
 Open access Journal Article DOI:10.1007/BF02614381

Solving nonlinear multicommodity flow problems by the analytic center cutting
plane method — Source link

Jean-Louis Goffin, Jacek Gondzio, Robert Sarkissian, Jean-Philippe Vial

Institutions: McGill University, University of Geneva

Published on: 02 Jan 1997 - Mathematical Programming (Springer-Verlag)

Topics: Minimum-cost flow problem, Multi-commodity flow problem, Flow network, Nonlinear programming and
Column generation

Related papers:

 Decomposition and nondifferentiable optimization with the projective algorithm

 The Cutting-Plane Method for Solving Convex Programs

 A cutting plane method from analytic centers for stochastic programming

 Complexity Analysis of an Interior Cutting Plane Method for Convex Feasibility Problems

 A Survey of Algorithms for Convex Multicommodity Flow Problems

Share this paper:

View more about this paper here: https://typeset.io/papers/solving-nonlinear-multicommodity-flow-problems-by-the-
tknosdtu34

https://typeset.io/
https://www.doi.org/10.1007/BF02614381
https://typeset.io/papers/solving-nonlinear-multicommodity-flow-problems-by-the-tknosdtu34
https://typeset.io/authors/jean-louis-goffin-2b88z07rhd
https://typeset.io/authors/jacek-gondzio-59s6o60jag
https://typeset.io/authors/robert-sarkissian-5g0flgx1tk
https://typeset.io/authors/jean-philippe-vial-4awggefhlt
https://typeset.io/institutions/mcgill-university-2kp72n3l
https://typeset.io/institutions/university-of-geneva-1ljqrc07
https://typeset.io/journals/mathematical-programming-27iihk2z
https://typeset.io/topics/minimum-cost-flow-problem-1uj31c7r
https://typeset.io/topics/multi-commodity-flow-problem-1v47qh32
https://typeset.io/topics/flow-network-2ayx3661
https://typeset.io/topics/nonlinear-programming-3ckkp9wl
https://typeset.io/topics/column-generation-258rhjdh
https://typeset.io/papers/decomposition-and-nondifferentiable-optimization-with-the-4ta2qr3viz
https://typeset.io/papers/the-cutting-plane-method-for-solving-convex-programs-4a8bxibqh9
https://typeset.io/papers/a-cutting-plane-method-from-analytic-centers-for-stochastic-2gfqkbl0u1
https://typeset.io/papers/complexity-analysis-of-an-interior-cutting-plane-method-for-l5xpqytlao
https://typeset.io/papers/a-survey-of-algorithms-for-convex-multicommodity-flow-2odemykkbv
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/solving-nonlinear-multicommodity-flow-problems-by-the-tknosdtu34
https://twitter.com/intent/tweet?text=Solving%20nonlinear%20multicommodity%20flow%20problems%20by%20the%20analytic%20center%20cutting%20plane%20method&url=https://typeset.io/papers/solving-nonlinear-multicommodity-flow-problems-by-the-tknosdtu34
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/solving-nonlinear-multicommodity-flow-problems-by-the-tknosdtu34
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/solving-nonlinear-multicommodity-flow-problems-by-the-tknosdtu34
https://typeset.io/papers/solving-nonlinear-multicommodity-flow-problems-by-the-tknosdtu34

Article

Reference

Solving nonlinear multicommodity flow problems by the analytic
center cutting plane method

GOFFIN, Jean-Louis, et al.

GOFFIN, Jean-Louis, et al. Solving nonlinear multicommodity flow problems by the analytic
center cutting plane method. Mathematical Programming, 1997, vol. 76, no. 1, p. 131-154

DOI : 10.1007/BF02614381

Available at:
http://archive-ouverte.unige.ch/unige:111358

Disclaimer: layout of this document may differ from the published version.

 1 / 1

http://archive-ouverte.unige.ch/unige:111358

Mathematical Programming 76 (1996) 131-154

Solving nonlinear multicommodity flow problems
by the analytic center cutting plane method

J.-L. G o f f m a,b,* ,2, j. Gondzio b,3, R. Sarkissian b, j._p. Vial b

a GERAD, Faculty of Management, McGill University, Montreal, Que., Canada H3A IG5
b Logilab. HEC, Section of Management Studies, University of Geneva, 102 Bd.Carl Vogt, CH-1211 Genbve 4,

Switzerland

Received 1 November 1994; revised manuscript received 1 November 1995

Abstract

The paper deals with nonlinear multicommodity flow problems with convex costs. A decompo-

sition method is proposed to solve them. The approach applies a potential reduction algorithm to

solve the master problem approximately and a column generation technique to define a sequence

of primal linear programming problems. Each subproblem consists of finding a minimum cost

flow between an origin and a destination node in an uncapacited network. It is thus formulated as

a shortest path problem and solved with Dijkstra's d-heap algorithm. An implementation is

described that takes full advantage of the supersparsity of the network in the linear algebra

operations. Computational results show the efficiency of this approach on well-known nondiffer-

entiable problems and also large scale randomly generated problems (up to 1000 arcs and 5000

commodities).

1. Introduction

The nonl inear m u l t i c o m m o d i t y f low problem with separable increas ing convex costs

g ives rise to very large nonl inear programs with l inear constraints. It arises in the areas

• Corresponding author, e-mail: ma56@musica.mcgill.ca

IT his research has been supported by the Fonds National de la Recherche Scientifique Suisse, grant

#12-34002.92, NSERC-Canada and FCAR-Quebec.

2 This research was supported by an Obermann fellowship at the Center for Advanced Studies at the

University of Iowa.

3 On leave from the Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw,

Poland.

0025-5610 © 1996 - The Mathematical Programming Society, inc. All rights reserved

PH S0025-5610(96)00037-8

132 J.-L. Goffin et al . / Mathematical Programming 76 (1996) 131-154

of transportation networks, traffic assignment problems, telecommunication or computer

networks, multi-item production planning, to name but a few applications. The decom-

position principle of Dantzig and Wolfe [8] is well suited to the primal block diagonal

structure of the constraints, even though the decomposition algorithm may show slow

convergence on some, but not all, formulations or instances. The granularity of the

formulation may have a significant impact on the effectiveness of the approach as noted

and studied by Jones et al. [24] and Minoux [32].

Three issues need to be settled to make for an effective algorithm:

• The formulation: how many commodities? Origin-destination problem, destina-

tion specific (or-origin specific) problem or product specific problem, or in fact a

combination of these three cases [24]?

• How to deal with the nonlinear objective?

• What solution concept to use in the master problem, to compute a set of prices that

will be used to generate new proposals (columns) from the subproblems (oracles).

The approach taken here uses the following answers to these three issues:

• The formulation: as fine a granularity (disaggregation) as the problem will allow.

• Deal with the nonlinear objective by defining a subproblem (oracle, block,

convexity constraint) for each one-dimensional component of the objective.

• Do not solve the master problem to optimality but compute an analytical center of

the set of localization (ACCPM: the analytic center cutting plane method) [15,3].

As in the Dantzig-Wolfe algorithm, our approach considers a restricted master

program. This restriction is improved as new columns are added, either one at a time or

in bunches. The analytic center of the set of localization is obtained by applying to the

restricted master the de Ghellinck and Vial's variant [9] of Karmarkar's projective

algorithm [25].

