
 Open access  Journal Article  DOI:10.1007/BF02614381

Solving nonlinear multicommodity flow problems by the analytic center cutting
plane method — Source link 

Jean-Louis Goffin, Jacek Gondzio, Robert Sarkissian, Jean-Philippe Vial

Institutions: McGill University, University of Geneva

Published on: 02 Jan 1997 - Mathematical Programming (Springer-Verlag)

Topics: Minimum-cost flow problem, Multi-commodity flow problem, Flow network, Nonlinear programming and
Column generation

Related papers:

 Decomposition and nondifferentiable optimization with the projective algorithm

 The Cutting-Plane Method for Solving Convex Programs

 A cutting plane method from analytic centers for stochastic programming

 Complexity Analysis of an Interior Cutting Plane Method for Convex Feasibility Problems

 A Survey of Algorithms for Convex Multicommodity Flow Problems

Share this paper:    

View more about this paper here: https://typeset.io/papers/solving-nonlinear-multicommodity-flow-problems-by-the-
tknosdtu34

https://typeset.io/
https://www.doi.org/10.1007/BF02614381
https://typeset.io/papers/solving-nonlinear-multicommodity-flow-problems-by-the-tknosdtu34
https://typeset.io/authors/jean-louis-goffin-2b88z07rhd
https://typeset.io/authors/jacek-gondzio-59s6o60jag
https://typeset.io/authors/robert-sarkissian-5g0flgx1tk
https://typeset.io/authors/jean-philippe-vial-4awggefhlt
https://typeset.io/institutions/mcgill-university-2kp72n3l
https://typeset.io/institutions/university-of-geneva-1ljqrc07
https://typeset.io/journals/mathematical-programming-27iihk2z
https://typeset.io/topics/minimum-cost-flow-problem-1uj31c7r
https://typeset.io/topics/multi-commodity-flow-problem-1v47qh32
https://typeset.io/topics/flow-network-2ayx3661
https://typeset.io/topics/nonlinear-programming-3ckkp9wl
https://typeset.io/topics/column-generation-258rhjdh
https://typeset.io/papers/decomposition-and-nondifferentiable-optimization-with-the-4ta2qr3viz
https://typeset.io/papers/the-cutting-plane-method-for-solving-convex-programs-4a8bxibqh9
https://typeset.io/papers/a-cutting-plane-method-from-analytic-centers-for-stochastic-2gfqkbl0u1
https://typeset.io/papers/complexity-analysis-of-an-interior-cutting-plane-method-for-l5xpqytlao
https://typeset.io/papers/a-survey-of-algorithms-for-convex-multicommodity-flow-2odemykkbv
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/solving-nonlinear-multicommodity-flow-problems-by-the-tknosdtu34
https://twitter.com/intent/tweet?text=Solving%20nonlinear%20multicommodity%20flow%20problems%20by%20the%20analytic%20center%20cutting%20plane%20method&url=https://typeset.io/papers/solving-nonlinear-multicommodity-flow-problems-by-the-tknosdtu34
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/solving-nonlinear-multicommodity-flow-problems-by-the-tknosdtu34
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/solving-nonlinear-multicommodity-flow-problems-by-the-tknosdtu34
https://typeset.io/papers/solving-nonlinear-multicommodity-flow-problems-by-the-tknosdtu34


 

Article

Reference

Solving nonlinear multicommodity flow problems by the analytic
center cutting plane method

GOFFIN, Jean-Louis, et al.

GOFFIN, Jean-Louis, et al. Solving nonlinear multicommodity flow problems by the analytic
center cutting plane method. Mathematical Programming, 1997, vol. 76, no. 1, p. 131-154

DOI : 10.1007/BF02614381

Available at:
http://archive-ouverte.unige.ch/unige:111358

Disclaimer: layout of this document may differ from the published version.

 1 / 1

http://archive-ouverte.unige.ch/unige:111358


Mathematical Programming 76 (1996) 131-154 

Solving nonlinear multicommodity flow problems 
by the analytic center cutting plane method 

J.-L. G o f f m  a,b,* ,2, j. Gondzio  b,3, R. Sarkissian b, j._p. Vial  b 

a GERAD, Faculty of Management, McGill University, Montreal, Que., Canada H3A IG5 
b Logilab. HEC, Section of Management Studies, University of Geneva, 102 Bd.Carl Vogt, CH-1211 Genbve 4, 

Switzerland 

Received 1 November 1994; revised manuscript received 1 November 1995 

Abstract  

The paper deals with nonlinear multicommodity flow problems with convex costs. A decompo- 

sition method is proposed to solve them. The approach applies a potential reduction algorithm to 

solve the master problem approximately and a column generation technique to define a sequence 

of primal linear programming problems. Each subproblem consists of finding a minimum cost 

flow between an origin and a destination node in an uncapacited network. It is thus formulated as 

a shortest path problem and solved with Dijkstra's d-heap algorithm. An implementation is 

described that takes full advantage of the supersparsity of the network in the linear algebra 

operations. Computational results show the efficiency of this approach on well-known nondiffer- 

entiable problems and also large scale randomly generated problems (up to 1000 arcs and 5000 

commodities). 

1. Introduction 

The  nonl inear  m u l t i c o m m o d i t y  f low problem with separable increas ing convex  costs 

g ives  rise to very  large nonl inear  programs with l inear constraints.  It arises in the areas 
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of transportation networks, traffic assignment problems, telecommunication or computer 

networks, multi-item production planning, to name but a few applications. The decom- 

position principle of Dantzig and Wolfe [8] is well suited to the primal block diagonal 

structure of the constraints, even though the decomposition algorithm may show slow 

convergence on some, but not all, formulations or instances. The granularity of the 

formulation may have a significant impact on the effectiveness of the approach as noted 

and studied by Jones et al. [24] and Minoux [32]. 

Three issues need to be settled to make for an effective algorithm: 

• The formulation: how many commodities? Origin-destination problem, destina- 

tion specific (or-origin specific) problem or product specific problem, or in fact a 

combination of these three cases [24]? 

• How to deal with the nonlinear objective? 

• What solution concept to use in the master problem, to compute a set of prices that 

will be used to generate new proposals (columns) from the subproblems (oracles). 

The approach taken here uses the following answers to these three issues: 

• The formulation: as fine a granularity (disaggregation) as the problem will allow. 

• Deal with the nonlinear objective by defining a subproblem (oracle, block, 

convexity constraint) for each one-dimensional component of the objective. 

• Do not solve the master problem to optimality but compute an analytical center of 

the set of localization (ACCPM: the analytic center cutting plane method) [15,3]. 

As in the Dantzig-Wolfe algorithm, our approach considers a restricted master 

program. This restriction is improved as new columns are added, either one at a time or 

in bunches. The analytic center of the set of localization is obtained by applying to the 

restricted master the de Ghellinck and Vial's variant [9] of Karmarkar's projective 

algorithm [25]. 

