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ABSTRACT

We provide a summarized presentation of solution methods for rational expectations
models, based on eigenvalue/eigenvector decompositions. These methods solve systems of
stochastic linear difference equations by relying on the use of stability conditions derived
from the eigenvectors associated to unstable eigenvalues of the coefficient matrices in the
system. For nonlinear models, a linear approximation must be obtained, and the stability
conditions are approximate, This is however, the only source of approximation error, since
the ronlinear structure of the original model is used to produce the numerical solution. After
applying the method to a baseline stochastic growth model, we explain how it can be used:
i) to solve some identification problems that may arise in standard growth models, and ii) to

solve endogenous growth models.

Keywords: Eigenvalue-eigenvector decompositions, numerical solutions, rational expectations.
JEL Classification: C63, E17.

*Comments by R. Marimon on a previous versicn greatly improved the presentation of this
chapter.

'Universidad Complutense de Madrid. Departamento de Economia Cuantitativa. Campus de
Somosaguas. 28223 Madrid. Spain.

MUniversidad Piiblica de Navarra. Departamento de Economia, Campus de Arrosadia. 31006
Pamplona {Navarra), Spain.

*Universidad Complutense de Madrid. Departamento de Bconomia Cuantitativa. Campus de
Somosaguas. 28223 Madrid. Spain.

“Universidad Europea de Madrid. Departamento de Fundamentos del Andlisis Econdmico.
Madrid. Spain,




1 Introduction

‘We discuss in this chapter the main issues involved in practical applications of solution meth-
ods that have been proposed for rational expectations models, based on eigenvalue/eigenvector
decompositions. Methods to solve linear stochastic difference equations under rationality of
expectations go back to at least Blanchard and Kahn (1980) and have been studied by
many authors ever since [for general surveys, see Whiteman (1983), the special issue of the
Journal of Business and Economic Statistics (1990), Marcet {1993) or Danthine and Donald-
son (1995)]. Cur presentation relies heavily on Sims (1998), who has extended the existing
practice in impertant directions that are discussed in this chapter. Although, strietly speal-
ing, the methods apply exactly to systems of linsar equations, the extension to compute an
approximate solution to nondinear rational expectations models is straightforward.

In this solution approach, each conditional expectation and the associated expectation
error are treated as additional endogenous variables and an eguation is added to the model,
defining the expectation error. The numerical solution is in the form of a set of time series
for all variables in-the model economy, including alt the conditional expectations and the
associated expéctations errors. Besides, as a by-product, an approximate characterization
of the analytical dependence between expectations errors and structural shocks is obtained.
Since it produces time series for the expectations errors, it allows for the possibility of multiple
tests of the rationality hypothesis in the form of: i) kack of serial correlation in one-step ahead
expectations errors, i) a specific moving average structure for expectations errors of a, given
function at different horizons, iii) orthogonality between errors of expectations made at time
t and variables in the information set awailable at that time, in the form of the accuracy
test in denr Haan and Mareet (1994). Numerical salutions to rational expectations errors are
hardly ever tested slong these directions. Precisely because so much emphasis has been paid
on rationality as the benchmark when dealing with uncertainty in economic environments
where agents solve optimization problems, it is quite surprising that so little attention has
been paid to testing for the nature of the computed solution.

Since the solution method applies to any given set of (possibly nonlinear) stochastic
difference equations, the method is not restricted o dealing with planning problems like
we do in the applications in this chapter. It can equally well handle situations in which
distortionary taxation, externalities, indivisibilities, public goods, etc., lead to decentralized
allocation of resources which are inefficient [for applications of very different nature, see
Sims (1994) and (1898)].

Econemic models usually place bounds on the rates of growth of specific variables or lin-
ear combinations of variables. Well-known cases are standard planner’s problems, in which
state variables and their shadow prices cannot grow.too fast, for. transversality conditions
to hold and objective functions to be. hounided, Methods:based ‘on” eigenvaliug/eigenvector
decompositions rest on the use of stability. conditions’guaranteeinyg that the resulting solu-
tlon satisfies the: upper: bounds: on, growth rates which may. be' implied by the underlying
) e ple 3 i disciss; t_hé stability conditions are obtained
eigenvector, associated to an unstable eigenvalue in
and’ the vector of variables in it although in more
adopt d different form [for a more general version of

stability conditions, see Sims({1998)]. The stability conditions link decision to state variables
and exogenous shocks. They can sometimes be written to represent some decision variables
as functions of states and exogenous variabies. Together with other relations in the system,
they characterize how optimal decisions are made, and can therefore be interpreted as deci-
sion rules. In some other cases, they will represent relationships between prices and states
and exogenous variables, having therefore the interpretation of pricing rules,

Different solution methods for nonlinear models differ in i) the way they characterize
the stable solution manifold, ii) the computation of the expectations in the model, and
the amount of information they provide on them, and ifi) the amount of nonlinearity that
they preserve when computing the numerical solution. In our case, the application of the
eigenvalue/eigenvector decomposition method to nonlinesr models requires constructing a
linear approximation to the model around steady state, from which to derive the stability
conditions, They are then added to the originel, nonlinear model, to compute a numerical
solution. Even though the actual nonlinear structure of the model is used to produce the
numerical solution, the set of stability conditions is obtained from a linear approximation,
which introduces some numerical error, The approximation error that is introduced by
the specific computational details of a particular solution approach wilt always end up being
absorbed by the expectations errors, which is why testing for rationality should be considered
a crucial component of a reported numerical solution.

The defails we provide should be enough to design the application of the solution method
to simple environments. As more interesting and complex models start being considered,
rather more techmical considerations are bound to arise, with independence of the solution
method used. These more technical aspects emerge because stochastic, non—linear quadratic
dynamic control problems under the assumption of rationality are hard to solve: rationality
of expectations impeses very tight restrictions, which can either lead to nonexistence of
solutions, or to a difficult computation process of the solutions, when they exist. In addition,
the existence of state variables that accumulate over time will generally tend to produce
unstable paths, that wonid violate the transversality conditions of the problem or the more
general restrictions on growth rates that may exist. That motivates the consideration of
stability conditions in this approach as a crucial piece of sclving a model. The need o
guarantee stability is also preseat in deterministic problems, as we review in Section 2. but it
gets more complex in stochastic models. Solution methods will have to increasingly be able
to accommodate these issues.

In Section 2 we review how a numerical solution can be derived from the standard de-
terministic Cass~Koopmans, Brock-Mirman economy, pointing out the relevance of stability
conditions. In Section 3 we summarize the general structure used to solve linear rational
expectations models and its extension to nonlinear models. Fn Section 4 we apply the solu-
tion method to Hansen’s (1985) model of indivisible labor, which is also used as illustration
in other chapters of this book. Comparisons with other sojution approaches are discussed
in Section 5. In Section 6 we show how the eigenvalue—eigenvector decomposition can help
to separately identify variables of a similar nature, as it is the case when physical capital
and inventories are inputs in an aggregate production technology. Section 7 shows how she
solution method can be adapted to deal with endogenous growth models. The chapter closes
with a summary.




2 Stability conditions and the initial choice of con-
trol variables in deterministic growth models

This Section is a reminder to the reader that: i) stability conditions are also needed in
standard deterministic models to guarantee that transversality conditions will hold, and iij
as it is the case in applications of the solution method to stochastic setups, the stability
conditions in deterministic models are given by the left eigenvectors corresponding to the
unstable eigenvalues of the linear approximation to the model economy. A reader familiar
with this discussion can safely skip this Section.

Let us consider the deterministic version of the standard Cass—¥oopmans, Brock—Mirman
planner’s problem in an economy with decreasing returns to scale in physical capital and
labour, but constant retuzns on the aggregate. In that economy, the only sustainable steady
state is with zero growth for all per—capita variables. 1t is well known that the model has
a saddle point structure, so that in the consumption/capital stock plane there is a single
trajectory taking the economy towards its steady state, Given an initial stock of capital
ko, an initial cheice of consumption other than the one corresponding to kg on the stable
manifold will tale the economy to diverge from its steady state. Besides, optimality requires
staying on the stable manifold forever, so stability and optimality are in this simpie model
two sides of the same coin.

The model is usuaily formulated in continuous time, in which the specific issues dealing

with time series generation do not arise. Let us suppose a.lconstant relative risk aversion
utility of consumption for the representative agent Ule;) = E'T_’;_wl, o > 0. Labor is supplied
inelastically, since leisure is not an argument in the utility function, Physical capital is subject
to a depreciation rate of §. Population growth could be easily incorporated to the modet. The
planner’s problem in the Cass-Koopmans, Brock-Mirman economy is characterized by the
intertemporal first order condition that links the marginal rate of substitution of consumption
over time to the marginal product of capital, the law of motion of the capital stock, and the
transversality condition:

e (RSB (1)
-1

ke = (1—8)kpy + flh-1) — (2)
Ym B b, = 0.