The purpose of our paper is to demonstrate that ACCPM is a viable tool for solving

large non-linear multicommodity flow problems. Special attention has been paid to

exploit structural sparsity in the restricted master. We conducted two different series of

experiments. We first compared different levels of granularity on two well documented

test problems; the finest granularity yields the best results by far. The second series of

experiments pertained to random problems of various sizes - the formulation used the

finest granularity. The results are very encouraging. The method is robust. Its behavior

on the particular class of problems is very much alike what has been observed in

different areas of application such as stochastic programming, multiregional planning,

nonlinear programming, minmax problems. Our results provide further evidence that

ACCPM is one of the method of choice for nondifferentiable optimization, especially for

the nondifferentiable algorithms that arise in decomposition approaches to large scale

programming.

Our specific contribution in this paper is twofold:

• our first contribution is to show that a full disaggregation has a dramatic effect on

convergence; by this we mean a disaggregation on the OD pairs - the rationale

here being that few shortest paths must appear in the optimal solution - and on

each of the nonlinear cost arcs - the rationale being that cutting planes can

J.-L. Goffin et aL / Mathematical Programming 76 (1996) 131-154 133

approximate well functions of one variable. The impact of this disaggregation is a

considerable improvement not only of the ACCPM but also of Dantzig-Wolfe.

• Second we propose an advanced implementation of ACCPM with this particular

application in mind. We refrained from undertaking a systematic comparison with

other methods. We do not claim that our method is the best, but we claim that it is

always competitive with the best, and that is is stable and robust, and not prone to

slowing down as it is the case with some formulations of Dantzig-Wolfe

decomposition.

There are, of course many other approaches to the linear or nonlinear multicommod-

ity flow problem, many of them based upon variants of Dantzig-Wolfe decomposition,

or dually, Kelley's cutting plane method or Benders's decomposition, all of which can

and have been interpreted in terms of nondifferentiable optimization.

The fully aggregated formulation (which corresponds to one convexity row) has been

used in many nondifferentiable optimization approaches: the subgradient method by

Fukushima [12], the proximal bundle method of Lemar6chal [30] and Kiwiel [28], the

bundle trust region method of Schramm and Zowe [36], the new bundle method of

Lemar~chal, Nemirovskii and Nesterov [31], the affine scaling with centering bundle

method of Hipolito [23], the dual ascent algorithm of Hearn and Lawphongpanich [21],

and the restricted simplicial decomposition of Heam, Lawphongpanich, and Ventura

[22], among many others. Most of these papers report results on the small nonlinear

multicommodity flow problem NDO22.

Some of these algorithms do not extend easily to, or have not been tried with, a

disaggregated formulation; the methods of [24] and [32] use disaggregation, but only in

the linear case.

2. Problem formulation

The formulation of the multicommodity flow problem follows that of Minoux [32].

We assume that the arcs are not directed (thus flows can traverse arcs in both

directions). The flows must then be added up in absolute value as they represent

different commodities. This is typical of telecommunication networks. We could also

admit that some arcs could be directed (one way), as is usually the case in transportation

networks. For clarity's sake we will ignore this possibility.

We are given a graph ~ ' = (~ ' , .J~¢'), where ..~¢c{(s, t) : s ~ T / , t ~ , s ~ t } and

m = card(~ "/') is the number of nodes; the arcs are directed, but the direction is selected

arbitrarily. In order to formulate this as a nonlinear (or linear) program, the transpose of

,~¢ is defined as ,.~¢x- {(s, t): (t, s)~,~¢}. We also define T (a) - {(s, t): a = (t, s) E

.at}. This simply associates to every directed arc (s, t) the arc with the reverse

orientation (t, s); the two directed arcs a and T(a) represent the undirected arc {s, t}.

Clearly ,.a ¢x = T (d) . If the transposition map T(a) were to be defined on a subset of ,~',

this would permit the modelling of one-way arcs.

134 J.-L. Goffin et al. / Mathematical Programming 76 (1996) 131-154

To define a nonlinear (or linear) programming formulation we thus use the aug-

mented graph ~ = (~ z - , ..at--), where .~ -" ~¢U..~ ¢T. We denote by n = c a r d (, ~) the

number of arcs and by N the m × n vertex-arc incidence matrix of ~'.

The set of commodities dr is defined by exogeneous flow vectors (supplies and

demands) d i - - (ds) ` i E ~- that satisfy e ~ d i = 0 for i ~d r , with e~ a vector of ones.

These flows must be shipped through ~'.

We denote by x i = (x a) , e ~ the flow of commodity i ~ d r. The feasible flows for

commodity i are members of

s r i = { x i >1 0 : N x ~ = d i } .

Following the terminology in Jones et al. [24], the flow problem for commodity i is a

single origin-single destination (SOSD) problem if d g has exactly one positive and one

negative entry - the origin and the destination, respectively. If d i has one positive entry

and several negative entries, we have a single origin-multiple destination problem

(SOMD). We similarly can have a multiple origin-single destination problem (MOSD).

These three formulations truly represent the same problem, in the sense that it is possible

to aggregate SOSD into SOMD (or MOSD) and conversely disaggregate SOMD (or

MOSD) into SOSD. This is easy to see as every SOMD flow can be disaggregated into a

convex combination of trees (basis), and every tree-flow disaggregates uniquely into a

sum of path-flows, see [24] and Rockafellar [35].

The case of multiple origin-multiple destination problem (MOMD) is somewhat

different though, as this formulates the transportation of a generic commodity (gas, oil,

cable television, aircraft, etc.). We will restrict ourselves in our experimentation to the

origin-destination case (SOSD), even though the algorithm would be applicable to the

MOMD, or the mixed MOMD-SOSD cases.

A linear cost vector c / is associated with the flows of each commodity. A nonlinear

(or linear) cost is also charged on the total arc flow, where the total arc flow is

E, ej(x + i XT(~)). A set of coupling arcs .J*¢' C~¢ comprises those arcs for which there

is either a nonlinear cost or a limited capacity on the total arc flow.

The nonlinear multicommodity flow problem can be formulated as

min E ci'rXi "~- E fa(Ya)
i .7 (1)

, (2) i + xr(a)) ~< Ya Va ~,.Q¢" c,~¢', s.t.)--'. (xa

(3)
x / e 9 -/ V i e d r , (4)

O<~ ya<~ i/~ Vae~¢ ' c,.~¢'.

In this formulat ion the vector y = (Ya)a e ~/' is meant to represent the jo int total arc-f low

of a and T(a); in fact it is an upper bound to it, but of course y~ = Y' . ieu , (x i "["X~(a)) at

the optimum if we assume that the cost function fo(y~) is strictly increasing. We further

assume that the function f~(ya) is convex and the costs c" are nonnegative. This will

ensure that the Lagrange multipliers (the prices of the coupling constraints) are

nonnegative, and in fact positive in the ACCPM; from this follows that the shortest

paths routines (the oracles) need not worry about negative or zero cost cycles.

J.-L. Goffin et al./Mathematical Programming 76 (1996) 131-154 135

Constraints (3) and (4) are simple network and capacity constraints, respectively.

Without (2), the problem is separable. Constraints (2) are named coupling since they

coordinate the simple network problems. The nonlinear functions most used in practice

a r e :

• a power function fo(y~) = a~ yfo, with a~ > 0 and fl~ >i 1;

• the delay function f~(y~)= y~/(~/~ -yo).
Finally, we mention that the standard linear multicommodity flow corresponds to f~ - 0.

It is then possible to combine (2) and (4) into

E (Xi -l- XiT(a)) ~ ~l a Va E ~',

to obtain the usual formulation:

min ~_, ci'rx i

i E J

i
s.t. E (x: + xr(~))<~ 7~

x i E ~ '~ Vi ~ r .