The purpose of our paper is to demonstrate that ACCPM is a viable tool for solving 

large non-linear multicommodity flow problems. Special attention has been paid to 

exploit structural sparsity in the restricted master. We conducted two different series of 

experiments. We first compared different levels of granularity on two well documented 

test problems; the finest granularity yields the best results by far. The second series of 

experiments pertained to random problems of various sizes - the formulation used the 

finest granularity. The results are very encouraging. The method is robust. Its behavior 

on the particular class of problems is very much alike what has been observed in 

different areas of application such as stochastic programming, multiregional planning, 

nonlinear programming, minmax problems. Our results provide further evidence that 

ACCPM is one of the method of choice for nondifferentiable optimization, especially for 

the nondifferentiable algorithms that arise in decomposition approaches to large scale 

programming. 

Our specific contribution in this paper is twofold: 

• our first contribution is to show that a full disaggregation has a dramatic effect on 

convergence; by this we mean a disaggregation on the OD pairs - the rationale 

here being that few shortest paths must appear in the optimal solution - and on 

each of the nonlinear cost arcs - the rationale being that cutting planes can 
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approximate well functions of one variable. The impact of this disaggregation is a 

considerable improvement not only of the ACCPM but also of Dantzig-Wolfe. 

• Second we propose an advanced implementation of ACCPM with this particular 

application in mind. We refrained from undertaking a systematic comparison with 

other methods. We do not claim that our method is the best, but we claim that it is 

always competitive with the best, and that is is stable and robust, and not prone to 

slowing down as it is the case with some formulations of Dantzig-Wolfe 

decomposition. 

There are, of course many other approaches to the linear or nonlinear multicommod- 

ity flow problem, many of them based upon variants of Dantzig-Wolfe decomposition, 

or dually, Kelley's cutting plane method or Benders's decomposition, all of which can 

and have been interpreted in terms of nondifferentiable optimization. 

The fully aggregated formulation (which corresponds to one convexity row) has been 

used in many nondifferentiable optimization approaches: the subgradient method by 

Fukushima [12], the proximal bundle method of Lemar6chal [30] and Kiwiel [28], the 

bundle trust region method of Schramm and Zowe [36], the new bundle method of 

Lemar~chal, Nemirovskii and Nesterov [31], the affine scaling with centering bundle 

method of Hipolito [23], the dual ascent algorithm of Hearn and Lawphongpanich [21], 

and the restricted simplicial decomposition of Heam, Lawphongpanich, and Ventura 

[22], among many others. Most of these papers report results on the small nonlinear 

multicommodity flow problem NDO22. 

Some of these algorithms do not extend easily to, or have not been tried with, a 

disaggregated formulation; the methods of [24] and [32] use disaggregation, but only in 

the linear case. 

2. Problem formulation 

The formulation of the multicommodity flow problem follows that of Minoux [32]. 

We assume that the arcs are not directed (thus flows can traverse arcs in both 

directions). The flows must then be added up in absolute value as they represent 

different commodities. This is typical of telecommunication networks. We could also 

admit that some arcs could be directed (one way), as is usually the case in transportation 

networks. For clarity's sake we will ignore this possibility. 

We are given a graph ~ ' =  (~ ' ,  .J~¢'), where ..~¢c{(s, t ) : s ~ T / ,  t ~ ,  s ~ t }  and 

m = card(~ "/') is the number of nodes; the arcs are directed, but the direction is selected 

arbitrarily. In order to formulate this as a nonlinear (or linear) program, the transpose of 

,~¢ is defined as ,.~¢x- {(s, t): (t, s)~,~¢}. We also define T ( a ) -  {(s, t): a = (t, s ) E  

.at}. This simply associates to every directed arc (s, t) the arc with the reverse 

orientation (t, s); the two directed arcs a and T(a) represent the undirected arc {s, t}. 

Clearly ,.a ¢x = T ( d ) .  If the transposition map T(a) were to be defined on a subset of ,~', 

this would permit the modelling of one-way arcs. 
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To define a nonlinear (or linear) programming formulation we thus use the aug- 

mented graph ~ = ( ~ z - ,  ..at--), where .~ -"  ~¢U..~ ¢T. We denote by n = c a r d ( , ~ )  the 

number of arcs and by N the m × n vertex-arc incidence matrix of ~'. 

The set of commodities dr  is defined by exogeneous flow vectors (supplies and 

demands) d i - -  (ds) ` i  E ~- that satisfy e ~ d  i =  0 for i ~d r ,  with e~  a vector of ones. 

These flows must be shipped through ~'. 

We denote by x i = ( x a ) ,  e ~ the flow of commodity i ~ d r. The feasible flows for 

commodity i are members of 

s r  i = { x i >1 0 : N x  ~ = d i } .  

Following the terminology in Jones et al. [24], the flow problem for commodity i is a 

single origin-single destination (SOSD) problem if d g has exactly one positive and one 

negative entry - the origin and the destination, respectively. If d i has one positive entry 

and several negative entries, we have a single origin-multiple destination problem 

(SOMD). We similarly can have a multiple origin-single destination problem (MOSD). 

These three formulations truly represent the same problem, in the sense that it is possible 

to aggregate SOSD into SOMD (or MOSD) and conversely disaggregate SOMD (or 

MOSD) into SOSD. This is easy to see as every SOMD flow can be disaggregated into a 

convex combination of trees (basis), and every tree-flow disaggregates uniquely into a 

sum of path-flows, see [24] and Rockafellar [35]. 

The case of multiple origin-multiple destination problem (MOMD) is somewhat 

different though, as this formulates the transportation of a generic commodity (gas, oil, 

cable television, aircraft, etc.). We will restrict ourselves in our experimentation to the 

origin-destination case (SOSD), even though the algorithm would be applicable to the 

MOMD, or the mixed MOMD-SOSD cases. 

A linear cost vector c / is associated with the flows of each commodity. A nonlinear 

(or linear) cost is also charged on the total arc flow, where the total arc flow is 

E, ej(x  + i XT(~)). A set of coupling arcs .J*¢' C~¢ comprises those arcs for which there 

is either a nonlinear cost or a limited capacity on the total arc flow. 

The nonlinear multicommodity flow problem can be formulated as 

min E ci'rXi "~- E fa( Ya) 
i .7 (1) 

, (2) i + xr(a)) ~< Ya Va  ~,.Q¢" c,~¢', s.t. )--'. (xa 

(3) 
x / e 9  -/ V i e d r ,  (4) 

O<~ ya<~ i/~ Vae~¢ '  c,.~¢'. 