The two first equations can be approximated around steady state values of consumption
and capital, ¢;5 and kg, :

(Fobe )= (o o) (B ®
.':.ss_ o —1 §3

Using the __stéhdé’rd decompomtlon of e A mattix of cosficients in the linear system {3):
A= TAT~ Y where A has the eigenvalies of A along the diagonal and zeroes elsewhere, and

T has as columns the right-eigenvectors of A, and T'! has as rows the left-eigenvectors of
A, we can represent the dypamics of the solution from starting values ky. ¢y as!:

( kp — ks - TL Y M0 wy wr Y Eies — kg

Ct — Csg Ty U 0 A Us g Ct.] = Cgy
3 th X o0 L ky — kg (4
Tz Yo 0 A up Vg o — Cys (4)

That the model has a saddle point structure is reflected in the fact that one of the

eigenvalues, A, say, is greater than 1 in absolute value, while Ag is smaller? than i,
The matrix product in the previous expression is:

( ks — ks ) _ ( @1 A (w3 ko — Koy + 01(c0 ~ €ss)) + 31\ {212 (ko ~ Kus) + v3{c0 — c40)) )

Il

Ct — Css mZ)\i ('ul (kO - ki.s) +u (Cﬂ — Css .)) + 92/\5(7‘2(1‘70 - ks&‘) + vy (CD - Css))

and the transversality condition on the capital stock will hold only if the coefficient in the
unstable eigenvalue, A1, is set equal to zeto. But =; depends on the values of the structural
parameters, and cannot be chosen ta be zero, So, it is the bracket aecompanying A} which
will be zero. That condition is the same for the copifal stock and consumption equalions:
zbzl{ko — kss) + v1{cy — ¢55) =0, 50 that stability requires that initial consumption be chosen
7

€0 = Cag = = (g Fua) o = (kg — k) 22 = (ko — o) 22001
it n a2
and it implies that, from then on:

kg -— k,;s = yl)\a{’u.g(kg — ks,;) +'l)2’f00 — 055))‘
92/\5("*2("'0 —kgs) + va{ce — Css)) = :;;?(kt — Kss) = ““—”“—)\2; i (ke — hgs).
12

C¢ — Css

so that the same condition between the deviations from steady state of the capital stock
and consumption will hold at each point in time than at time 0. That is the approximate

1L : . -
The right eigenvectors are; (zy, zp) = (1, ilaT:ll) and (3, 1g) = (1_ Ag—ay

= ), and the inverse matrix:

(m Ul)=(wl 7 —1: 3 va o~y
Uz Uz T2 2 Tyl — Ly \ 2 Ty )

2:}5 we will see later on, the critical rate of growth below which the solution is stable is model-specific. The
requirernent for a well-defined solution to exist is that the objective function remains bounded, which will réquire
upper hounds on its variable arguments, Those bounds will depend on the functionsl form of the,objective function
Sorrfetimes, transversality conditions take care of that. In other cases, transversality conditions may be needed fox"
feasibility or optimality even when the objective functicn is bounded, so that extra upper bounds on growth rates
will then need to be added, to guarantee that transversality conditions hold,
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linear representation of the stable manifold in this problem. Precisely because the condition
will actually hold for every t, the model can be solved vsing that condition and just one of
the frst order conditions {1}, (2). The condition which is not used will hold each period. The
stability condition above can be written as the inner product: (ys, —1 ) (kg —FKss, Co—Ces) = U,
where (y2, —y/1), is the left eigenvector of A assoclated to the unstable root, Az.

Therefore, in deterministic models, the stability conditions can be seen as picking the
stable initial values of the decision variables, as functions of the given initial values of the
states. If we have less stability conditions than decision variables in the system3, we will
just be able to solve the model as a function of a given (arbitrary) starting value for one {or
morej decision variables. In that case, given a vector of state variables, a whole continaum
of initial decisions will take us to the steady state, and the solution is indeterminate, in the
sense of Benhabih and Perli (1994) and Xie (1994). On the other hand, the system does not
have a solution when there are more independent stability conditions than control variables
nead to be chosen. The stable subspace will then reduce to the steady state, if it exists, and
the economy will be globally unstable, getting into divergent paths as soon as it experiences
even minimum deviations from its steady state. Finally, the solution will be unigue when
the set of stability conditions can be used to represent all the control variables as functions
of the state and exogencus variables, the system of equations having a unique solution.

The single stability condition we have described for the Cass—Koopmans, Brock—Mirman
economy is very similar to the stability condittons we will compute in stochastic models in
the next Sections Lo guarantes that the conditional expectations version of the transversality
conditions will hold.

3 An overview of the solution strategy

Recently, Sims (1998) has generalized the work of Blanchard and Kahn (1980} in several
directions, proposing a general discussion of the problem of solving stochastic, linear rational
expectations models:

Toy = D1y + O + Uz + Il (8)

where (0 is a vector of constants, i is the vector of variables determined in the model,
other than expectations errors, z; s & vector of nnovations in exogenous variables, and  is
& vector of rational expectations errors, satisfying B (m+1) = 0.

Models with more lags can be accommodated by adding as new variables fizst order lags
of already included variables as it is standard in dynamic representations. On the other
lend, additional expectations variables can be introduced so that the resulting expectations
errors are all one-period ahead, Models with more lags, lagged expectations, or expectations
of meore distant future values can be accommodated by defining variables at intermediate
steps, and enlarging the y-vector.

3 After using equations that involve only contemporanecus values of control variables to eliminate some control
variables from the problem.

The core of the procedure consists on defining each conditionai expectation as a new
variable and adding to the model the associated expectations error and $he equation defining
the error. Taking arbitrary initial conditions gy and using (5] to generate a set of time
series for the variables in yy, conditional on sample realizations for 2; will generally lead to
unstable paths, which will violate the transversality conditions uniess stability conditions
are added to the system. These conditions are defined by the eigenvectors associated to
unstable eigenvalues of the matrices in {5), although the structure of the stability conditions
is generally model-specific. When Iy is invertible, we compute the eigenvalues of Tg'T |
while when L'y is singular, we need to compute the generalized eigenvalues of the pair (T, I'y).

The vector y; includes the variables in the model with the more advanced subindeces,
as well as the conditional expectations in the model, which are redefined as new variahles.
All of them are determined in the system. They may be decision variables for an economic
agent, like consumption, the stock of capital. real balances, real debt, leisure, hours of work,
etc., or variables which are determined as a function of them, like prices or interest rates,
Also included in gy, are variables which are exogenous to the agents but follow iaws of mo-
tion which have been added to the system, as it may happen with some policy variables or
exogenous random shocks. The vector z contains variables which are determined outside
the systemn, like policy variables which we have not endogeneized and do not show any serial
correlation, or the innovations in policy variables or in the exogenous random shocks?. These
can be either demand shocks, like those affecting the individual's preferences oz Government
expenditures, supply shocks, affecting the ability to produce commodities, or errors of con-
trolling Government policy variables. When they are not white noise, the excgenous shocks
themselves are included in 3. For instance, the standard autoregression for a productivity
shock: log(6;) = p log(fi—1) + &, will lead to a component of 3 being log(f:), while & will
be a component, of z;. The vector 7y contains the rational expectations errors, which will be
solved for endogenously, together with the state and decision variables in the model.

The solution method can also be applied to obtain approximate solutions to a set of
stochastic, nonlinear difference equasions, as in the applications we present in this chapter.
To do so, we start by computing the linear approximation around steady state of the set of
nonlinear equations so that, without loss of generality, we can consider the vector of eonstants
C to be zerc®. After appropriately redefining variables, the matrices I'y and T'; in the linear
approximation to a nonlinear model contain: i} the partial derivatives of each equation of
the system with respect to each of the variables in y;, evaluated in steady state, and ii}
rows of ones and zeroes, corresponding to intermediate variables which have been added to
the system to make it a first~order autoregression in the presence of higher order lags, or
higher order expectations. In this case, (5} will approximate the set of decision rules, budget
constraints, policy rules and laws of motion for the exogenous variables, and all variables will
be in deviations to their steady state values. The stability conditions are then obtained in
this linear approximation, but the original, nonlinear model is used to generate the schition,

4ariables in z, are independent: if two exogenous shocks are related, the linear approximation to their rela-
tionship will be added to the system; one of them will be in z, while the other one will be included in z,.

®In a later Section we will also consider the case when the levels of the variables are not constant in steady
state, as it is the case in endogenous growth models.




in the form of a set of time series realization for ali the variables in the economy, including
he expectations that appear in the original system and the associated expectations errors.

Along this chapter, we describe how the method applies $0 relatively simple problerns,
and explain how to use it to simulate nonlinear rational expectations models emerging from
optimizing behavior on the part of econormic agents. The reader interested on a complete
discussion of the technical and practical aspects of the soluticn method for linear models
should read Sims (1998), which gives detailed account of the azguments that apply to & more
general class problems than those we consider here. Sims' paper also contains a detailed
explanation of a variety of unproven claims that we make along this chapter. When paossible,
we keep the same notation as in his paper to facilitate references to it.

The methods to characterize the stability conditions differ depending on whether or not
the [p in (5} matrix is invertible. In general, however, & singular I'p matrix might be obtained,
and a slightly more general procedure will then be needed. We will examine both cases in
the examples in the next sections.

4 Solving a standard, stochastic growth model

We start by describing some practical details of the implementation of the solution methed %o
Hansen’s (1985), (1997) model with indivisible labor, that was introduced to better capture
some labor market features relative to the more basic version of the real business cycle model,
and which is considered in other chapters of this volume [see, for instance, Uhlig (1998)]. In
the linear approximation to this model, the T'g matrix is invertible, Numerical solutions to
the simpler growth model with productivity shocks but no iabor/leisure decisions, the ather
benchmark used in this volume, as well as in the special issue of the Journal of Business and
Economic Statistics {1990), can. easily be derived as a special case of the discussion in this
Section.