Va Ez¢' c ~ ,

(5)
(6)

(7)

3. The decomposition principle

Real-life multicommodity flow problems leed to very large scale programming

problems. For instance a problem with 500 nodes, 1000 arcs and 5000 commodities in

the SOSD formulation would lead to a nonlinear program with 2.5 × 10 6 constraints and

5 × 106 variables; in the SOMD formulation it still remains a problem with 250000

constraints and 500000 variables. The difficulty in solving the problem as a single LP or

NLP stems from the coupling constraints. The standard decomposition approach strives

to separate the issues of finding flows for the individual commodities and of coordinat-

ing the individual commodity solutions. In this section we shall briefly review the

various elements of this well-known approach.

3.1. Lagrangian dual

The partial Lagrangian is obtained by the dualization of the coupling constraints,

using Lagrange multipliers u = (u ,) ~ d' and letting 7 = (7a)~ ~,':

i + xr(,)) y~ (8) Sa(x, y; u)= E cirxi + E f~(Y~) + E (x~ - .
i E J aEA' aE,~ ¢ x iE~¢

We define

SaP(x , y) : = max Sa(x, y; u) (9)
u>~0

136 J.-L. Goffin et aL / Mathemafical Programming 76 (1996) 131-154

and

SaD(u) := min . ~ (x , y; u). (10)

O<~ y~< y

The functions ~ e (x , y) and .c.~D(u) are respectively convex and concave. From the

minmax theorem for convex programming:

min SaP(x , y) = m a x S : D (u) .
xi ~ i r i u ~ O

O~< y<~ 3'

So we can choose to solve (10) instead of (9), provided one is able to recover an

approximate optimal primal solution (x *, y *) to (9) from an approximate optimal dual

solution u* to (10). As the methods used generate both primal and dual solutions, this

follows quite naturally from the algorithm.

3.2. Polyhedral approximation and linear relaxation

Column generation - or cutting plane - algorithms use the fundamental subgradient

inequality for convex functions. Let us briefly recall the definition of the subdifferential.

Let f be a convex function and let x be in the interior of the domain of f . The

subdifferential set 0f (x) of f at x is a nonempty compact convex set such that for any

s ¢ ~ af (x) and any y in the domain of f the following subgradient inequality holds:

f (y) >~f(x) + ~:T(y-- X).

Since - S : ° (u) is convex, we have that for each pair (u, fi) whose elements are in the

domain of definition of .o-c¢ ° and each ~ in the subdifferential cg(-_o-cP°(fi)) at fi, the

following inequality holds

__~O(u) >/ _ . ~ o (~) + ~ T (u _ 7) .

It is convenient to introduce the set - O (- S : ° (f i)) . So for each f e -O(--.Z~'D(fi)), the

reverse inequality holds:

.~D(u) ~ . ~ o (~) + ~r (U _ ~).

The elements of - - O (- 2 ° (f i)) are sometimes named supergradients.

It is also known, by convex duality, that under the usual regularity conditions,

S " ° (u) = min min (S#° (f i) +~r(u- '~)) ,

where n' is the dimension of u or y, i.e., the cardinality of ~¢', or the number of

coupling constraints.

This equality also holds if the minima are restricted to a dense countable subset of

{ (~ , - a (- .Z ° (~)) : ~ ~ ~ '~ + j "

By using a finite subset of this countable dense set a polyhedral approximation to -.Z# D

can be constructed and refined as this subset is expanded by further oracle calls.

It is thus possible to use the subgradient inequality to generate a polyhedral relaxation

of the epigraph of the function - S aD. For instance, let u k, k = I K, be a collection

J.-L. Goffin et al. / Mathematical Programming 76 (1996) 131-154 137

of points in the domain of S " ° and let ~k ~ _ 0 (- ~O(fi~)) be an associated collection

of supergradients. Then the set of pairs (- z, u) satisfying

Z - - (~ k) T U < . Z O (U ~) - (~) T u ~ , k = l ~,

is a polyhedral relaxation of the epigraph of _ ~ o . Thus the polyhedral function

k = l x

is an upper bound on Sa°(u), i.e.,

Vu e R ' .

Hence, the optimum of the linear programming problem (the linear relaxation, or the

Dantzig-Wolfe point)

max{z: z - (~k)a'u <~-c-~°(uk)-(~ k)'rUk, k = 1 K}, (11)

provides an upper bound to the optimal value of S "°. We shall denote it 0~p.

It is possible to localize more precisely the optimal point of .~o. Let

0i~f:= max .c2O(uk)

be the largest value of S a° recorded in the sequence. Clearly 0~ r is a lower bound for

the optimal value of S a°. Moreover, any optimal point (.~°(u*), u*) lies in the

so-called localization set

= {(z, u): z>_- and

~<,..f6'O(u *) - (¢*)'ruk, k= l K}. (12)

3.3. Cutting planes: A prototype decomposition algorithm

The basic idea underlying cutting plane algorithms can be described as follows.

Given a polyhedral outer approximation of the epigraph of the function, one selects a

point u such that the pair (z, u), for some z, belongs to the localization set. The value

.oW°(u), and an element ~ of the supergradient set, are then computed; a new valid

supergradient inequality is added to the definition of the localization set. This new

inequality either "cu ts" the localization set or is a support to it. The lower bound is

updated and a new smaller localization set is obtained.

We can state formally the basic steps in the prototype cutting plane method. For the

sake of simpler notations we drop the iteration index k. A localization set Sa~'~ ' and a

lower bound 0in f are given.

Step 1. Select (?., fi) ~_oca@~.

Step 2. Compute Seo(fi) and ~: E - O (- 2 ° (f i)) .

138 J.-L. Goffin et al. / Mathematical Programming 76 (1996) 131-154

Step 3. Update 0i. f by 0i. f := max{0i, f, .C.¢'°(fi)} and add the inequality

z - ~ T u < S : ° (~) - ~:a-~

to the definition of the localization set.

The process ends when the duality gap, 0,u p - 0i, f, falls below a given precision level.

Step 1 of the prototype algorithm is usually called the master program. The way fi is

chosen in the localization set characterizes the cutting plane method. Step 2 is problem

dependent. It has been called an oracle, though the classical terminology in the

Dantzig-Wolfe approach refers to subproblems.

4. Levels of disaggregation in the decomposition for multicommodity flow problems

In the case of the nonlinear multicommodity flow, the partial dual Lagrangian (10) is

.~°(u)= min (~ ciTxi '~ - E fa(Ya) + ~ U~(Y'. (xia+X~(a))-ya))
xi~,~ri i~.Y" a~.a:' a ~ / ' ~ i E J
O~y<~ y

= min • (Ci+u)Txi+ min E (f.(Ya)--u~Y~)
x,~.~r i i~.)r 0~<y~< y a~.~¢,

= E min (ci+u)Xx'+ ~, min (f~(ya)-u~y~).
i ~ . J "xiEoq-i aEA' O<Yo<~ ~a

The computation of the function _oW°(u) and of a supergradient separates into easily

computable functions:

-Z#°(u) = E .o~'(u) + Y'. .~'~(u), (13)
i ~ , f a E ge"

where each

.oc:/(u) = m i n (c i " ~ u) T x i (14)

is the solution of a shortest path problem with nonnegative costs c i + u, and where,

abusing notation, uTx i means F..~s:,u.(x ~ i + Xr(o)), while

. ~ a (u) = min (f~(y~)-u~y.) (15)
O~Ya~< Yo

is a one-dimensional convex program whose solution can usually be given analytically.

It should be noted that if the costs c ~ do not depend on the commodity i, then only

one shortest path problem between all pairs of nodes needs to be solved.