In this formulat ion the vector y = ( Ya)a e ~/' is meant to represent the jo int  total arc-f low 

of a and T(a); in fact it is an upper bound to it, but of course y~ = Y' . ieu , (x  i "["X~(a)) at  

the optimum if we assume that the cost function fo(y~) is strictly increasing. We further 

assume that the function f~(ya) is convex and the costs c" are nonnegative. This will 

ensure that the Lagrange multipliers (the prices of the coupling constraints) are 

nonnegative, and in fact positive in the ACCPM; from this follows that the shortest 

paths routines (the oracles) need not worry about negative or zero cost cycles. 
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Constraints (3) and (4) are simple network and capacity constraints, respectively. 

Without (2), the problem is separable. Constraints (2) are named coupling since they 

coordinate the simple network problems. The nonlinear functions most used in practice 

a r e :  

• a power function fo(y~) = a~ yfo, with a~ > 0 and fl~ >i 1; 

• the delay function f~(y~)= y~/(~/~ -yo). 
Finally, we mention that the standard linear multicommodity flow corresponds to f~ - 0. 

It is then possible to combine (2) and (4) into 

E ( Xi  -l- XiT(a)) ~ ~l a Va E ~', 

to obtain the usual formulation: 

min ~_, ci'rx i 

i E J  

i 
s.t. E (x:  + xr(~))<~ 7~ 

x i E ~  '~ Vi ~ r .  

Va Ez¢'  c ~ ,  

(5) 
(6) 

(7) 

3. The decomposition principle 

Real-life multicommodity flow problems leed to very large scale programming 

problems. For instance a problem with 500 nodes, 1000 arcs and 5000 commodities in 

the SOSD formulation would lead to a nonlinear program with 2.5 × 10 6 constraints and 

5 × 106 variables; in the SOMD formulation it still remains a problem with 250000 

constraints and 500000 variables. The difficulty in solving the problem as a single LP or 

NLP stems from the coupling constraints. The standard decomposition approach strives 

to separate the issues of finding flows for the individual commodities and of coordinat- 

ing the individual commodity solutions. In this section we shall briefly review the 

various elements of this well-known approach. 

3.1. Lagrangian dual 

The partial Lagrangian is obtained by the dualization of the coupling constraints, 

using Lagrange multipliers u = ( u , ) ~  d' and letting 7 =  (7a)~  ~,': 

i + xr(,)) y~ (8) Sa( x, y; u)= E cirxi + E f~( Y~) + E ( x~ - . 
i E J  aEA' aE,~ ¢ x iE~¢ 

We define 

SaP(x ,  y ) : =  max Sa( x, y; u) (9) 
u>~0 
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and 

SaD(u) := min . ~ ( x ,  y; u).  (10) 

O<~ y~< y 

The functions ~ e ( x ,  y) and .c.~D(u) are respectively convex and concave. From the 

minmax theorem for convex programming: 

min SaP(x ,  y) = m a x S : D ( u ) .  
xi  ~ i  r i u ~  O 

O~< y<~ 3' 

So we can choose to solve (10) instead of (9), provided one is able to recover an 

approximate optimal primal solution ( x *, y * ) to (9) from an approximate optimal dual 

solution u* to (10). As the methods used generate both primal and dual solutions, this 

follows quite naturally from the algorithm. 

3.2. Polyhedral approximation and linear relaxation 

Column generation - or cutting plane - algorithms use the fundamental subgradient 

inequality for convex functions. Let us briefly recall the definition of the subdifferential. 

Let f be a convex function and let x be in the interior of the domain of f .  The 

subdifferential set 0f (x)  of f at x is a nonempty compact convex set such that for any 

s ¢ ~ af (x)  and any y in the domain of f the following subgradient inequality holds: 

f ( y )  >~f(x) + ~:T(y-- X). 

Since - S : ° ( u )  is convex, we have that for each pair (u, fi) whose elements are in the 

domain of definition of .o-c¢ ° and each ~ in the subdifferential cg(-_o-cP°(fi)) at fi, the 

following inequality holds 

__~O(u ) >/ _ . ~ o ( ~ )  + ~ T ( u _  7) .  

It is convenient to introduce the set - O ( - S : ° ( f i ) ) .  So for each f e -O(--.Z~'D(fi)), the 

reverse inequality holds: 

.~D(u)  ~ . ~ o ( ~ )  + ~r (U _ ~).  

The elements of - - O ( - 2 ° ( f i ) )  are sometimes named supergradients. 

It is also known, by convex duality, that under the usual regularity conditions, 

S " ° ( u )  = min min (S#° ( f i )  +~r(u- '~) ) ,  

where n' is the dimension of u or y, i.e., the cardinality of ~¢', or the number of 

coupling constraints. 

This equality also holds if the minima are restricted to a dense countable subset of 

{ (~ , -  a ( - .Z ° (~ ) )  : ~ ~ ~ '~ + j "  

By using a finite subset of this countable dense set a polyhedral approximation to -.Z# D 

can be constructed and refined as this subset is expanded by further oracle calls. 

It is thus possible to use the subgradient inequality to generate a polyhedral relaxation 

of the epigraph of the function - S  aD. For instance, let u k, k = I . . . . .  K, be a collection 
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of points in the domain of S " °  and let ~k ~ _ 0 ( -  ~O(fi~)) be an associated collection 

of supergradients. Then the set of pairs ( -  z, u) satisfying 

Z - - ( ~ k ) T U < . Z O ( U  ~ ) - ( ~ ) T u ~ ,  k = l  . . . . .  ~, 

is a polyhedral relaxation of the epigraph of _ ~ o .  Thus the polyhedral function 

k = l  . . . .  x 

is an upper bound on Sa°(u),  i.e., 

Vu e R ' .  

Hence, the optimum of the linear programming problem (the linear relaxation, or the 

Dantzig-Wolfe point) 

max{z:  z - (  ~k)a'u <~-c-~°(uk)-( ~ k)'rUk, k =  1 . . . . .  K}, (11) 

provides an upper bound to the optimal value of S "°.  We shall denote it 0~p. 

It is possible to localize more precisely the optimal point of .~o.  Let 

0i~f:= max .c2O(uk) 

be the largest value of S a°  recorded in the sequence. Clearly 0~ r is a lower bound for 

the optimal value of S a°. Moreover, any optimal point (.~°(u*), u*) lies in the 

so-called localization set 

= {( z, u): z>_- and 

~<,..f6'O(u *) - ( ¢*)'ruk, k= l ..... K}. (12) 

3.3. Cutting planes: A prototype decomposition algorithm 

The basic idea underlying cutting plane algorithms can be described as follows. 

Given a polyhedral outer approximation of the epigraph of the function, one selects a 

point u such that the pair (z, u), for some z, belongs to the localization set. The value 

.oW°(u), and an element ~ of the supergradient set, are then computed; a new valid 

supergradient inequality is added to the definition of the localization set. This new 

inequality either "cu ts"  the localization set or is a support to it. The lower bound is 

updated and a new smaller localization set is obtained. 