Civen an initial value of the capital stock, ke, let us assume that the representative
household chooses sequences of consumption, smployment and capital stock that solve the
problem:

Bs - [A L agn 5
{k;,ﬁﬁ):‘;] D?;; i-o N ©)

gubject to

ey — ke (1= By + BTN =
—log(8;) + plog(fi1) + &
given ko, %o

I

where N, denotes the number of bours devoted to the production of the consumption
commodity, Ay measures the relative disutility of working nours and the innovation €; in the
productivity process is assumed to be N(0, o). After forming the Lagrangean and eliminat-
ing the Lagrange maultipliers we get the equilibrium characterized by the set of equations:

o = Bkl NI —ky (1 - Bk

c; = AE, [CH_; ((1 — &+ a9t+1kf"'} Né;'f\;‘i {8}
_ Al Rt
Ax = 78k (1 - a)N™ (9
g
and
og(fy) = plogifs_i}+ & (10
& ~ N2 '
plus the transversality condition ¥ 2 '
o b \ ion B, By [LCH,kHTﬁrl‘ =10, and the initial conditions

We now define a2 new variable W, as ex

e W, as equal to the conditi i
) ' it in {8]
introduce the corresponding expectation error, #,: onal expectation i (8], and

= -Wi+Ejof ((1-8+ ik NG )] (1)

= -6+ W (12}

= Wiabg” [(2-8) + otk VI - g, (13)
By =0,

thie miatﬁzg tilte comilt;onai expe‘?tatmns in the model as additional variables is distinctive of
. It comes together with also adding as new variables the associated expectations

errors, which will be solved for endo SHOUS]}’ ogether witl e rest o & variable:
t .
: 4 ¢ st of the var ! 8, mciudmg

The conditions characterizing the steady state are:

Css = Hssk?g—wg;a - kss + (11— 5)kss
W = o {(1~6) +adoskl N <)
Ay = ]88 5. (1—alN®

0 = _cs—,a + IGWss

where the steady state for technoio, i = Then, we can solve for the steady state
gy 18 (959 y
of all the variables of the €CONOIRY, l !
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T -1
k ~oa—1
Ky = Cos ((N”) —5)

i
W, = EC;:
. k.vs P
Ny = A.;s( o)

The system to be linearized is the one formed by the optimality conditions {7}, (9). and
(12), the definition of the expectation error {13), and the process for the exogenous shock
{10). State variables are ki, W_1 and log(#), and decision variables are ¢,k and ;. To
linearize, we view each equation as a function: f(ep, Ny, Wy, ky, log(By).m¢, &) = 0 and then,
defining the vector 9 = (ct — Css. Nt — Nys, Wi — Wes. ki — ke, log(8;}). the vector 5y, which
contains the single expectation error denoted by the same letter, and the 1 x I vector z.
containing the single exogenous innovation €, the first order approximation around steady

i 6.
state is®: ﬂ 3_ft +ﬂ| +ﬂ| e
aytlss'yt + Bt sabi—1 a’?t 5570 Be; ss€t =

where steady state values of 7, and €, are equal to zero. Stacking these approximations,
we can write the linearized system as:

Poye = Trye—1 + Tz + T (14}
where:
1 —k& (1 - Q)N 0 1 —kE NE
o7 {1 - a)NG® kRNt 0 0 g7k (L~ a) NS
Tg= —G(:;f_l 0 -3 0 0
o7 VakX INL e +1-68) —Grekd W{l-a)Ng® 0 0 —ag ke 'NL™
0 0 00 1
00 0 kSN +1-6 6 0 0
D0 0 fak1-aNZE 0 0 0
T1={048 0 0 0f, T=}0{, A=} 0
00 -1 all—a)cfkE2NL® O 0 1
¢ 0 0 0 p 1 0

4.1 Characterizing the stability conditions

The constant term in (14} is zero, since variables in g, are in deviations around their steady
state values. As we aiready mentioned, for any sensible set of parameter values, T is in-

with an identity matrix of coeflicients in g and, after appropriate redefinition of matrices
e -1 -y I=7-1m
=Ty T =Ty W I=T1)

= D' Thigun + Tg Wz + Tyt = Prye o + Tz + Ty (15}

Matrix T has a Jordan decomposition™ I} = PAP~! where P is the matrix of right—
eigenvectors of I'1, P! is the matrix of left-eigenvectors. and A has the eigenvalues of I'; in
the diagonal. and zeroes elsewhere®. Multiplying the system by P—* and defining wy == Py,
we get:

wy = Awy_y + Pl (@2’; + ﬁ?}z) . 116}

which is & system: in linear combinations of the variables in the original vector 3. We
will have a corresponding equation for each eigenvaiue A; of T

wie = Ajjwises + P (U + ) (17)

where PJ* denotes the j—th row of P~1.

Economic models usually impose upper bounds on the rate of growth of some func-
tions. Special, even if frequent cases, are standard planner’s probiems like the one we are
considering, in which the product of state variables by their shadow prices cannot grow
at o rate faster than F! for the trensversality conditions to hold. Even though it is
not necessary, this condition is usuaily imposed through the requirement that both. state
variables and shadow prices, grow at a rate lower than §~%2. Besides, the quadratic ap-
proximation o the objective functions in an optimization problem will be bounded only
if its variable azguments grow at a rate lower than 3~V2, being B the time—discount fac-
tor. More general restrictions can be approximated by an upper bound ¢ on the rate
of growth of a linear combination ¢y, of the variables in the model. Using the relation-
ship between y; and w;, a condition of the form: lims oo Fy i¢yers0™® = 0 2mounts to:
$P limymsoo By wneste™®) = (@P) iy 00 (ASune™) = 0, where we have set to zero current
expectations of future z's and #;’s. Therefore, each of the w; variables corresponding to a
|45 > 1 and to a §P product different from zero, must be equal to its steady state value of
zero for all ¢

Wi = Pj.’yc = 0, vt (.lSJ

praducing a stability condition in the form of an orthogonality condition between an
unstable left~eigenvector of the matrix product ') = I'5 Iy and the vector of variables 3,
in deviations around steady state.

The resulting condition will be a linear retationship between decision variables, current
and past states and exogenous variables, which could be interpreted either as a decision rule,

"The MATLAB function for doing this is: eig(Tg,T1)
8We just consider the simpler case when all eigenvalues are different from each other, For cases with multiplicity
of eigervalues see Sims (1998).

vertible in this maodel. Pre-mmitiplying by the inverse of I'g, we get a transformed system

S0Obtaining the derivatives of the function f for the approximation is not necessarily hard work since one can
use numerical or analytical differenciation with MATLAB, for exareple,

10 i1




if it is used to write one decision variable as a function of the other variables. or as a pricing
funetion, if it is used to represent a mapping from states and decisions to prices.

i the speciai case when P turns out to be zero, the upper bound on the growth rate of
¢y Qoes not impose any obvicus constraint, and the precise form of the associated stability
condition needs tc be worked out specifically.

4.2 Generating time series for a specific parameterization

For parameter values: o = 1.5, = 0.025, & = 0.36, 8 = (.99, p = 0.95, and an Ay value such
that Ny = %, we have the numerical estimates:

1 —2.3706 0 1 -1.2347 0¢ 0 1011 0
4.4026  2.9103 0 0 —2.6947 09 0 00766 0
Ta=| -1.8572 0 —0.99 0 0 , Bi=108 0 0 0
1.8759 -0.0766 i} 0 —0.0399 04 -1 00030 ¢
a 0 i a i 00 ¢ & 0.95

and the matrix I'y = I 01“;1 has a Jordan decomposition Ty = PAP1, with

1 G 00302 00317 0 o0« o 0
0 1 00178 —0.0158 -0.0245 06 9 0 0
P={0 ¢ —00566 —0.0595 0} , A=]0 0 09418 ¢ 0 .
0 ¢ 0.8978 0.9976 --0.0097 Do 0 085 0
00 0 0.0049 0 D6 @ 0 1.0725
and
10 05331 ] 0
¢ 1 07464 —0.0245 -0.8417
Ple| ¢ 0 -176576 0 —213.9769
00 o 0 203.6377
0 0 —17.6237 10003 —10.3588

where the eigenvalues have been ordered increasingly along the diagonal of A, and the
right—eigenvectors, the columns of P, have been ordered accordingly.
The stability condition is given by the last row of P~1, which corresponds to the only

eigenvalue above 0,99~ 2. We denote that row by PS5, P5* = (0,0, —17.6237, —1.0003, —10.3588},

50 the stability condition turns out to be:

wgy =Py =0 Vb = Wy -~ Was + 0.0568{k: — kss) + 0.5878log(8;) = 0 (19

which happens not to involve consumption or labor.
A single stability condition is what should be expected from the point of view of the
discussion of the deterministic model in Section 2, since, even though there are two control
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variables, consumption and labor, whose initial values need to be chosen, there is also a
conternporaneous relationship {(9) between them, so that we just need to figure out how to
choose one of them to obtain a stable equilibrium. Besides, since there is a single expectations
error in the model, a single stability condition is, in general, all that is needed to identify it.