It is interesting to note that in the case of linear costs, fa - O, the Lagrangian dual is

. ~ ° (u) = ~2 min.(ci +u)Txi + ~_. min (--u.y.). (16)
i~..) r xi~.=qr' aEA' O<Ya<~ Ya

J.-L. Goffin et al. / Mathematical Programming 76 (1996) 131-154 139

It is important to note that, in the usual linear case (5), the function 2 ° differs in a

very significant way from the partial dual associated to the (nonlinear) mult icommodity

flow formulation (1). Letting v. be the Lagrange multipliers there one gets

2 1 ° (v) = Y'~ min (ci'~u)Txi--uT~/, (17)

The functions 2 ° and ..?'1 ° appear to be the sum of hopefully simpler functions. The

simple structure can be exploited to yield various level of disaggregation. Each level

generates its own set of subgradient inequalities.

4.1. No disaggregation: Single cuts

I f we do not take advantage of the additive structure of 2 ° , we obtain a supergradi-

ent of 2 ° at fi as follows. Let x(fi) and y(fi) be optimal solutions of problems (14)

and (15) for a value fi of the Lagrange multiplier. The supergradient of 2 ° (u) at fi = u

is given by the coefficient of ft. in (13), i.e.,

~a = E (xi("~) + X!r(a)(-u))--Ya('u))"

~ is zero, as the subproblems Note that at least one of the components of x . or Xr(.)

compute shortest paths or trees.

In the case of linear costs it is interesting to compare the two formulations (16) and

(17). In the former case the function]Ea~ ~,,..oc~"(u) has a superdifferential at u = 0 with

2 ' extreme points while in the latter case - v ' r y is differentiable and has a unique

supergradient - y.

Practitioners have always noticed that the additive structure of 21 ° can be used for a

variant of Dantz ig-Wolfe decomposition, which is sometimes effective.

4.2. Full disaggregation: Multiple cuts

The linear case
Recall that

2 g (v) = E 2 / (v) -

A disaggregated LP relaxation can be defined as

SolO(v) = - - v r y + • max{z i : Zi~*~i(o)},
i ~ J xi

where

2 i (v) = rain (c i + v) r x i. (18)
x ,~sr '

Each function 2 i has its own support s ¢ i = x i at a point ~. Now the proposals ~:"

depend on whether the formulation is SOSD or SOMD; in the former case the proposals

are path-flows, in the latter they are tree-flows.

140 J.-L. Goffin et aL,/ Mathematical Programming 76 (1996) 131-154

As clearly shown in [24] the most disaggregated formulation, i.e., the SOSD

formulation using path-flows, is the most effective one. Only a few proposals are needed

for each of the component functions to define them accurately. The SOMD or tree-flow

formulation creates exponentiality in the number of extreme points of the subdifferen-

tials.

In this disaggregated formulation it is possible to introduce a cut for each i E J . To

this end we introduce variables zi, and z = (z i)~ j . We define the LP relaxation in the

extended space I~ n'+ IJl+ i by

max z

subject to

z= E Zi--vT3 ', (19)

Zi--(~ik)Tv<<..~i(V k) - (~: ik)Tvk , i E I , k = l K

while the set of localization becomes

((z, z,, o e,z= -oTr+ E z,,

Z i - (eik)Tv<~c.c.c.c.~i(vk) -- (~:i t)Tv' , i e l , k = 1 K}. (20)

The nonlinear case
In the nonlinear case the disaggregation needs to go further; we have

--~°(u) = E S (u) + E ~ ° (u) .
iEJ r a~A'

We may choose a partial disaggregation

c-~°(u)=max{zo:zo <~ C --°oPt(u)} + C max{zi'zi<'---gF'(u)},
Zo a ~ ¢ , iE.Y zi

but the finer granularity of

_ ~ O (u) =)-" max{zo:z <~SaO(u)}+ ~_, max{zi:zi<-~-c-c-~i(u)}
a ~ d ' z, i ~ J z~

turns out to be significantly more effective.

We define the LP relaxation in the extended space I~ 2n'÷ IJl+ I as n ' = I ,J~¢' l, by:

m a x z

subject to

Z = E Zi"I- E Za,
i ~ J aEA'

T k Zi__ (¢ik)Tbl ~.~c~i(u k) _ (~ i k) U ,

zo- (e"')'u - (

i ~ J , k = 1 K,

a ~ , ~ ¢', k = l K,

(21)

J.-L. Goffin et aL / Mathematical Programming 76 (1996) 131-154 141

while the set of localization becomes:

~e~'K = ((z, z~, ZA', U)" Z >/ 0~f,

z= Ez ,+ Ezo,
i E J i~A '

Z i - - (~ i k) T l d ~ . f ~ i (I d k) - - (~'k)Tuk, i ~ I , k= 1 K,

Za-- (~Qk)Zu <~.c.~"(Uk) -- (~k)Tuk, aEa¢' , k= 1 K}. (22)

The motivation here is that it is easy to approximate the functions ~ i in the SOSD

case, as few proposals (supergradients) are needed to approximate _9 ~i accurately hut

that is also easy to approximate the functions .9 ~ by cutting planes as they are

functions of one variable only.

Note that the supergradient ~ ;k represents a shortest path between the origin and the

destination of commodity i, that carries the total flow of commodity i. The supergradi-

en t ~ak has one nonzero component sod k = _yffk.

There is of course one drawback to this finest of granularities: the restricted master

program - the dual of (22) - has as many convexity rows as there are coupling arcs and
commodities (1 5 1 + I se' I). Fortunately, those can be handled very efficiently by the

GUB technique as will be shown in Section 6.1. Another point to note is the fact that the

supergradients are sparse, as ~:; are paths and s ca have only one nonzero component.

5. The analytic center cutting plane method (ACCPM)

There exist several reports on the principle of the method [15] and on its implementa-

tion aspects [16,4,5]. For clarity's sake we provide here a short description of ACCPM.

The problem of interest is the computation of the analytic center of the set of

localization. This set is defined by a system of inequalities such as (21) or (22); in order

to make it compact, we add artificial bounds u ~< M on the Lagrange multipliers. We

already noted that in our formulation of the multicommodity network flow problems the

multipliers are nonnegative. (The box constraint 0 ~< u ~< M clearly compactifies the

domain.) The analytic center is the unique maximizer of the product of the slacks to

each of these inequalities (or equivalently, the sum of their logarithms).

Different interior point methods can be used to compute the analytic center. In

ACCPM we choose a variant [9] of Karmarkar's projective algorithm [25] and apply it to

the dual of (21) (or (22)). The analytic center, or its approximation, is obtained by

simple duality.

Let us stress that the dual of (21) (or (22)) is the restricted master program of the

Dantzig-Wolfe algorithm. This linear program has a special structure. Individual

columns in it correspond to cuts (supergradients) generated by a commodity or by a

142 J.-L. Golf in et al. / Mathematical Programrnhlg 76 (1996) 131-154

coupling arc. The columns associated with the same commodity are linked by a

convexity constraint and so are the columns corresponding to a given coupling arc;

hence a GUB structure. In addition to these columns, there are unit vectors correspond-

ing to the box constraints 0 ~< u < M.

In a typical iteration, new columns are added after the analytic center of the current

localizaton set has been computed. The localization set is updated and a new analytic

center is computed. In order to cut down the computational effort, one should be able to

make use of the previous analytic center as a warm start. This is known to be a

challenge for any interior point method. In the projective method we use, the addition of

the cuts in the localization set amounts to the introduction of new columns, i.e.,

variables that must be given an initial value zero to maintain feasibility, thereby

violating the fundamental interior property requirement of the method. To handle this

case a special technique has been devised proposed in [33]. (See [15] for the principle

and [4],[5] for a detailed description.) Note that for a nonlinear multicommodity flow

problem, the number of potential new columns at each iteration is the number of

commodities plus the number of coupling arcs, a considerable number for problems with

many commodities or many coupling arcs.