We can state formally the basic steps in the prototype cutting plane method. For the 

sake of simpler notations we drop the iteration index k. A localization set Sa~'~ ' and a 

lower bound 0in f are given. 

Step 1. Select (?., fi) ~_oca@~. 

Step 2. Compute Seo(fi) and ~: E - O ( - 2 ° ( f i ) ) .  
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Step 3. Update 0i. f by 0i. f := max{0i, f, .C.¢'°(fi)} and add the inequality 

z - ~ T u  < S : ° ( ~ )  - ~:a-~ 

to the definition of the localization set. 

The process ends when the duality gap, 0,u p - 0i, f, falls below a given precision level. 

Step 1 of the prototype algorithm is usually called the master program. The way fi is 

chosen in the localization set characterizes the cutting plane method. Step 2 is problem 

dependent. It has been called an oracle, though the classical terminology in the 

Dantzig-Wolfe approach refers to subproblems. 

4. Levels of disaggregation in the decomposition for multicommodity flow problems 

In the case of the nonlinear multicommodity flow, the partial dual Lagrangian (10) is 

.~°(u)= min ( ~ ciTxi '~ - E fa(Ya) + ~ U~( Y'. (xia+X~(a))-ya) ) 
xi~,~ri i~.Y" a~.a:' a ~ / '  ~ i E J  
O~y<~ y 

= min • (Ci+u)Txi+ min E (f.(Ya)--u~Y~) 
x,~.~r i i~.)r  0~<y~< y a~.~¢, 

= E min (ci+u)Xx'+ ~, min (f~(ya)-u~y~). 
i ~ . J  "xiEoq-i aEA' O<Yo<~ ~a 

The computation of the function _oW°(u) and of a supergradient separates into easily 

computable functions: 

-Z#°(u) = E .o~'(u) + Y'. .~'~(u), (13) 
i ~ , f  a E ge" 

where each 

.oc:/(u) = m i n  ( c i " ~ u ) T x  i (14) 

is the solution of a shortest path problem with nonnegative costs c i + u, and where, 

abusing notation, uTx i means F..~s:,u.(x ~ i + Xr(o)), while 

. ~ a ( u ) =  min (f~(y~)-u~y.) (15) 
O~Ya~< Yo 

is a one-dimensional convex program whose solution can usually be given analytically. 

It should be noted that if the costs c ~ do not depend on the commodity i, then only 

one shortest path problem between all pairs of nodes needs to be solved. 

It is interesting to note that in the case of linear costs, fa - O, the Lagrangian dual is 

. ~ ° ( u ) =  ~2 min.(ci +u)Txi + ~_. min (--u.y.). (16) 
i~..) r xi~.=qr' aEA' O<Ya<~ Ya 
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It  is important to note that, in the usual linear case (5), the function 2 ° differs in a 

very significant way from the partial dual associated to the (nonlinear) mult icommodity 

flow formulation (1). Letting v. be the Lagrange multipliers there one gets 

2 1 ° ( v ) =  Y'~ min (ci'~u)Txi--uT~/, (17) 

The functions 2 ° and ..?'1 ° appear to be the sum of hopefully simpler functions. The 

simple structure can be exploited to yield various level of  disaggregation. Each level 

generates its own set of subgradient inequalities. 

4.1. No disaggregation: Single cuts 

I f  we do not take advantage of the additive structure of 2 ° ,  we obtain a supergradi- 

ent of  2 ° at fi as follows. Let x(fi) and y(fi) be optimal solutions of  problems (14) 

and (15) for a value fi of  the Lagrange multiplier. The supergradient of 2 ° ( u )  at fi = u 

is given by the coefficient of  ft. in (13), i.e., 

~a = E (xi("~) + X!r(a)(-u))--Ya('u))" 

~ is zero, as the subproblems Note that at least one of the components of  x .  or Xr(.) 

compute shortest paths or trees. 

In the case of  linear costs it is interesting to compare the two formulations (16) and 

(17). In the former case the function ]Ea~ ~,,..oc~"(u) has a superdifferential at u = 0 with 

2 '  extreme points while in the latter case - v ' r y  is differentiable and has a unique 

supergradient - y.  

Practitioners have always noticed that the additive structure of  21  ° can be used for a 

variant of  Dantz ig-Wolfe  decomposition, which is sometimes effective. 

4.2. Full disaggregation: Multiple cuts 

The linear case 
Recall that 

2 g ( v )  = E 2 / ( v )  - 

A disaggregated LP relaxation can be defined as 

SolO(v) = - - v r y +  • max{z i :  Zi~*~i(o)}, 
i ~ J  xi 

where 

2 i ( v )  = rain ( c i + v ) r x  i. (18) 
x ,~sr '  

Each function 2 i has its own support s ¢ i =  x i at a point ~. Now the proposals ~:" 

depend on whether the formulation is SOSD or SOMD; in the former case the proposals 

are path-flows, in the latter they are tree-flows. 
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As clearly shown in [24] the most disaggregated formulation, i.e., the SOSD 

formulation using path-flows, is the most effective one. Only a few proposals are needed 

for each of the component functions to define them accurately. The SOMD or tree-flow 

formulation creates exponentiality in the number of extreme points of the subdifferen- 

tials. 

In this disaggregated formulation it is possible to introduce a cut for each i E J .  To 

this end we introduce variables zi, and z = ( z i )~  j .  We define the LP relaxation in the 

extended space I~ n'+ IJl+ i by 

max z 

subject to 

z= E Zi--vT3 ', (19) 

Zi--(~ik)Tv<<..~i(V k ) - (~: ik )Tvk ,  i E I ,  k = l  . . . .  K 

while the set of localization becomes 

(( z, z,, o  e,z= -oTr+ E z,, 

Z i - (eik)Tv<~c.c.c.c.~i(vk) -- (~:i t)Tv' ,  i e l ,  k = 1 . . . .  K}. (20) 

The nonlinear case 
In the nonlinear case the disaggregation needs to go further; we have 

--~°( u ) =  E S ( u ) +  E ~ ° ( u ) .  
iEJ  r a~A' 

We may choose a partial disaggregation 

c-~°(u)=max{zo:zo  <~ C --°oPt(u)} + C max{zi'zi<'---gF'(u)}, 
Zo a ~ ¢ ,  iE.Y zi 

but the finer granularity of 

_ ~ O ( u ) =  )-" max{zo:z  <~SaO(u)}+ ~_, max{zi:zi<-~-c-c-~i(u)} 
a ~ d '  z, i ~ J  z~ 

turns out to be significantly more effective. 