The difference with the deterministic case is that now, the stability condition does not
guarantee that the intertemporal. stochastic Euler equation (8) will hold in every period,
since it incorporates the expectation error. The role of this equation. once it is written as
{13), is precisely to provide us with the realization of the expectation error ?, which shows
that the stability condition can also be seen as imposing an exact relationship between the
rational expectation error and the innovation in the productivity shock, as it should be
expected. Estimating the stability conditions allows us to also characterize numerically the
relationships between expectations errors and inmovations in structural processes, as we are
about to see.

Stable solutions can be computed by adding the estimated stability condition (19) to
the original, nonlinear model to have an enlarged system that can be salved for all the
endogenous variables in the model. plus the expectations errors. Conditional on kg and 6,
(7), (9) and (12) form a system in ¢;. k1, Wy, and W which can be used to write the three
latter variables as functions of ¢;. Plugging those expressions inte the stability condition
{19). we obtain ¢;. The optimal value for labor, ¥y, is then obtained from (9), while from
the budget constraint {7} we obtain physical capital, and the realization of the conditional
expectation W is cbtained from (12). Then, the expectation error, 7 can be obtained from
{13). The process can be repeated every period.

It is clear from (16) that, as we said, setting up wj; to zero each period when [Ag| > ¢
and ¢ 5 0 amounts to imposing an exact relationship hetween the vector of innovations in
the structural shocks and the vector of expectations errors:

pie (‘i’z; + ﬁm) =0 v (203

implying that expectations errors must fluctuate as functions of the structural innova-
tions, in such a way that prevents any deviation of (20} from its steady state value of zerc.
In this specific mode}, setting w;; to zero each period in (17} implies;

ps (‘i‘thrfIm) =0Vt = —16163+n=0 {21)

which is an exact relationship between the expectations error in the model and the in-
novastion in the single structurat shock. However, the expectations error we have computed
from (13} depends in a nonlinear fashion from state and decision variables and hence, from
exogenous shocks. It will net satisfy (21) exactly, which is a different approximation to the
true, nonlinear relationship between expectation error and the innovation in the structural
shock in productivity.

Problems for ezistence of a solution will tend to arise when there are more linearly in-
dependent stability conditions than conditional expectations in the model, The set of ex-

*The resulting expectations error is an approximation to the true expectations error, since it also incorporates
the numerical error of the approximation to the stable manifold.
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pectations errors cannot pessibly adjust, in this case, so as to fuily offset the fluctuations in
the exogenous processes, in such a way that (20) holds, and there will not he a well defined
relationship between expectations errors and structural innovations. If (20) cannot hold is
because the stability conditions cannot all hold simultaneously. Hence, a stable sotution will
generally not exist. Unfortunately, an absclute resuit on existence cannot be produced out of
a counting rule of unstable eigenvalues and expectations: it is conceivable that some stability
conditions are redundant with the rest of the system in such a way that (20} can hold, even
if the number of rows in P¥* exceeds the dimension of the vector 7.

If there are as many stability conditions as expectations in the medel none of them
being redundant with the rest of the system, a unigue sclution will generaily exist. In the
simple models we present in this chapter, as well as in some more complex applications we
kave developed, this has always been the casel”. Then, stable solutions may be obtained
by combining the stability conditions with the rest of the {nonlinear) model. That system
will provide us with a set of time series for all the variables in the original system, plus
the variables we have defined as expectations, and the expectations errors. If there are less
stability conditions than expectations in the model, we will generally have sunspot equalibrio,
since we could arbitrerily fix some expectation, and still solve for the rest in such a way that
all the equations in the model hold. In this case we will have a continuum of equilibria.

5 Comparison to other solution methods

A variety of methods to solve nonlinear rational expectations models exist in the literature,
50 it is important to clearly understand the differences and similaxities among them. In a
specific situation, a method may be more accurate than other but also computationally more
demanding, and the researcher should chcose one or the other in terms of this trade-off.

Given the characteristics of rational expectations models, differences among solution
methods may fall into:

» how much of the nonlinearity in the original mode! is preserved when actually computing
a solution,

s how does a specific method guarantee that the obtained sclution is stable,

s how does it deal with the expectations in the model: whether they are treated as
an essential part of the model, and whether numerical values are obtained for them
endogenonsly, as part of the solution,

the way to handle the associated expectations errors: whether they are considered as
an integral part of the model, and whether numerical values can be easily obtained
for them. Precision in computing these errors should be considered as an impoertant
compoenent of a sclution to a rational expectations model, since these models impose a
quite tight structure on the probability distribution of the expectations errors.

These feur characteristics are not independent from each other: departing from the orig-
inal nonlinearity will make computatiomn easier. but the functional form approximation error
will be mostly captured by the expectations errors, which are generally computed residualy,
once the solution has been obtained for the rest of the variables, This numerical error wili
tend to show up in deviations from rationality, in the form of autocorrelated expectations
erTors, or as correlations between them and variables in the information set available to the
agents when they made their decisions, for instance. These numerical deviations from ratio-
nality just reflect the fact that different amounts of the original nonlinearity will lead, other
things equal, to 2 set of time series that will reflect more or less accurately the behavior of
economic agents in the original model. That is why conducting thorough tests of rationality
is so importans. For this analysis to be feasible, we need to be able to generate time series
for the conditional expectations in the model; it is clear that once we have them, we can
produce time series for the expectations errors as differences to the realized values of the
functions inside the expectations.

‘We compare in this Section how eigenvalue—eigenvector decomposition methods handle
these issues, in relation to other methods based on linearization, undetermined coefficients
and the Iinear quadratic approzimation, as well as to a finite-element method, parameterized
expectations.

Regarding nonlinearity, in the method based on the eigenvalue/eigenvector decompasition
of the linear approximation to the standard, stochastic nonlinear growth model in Section
4, & single linear stability condition, with the variables either in levels or in logs!!, was
added to the model. That is the degree of artificial Huearity introduced in the sclution since,
other than that, the full structure of the original, nonlinear model, is used to generate the
numerical solution. As a result, a nonlinear system of equations has to be solved each period
to compute the solution.

Relative to this approach, the method of undetermined coefficients proposed by Uh-
lig [(1998), this volume] suggests taking a log-linear approximation to the set formed by the
optimality conditions, the budget constraint, and the autoregressive process for the produc-
tivity shock. State and decision variables are then supposed to be linear functions of the
initial states: Ey_;. &, where tilde denote now log—deviations from steady state:

ke Vit Vi i 0.9418 01382 11 ¢
& |=| v Ve [ 5 ] 0.3930  0.3980 [ . ] (22}
A UNEL VN2 t ~0.6376 1.1155 ¢

and the v;; parameters are obtained by plugging this linear representation into the set
of optimality conditions, to identify the undetermined cogfficients. Conditional expectations
of single variables can be obtained through the linear representation above, but it would
be hard to obtain the actual conditional expectations in the original model isee equation
{8};. In consistency with the log-linearization preposed in that method as a starting step,
conditional expectations of nonlinear functions are approximated by linear combinations

7 linear models, a rank condition for uniqueness can be found {see Sims(1998)] but it is not applicable to of conditional expectations of individual variables, so the representation above is all that
the nonlinear case. The condition has to do with the possibility that the model can be solved without having to

condition on any endogenous expectation error.

"Even though we obtain linear approximations around steady state, log-linear appreximations could alterna-
tively be used.
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is needed to compute the approximated expectations. Expectations errors could then be
computed, although they wilt incorporate a fair amount of numerical error, derived from the
linear appraximation to the equations in the model and to the conditional expectations in it.

Anocther popular solution approach {see Diaz (1998) in this volume| which is useful to salve
stochastic, dynamic optimization problems, consists on building a linear quadratic approzi-
maetion to the original model and apply the techniques of dyramic programming. The goal
is to derive the value function, generally after eliminating some decision and state variables
from the objective function by repeated substitutions of the available optimality conditions
and constraints in their deterministic form. Then the linear solutien to the problem of max-
imizing the resulting value function for the linear—quadratic approximation is obtained. In
the analysis of Hansen’s model, the budget constraint can be used to eliminate consumption
from: the ebjective function, and a linear-quadratic appreximation to the retura function
r(log{8%), ke1,ke, Nzj can be obtained, showing that the solution te this model is in the
form of a set of two decision rules, for physical capitai and labor. as linear functions of the
beginning-of-pericd capital stock and the productivity shock, the two state variables. For
the parameter values used in the previous Section, they are:

ks 0.7368 + 1.7499 log(f;) + 0.9418%;_,
Ne = 0.5459 -+ 0.3718 log{f,) — 0.0168k,_,

Once we have the optimal values of labor and the capital stock for time £, we cbtain
output from the production function, and consumption from the budget constraint. Relative
to the two previous methods, we are in this case adding iwo linear relationships to the
original model when computing the numerical solution, while the methed of undetermined
coeflictents imposes linear dependence of the logs of all current state and decision variables
on the logs of the state variables. :

The method of parameterized expectations of den Haan and Marcet (1990) and Mareet
and Lorenzoni {1988} computes time series for the conditicnal expectations using a proposed
pelynomial function. This function must be estimated, to minimize the size of the average
error between each conditional expectation and the value of the nonlinear function of state
and decision variables which is heing forecasted. It fully preserves the nonlinearity in the
original model, so that if the polynomial expectation function can be precisely estimated and
the implied set of time series is stable, this is a convincing sclution approach.

Summarizing, preserving nonlineasity will generally produce greater accuracy, to the cost
of having to sclve each period a nonlinear system of equaticns to obtain the realization of
the time {-vector of variables, which is computaticnally demanding. The alternative of using
some degree of linear approximation to the model to get around this difficulty will produce
axpectations errors with & generally more important deviation from rationality.