6. Implementation of ACCPM

The ACCPM approach presented in previous sections has been implemented and

applied to solve two practical (and well documented in the literature) nondifferentiable

optiinization (NDO) problems: NDO22 and NDOI48 and several large randomly

generated problems. As we were encouraged by the results of earlier experiments

[15,16], we have decided to prepare a specialized sparsity-exploiting implementation of

the method dedicated to real-life large scale multicommodity network flow problems.

This section addresses several issues of our implementation.

6.1. Projective algorithm in the master problem

As explained before a single outer iteration consists of finding an approximate

analytic center for a (modified) set of localization. This is done by the projective

algorithm. The bulk of the work in a single iteration of it (as in a single iteration of any

other interior point method [19]) is clearly computing the orthogonal projection of a

vector onto the null space of a scaled linear operator. Let A denote this linear operator

(the LP constraint matrix) and Y denote a diagonal scaling matrix. We need to compute

the orthogonal projection of a vector onto the null space of AY and this effort is

dominated by the inversion of the matrix

Ay2A T. (23)

J.-L. Goffin et al. / Mathematical Programming 76 (1996) 131 - 154 143

The matrix A shows a lot of special structure in itself resulting from box constraints

imposed on dual variables, our approach to dealing with nonlinear objective term and,

finally, GUB constraints coming from the decomposition approach.

hT
. . . Gp - I G~

eY

A = (24)

C= Y'~ GiY~G ~ + Y~ + Y~ +d iag (hry~h j) ,
i=1

B,=(G,Y~,e,.G2Yo22e2 GpY~pep),

B2=diag(hry~ f j) ,

D, =diag(eTy~ ei),

=

(27)

(28)

(29)

(30)

(31)

where

P

Here Y is a (presumably dense) column resulting from the transformation of the problem

to the form required by the projective algorithm [9], each column of G i characterizes a

feasible path (one supergradient ~ik in the notation of (22)) for the demand of

commodity i, i = 1 p, hi, j = 1 n, are vectors built of supergradients corre-

sponding to nonlinear part in the objective (~ k in (22)). Next, e i, i = 1 p and fj,
j = 1 n, are now vectors of all ones of appropriate dimensions (GLIB constraints). In

order to solve large scale problems and to reach maximum efficiency in the implementa-

tion, we have to exploit the special structure of A. We discuss below how this can be

done. Assume the scaling matrix Y has been partitioned accordingly to (24):

Y = diag(Yv, Yn,, Yn2' Yc, YG' Yh,. Yh.)" (25)

Then (23) becomes

C B I B 2

AY2A T = H + , y y 2,yT ~. n T O l 0 4- TY~T T, (26)

B T 0 D 2

144 J.-L. Goffin et aL / MathematicaI Programraing 76 (1996) 131-154

~

From the

(26):

It is also convenient to introduce the matrices

I

Column 3' of (24) is supposed to be dense. If not taken into account separately, it would

completely destroy the sparsity of AY 2AT. It is best to view it as a rank-one correction

to H and handle it by the Schur complement mechanism [7,14]. Assume that we have

computed a symmetric (sparse) factorization

L A L T. (33)

Sherman-Morrison-Woodbury formula we obtain the following inverse of

(l)
(A y 2 A T) - t = L - V A - I / 2 I I + v T A _ I v V V T A - I / Z L -z

where

v = L-IYz, y .

(34)

(35)

The above formula thus yields that, having done the preparation step (35), we can solve

any equation with Ay2AT: this involves one forward transformation with L, one

backsolve with L T and a few scalar products. Before we move on to the description of

our approach to the computation of the factorization (33), let us comment on the

dimension of matrix H in (26). C is an almost completely dense square matrix which

size is the number of arc flow constraints. D l and D z are diagonal matrices of sizes

equal to the number of commodities p and the number of arc flow constraints n,

respectively. NDO148, for example, (see numerical results section) has 148 arc flow

constraints and 122 commodities, so H has dimension 2n + p = 418; this could be

handled by any general purpose sparse Cholesky factorization code. However, we expect

computational advantages as well as obvious storage savings from avoiding its explicit

formulation. Instead, we propose a specialized block decomposition technique for its

inversion. The whole diagonal block D is pivoted out first, as this operation introduces

no fill-in:

.:(, 0 o°)('o 0),
Next, we build the dense symmetric matrix S, and compute its triangular factorization

S = C - B D - I B T = LoDoLVo .

We then obtain the required representation

I 0 D] ~ D - I B T

(37)

0)i ' (38)

J.-L. Goffin et aL /Mathematical Programming 76 (1996) 131-154 145

which is basically the same as (33), except that L and A are decomposed into smaller

easily invertible blocks. Summing up, the solution of an equation with Ay2A T needs

two solves with L and one with L T, where

L = (L°0 BD-')I (39)

is a block upper triangular matrix. It also needs several additional inner products. The

main computational effort in finding representation (38) consists in creating and

decomposing matrix S in (37). To avoid explicit formulation of BI in S we represent

the term B~DT~B~ as the weighted sum of the outer products of columns b i of B~.

Thus we have for S,

~ l | T ¿B T" S= C - - ~ b i b i - B2D f (40)
i= I i

(Recall that S is dense so we do not bother about the order in which simple products in

bib f are accumulated.) A column of B I is thus built and forgotten just after its

contribution to (40) has been added. B 2 is a diagonal matrix and its contribution to (40)

is the same. Implicit handling of B t leads to clear storage savings. The only part of H

that has to be stored is matrix C which is later rewritten with S and finally replaced

with a factorization (37). Its size is equal to the number of arc flow constraints, and thus,

is known in advance.

In addition to the construction of S, the matrix B is used again in solves with L and

L T. The implicit handling of B~ here also leads to computational time savings, due to the

special structure of the G i matrices. This will not necessarily be the case in other

ACCPM applications as will become clear after the presentation of our approach to the

handling G~ matrices in Section 6.3.

Let us finally address the issue of stability in computing orthogonal projections. In

our experiments we observed excellent accuracy, which seems to be a structural feature

of the approach. First, the matrix (24) has full row rank even after removal of the first

column y. Second, all GUB constraints are orthogonal to each other. The presence of

diagonal term Y 2 + y 2 in (27) prevents excessive spread of the pivots in the factoriza-
r/l "1/2

tion (37). Consequently, the factorization (33) is stable and so is the rank-one update

(26) used to deal with dense column T- This situation is in contrast to general linear

programming [19] for which a removal of dense columns may lead to a rank deficiency

of Sherman-Morrison-Woodbury update.

6.2. The oracle

Each subproblem consists in finding a minimum cost flow between an origin and a

destination node on an uncapacited network and it can be formulated as a shortest path

problem. As the network is expected to be sparse, Dijkstra's d-heap algorithm is a

suitable solution method. Our implementation follows the description of [1]. The basic

146 J.-L. GoJ~n et ul. / Mathematical Programming 76 (1996) 131-154

step of Dijsktra's algorithm consists of an update of two independent data structures: a

set of nodes S a for which the shortest path has already been determined; and a set of all

neighbours of S ~ (nodes that are adjacent to a node in S'0. In a single iteration,

Dijsktra's algorithm chooses one node from the set of neighbours and adds it to S a. To

accelerate the search in a subset of neighbours, nodes are stored in a form of a tree

(d-heap). Once a node is chosen, the list is updated accordingly.