We define the LP relaxation in the extended space I~ 2n'÷ IJl+ I as  n '  = I ,J~¢' l, by: 

m a x  z 

subject to 

Z =  E Zi"I- E Za, 
i ~ J  aEA' 

T k Zi__ ( ¢ik)Tbl ~.~c~i( u k) _ ( ~ i k )  U , 

zo- ( e"')'u - (  

i ~ J ,  k =  1 . . . .  K, 

a ~ , ~  ¢', k = l  . . . .  K, 

(21) 
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while the set of localization becomes: 

~e~'K = (( z, z~, ZA', U)" Z >/ 0~f, 

z= Ez ,+  Ezo, 
i E J  i~A '  

Z i - -  ( ~ i k ) T l d ~ . f ~ i ( I d k )  - -  (~'k)Tuk, i ~ I ,  k=  1 . . . .  K, 

Za-- ( ~Qk)Zu <~.c.~"( Uk) -- ( ~k)Tuk,  aEa¢' ,  k=  1 . . . .  K}. (22) 

The motivation here is that it is easy to approximate the functions ~ i  in the SOSD 

case, as few proposals (supergradients) are needed to approximate _9 ~i accurately hut 

that is also easy to approximate the functions .9 ~ by cutting planes as they are 

functions of one variable only. 

Note that the supergradient ~ ;k represents a shortest path between the origin and the 

destination of commodity i, that carries the total flow of commodity i. The supergradi- 

en t  ~ak has one nonzero component sod k =  _yffk. 

There is of course one drawback to this finest of granularities: the restricted master 

program - the dual of (22) - has as many convexity rows as there are coupling arcs and 
commodities ( 1 5 1  + I se' I). Fortunately, those can be handled very efficiently by the 

GUB technique as will be shown in Section 6.1. Another point to note is the fact that the 

supergradients are sparse, as ~:; are paths and s ca have only one nonzero component. 

5. The analytic center cutting plane method (ACCPM) 

There exist several reports on the principle of the method [15] and on its implementa- 

tion aspects [16,4,5]. For clarity's sake we provide here a short description of ACCPM. 

The problem of interest is the computation of the analytic center of the set of 

localization. This set is defined by a system of inequalities such as (21) or (22); in order 

to make it compact, we add artificial bounds u ~< M on the Lagrange multipliers. We 

already noted that in our formulation of the multicommodity network flow problems the 

multipliers are nonnegative. (The box constraint 0 ~< u ~< M clearly compactifies the 

domain.) The analytic center is the unique maximizer of the product of the slacks to 

each of these inequalities (or equivalently, the sum of their logarithms). 

Different interior point methods can be used to compute the analytic center. In 

ACCPM we choose a variant [9] of Karmarkar's projective algorithm [25] and apply it to 

the dual of (21) (or (22)). The analytic center, or its approximation, is obtained by 

simple duality. 

Let us stress that the dual of (21) (or (22)) is the restricted master program of the 

Dantzig-Wolfe algorithm. This linear program has a special structure. Individual 

columns in it correspond to cuts (supergradients) generated by a commodity or by a 
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coupling arc. The columns associated with the same commodity are linked by a 

convexity constraint and so are the columns corresponding to a given coupling arc; 

hence a GUB structure. In addition to these columns, there are unit vectors correspond- 

ing to the box constraints 0 ~< u < M. 

In a typical iteration, new columns are added after the analytic center of the current 

localizaton set has been computed. The localization set is updated and a new analytic 

center is computed. In order to cut down the computational effort, one should be able to 

make use of the previous analytic center as a warm start. This is known to be a 

challenge for any interior point method. In the projective method we use, the addition of 

the cuts in the localization set amounts to the introduction of new columns, i.e., 

variables that must be given an initial value zero to maintain feasibility, thereby 

violating the fundamental interior property requirement of the method. To handle this 

case a special technique has been devised proposed in [33]. (See [15] for the principle 

and [4],[5] for a detailed description.) Note that for a nonlinear multicommodity flow 

problem, the number of potential new columns at each iteration is the number of 

commodities plus the number of coupling arcs, a considerable number for problems with 

many commodities or many coupling arcs. 

6. Implementation of ACCPM 

The ACCPM approach presented in previous sections has been implemented and 

applied to solve two practical (and well documented in the literature) nondifferentiable 

optiinization (NDO) problems: NDO22 and NDOI48 and several large randomly 

generated problems. As we were encouraged by the results of earlier experiments 

[15,16], we have decided to prepare a specialized sparsity-exploiting implementation of 

the method dedicated to real-life large scale multicommodity network flow problems. 

This section addresses several issues of our implementation. 

6.1. Projective algorithm in the master problem 

As explained before a single outer iteration consists of finding an approximate 

analytic center for a (modified) set of localization. This is done by the projective 

algorithm. The bulk of the work in a single iteration of it (as in a single iteration of any 

other interior point method [19]) is clearly computing the orthogonal projection of a 

vector onto the null space of a scaled linear operator. Let A denote this linear operator 

(the LP constraint matrix) and Y denote a diagonal scaling matrix. We need to compute 

the orthogonal projection of a vector onto the null space of AY and this effort is 

dominated by the inversion of the matrix 

Ay2A T. (23) 
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The matrix A shows a lot of special structure in itself resulting from box constraints 

imposed on dual variables, our approach to dealing with nonlinear objective term and, 

finally, GUB constraints coming from the decomposition approach. 

hT 
. . .  Gp - I  G~ 

eY 

A = (24) 

C= Y'~ GiY~G ~ + Y~ + Y~ +d iag (hry~h j ) ,  
i=1 

B,=(G,Y~,e,.G2Yo22e2 . . . . .  GpY~pep), 

B2=diag(hry~ f j ) ,  

D, =diag(eTy~ ei), 

= 

(27) 

(28) 

(29) 

(30) 

(31) 

where 

P 

Here Y is a (presumably dense) column resulting from the transformation of the problem 

to the form required by the projective algorithm [9], each column of G i characterizes a 

feasible path (one supergradient ~ik in the notation of (22)) for the demand of 

commodity i, i = 1 . . . . .  p, hi, j = 1 . . . . .  n, are vectors built of supergradients corre- 

sponding to nonlinear part in the objective ( ~ k  in (22)). Next, e i, i = 1 . . . . .  p and fj, 
j = 1 . . . . .  n, are now vectors of all ones of appropriate dimensions (GLIB constraints). In 

order to solve large scale problems and to reach maximum efficiency in the implementa- 

tion, we have to exploit the special structure of A. We discuss below how this can be 

done. Assume the scaling matrix Y has been partitioned accordingly to (24): 

Y = diag(Yv, Yn,, Yn2' Yc, . . . . .  YG' Yh,. . . . .  Yh.)" (25) 

Then (23) becomes 

C B I B 2 

AY2A T = H + , y y  2,yT ~. n T O l  0 4- TY~T T, (26) 

B T 0 D 2 
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~ 

From the 

(26): 

It is also convenient to introduce the matrices 

I 

Column 3' of (24) is supposed to be dense. If not taken into account separately, it would 

completely destroy the sparsity of AY 2AT. It is best to view it as a rank-one correction 

to H and handle it by the Schur complement mechanism [7,14]. Assume that we have 

computed a symmetric (sparse) factorization 

L A L  T. (33) 

Sherman-Morrison-Woodbury formula we obtain the following inverse of 

( l ) 
( A y 2 A T ) - t = L - V A - I / 2  I I + v T A _ I v V V  T A - I / Z L  -z 

where 

v =  L-IYz, y .  