The second important issue is stebility of the solution since Fuler equations, by themselves,
do not place enough restrictions to guarantee that & set of time series that satisfy them will
also satisfy the transversality conditions in the model.

Methods based on the eigenvalue/eigenvector decomposition are designed precisely to take
special care of characterizing the stable manifold of the system. In simple models, stability
conditions are added to the model in the form of arthogonality between the left eigenvectors
{generalized eigenvectors, in the next Section) associated to unstable eigenvalues and the

{23}
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vector of variables in the model. As a result. these methods produce numerical solutions
that satisfy the stochastic transversality conditions.

In the method of undetermined coefficients, computing the numerical values of the vy
coefficients reduces at some point to sclving a second order equation in the coefficient associ-
ated to the capital stock vy, The method of undetermined coefficients takes care of stability
by choosing the stable eigenvalues when solving the second order equation in the coefficient
associated to the capital stock . For the parameterization considered here, produces the
estimates shown in {22). This is not too far from methods based on eigenvalue/eigenvector
decompositions, whose application to a baseline real business cycle we have deseribed in the
pravious Section.

Relative to the latter, an important improvement in Sims [1998) with respect to Blanchard
and Kahn {1980) is to propose a very general framework to characterize stability conditions
for linear models, not necessarily linked to standard transversality conditions. In somewhat
complex models that incorporate elaborate fiscal and monetary policy strategies, stability
conditions may take some specific form different from the orthogonality condition we have
Jjust mentioned [see Sims {1934) for some examples]. This extension is quite relevant: having
to choose the stable root in the second order equation for 14, in the undetermined coefficients
method may not be much of a problem, but the difficulty to guarantee stability would quickly
grow with the dimension of the state vector. This is why the general discussion on stability
in Sims (1998) is so relevant.

The numerical solution derived from the dynamic pregramming approach, if it can be
computed, it will also satisfy the transversality conditions, by construction. The difficulties
here are computational, since we are then trying to simultaneously solve the problem of
finding the optimal decision rules and the implied pricing equations as well as characterizing
the stable manifold. Even with mildly complicated value functions, this approach might face
serious computational difficulties.

All these methods based on linear approximations are subject to the limitation that the
stability analysis will be valid so long as the economy is close to steady state, around which
the linear approximation was computed so that, so long as fluctuations are reasonably sized,
there will not be much problem with stability. On the other hand, that approximation
may jeopardize the possibility of characterizing the transition to the steady state once the
economy has been exposed to a structural change, leaving it far from the new steady state.

Stability is not explicitly analyzed when paremeterizing expeciations. However, mini-
mizing the sum of squared residuals in the projection of the function inside the conditional
expectation on its polynomial representation will tend to produce stability. Problems with
stability may arise in setups which are not inherently stable, and they will show up as diffi-
culty in reaching convergence in the algorithm estimating the parameters in the polynomial
representations of expectations.

It can easily be understood how parameterizing expectations takes eare of stability, at
the same time then eigenvalue/eigenvector decompositions approximate parameterized ex-
pectations: a stability condition like {19) can be thought of as the linear approximation to a
function: W; = aghf*6;? . This, in turn, can be seen as a polynomial representation of the
conditional expectation Wi, with ag, a; and ag being functions of the coefficients in {19) and
the steady state values of the variables. I, rather than adding the stability condition (19),
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we had substituted W, in Hansen’s model by this polynomial expression. a stable solution
would have been obiained. Besides, if the method of parameterized expectations were nsed to
represent W as a function of & and ;, the resulting estimates, once convergence is achieved,
should ret differ very much from our estimates.

A third difference is the treatment of the conditional expectations in the model. Meth-
ods based on the eigenualue/eigenvector decomposition handle expectations as any other
endogenous variable in the model, producing time series both, for each of the conditional
expectations and for the associated expectations errors. We have already pointed out the
limitations of linear approximations in dealing with expectations: o lineor representation of
decision and state variables as linear functions of starting-of-pericd states, as in (22) and
{23), provides the researcher with a very simple way to compute expectations, but they wili
be linear functions of the states, Even though the variables being used may be logged devi-
ations from steady state, the representation of expectations is stili rather limited. Besides,
these will be expectations of individual variables, which will have to be used to approximate
the conditional expectations of noalinear functions in the model.

Incorporating the expectations as additional variables to the model is far from trivial: on
the one hand, the dimension of the state vector and with it, computational requirements,
increase. On the positive side, a higher dimensional state space may be quite useful when
searching for a stable solution: in particular, expectations, treated as endogenous variables,
play a central role in methods based on eigenvelue/eigenvector decompositions, as we have
already described in the previous Section, and should become even clearer in the next one.

Since it is not based In any linear approximation, the method of perameterizing ezpec-
tations might provide the more accurate realization for the conditional expectations in the
model. However, reaching convergence in the algorithm thas estimates the expectation func-
tion might take some effort: even when the algorithm works, thousands of artificial data
are needed for convergence. As in any other method, the trade-off between computational
simplicity and accuracy is quite avident.

The last issue has to do with the resulting expectations errors: in principle, perameterizing
expectations may be the better suited method to produce acceptable expeciations errors. The
seaych for a good specification of the palynemial function used to represent expectations by a
nonlinear least squares algorithm should produce good statistical properties: first, so long as
there is noticeable autocorrelation in expectations errors, additionat lags of the state variables
will show significant explanatory power for the function being forecasted, and will be added
to the expectations polynomial, generally reducing autocorrelation. On the other hand, this
strategy will fend to produce collinearity in the polynomial function, and possible spurious
dynamics in the sojution. Second, the nonlinear least squares fit generates expectations errors
which are uncorrelated with the gradient of the expectations function. That, in turn, wili
produce approximate lack of correlation with the variables included in the parameterized
expectation. Since past decision variables will generally be each period continuous functions
of available states, this property, tegether with lack of autocorrelation, will extend to any
variable in ¢he information set at time ¢. However, this positive aspect must once again be
qualified by the need %o reach a satisfactory solution to the problem of approximeting the
conditional expectations in the model.

Among the alternative solution strategies, we have already mentioned that models pre-
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serving more noniinearity will tend to produce less important deviations from rationality,
which we assume is a basic premise imposed on the model. We have seen in the previous
Section that methods based on eigenvalue—eigenvector decompositions provide additional ev-
idence in terms of the relationship between raticnal expectations errors and the innovations
in the structural shocks, which is an interesting characteristic of the model. With other
methods, this type of relationships can be estimated through linear projections, although
there is no guarantee that such a projection will be & well-specified model. For instance, one
might find evidence of expectations errors responding not only to contemporaneous but to
past endogenous innovations as well, which would cbviously be a contradiction of rationality.

Finally. dealing with conditional expectations under rationality brings up additional issues
under which solution methods will have to be increasingly scrutinized. One of them is how to
impose the restrictions among expectations of a given function at different herizons, which
are standard in theoretical rational expectations models. Another issue is how to impose
in the solution strategy the restrictions that theoretical models sometimes impose among
expectations under rationality, as it is the case in the model in the next Section. Not all
the solution methods are similarly equipped to deal with these questions and we should
expect to see increasing discussion on specific subjects like these, concerning the modelling
of expectations under rationality.

Heving discussed the implementation of the solution method in a simple baseline real
growth model and having established some comparisons with alternative solution strategies,
we now proceed to discuss its implementation in a more general setup.

6 'Solving some identification issues: capital stock
and inventories in the production function

Singular I'p matrices appear often. Sometimes, singularity can be avoided by sotving for some
variables as functions of others and reducing system size, but that is not always feasible. A
typical cause of singularity is that a subset of r variables appear in just ¢ equations, r > g,
being then impossible to solve for all of them and reflecting that identification of those
variables is weak.

An interesting case in which this situation arises is Kydland and Prescott (1982) where
physicai capital, k;, and inventories, ¢;, play a very similar role: both accumulate and both
are production inputs. In that paper, the technology shock, which 5 the only source of
randomness in the economy, is assumed to have a complex stochastic structure that aliows
for identification of fixed investment and inventory investment apart from each other. The
redundancy between physical capital and inventories shows up in that their contemporanecus
values appear just in the budget constraint. We will see that, as a consequence, T will be
singular, producing an eigenvalue equa!l to infinity, and the associated eigenvector will atlow
for solving cone variable apart from the other.

Let us consider the production technology:

- e

(B ke, iomy) = 60 (1 - R -0 (24)
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where 8, is an exogenous technology shocl, as in previous sections. The marginal products
of k1 and 4.1 are, at dime £

-1

=}

(25}

Ff o= (L -k (- ik + i

. i =—1
S LR o e (26}

Maintaining the assumption of a continuum of identicai consumers, each endowed with
1o

a utility function with constant relative risk aversion: U{e) = 5(‘1—“-- o > 0, the optimality

g}
conditions are:
c ke — (1= 8ky 44— 4y — Fll, 1, 5p1) = ¢ (27
&7 — BE [(1 —é+ Fz'ff-l)ctfl} =0 {28)
7~ BE [+ Fialey] = 0 (29)
log{8) — plog{fe—1) —& = 0 (30}

e ~ wHdND,a2)

where we have assumed that physicai capital depreciates at arate §, 0 < § < 1. Since they
involve the realization of the productivity shock at time ¢ + 1. 813, the marginal products
FF., Fi,, are random variables when period ¢ decisions, k and ¢, are made.