The reader interested in a more detailed description of Dijktra's algorithm and its

efficient implementation is referred to [1]. Let us mention, however, that its application

undoubtly contributed to the overall efficiency of the ACCPM approach on this

particular class of multicommodity network flow problems. In fact, even with a large

number of subproblems to be solved at every cutting plane iteration (see the numerical

results in Section 7), the time needed to find a minimum cost flow seldom exceeded

10% of the total computational time.

6.3. Data structures for cuts

Every call to the ith shortest path subproblem can add a new cut, i.e., a new column

to the matrix G;. Each subproblem consists of finding a minimum cost flow between

two nodes. In many practical applications, this path involves only a few arcs. As a

result, every column has only a few nonzero elements. These nonzeros have all the same

value gi for each commodity i. Thus we may write

G i = giGio, (41)

where Gi0 is a 0-1 matrix that can be stored in a compact form involving half length

integers. Moreover G~0 is usually very sparse. We refer to it in every solve with L of

(39) and in the computation of (40). Each such reference creates a single column of B~,

bi _ 2 (42) - GiYdei ,

possibly scaled by some factor. We take advantage of the form (41) and replace the

above equation with

bi= Gio(giY~ ei) . (43)

We thus reduce the number of necessary multiplications from the number of nonzero

entries of G~ to the number of its columns (these multiplications need to be done only

once in a single iteration of the projective algorithm). The remaining arithmetic

operations in (43) are additions that would also have to be done if (42) had been used.

The matrices G i grow in subsequent iterations of the ACCPM algorithm so the most

suitable data structure to remember them is a collection of sparse columns (see, e.g., [10,

Chapter 2]). Let us finally observe that replacing (42) with (43) is advantageous only if

these columns are very sparse and their number is not excessive. Fortunately, both these

conditions were always satisfied when solving multicommodity network flow problems.

J.-L. Goffin et aL / Mathematical Programming 76 (1996) 131-154 147

7. Numerical results

An implementation of ACCPM algorithm has been written in C (except for the

Cholesky factorization that comes from LAPACK of Andersen et al. [2] and is written in

FORTRAN 77). The code has been run on a POWER PC workstation (type 7011, model

25T) with 64MB of virtual memory. It was compiled with the AIX XL C + + and

FORTRAN 77 compiler with a default optimization level (-O option). Several multicom-

modity network flow problems have been solved with ACCPM, each to a six-digits

relative accuracy of the optimal solution.

7.1. Impact of disaggregation

Our first series of tests were performed on two practical, well documented, standard

nondifferentiable problems NDO22 and NDOI48 from [13]. See Table 1 for their

statistics.

We used two different levels of granularity: cuts are fully aggregated and fully

disaggregated.

In Tables 2 and 3, we report detailed information on the influence of various levels of

aggregation on the efficiency of ACCPM and Dantzig-Wolfe (DW) implementations,

respectively. The tables report: the number of outer iterations, NITER, the number of

inner iterations, Newton steps (or simplex pivots in the case of DW), the number of cuts

(supergradients) added and the solution time. A simple test was used to check not to

duplicate the existing cuts. (It was applied to the linear parts only.) Note, that in a case

of full aggregation, each iteration generates one cut while in the case of maximum

disaggregation, each iteration generates p cuts for the nonlinear part (p = 22 and

p = 148, respectively) and at most n cuts for the shortest path part (n = 23 and n = 122,

respectively).

As mentioned earlier, the efficiency of ACCPM depends mainly on the number of

interior point (Newton) iterations which does not seem to vary much with the number of

subgradients added at every outer iteration. The disaggregated version of ACCPM

accumulates about one cut per subproblem at every outer iteration, many more than in

classical aggregate NDO approaches. Note, that the number of outer iterations or,

equivalently, calls to oracle, corresponds to the number of objective function evaluations

(a usual measure of efficiency in nondifferentiable optimization [27]).

Summing up, ACCPM did pretty well, finding an accurate solution in a number of

iterations proportional to the number of coupling constraints n', in the case of aggre-

gated formulation and O(1) in the disaggregated formulation.

Table 1

N D O p r o b l e m s statistics

Problem Nodes Arcs C o m m . Opt imum

N D O 2 2 14 22 23 - 103.412017

NDO148 61 148 122 - 151.926870

148 J.-L. Goffin et al./Mathematical Programming 76 (1996) 131-154

Table 2
Efficiency of ACCPM on nonlinear NDO problems

Disaggr. NDO22 N DO 148

NITER Newton CUTS Time N I T E R Newton CUTS Time

None 138 186 138 1.37 857 1011 857 558.08

Maximum 14 50 353 0.51 16 81 2649 16.15

In contrast, the behavior of Dan tz ig -Wol fe algorithm depends much on the aggrega-

tion of cuts. For an advanced implementation of Dan tz ig -Wol f e algorithm see, e.g., [1 l]

and [24]. When multiple cuts are used, both A C C P M and D W work similarly, although

ACCPM turns out to be about two times faster on larger, NDO148 problem. When fully

aggregated cuts are added, DW looses much of its efficiency and performs poorer than

ACCPM. In particular, DW was unable to solve N D O I 4 8 problem in a reasonable time.

It stalled with a relative precision of about 20%.

7.2. A C C P M on large scale problems

Let us now analyse the efficiency of the method on large scale nonlinear multicom-

modity network flow problems. According to our knowledge, there is no public domain

collection of large scale mult icommodity network flow problems. Most of problems

reported in the literature come from practical applications and are proprietary. We thus

decided to generate randomly a wide class of such test problems. Below we briefly

describe the way in which it is done.

The program generates a mult icommodity flow problem with n c commodit ies on a

graph that has n n nodes and n a arcs. (The numbers n c, n n and n a are user supplied.)

The graph has a two-level structure. Its lower level consists of n b - 1 independent

(connected) subgraphs. Each of them has roughly speaking the same number of nodes

and arcs but their structure is randomly generated. The total number of nodes in these

subgraphs is n n.

For every lower level subgraph a node is chosen (call it connector) and another,

connected, randomly generated graph is spanned on the set of connectors. The number

of arcs in this higher level subgraph is chosen in such a way that the total number of

arcs in the network is equal to a prescribed value n a. From this construction, the

resulting graph is connected. It contains n b blocks: n b - 1 of them are completely

Table 3
Efficiency of DW on nonlinear NDO problems

Disaggr. NDO22 NDO 148

NITER Pivots C U T S Time NITER Pivots CUTS Time

None 582 4239 582 23.35 > 10000 ? 10000 > 50000

Maximum 14 343 630 0.46 16 7350 4320 27.66

J.-L. G¢~n eta I. / Mathematical Programming 76 (1996) 131 - 154

Table 4
Statistics of randomly generated problems

149

Problem Blocks Nodes Arcs Comm.

Random I 4 60 140 100

Random2 4 60 1 40 500

Random3 4 60 1 40 2000

Random4 4 100 150 120

Random5 5 100 300 200

Random6 I 0 100 300 200

Random7 10 200 400 200

Random8 I 0 200 400 500

Random9 10 200 500 500

Random I 0 I 0 200 500 1000

Random I 1 I 0 200 500 3000

Random 12 I 0 300 600 1000

Random 13 10 300 800 1000

Random 14 10 400 800 2000

Random 15 15 300 1000 4000

Randoml6 10 300 1000 1000

Random 17 I 0 400 1000 2000

Random 18 15 400 1000 3000

Random 19 15 400 1000 4000

Random20 15 400 1000 5000

Random21 15 500 1000 3000

Random22 15 500 1000 4000

independent lower level subnetworks and the last one defines links between them. Each

block has the same numbers of nodes and arcs, n n / n b and n a / n b, respectively (unless

n n and n a are not multiples of nb).