(34) 

(35) 

The above formula thus yields that, having done the preparation step (35), we can solve 

any equation with Ay2AT: this involves one forward transformation with L, one 

backsolve with L T and a few scalar products. Before we move on to the description of 

our approach to the computation of the factorization (33), let us comment on the 

dimension of matrix H in (26). C is an almost completely dense square matrix which 

size is the number of arc flow constraints. D l and D z are diagonal matrices of sizes 

equal to the number of commodities p and the number of arc flow constraints n, 

respectively. NDO148, for example, (see numerical results section) has 148 arc flow 

constraints and 122 commodities, so H has dimension 2n + p  = 418; this could be 

handled by any general purpose sparse Cholesky factorization code. However, we expect 

computational advantages as well as obvious storage savings from avoiding its explicit 

formulation. Instead, we propose a specialized block decomposition technique for its 

inversion. The whole diagonal block D is pivoted out first, as this operation introduces 

no fill-in: 

.:(, 0 o°)('o 0), 
Next, we build the dense symmetric matrix S, and compute its triangular factorization 

S = C - B D - I B T  = LoDoLVo . 

We then obtain the required representation 

I 0 D ] ~ D - I B  T 

(37) 

0)i ' (38) 
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which is basically the same as (33), except that L and A are decomposed into smaller 

easily invertible blocks. Summing up, the solution of an equation with Ay2A T needs 

two solves with L and one with L T, where 

L = (  L°0 BD-')I  (39) 

is a block upper triangular matrix. It also needs several additional inner products. The 

main computational effort in finding representation (38) consists in creating and 

decomposing matrix S in (37). To avoid explicit formulation of BI in S we represent 

the term B~DT~B~ as the weighted sum of the outer products of columns b i of B~. 

Thus we have for S, 

~ l  | T ¿B T" S= C - - ~ b i b  i - B2D f (40) 
i= I i 

(Recall that S is dense so we do not bother about the order in which simple products in 

bib f are accumulated.) A column of B I is thus built and forgotten just after its 

contribution to (40) has been added. B 2 is a diagonal matrix and its contribution to (40) 

is the same. Implicit handling of B t leads to clear storage savings. The only part of H 

that has to be stored is matrix C which is later rewritten with S and finally replaced 

with a factorization (37). Its size is equal to the number of arc flow constraints, and thus, 

is known in advance. 

In addition to the construction of S, the matrix B is used again in solves with L and 

L T. The implicit handling of B~ here also leads to computational time savings, due to the 

special structure of the G i matrices. This will not necessarily be the case in other 

ACCPM applications as will become clear after the presentation of our approach to the 

handling G~ matrices in Section 6.3. 

Let us finally address the issue of stability in computing orthogonal projections. In 

our experiments we observed excellent accuracy, which seems to be a structural feature 

of the approach. First, the matrix (24) has full row rank even after removal of the first 

column y. Second, all GUB constraints are orthogonal to each other. The presence of 

diagonal term Y 2 + y 2 in (27) prevents excessive spread of the pivots in the factoriza- 
r/l "1/2 

tion (37). Consequently, the factorization (33) is stable and so is the rank-one update 

(26) used to deal with dense column T- This situation is in contrast to general linear 

programming [19] for which a removal of dense columns may lead to a rank deficiency 

of Sherman-Morrison-Woodbury update. 

6.2. The oracle 

Each subproblem consists in finding a minimum cost flow between an origin and a 

destination node on an uncapacited network and it can be formulated as a shortest path 

problem. As the network is expected to be sparse, Dijkstra's d-heap algorithm is a 

suitable solution method. Our implementation follows the description of [1]. The basic 
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step of Dijsktra's algorithm consists of an update of two independent data structures: a 

set of nodes S a for which the shortest path has already been determined; and a set of all 

neighbours of S ~ (nodes that are adjacent to a node in S'0. In a single iteration, 

Dijsktra's algorithm chooses one node from the set of neighbours and adds it to S a. To 

accelerate the search in a subset of neighbours, nodes are stored in a form of a tree 

(d-heap). Once a node is chosen, the list is updated accordingly. 

The reader interested in a more detailed description of Dijktra's algorithm and its 

efficient implementation is referred to [ 1 ]. Let us mention, however, that its application 

undoubtly contributed to the overall efficiency of the ACCPM approach on this 

particular class of multicommodity network flow problems. In fact, even with a large 

number of subproblems to be solved at every cutting plane iteration (see the numerical 

results in Section 7), the time needed to find a minimum cost flow seldom exceeded 

10% of the total computational time. 

6.3. Data structures for  cuts 

Every call to the ith shortest path subproblem can add a new cut, i.e., a new column 

to the matrix G;. Each subproblem consists of finding a minimum cost flow between 

two nodes. In many practical applications, this path involves only a few arcs. As a 

result, every column has only a few nonzero elements. These nonzeros have all the same 

value gi for each commodity i. Thus we may write 

G i = giGio, (41) 

where Gi0 is a 0-1 matrix that can be stored in a compact form involving half length 

integers. Moreover G~0 is usually very sparse. We refer to it in every solve with L of 

(39) and in the computation of (40). Each such reference creates a single column of B~, 

bi _ 2 (42) - GiYdei ,  

possibly scaled by some factor. We take advantage of the form (41) and replace the 

above equation with 

bi= Gio( giY~ ei) .  (43) 

We thus reduce the number of necessary multiplications from the number of nonzero 

entries of G~ to the number of its columns (these multiplications need to be done only 

once in a single iteration of the projective algorithm). The remaining arithmetic 

operations in (43) are additions that would also have to be done if (42) had been used. 

The matrices G i grow in subsequent iterations of the ACCPM algorithm so the most 

suitable data structure to remember them is a collection of sparse columns (see, e.g., [10, 

Chapter 2]). Let us finally observe that replacing (42) with (43) is advantageous only if 

these columns are very sparse and their number is not excessive. Fortunately, both these 

conditions were always satisfied when solving multicommodity network flow problems. 
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7. Numerical results 

An implementation of ACCPM algorithm has been written in C (except for the 

Cholesky factorization that comes from LAPACK of Andersen et al. [2] and is written in 

FORTRAN 77). The code has been run on a POWER PC workstation (type 7011, model 

25T) with 64MB of virtual memory. It was compiled with the AIX XL C + + and 

FORTRAN 77 compiler with a default optimization level (-O option). Several multicom- 

modity network flow problems have been solved with ACCPM, each to a six-digits 

relative accuracy of the optimal solution. 