Additionally, two stability conditions must held:

ERAETE
i ] = o

Conditions (28) and {29) imply that the two conditional expectations of the cross—
products of each marginal productivity by the marginal utility of future consumption are
equal to each other at every point in time. However, it is convenient to maintain both of
them in the medel, and define new variables Wy, | Wi, equal to each expectation,

Wi, = E[(l-8+F;)60) (31
W, = Et[(l'*‘ﬁ?ﬂ)cz_fx] (32)

as well as the associated one-step-ahead, serially uacorrelated, rasional expectations
errors i and 7§ :

|
<

(33}
(34}

-6+ Fe™ — W, —nf
(1+ Fhe™ — Wi, ~ 1

|
<
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With this, equations {28} and (29) become:

Cfd - ﬁﬂfkt
Ct_a - ﬁmt

!
[~

(35
136]

I
o

The conditions characterizing steady state are:

Wi, = {i-8+Fk)er

W, = Wi, = ﬁ—laﬂ;ﬂ
W.. = (1 + ng) Cos
Cos = Py kg5, 55) — Ologs
Fss = ofl- w)k_;;yiiessF{gsm k:.';s:"':.ss)_L

F:5 = a¢i;V7lessF{gsagkaméss)_l
Bes = 1

from which we get the dependence of steady state values from structural parameters:

A )

i L1

F 7 1

e _ (ﬂb 1- A0 - 5)) 75

Tlss 1_'§b lfﬁ i

) St Eoat " T e
les = [Fss_¢ [(1 -'¢:) (i“) -+ !ﬁ} jl

o
kssy |
kss = ('fs—')'ﬁss
tsa
8.

Fl:gSB:kQJ:‘!LSS)

‘6;‘:.;3 + F(gss: kss: z'.s.-;)

i

Css

We can now compute the linear approximation to the system (27), (35), (36), (33), (34)
and (30} around steady state:

Loy =Tt 1 + Wap + Hipe (37}
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where vecbozs gy, &, e are: 6.1 Characterizing stability conditions

e = i€ Cop, Kt — ks, 3 — fag, Wi, — Wy, W, — W, log(8)) {38) Each row of T in {37) contains the partial derivatives of each equation in the system with

2 o= & respect to the components of the vector 4. Since k; and ¢, just appear in (27), only the first

n = {?]k i element in the second and third columns of I'y is nonzero. As a consequence, Ty is singular and
= %Nyl

it is necessary to compute a (QZ-decomposition*? to cbtain generalized eigenvalues: for any
pair of square Inatrices like (I'g, T, there exist orthonormai matrices Q. Z (QQ' = ZZ' =T}

The matrices in the linear approximation are: 1
and upper triangular matrices A and £ such that!3:

1 11 0 0 e
e 60 -8 0 2 To=@QAZ . T, =z
‘85
—ouy ! 06 0 -4 U Besides, ¢} and Z can be chosen so that all possible zeroes of A oceur in the lower right
To=| gez? (1 —S4all —glay “ KX ‘) 00 G 0 afli- ',-’,t,'mz 3 }gﬂfﬂc;’o : corner and such that the remaining ratios ¥ of diagonal elements in {2 and A, are non-
_ate aty decreasing in absolute value as we move dcmm ‘the diagonal. These ratios are the generalized
—acT! (1 +onpay ¥ eTVTlR 1) 0 } atpa, * ot TR e : eigenvalues of the pair (T'o,T'1).
0 00 0 B 1 Premultiplying the system by @ and replacing Z'y; with wy, we get:
" Ay = Dy +Q (Bz -+ I} {39)
0 (i-8—ail—vja, * k& 1+ m,u'fag = ¢—1k°“1 ¢ o6 0 If we partition the set of generalized eigenvalues into those below and above the upper
0 [} ] 0 00 bound which is used as stability criterion (it could be #1/2), and order them decreasingly
B
T = 0 ¢ 0 G 00 along the diagonal of A, we will have:
0 —~Fhkels —Flere 100
5} —Fikg o wFlga 019
A A wye U Qe Wi g1 Q1.
0 0 0 o0 e = =)+ (W2 + LI 40)
a4 ( 0 Ap gy 0 Qs Wy -1 Qe # kL (10;
0 0o where the second block of equations corresponds to the unstable eigenvalues. Some diag-
0 9 0 onal elements in Aga, but not in Aq1, may be zero.
0 P A zero element in the diagonal of A implies some lack of identification in the systern, and
T = o = 16 an infinite generalized eigenvalue will arise, If { does not have a zerc in the same position,
o 01 the associated eigenvector will generally allow us to solve the identification problem, as we
1 0o will see below. I'g is then singular, but all the equations in the system are in this case linearly
independent. If 2 has a zero in the same position, then there is an equation which is linear
with: combination of the others so that, even though the system has as many equations as variables
. it is, in fact, incomplete.
a; = ¥ 1-601-§ ; In (40), let us dencte the vector
1-¢ 1-4
as = (1—9)+a7” 0Tz 4TI | Gte Tz +TIg) Y wyy
. —aty o= Q@ 10a + Tk Qo (U2 + e} Tt
az = Ct(l — ¢)a2 ¥ "
r 1 b Since the lower block of (40) corresponds to unstable eigenvalues, it must be solved towards
kb _ A _ PR T L R y -
By = [ta +uid ?’b) v 1] ol —ay ¥ o kg the future, which makes wq depend on the whole future path of zy. Sims (1998) shows how
L { _.aty
FL o= E fa+ u}qj;—al — 1} m)b“z v a"’ 2&“‘ 2, "The MATLAB command to perform a ()Z-decomposition is qz{Tg. T}
i B3 Z. A and © coutd be complex, in which case, the transpesition above has to be changed to transposition and
ik alt — e+ a2 =t al‘"“l o2 o ki cornplex conjugation. On the other hand, upper triangularity of A and §2 has to do with the possibility of repeated
L 58 58

eigenvaiues. When all eigenvalues are different from each other, both matrices are diagonal.

22 23




the discounted sum of future vaiues of linear combinations in x5 that defines wsy, must be
equal to its conditional expectation, which vields as many stability conditions as variables
there are in ws;. Imposing those conditions we again get a set of relationships between
the vector of rational expectations errors and the vector of innovations in the exogenous
stochastic processes, similar to (20).

In the applications we discuss here, the vector x; contains linear combinations of the
innovations in the stochastic processes for the structural shocks and the expectations errors.
Structural shocks, themselves, are included in the vector y, and it is just their innovations
which are in z;. Hence, Ey{@arys) = 0 for all s > 0, and the stability conditions we have just
described become:

wy = Zh 4 = GV (41)

where Z%, is the appropriate submatrix of Z. This set of conditions, taken to (40}, amounts
to having the relationships between rational expectations errors and structural innovations'?;

Qoe (W2 +Tly) =0 = Qoo = —Qoallny (42}

For reasonable parameterizations, there are two generalized eigenvalues in (39} with ab-
solute size greater than /2. One of them is comman to the version of the model without
inventories (not anatyzed in this chapter) so that it is associated to a standard stability con-
dition, of the kind we saw in Hansen’s model in Section 4. The other eigenvalue is equal to
infinity.

The pariition described in (40} leads in this model to an unstable block:

a1 G zZge Vb b2 Y1 G5e .
( o0 )(Z{s-yc ) m( 0 bo J\ Zhaben P A

where 24, . Zh.. Q5e. g6e denote the fifth and sixth rows of Z' and Q. i.e., 2, and 2, form
the submatrix 24, in (41). while gs., gge form Qa. in (42). The zero in the lower end of the
diagonal in the first matrix shows the existence of a generalized eigenvalue equal to infinity,
due to the weak identification of &k, and 4,. The other generalized eigenvalue is equal to
by fenn-

Written at time ¢, the last equation states: bagzgut = —qae (7 -+ Ineya). Taking ex-
pectations and noticing the lack of autocorrelation in €, as well as in the two one-step—ahead

e

conditions. Besides, the triangular structure of the system will transmit the explosiveness of
{44} to the rest of the equations of the system. These explosive trajectories can be eliminated
only if we impose #,y: = 0. Together with the budget constraint and the remaining equations
in the system, these two conditions will provide us with the time £ values of decision variables,
state variables and conditional expeciations, e, ke, &, Wr,, and W,

6.2 Identifying capital stock and inventories apart from each
other

With the parameterization: ¢ = 1.5, = 0.36,5 = (.99,6 = 0025, p = .85, v = 4.0,¢% =
281078, [the two last parameters as in Kydland and Prescott (1982}, steady state values
are: cy, = 2.7261, kys = 36.2067 iy = 3.6009, W, = 0.2244 W, = (2244, 8, = 1, and the
numerical estimates of the I'y,I'; matrices become:

10000 1.0000 1.0000 0 0 —3.6313
—0.1222 0 0 —0.9900 0 4]
[ | 0122 0 0 0 —0.9900 0
=1 01235 0 0 0 0 0.0078
01235 0 0 0 0 0.0022
0 0 U 0 0 1.0000
¢ 1.0101 1.010L 1] 0 0
0 6 0 0 0 0
|0 0 0 0 0 0
71 0 00002 -0.0003 1.0000 U 4]
0 —00003 0.0030 ¢ L0000 O
0 0 8] 0 0 0.9500

while A,{}, ordered so that generalized eigenvalues increase in absolute size as we move
down the diagonal of A are:

-1.0297 -0.0002 -13716 -—-3.5179 03177 -—-0.0112
0 0.0023 -0.1487 -—-0.2742 06340 07892

forecast errors in #;. this equation leads to: 25,3 = 0, which is a linear restriction ameng A 0 0 —0.3106 —C.7072 0.5853  0.3701

contemporaneous values of the conditional expectations and decision and state variables. iJ - 0 0 0 0.9945 —0.0835 0.0478

Taken to the previcus equation, we get: 0 0 0 0 —-0.6118 —0.4668

0 0 0 0 0 ]
o132 = b1 2t + gse (Tag + I (4d) ]
which is an explosive autoregression in z,u;, since the generalized eigenvalue: ﬁ:u > 0 0 ~1.3887 0.0219 01540  0.0020
—1/2 . . . . . . . h 0 0 -01431 00023 0.0159  0.0002
B , and the restlting trajectories for the variables in 3, will not satisfy the transversality 0 0 —03027 —01060 —0.7527 0.0004
“However, we will impose {41), but not (42) when solving, since we will actually use the original, nonlinear 1= 00 0 0.9447 -0.0744 —0.0004

model to compute an equilibrium realization, which will satisfy (42) only as an approximation. If we used the G 0 0 0 —(.6342 0
linear approxirzation (37} to the model to compute the solution, {42) would hold exactly. a0 0 0 0 —1.0000
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with a generalized eigenvalue equal to infinity. The finite eigenvalues are: 1.0366,0.9500,0.9745,

and there are two eigenvalues equal to zero. The Q. Z matrices of the @Z-decomposition
are:

01187 01187 —09711 01199 (L1199 i

0.1410  —0.9848 —0.1001 9.0124 00124 ¢

_ 1 —Db112 —00790 —0.2166 —0.5354 —0.5354 o
Q= —0.0722 —0.0093 00004 00391 0.0446 —(.9956
(.7663  0.0090 00039 —0.4442 —0.4437 -0.0939
00000 00000 0.0000 —0707i 07071 0.0030

1.0000 0 0 0 0 0
0 0.707. 07671 0.0069 0.0061 0.0003
7= 0 —0.7071  0.¥071  0.0012 0.0081 --0.0023
0 —0.0003 -0.0061 0.0968 0.7004 0.7071
0 0.0023 -0.0082 0.1020 0.6997 —0.7071
iy a a —0.9901 01406 —{.0037

Since there are two generalized eigervalues ahove A~Y/2, there are also two stability
conditions needed for transversality conditions to hold. given by the two last columns of £
{two last rows of Z'):

0.0061%; + 0.0081%; + 0.7004%%, -+ 0.6997W;, - 0.1406 log(#; ) 0 {45)
0.0003%, — 0.00235, — 0.0087log(6,} = © (48)

where the first relationship happens not to involve consumption and the expectations
W}, and W, have dropped out of the second, since they are equal to each other. The sccond
equation allowing us fo identify k; and i; apart from each other. These two stability condi-
tions, obtained from the unstable eigenvalues, impose a relationship between the structural
innovation and the expectation errors, as in (42, i = —(Q2eJ1) (2. ¥z, which, under our
parameterization, becomes:

nf = —0.1020¢,, 5 = —0.1085¢;,

which very clearly illustrates that the two expectations errors are an exact function of
each other.

The actual mechanism to generate the set of time series that solve the model from initiai
values ko, do, is as follows: first, a sample realization for the productivity shock &; is generated
using {30). Then, initial values for Wi,, Wy, co come from (35), (36} and (45). Then, using
the value of 8, (35}, (36), (45), {46) and (27) form a complete system in Wi, Wi, &1, k1,41
This procedure can be iterated for each period. Having time series for all the variables, we
can compute the expeciations errors from (33} and (34) and run rationality tests on them,
if desired.
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A solution to the linear system (37) exists only if representation (42) is feasible, i.e., if
the space spanned by the columns of (J2, ¥ is inciuded in the space spanmed by the columns
of (Jo,JI. This condition becomes necessary and sufficient for the simpler cases in which
Ei(ze1) = 0. In the specific model in this Section, Q4. ¥ is a 2 x L vector, while (3,11 is &
full rank 2 x 2 matrix, so that the condition is clearly satisfied. As an alternative, Sima (1998}
suggests testing the condition for existence of a solution by regressing the columns of (s, ¥
on the columns of (2,11, to see if the resulting residuals are all equal to zero. In our example,
the residual sum of squares turned out to be of order 1073, shawing that the solution, in
fact, exists.

6.3 Special case: zero depreciation rate

With zero depreciation on physical capital, there is no difference between the accumuiation
processes followed by the two inputs, and the equality of conditional expectations in (28}
and (29} becomes:

I

By [Fipefh = B [Pyt m

On the other hand, the marginal rate of transformation between physical capital, k;, and
inventories, 7;, which is in principle a random variable at time { is, with our technology:

. Fl' w ib‘ g b .
RMTHE = H % (k 148)
H E’i—; -t klr)

which belengs to the information set available at time ¢. This feature of the model implies
an exact relationship between two expectations:

E, [F;.z-{-lcf:fd =B [RMIflet’fHCt:?‘l} = RMTtifl By lFt‘SchTl} {49)
so that, in the special case of zero depreciation, (47) and (49) impiy:
1
; 1\ T
RMTH =1 or k= (7¢) S (50)

This particular form for the optimality condition eliminates the lack of identification be-
tween the optimal amounts of the twe production inputs in the special case of zero deprecia-
tion. The infinite eigenvalue disappears and, with it, the stability condition (46) that we used
to identify physical capital apart from inventories, which is no longer needed. That condition
corresponds to the case of nonzero depreciation, which explains why the productivity shack
appears in it. If we use § = 0 but ignore (50}, the eigenvalue equal to infinity again arises,
and the associated stability condition analogous to (46} becomes: % = 12.80894;, which is
exactly equal to (50}, Therefore, using stability conditions associated to infinite eigenvalues
we can soive identification issues that only in special cases (here with zero depreciation} can
alsa be solved analytically.
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7 Solving endogenous growth models

Numerical solution methods must be applied with great care to endogenous growth madels,
since we need to distinguish between the lack of stability that can and should be eliminated
through conditions like those in the previous Sections, and the lack of stationarity which is
intrinsic to these models, even in steady state. In our particular approach, it looks as if the
stability conditions could not possibly be obtained in endogenous growth medels. Since they
are derived from an approximation around the steady state, and the steady state levels of
the variables change over time, it would seem necessary to compute the linear approximation
for each single period, which would be clearly hopeless.

Luckily, the method described in the previous Sections cen, in fact, be easily adapted to
solve endogenous growth models. As an illustration, we will consider a planner’s problem
in an economy with aggregate constant returns to scale in physical and human capital, as
in Uszawa (1965). Once the optimality conditions (including resources and technological
constraints, as well as laws of motion for exogenous variables) have been obtained:

1. We transform the set of optimality conditions in ratios of the relevant variahles, and
compute the steady state values for the ratios, which will be uniquely defined.

2. Obtain the appropriate stability conditions for this transformed system. 'The stability
conditions depend upon the approximation around the steady state for the model in
ratios, which does not change over time. Hence, the conditions do not need to be
revalued each period. Save these stability conditions.

3. Rewrite again the optimality conditions to make growth explicit for ail those variables
that experience nonzero growth in steady state, by multiplying and dividing each ob-
servation by the corresponding power of its growth rate.

4. Use the optimality conditions from 3.), together with the stability conditions from
2.}, initial conditions for the state variables and sample realizations for the exogenous
shocks, to generate time series for the variables in the economy in levels, excluding the
deterministic growth components. These can be obtained separately.

Summarizing, the set of time series that solve the model are generated from the version
of the model in levels in which deterministic growth has been made explicit. Thet way, we
can characterize whether the potential instability of the ultimately obtained time series for the
original variables is purely due to their deterministic growth rate, or it rather reflects o more
Jundemental instability of the solution, which might be unacceptable. The procedure we have
just outlined guarantees that the nonstationarity of the solution can be fully represented
by a single unit root, as it should be the case in any endogenous growth model, due to the
presence of a unit eigenvalue in the coefficient matrix of its linear approximation.