In the next step, n c origin-dest inat ion pairs of nodes are randomly chosen. A single

path flow is then generated between each origin-destination pair. Next, the sum of all

flows passing through a given arc is computed and increased with some (safety) positive

number to define a capacity of the arc. For such capacities the problem has well defined

feasible and optimal solutions.

Let us mention that our generator of nonlinear multicommodity network flow
4 problems is available for research purposes.

We have used this generator to produce a wide class of test problems that differ in the

size and in the structure of the network. As we have observed consistent good efficiency

of the ACCPM approach on these problems, we do not report all results obtained but

restrict ourselves to a representative subset of them. Table 4 collects information on

these test problems. For every problem, it reports several characteristics of the graph

structure, namely: the number of subgraphs, the number of nodes, the number of arcs

and the number of commodities.

The problems collected in Table 4 are listed in increasing order of the number of arcs

n. Recall that this number determines the size of matrix S of (37) so it is the most

4 contact Robert Sarkissian: sarkissi@divsun.unige.ch

150 J.-L. Go ffin et al./Mathematical Programming 76 (1996) 131-154

Table 5
Efficiency of ACCPM on randomly generated problems

Problem NITER Newton CUTS CPU time

total paths t F t o total

Random 1 18 107 2 573 289 14.73 1.68 17.06

Random2 18 159 3 838 1 392 38.73 9.24 49.18

Random3 23 273 9 398 6 288 206.77 51.96 264.16

Random4 17 99 2687 270 12.95 3.19 16.84

Random5 20 134 6117 774 95.90 7.51 105.35

Random6 19 139 5 403 775 94.21 7.46 103.46

Random7 18 159 7 062 812 251.78 14.78 268.70

Random8 20 202 9 577 2 396 403.07 4 I. 19 447.79

Random9 20 171 10366 1718 545.02 46.62 595.68

Randoml0 21 274 14384 5031 761.48 47.80 824.10

Randoml I 28 345 28280 15635 1943.10 357.19 2321.07

Randoml2 23 243 18288 5554 1531.65 154.50 1694.84

Random 13 23 268 21 314 4925 3405.28 167.15 3582.93

Randoml4 22 281 26329 9529 4107.81 448.61 4570.70

Random 15 26 388 43243 21 251 9306.64 794.43 10 132.44

Randoml6 23 256 24429 5430 5277.92 176.60 5467.75

Randoml7 25 341 34739 1 2 0 1 6 8351.45 502.32 8874.58

Randoml8 25 354 41340 1 9 0 4 0 9293.14 771.58 10090.58

Randoml9 28 375 49 123 24718 10 135.82 1 142.64 11 315.36

Random20 29 479 59432 33614 13769.69 1 454.98 15275.07

Random21 27 384 43 741 19042 10701.53 1009.40 11744.53

Random22 28 397 49599 2 3 7 2 1 11650.10 1 405.78 13097.43

important factor in evaluating ACCPM's computational effort (every inner iteration of

the method requires computing one Cholesky decomposition of S; this is done in about

~n' 3 flops [18]).
Let us observe that the numbers given in Table 4 " h i d e " the large size of the

problems solved. The linear version of the Randoml0 problem, for example, in an

equivalent compact LP formulation, would involve 200 blocks of 1000 constraints of

commodity flow balance at each node and 500 coupling constraints of total flow

capacity on the arcs. This formulation comprises 200 * 1000 + 500 = 200 500 constraints

and 2 * 5 0 0 * 1000= 1 000000 variables. The reader interested in the influence of the

multicommodity flow problem formulation on the efficiency of different solution

methods is referred to [24].

Table 5 collects data on the solution of randomly generated problems. We report in it:

the number of outer iterations, NITER, the number of inner iterations, Newton, the total

number of cuts (subgradients) added through the whole solution process, the number of

shortest path type cuts and the CPU time (to reach a 6-digit accurate solution on a

POWER PC computer). To give a bit of an insight into the ACCPM's behavior, Table 5

additionally reports the time spent in the factorizations of S (dominating term in the

master), tp, and the time spent in the oracle, t o.

An analysis of Table 5 results clearly indicates that the most computationally

expensive part of ACCPM consists in building and factorizing matrix S (see Eqs. (37)

J.-L. Goffin et ak / Mathematical Programming 76 (1996) 131-154 151

and (40)). Apart from the predicted cubic dependence of this effort on the number of arc

flow constraints n, we also note considerable influence of the number of commodities,

specially if n is not excessively large. Such an influence is observed on problems 1, 2

and 3 which differ only in the number of commodities (100, 500 and 2000, respectively).

It is considerably less important for larger n (compare, for example, times for problems

Randoml6 through Random20) although the total number of cuts varies linearly with

the number of commodities. The time spent in subproblems usually varies between 5

and 10% of the total CPU effort and depends little on the number of commodities, which

proves the high efficiency of Dijkstra's d-heap algorithm for this class of problems.

Let us observe that except for problems with a very large number of commodities, the

average number of Newton steps required to approach a new approximate analytic

center of the localization set is about 10. For problems with a large number of

commodities many more cuts are added at every call to the oracle. Consequently, more

significant changes are made to the localization set and the projective algorithm needs

more iterations (up to 20, in the average) to approach the new approximate analytic

center. This is a possible place for further improvements.

Finally, we would like to comment on the number of subgradients added during the

solution process. The number of subgradients corresponding to the shortest paths shows

uniform linear dependance on the number of commodities: from 3 cuts per commodity

on smaller problems up to 7 cuts per commodity on larger ones. The total number of

subgradients counts also the cuts resulting from the nonlinear term in the objective. It

thus depends much more on the structure of the network and on how tight the arc

capacity constraints are. Our experience indicates that, in practice, this number also

grows linearly with the number of commodities.

Our last experiment aims at showing the trade-off between the required relative

precision of the optimum and the time needed to reach it for the problem Randoml0. In

Table 6 we report numbers of outer and inner iterations, the number of subgradients

(cuts) added, and the CPU time required to reach a given number of the exact digits of

the optimum.

The results collected in Table 6 show that it takes much time to build the first

complete description of the localization set and to reach at least one digit exact solution.

Table 6

Trade-off between an accuracy and an efficiency of ACCPM for Random 10 problem

Accuracy NITER Newton CUTS CPU time

total paths

1 digit l I 140 10 195 4946 433.59

2 digits 13 180 11 145 5030 550.53

3 digits 15 208 11974 5031 628.97

4 digi ts 17 230 12 784 5031 692.02

5 digits 18 245 13 186 5031 739.71

6 digits 21 274 14 384 5031 824.10

7 digits 22 293 14783 5031 896.93

8 digits 23 335 15 182 5031 1016.69

152 J.-L. Go ffin et al . / Mathematical Programming 76 (1996) 131-154

(This part of the optimization process takes about 50% of the effort to solve the problem

to 6 digits.) However, once the optimum has been approximately localized, the next

digits (up to 8) can be achieved relatively fast with an effort that is almost linear with

the number of digits required in the optimum. The method deteriorates if the academic

precision 10 -9 is required. Recall that practitioners are normally satisfied with a two or

three digit solution.

Up to the level of accuracy of 10 -6, the projective algorithm involves from 10 to 15

iterations per outer iteration. For higher level of accuracy (< 10-6), this number

increases to 20 and 40. We believe that this is essentially due to insufficient accuracy in

the computation of the search direction. Despite an iterative refinement procedure the

Cholesky factorization attains its limits.