7.1. Impact of disaggregation 

Our first series of tests were performed on two practical, well documented, standard 

nondifferentiable problems NDO22 and NDOI48 from [13]. See Table 1 for their 

statistics. 

We used two different levels of granularity: cuts are fully aggregated and fully 

disaggregated. 

In Tables 2 and 3, we report detailed information on the influence of various levels of 

aggregation on the efficiency of ACCPM and Dantzig-Wolfe (DW) implementations, 

respectively. The tables report: the number of outer iterations, NITER, the number of 

inner iterations, Newton steps (or simplex pivots in the case of DW), the number of cuts 

(supergradients) added and the solution time. A simple test was used to check not to 

duplicate the existing cuts. (It was applied to the linear parts only.) Note, that in a case 

of full aggregation, each iteration generates one cut while in the case of maximum 

disaggregation, each iteration generates p cuts for the nonlinear part ( p  = 22 and 

p = 148, respectively) and at most n cuts for the shortest path part (n = 23 and n = 122, 

respectively). 

As mentioned earlier, the efficiency of ACCPM depends mainly on the number of 

interior point (Newton) iterations which does not seem to vary much with the number of 

subgradients added at every outer iteration. The disaggregated version of ACCPM 

accumulates about one cut per subproblem at every outer iteration, many more than in 

classical aggregate NDO approaches. Note, that the number of outer iterations or, 

equivalently, calls to oracle, corresponds to the number of objective function evaluations 

(a usual measure of efficiency in nondifferentiable optimization [27]). 

Summing up, ACCPM did pretty well, finding an accurate solution in a number of 

iterations proportional to the number of coupling constraints n', in the case of aggre- 

gated formulation and O(1) in the disaggregated formulation. 

Table 1 

N D O p r o b l e m s  statistics 

Problem Nodes  Arcs  C o m m .  Opt imum 

N D O 2 2  14 22  23 - 103.412017 

NDO148  61 148 122 - 151.926870 
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Table 2 
Efficiency of ACCPM on nonlinear NDO problems 

Disaggr. NDO22 N DO 148 

NITER Newton  CUTS Time N I T E R  Newton  CUTS Time 

None 138 186 138 1.37 857 1011 857 558.08 

Maximum 14 50 353 0.51 16 81 2649 16.15 

In contrast, the behavior of  Dan tz ig -Wol fe  algorithm depends much on the aggrega- 

tion of  cuts. For  an advanced implementation of  Dan tz ig -Wol f e  algorithm see, e.g., [1 l] 

and [24]. When multiple cuts are used, both A C C P M  and D W  work similarly, although 

ACCPM turns out to be about two times faster on larger, NDO148 problem. When fully 

aggregated cuts are added, DW looses much of  its efficiency and performs poorer than 

ACCPM. In particular, DW was unable to solve N D O I 4 8  problem in a reasonable time. 

It stalled with a relative precision of about 20%. 

7.2. A C C P M  on large scale problems 

Let us now analyse the efficiency of  the method on large scale nonlinear multicom- 

modity network flow problems. According to our knowledge,  there is no public domain 

collection of  large scale mult icommodity network flow problems. Most of  problems 

reported in the literature come from practical applications and are proprietary. We thus 

decided to generate randomly a wide class of  such test problems. Below we briefly 

describe the way in which it is done. 

The program generates a mult icommodity flow problem with n c commodit ies on a 

graph that has n n nodes and n a arcs. (The numbers n c, n n and n a are user supplied.) 

The graph has a two-level structure. Its lower level consists of  n b - 1 independent 

(connected) subgraphs. Each of  them has roughly speaking the same number of  nodes 

and arcs but their structure is randomly generated. The total number of  nodes in these 

subgraphs is n n. 

For  every lower level subgraph a node is chosen (call it connector) and another, 

connected, randomly generated graph is spanned on the set of  connectors. The number 

of  arcs in this higher level subgraph is chosen in such a way that the total number of  

arcs in the network is equal to a prescribed value n a. From this construction, the 

resulting graph is connected. It contains n b blocks: n b - 1 of them are completely 

Table 3 
Efficiency of DW on nonlinear NDO problems 

Disaggr. NDO22 NDO 148 

NITER Pivots C U T S  Time NITER Pivots CUTS Time 

None 582 4239 582 23.35 > 10000 ? 10000 > 50000 

Maximum 14 343 630 0.46 16 7350 4320 27.66 
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Table 4 
Statistics of randomly generated problems 

149 

Problem Blocks Nodes Arcs Comm. 

Random I 4 60 140 100 

Random2 4 60 1 40 500 

Random3 4 60 1 40 2000 

Random4 4 100 150 120 

Random5 5 100 300 200 

Random6 I 0 100 300 200 

Random7 10 200 400 200 

Random8 I 0 200 400 500 

Random9 10 200 500 500 

Random I 0 I 0 200 500 1000 

Random I 1 I 0 200 500 3000 

Random 12 I 0 300 600 1000 

Random 13 10 300 800 1000 

Random 14 10 400 800 2000 

Random 15 15 300 1000 4000 

Randoml6 10 300 1000 1000 

Random 17 I 0 400 1000 2000 

Random 18 15 400 1000 3000 

Random 19 15 400 1000 4000 

Random20 15 400 1000 5000 

Random21 15 500 1000 3000 

Random22 15 500 1000 4000 

independent lower level subnetworks and the last one defines links between them. Each 

block has the same numbers of nodes and arcs, n n / n  b and n a / n  b, respectively (unless 

n n and n a are not multiples of nb). 

In the next step, n c origin-dest inat ion pairs of nodes are randomly chosen. A single 

path flow is then generated between each origin-destination pair. Next, the sum of all 

flows passing through a given arc is computed and increased with some (safety) positive 

number to define a capacity of the arc. For such capacities the problem has well defined 

feasible and optimal solutions. 

Let us mention that our generator of nonlinear multicommodity network flow 
4 problems is available for research purposes. 

We have used this generator to produce a wide class of test problems that differ in the 

size and in the structure of the network. As we have observed consistent good efficiency 

of the ACCPM approach on these problems, we do not report all results obtained but 

restrict ourselves to a representative subset of them. Table 4 collects information on 

these test problems. For every problem, it reports several characteristics of the graph 

structure, namely: the number of subgraphs, the number of nodes, the number of arcs 

and the number of commodities. 

