 fi 1x, c 2 2  as

 l i 1 fi 2 > aT 1 fi 2l i,  (49)

which further gives

 l i 1 fi 2 fi > aT 1 fi 2l ifi

 5  3aT 1 fi 2 fi 4l i

  5  a
k

l ik 3ak 1 fi 2 fi 4  . (50)

By substituting (50) into (48), we can 
convert (48) to

 p 1c| x 2 5
1

Zl 1x 2  
  exp a a

i[5continuous6k
l ik fik 1x, c 2  

  1 a
j[5binary6

l j fj 1x, c 2 b, 

 (51)

where

 fik 1x, c 2 5 ak 1 fi 1x, c 2 2 fi 1x, c 2 . (52)

Equation (51) is in the standard log-
linear form at a higher-dimensional space 
and can be solved with existing algo-
rithms for the maximum entropy models. 

The same technique can also be 
applied to other areas such as nonlinear 
system combination and speech recogni-
tion. For example, it has also been suc-
cessfully applied to the variable 
parameter hidden Markov model [5].

SUMMARY
In this column we have shown an 
approach to solving nonlinear estima-
tion problems by casting the problem 
into a linear estimation problem at a 
higher dimensional space using the 
cubic spline interpolation technique. 
We demonstrated an example of apply-
ing this technique. 

This technique is easy to implement 
and can be applied to many different 
problems. It is robust to data sparseness 
problems since the value at a particular 
point is determined by many surround-
ing points. This technique, however, can 
be expensive if applied to functions with 
more than two variables. In addition, 
the number of knots used in the solu-
tion needs to be determined empirically 
based on the amount of training data 
available and is typically tuned with a 
development set.

Although we have used the cubic 
spline as an example, the same tech-
nique can be implemented using other 
polynomial splines such as linear and 
quadratic splines. The key idea is to find 
a direct relationship between the inter-
polated value and the knots in the spline 
so that the optimization problem can be 
converted to the problem of finding the 
best knots.
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