8. Conclusions

We have presented a specialized version of the analytic center cutting planes method

for nonlinear multicommodity flow problems. We have discussed the influence of

different aggregation/disaggregation techniques on the behaviour of the method and

presented a detailed description of its sparsity-exploiting linear algebra kernel that

ensures its high efficiency.

Computational experience showed the method 's ability to solve fast even very large

scale problems on a workstation with 64MB of memory. The method has been tested on

public domain collection of large scale problems and two small, nondifferentiable

optimization problems known from the literature.

The analysis of numerical results shows promise for ACCPM to become a competi-

tive method for nonlinear multicommodity flow problems.

Acknowledgement

The authors thank Olivier du Merle for many helpful suggestions concerning the

efficient implementation of ACCPM and for running the Dantz ig-Wolfe algorithm.

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows (Prentice-Hall, Englewood Cliffs, N J, 1993).
[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.

McKermey, S. Ostrouchov and D. Sorensen, LAPACK Users" Guide, (SIAM, Philadelphia, PA, 1992).
[3] D.S. Atkinson and P.M. Vaidya, "A cutting plane algorithm that uses analytic centers," Mathematical

Programming 69 (1995) 1-43.
[4] O. Bahn, J.-L. Goffin, J.-P. Vial and O. du Merle, "'Experimental behaviour of an interior point cutting

plane algorithm for convex programming: An application to geometric programming," Discrete Applied

Mathematics 49 (1994) 3-23.

J.-L. Go)y[n et aL /Mathematical Programmhzg 76 (1996) 131-154 153

[5] O. Balm, O. du Merle, J.-L. Goffin and J.-P. Vial, "A cutting plane method from analytic centers for

stochastic programming," Mathematical Programming 69 (1995) 45-73.

[6] I.C. Choi and D. Goldfarb, "Exploiting special structure in a primal-dual path following algorithm,"

Mathematical Programming 58 (1993) 33-52.

[7] R.W. Cottle, "'Manifestations of the Schur complement," Linear Algebra and its Applications 8 (1974)

189-211.

[8] G.B. Dantzig and P. Wolfe, "'The decomposition algorithm for linear programming," Econometrica 29

(4) (1961) 767-778.

[9] G. de Ghellinck and J.-P. Vial, "A polynomial Newton method for linear programming," Algorithmica 1
(1986) 425-453.

[10] I.S. Duff, A.M. Erisman and J.K. Reid, Direct Methods for Sparse Matrices (Oxford University Press,

New York, 1987).

[l l] J.M. Farvolden, W.B. Powell and l.J. Lustig, "A primal partitioning solution for the arc-chain

formulation of a multicommodity network flow problem," Operations Research 41 (1993) 669-603.

[12] M. Fukushima, "'On the dual approach to the traffic assignment problems," Transportation Research B
18 (1984) 235-245.

[13] E.M. Gafni and D.P. Bertsekas, "Two-metric projection methods for constrained optimization," SIAM
Journal on Control and Optimization 22 (6)(1984) 936-964.

[14] P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, "Sparse matrix methods in optimization," SlAM

Journal on Scientific and Statistical Computing 5 (1984) 562-589.

[15] J.-L. Goffin, A. Haurie and J.-P. Vial, "'Decomposition and nondifferentiable optimization with the

projective algorithm," Management Science 38 (2) (1992) 284-302.

[16] J.-L. Goffin, A. Haurie, J.-P. Vial and D.L. Zhu, "Using central prices in the decomposition of linear

programs," European Journal of Operational~Research 64 (1993) 393-409.

[17] J.-L. Goffin, Z. Luo, and Y. Ye, "On the complexity of a column generation algorithm for convex or

quasiconvex feasibility problems," in W.W. Hager, D.W. Heam and P.M. Pardalos, eds., Large Scale
Optimization: State of the Art (Kluwer Academic Publishers, Dordrecht).

[18] G.H. Golub and C. Van Loan, Matrix Computations, 2nd ed. (Johns Hopkins University Press,

Baltimore, MD, 1989).

[19] J. Gondzio and T. Terlaky, "A computational view of interior point methods for linear programming," in

J. Beasley, ed., Advances in Linear and Integer Programming (Oxford University Press, Oxford) 1996,

103-144.

[20] C.C. Gonzaga, "'Path following methods for linear programming," SlAM Review 34 (1992) 167-227.

[21] D. Hearn and S. Lawphongpanich, "A dual ascent algorithm for traffic assignment problems,"

Transportation Research B 24 (1990) 423-430.

[22] D. Healn, S. Lawphongpanieh, and J. Ventura, "Restricted simplicial decomposition: Computation and

extensions," Mathematical Programming Study 31 (1987) 99- I 18.

[23] A.L. Hipolito, "A weighted least squares approach to direction finding in mathematical programming,"

Ph.D. Thesis, Dept. of Industrial Engineering, University of Florida, Gainesville, FL (1993).

[24] K.L. Jones, l.J. Lustig, J.M. Farvolden and W.B. Powell, "'Multicommodity network flows: The impact

of formulation on decomposition," Mathematical Programming 62 (1993) 95-I 17.

[25] N. Karmarkar, "A new polynomial time algorithm for linear programming," Combinatorica 4 (1984)

373-395.

[26] J.E. Kelley, "'The cutting plane method for solving convex programs," Journal of the SIAM 8 (1960)

703-712.

[27] K.C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathematics, Vol.

1133 (Springer, Berlin, 1985).

[28] K.C. Kiwiel, "Proximity control in bundle methods for convex nondifferentiable optimization," Mathe-
matical Programming 46 (1990) 105-122.

[29] L.S. Lasdon, Optimization Theory for Large Scale Systems (Macmillan, New York, 1970).

[30] C. Lemar6chal, "Nondifferentiable optimization", in G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J.

Todd, eds., Optimization, Handbooks in Operations Research and Management Science, Vol. 1, (North-

Holland, Amsterdam, 1989) pp. 529-572.

[31] C. Lemar6chal, A. Nemirovskii and Yu. Nesterov, "New variants of bundle methods," Mathematical
Programming 69 (1995) 177-204.

154 J.-L. Goffin et al. / Mathematical Programming 76 (1996) 131-154

[32] M. Minoux, Mathematical Programming: Theory and Algorithms (Wiley, New York, 1986).

[33] J.E. Mitchell and M.J. Todd, "'Solving combinatorial optimization problems using Karmarkar's algo-

rithm," Mathematical Programming 56 (1992) 245-284.

[34] Yu. Nesterov, "'Cutting plane algorithms from analytic centers: Efficiency estimates," Mathematical

Programming. Series B 69 (1995) 149-176.

[35] R.T. Rockafellar, Monotropic Flows and Network Optimizations (Wiley, New York, 1984).

[36] H. Schramm and J. Zowe, "A version of the bundle idea for minimizing a nonsmooth function:

Conceptual idea, convergence analysis, numerical results," SIAM Journal on Optimization 2 (1992)

1211-1252.

[37] G. Sonnevend, "New algorithms in convex programming based on a notion of 'centre' (for systems of

analytic inequalities) and on rational extrapolation," in: K.H. Hoffmann, J.B. Hiriat-Urruty, C.

Lemarechal, and J. Zowe, eds., Trends in Mathematical Optimization: Proceedings o]" the 4th French-
German Conference on Optimization in Irsee, West-Germany, April 1986, Vol. 84 of International Series

of Numerical Mathematics (Birkh~iuser, Basel, 1988), pp. 311-327.

[38] Y. Ye, "A potential reduction algorithm allowing column generation," SIAM Journal on Optimization 2

(1992) 7-20.