The problems collected in Table 4 are listed in increasing order of the number of arcs 

n. Recall that this number determines the size of matrix S of (37) so it is the most 

4 contact Robert Sarkissian: sarkissi@divsun.unige.ch 
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Table 5 
Efficiency of ACCPM on randomly generated problems 

Problem NITER Newton  CUTS CPU time 

total paths t F t o total 

Random 1 18 107 2 573 289 14.73 1.68 17.06 

Random2 18 159 3 838 1 392 38.73 9.24 49.18 

Random3 23 273 9 398 6 288 206.77 51.96 264.16 

Random4 17 99 2687 270 12.95 3.19 16.84 

Random5 20 134 6117 774 95.90 7.51 105.35 

Random6 19 139 5 403 775 94.21 7.46 103.46 

Random7 18 159 7 062 812 251.78 14.78 268.70 

Random8 20 202 9 577 2 396 403.07 4 I. 19 447.79 

Random9 20 171 10366 1718 545.02 46.62 595.68 

Randoml0 21 274 14384 5031 761.48 47.80 824.10 

Randoml I 28 345 28280 15635 1943.10 357.19 2321.07 

Randoml2 23 243 18288 5554 1531.65 154.50 1694.84 

Random 13 23 268 21 314 4925 3405.28 167.15 3582.93 

Randoml4 22 281 26329 9529 4107.81 448.61 4570.70 

Random 15 26 388 43243 21 251 9306.64 794.43 10 132.44 

Randoml6 23 256 24429 5430 5277.92 176.60 5467.75 

Randoml7 25 341 34739 1 2 0 1 6  8351.45 502.32 8874.58 

Randoml8 25 354 41340 1 9 0 4 0  9293.14 771.58 10090.58 

Randoml9 28 375 49 123 24718 10 135.82 1 142.64 11 315.36 

Random20 29 479 59432 33614 13769.69 1 454.98 15275.07 

Random21 27 384 43 741 19042 10701.53 1009.40  11744.53 

Random22 28 397 49599 2 3 7 2 1  11650.10 1 405.78 13097.43 

important factor in evaluating ACCPM's  computational effort (every inner iteration of 

the method requires computing one Cholesky decomposition of S; this is done in about 

~n' 3 flops [18]). 
Let us observe that the numbers given in Table 4 " h i d e "  the large size of the 

problems solved. The linear version of the Randoml0  problem, for example, in an 

equivalent compact LP formulation, would involve 200 blocks of 1000 constraints of 

commodity flow balance at each node and 500 coupling constraints of total flow 

capacity on the arcs. This formulation comprises 200 * 1000 + 500 = 200 500 constraints 

and 2 * 5 0 0 *  1000= 1 000000 variables. The reader interested in the influence of the 

multicommodity flow problem formulation on the efficiency of different solution 

methods is referred to [24]. 

Table 5 collects data on the solution of randomly generated problems. We report in it: 

the number of outer iterations, NITER, the number of inner iterations, Newton, the total 

number of cuts (subgradients) added through the whole solution process, the number of 

shortest path type cuts and the CPU time (to reach a 6-digit accurate solution on a 

POWER PC computer). To give a bit of an insight into the ACCPM's  behavior, Table 5 

additionally reports the time spent in the factorizations of S (dominating term in the 

master), tp, and the time spent in the oracle, t o. 

An analysis of Table 5 results clearly indicates that the most computationally 

expensive part of ACCPM consists in building and factorizing matrix S (see Eqs. (37) 
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and (40)). Apart from the predicted cubic dependence of this effort on the number of arc 

flow constraints n, we also note considerable influence of the number of commodities, 

specially if n is not excessively large. Such an influence is observed on problems 1, 2 

and 3 which differ only in the number of commodities (100, 500 and 2000, respectively). 

It is considerably less important for larger n (compare, for example, times for problems 

Randoml6 through Random20) although the total number of cuts varies linearly with 

the number of commodities. The time spent in subproblems usually varies between 5 

and 10% of the total CPU effort and depends little on the number of commodities, which 

proves the high efficiency of Dijkstra's d-heap algorithm for this class of problems. 

Let us observe that except for problems with a very large number of commodities, the 

average number of Newton steps required to approach a new approximate analytic 

center of the localization set is about 10. For problems with a large number of 

commodities many more cuts are added at every call to the oracle. Consequently, more 

significant changes are made to the localization set and the projective algorithm needs 

more iterations (up to 20, in the average) to approach the new approximate analytic 

center. This is a possible place for further improvements. 

Finally, we would like to comment on the number of subgradients added during the 

solution process. The number of subgradients corresponding to the shortest paths shows 

uniform linear dependance on the number of commodities: from 3 cuts per commodity 

on smaller problems up to 7 cuts per commodity on larger ones. The total number of 

subgradients counts also the cuts resulting from the nonlinear term in the objective. It 

thus depends much more on the structure of the network and on how tight the arc 

capacity constraints are. Our experience indicates that, in practice, this number also 

grows linearly with the number of commodities. 

Our last experiment aims at showing the trade-off between the required relative 

precision of the optimum and the time needed to reach it for the problem Randoml0. In 

Table 6 we report numbers of outer and inner iterations, the number of subgradients 

(cuts) added, and the CPU time required to reach a given number of the exact digits of 

the optimum. 

The results collected in Table 6 show that it takes much time to build the first 

complete description of the localization set and to reach at least one digit exact solution. 

Table 6 

Trade-off between an accuracy and an efficiency of ACCPM for Random 10 problem 

Accuracy NITER Newton CUTS CPU time 

total paths 

1 digit l I 140 10 195 4946 433.59 

2 digits 13 180 11 145 5030 550.53 

3 digits 15 208 11974 5031 628.97 

4 digi ts 17 230 12 784 5031 692.02 

5 digits 18 245 13 186 5031 739.71 

6 digits 21 274 14 384 5031 824.10 

7 digits 22 293 14783 5031 896.93 

8 digits 23 335 15 182 5031 1016.69 
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(This part of  the optimization process takes about 50% of  the effort to solve the problem 

to 6 digits.) However,  once the optimum has been approximately localized, the next 

digits (up to 8) can be achieved relatively fast with an effort that is almost linear with 

the number of digits required in the optimum. The method deteriorates if the academic 

precision 10 -9 is required. Recall that practitioners are normally satisfied with a two or 

three digit solution. 

Up to the level of  accuracy of 10 -6,  the projective algorithm involves from 10 to 15 

iterations per outer iteration. For higher level of accuracy ( <  10-6),  this number 

increases to 20 and 40. We believe that this is essentially due to insufficient accuracy in 

the computation of the search direction. Despite an iterative refinement procedure the 

Cholesky factorization attains its limits. 

8. Conclusions 

We have presented a specialized version of the analytic center cutting planes method 

for nonlinear multicommodity flow problems. We have discussed the influence of 

different aggregation/disaggregation techniques on the behaviour of the method and 

presented a detailed description of its sparsity-exploiting linear algebra kernel that 

ensures its high efficiency. 

Computational experience showed the method 's  ability to solve fast even very large 

scale problems on a workstation with 64MB of  memory. The method has been tested on 

public domain collection of large scale problems and two small, nondifferentiable 

optimization problems known from the literature. 

The analysis of  numerical results shows promise for ACCPM to become a competi- 

tive method for nonlinear multicommodity flow problems. 
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