We consider an economy with two sectors: in the first, output is produced from physical
and human capital. In the second, human capital is produced from itself, without need of
using physical capital. The unit of time which is available each period is split into both
production activities. Output is obtained from a Cobb-Douglas technology in physical cap-
ital. ke, and effective working hours, uth,, the product of hours devoted to production, ;.
by haman capital, by, In the second sector, humsan capital iz accumulated through a linear
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technology, as a function of the amount of time devoted to this sector, 1 -- u;. There are
random productivity shocks ;. & in both sectors, following first order autoregressive struc-
tures. Physical and human capital depreciate at constant rates & and 8 each period. The
representative consumer has a constant relative risk aversion utility function in its single ar-
gument, consumption, and discounts utility over time at a rate of 8.0 < 8 < 1. Population
grows at a rate n, and the planner maximizes the aggregate utility:

2 it |81
max 5 Soypnt= | 721
{8 ep ke e Y32, g i l1-o J
subject to
nly = ARE (b 0+ (L - Sk, — & {51
at = B(l — ut}ftgf;& + {1 - 5}1:}-":0‘.1:_1 {52)
logifs) = golog(fei)+ef (53)
€ ~ N(0,03)
log(g) = delog(€-1) +¢f (54)
ef ~ N(O,crg)
given ko, fuo, b0, o
€ (0,1) {55
Gy ke, by > 0
where variables with ~ present non—zero steady state growth, and we have the optimality
conditions:
. - i& a—1l
N = —1+E|f (9—:‘1) ad (:"E ug_:?lgt.q.; 4 1= b {56}
& hy
Ei\® b (ét+1)7g BYY B .
= — |+ -4+ By ifn| == =] u 53— (B +1—46&)f (5T}
0 (h;_l) e £ [ F & by g (Blen

together with (51) to (55},

Endogenocus growth shows in the fact that this system can be solved for the steady state
levels of the variables with zero steady state growth but only for ratics of variables with
nonzerc steady state growth. All ratios are referred in this case to human capital. Their
steady state values can be obtained, but not those of the individual veriables with steady
state growth, On the other hand, we can also compute the steady state growth rate which
is common, in this economy, to all variables with nonzero growth, Pracisely because we can
compute this growth rate, we cannot possibly solve for the steady state values of all variables.
since we have the same number of equations thar we would have in an exogencus growth
model. _

Denocting by w® and wi? the ratios ﬁ_fi—l and %:, defining each expectation as a new

variable, and introducing the associated expectations errors, we have the system:
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0 = —nwf"(B{lfuz]Eg-!-1*6;;)‘+A(wf,’,';]auf""‘6£+.{'1m6h}wf1 w® (58)
R 3T
0 = _(mfﬁ) + AW (59}
0w W+ | () x

L

- aml ‘
(B =g )Ers +1 - 6) (aA (wf )" “9,+1-6k)} gt (60)

0 = —{=ft)" u("‘% + B (61)
n = mW?ﬁl-!-[( ::h) b
Wi
(Bl —w}fypy +1—6,)7° ((ﬁ’fh1) ””1—15 ) (B&+1— 5};]} - (62}

together with the stochastic pmcemes (53) and (54}. These are seven equations in nire
variables (o, wf®, ur, 8y, &, W, WE. 5}, %), but the associated generalized eigenvatue prob-
lem produces two unstable eigenvalues!s.

With parameter values: ¢ = 15,8 == 0.99,4 = L.a = 0.36, B = 0.0201,1 — & =
0.975,1 - &, = 0.992, n = 1.0035, ¢p = 0.95, ¢¢ == 0.95, we obtain as stability conditions:

—1.4126 ( hil -t ) — 0.0806 (A"‘ "") + 0.0205; — 1.69231}

+02811W - (8823 loglf} = 0 (63)
—5.2034 (m—m e ) +0.0493 ( -:*;- - wg‘) — 0.11938, + 04284V

+1.0355W2 + 0.3801 log(,) = 0 (64}

which amount to the following relationships between expectations errors and structurai
innovations:

7 0.5924¢f — 0.1938¢f
N = 0.1490¢0 + 0.4184¢}

1l

Once we have the two stability conditions, we turn to the original model, to rewrite i#
in a slightly different way. The steady state rate of growth in this model is: + = “ﬂ’— =

An(B+1 ——Sh)}v. We now rewrlte the optimality conditions (51), {52}, {56} and (57}
making explicit this growth rate (z; = &4y, with @ = (c, ke, hed):

"3The transformation in ratios eliminates the unit eigenvalue that arises in all endogenous growth models as a
corsequence of the steady state being a one—dimensional manifold.
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5 a=1 A
b= T E i:.@’)‘_acx__f; (aA(h—k:) u;:;’ffmﬂfsk)} (65)

. ki —abt Ceti -

O ( ) ;o By | ( — "‘———fB + 1 8]|{66
P £ t {ﬁ ¥ o } ( t) “'15 [N} hJ} )

0 = —mvky + AR (w8 + (- Gk — (67

G = —yhe-+ B{(I—w)heale+101 - 6ﬁ)ht_1 {68)

14 is not hazd to show that the two conditional expectations in {65) and (66) are, precisely,
W} and W2 in (59) and (61}, Therefore, their associated errors are the same 4} and %] as
in {60) and [62}.

Together with the stochastic processes for the exogenous shocks, the definitions of the
expectations errors (60) and (62}, and the stability conditions from the model in ratios' (63,
{64), this system has ten equations in as many variables {¢;, ki, ke, 1, 8. &, WL, WE 0k, nf).
Besides, the system has an structure that allows for a solution to the original, endogenous
growth model in the levels of the variables, to be obtained, starting from a sample realization
for the structural innovations, along the following lines. The global constraint of resources
{67), the law of accumulation of human capital (68), the expectations equations (59), (61} and
the two stability conditions (63), (64} form a nonlinear system in k1, by, ¢1.up, Wi and WE,
as functions of ko, hg, 61 and &. By repeated substitutions, the stability conditions can be
transformed into a system of two nonlinear equations in ¢j, 41 as functions of state variables
and exogenous shocks, Then, we would obtain h; and ki from (67) and {68), and W} and
W7 from (59), (61), and the same procedure would be implemented to obtain optimal values
for subsequent periods. Once we have produced time series for these variables, realizations
for the expectations errors would be obtained from (60} and (62), and we could proceed to
test for rationality, if desired.

The transformation of the model in ratios to human capital is time-invariant in steady
state, because in this model all vaziables that grow in steady state experience the same
growth rate. Hence, their ratio stays constant. However, even if the rates of growth were
different, an appropriately defined ratio would still be constant in steady state, and the same
pracedure we have described above would lead to a stable sclution.

Endogenous growth models can also be solved by parameterizing expectations or following
Uhlig’s approach, among other possible methods. They differ from our approach on the way
to recover time series for the levels of the variables that experience nonzero steady state
growth, Maost methods would compute time series for ratios like &/ hi_y or .'::t,’ Ay so that, to
get time series for ¢, ke and k¢, one would have to:

1. use the law of motion of physical capital: ht = B(l — w)&he_y + (1 — Gk)h.,;_l and
normalize variables to make growth explicit: ht = hiv'. to have:

Y8 Note that the ratios of consumption and physical capital to human capitai are the same with and without the
deterministic trend, which is why we can also use for the detrended variables the previously calculated stahbility
conditions.
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Moo : ol
m—:éBl1~WJ§t+{l*5h}§— (69)
-1 b
2. then, given an initial condition hy for human capital, we would comnpate:
Bl —ugié, + (1 — 6
he = [n;:} ( { “*"f; L h))] ko, t=1.2 .7 (70)

3. and once we have the k,~path, we get time series for physical capital and consumption
from:

k
by = lhy = (h_‘) By, £=1,2,.T
3

G =why = (“hft“;) by, t=1,2,..T

However, the numerical precision error involved in generating the u,~time series, which
in a single period may be arbitrarily small, will become sizeable when it is compounded over
time as in (69). As a result, there will be some increasing ervor in the f-series for long
horizons, which will translate through (70) into errors for some other endogenous variables.
In our experience, these errors are not negligeable: for instance, in the situation known as the
exogenous growth case in Caballé and Santos (1993) (with the exogenous shock fived at their
expected value of one), the numerical errors are large enough for the resulting time series
not to return to the same steady state point where the economy was before undergoing an
instantaneous shock, even though it is known theoretically that the economy should converge
to that same initial state.

On the contrary, the approach we have proposed computes the values for the variables in
the economy each time ¢ by solving a nonlinear system of equations. As a result, precision
errots do not accumulate over time, and remain small every single period. After experiencing
an instantanecus perturbation, the resulting time series converge to exactly the same steady
state point where the econemy was before the shock.

Mendoza (1991) and Correia et al. (1995) propose stochastic, general equilibrivm models
of small and open economies in which seme endogenous variables are integrated of order
1, I(1), although with some cointegrating relationships among them. In that sitwation,
whenever the mode] can be written in terms of the ratios of those variables with wnit roots
in such a way that the ratios are stationery, we will generally be able to find approximate
stability conditions around a time invariant steady state. Using those stability conditions
together with the optimality conditions as it has been described in this Section should allow
us {e obtain more accurate solutions for the integrated variables,

In particular, to be able to solve the model using the alternative approach of accumulating
growth from an initial condition as in (69), it is necessary that ratios to state variables can
be found that are stationary. That will not be possible if the only J (1) variables are decision
variables, as it is the case jn Correia et al. (1995). where consumption foreign debt, the
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halance of trade and the level of net foreign asset holdings are I(1), the first two being
cointegrated, while the stock of physical capital, the only state variable, is stationary. These
authors worry about the numerical accuracy of their solution [see footnote 3], computed
through a linear approximation as in King et al. ({1988}, which amounts to linearizing
the Euler equations and solving numerically the resulting system of stochastic difference
equations.

8 Conclusions

‘We have summarized in this chapter some of the practical details involved in the implementa-
tion of a solution strategy to produce stable solutions to raticnal expectations medels, which
is based on eigenvalue/eigenvector decompositions. 'We have taken as a base recent work by
Sims (1998), who has produced a quite general discussion of the characterization of stable
manifolds in linear models. He has extended the initial proposal of Blanchard and Kahn
{1980}, to accomodate a number of interesting generalizations. Even though the method is
exact for linear models, it can alse be applied o nonlinear models, starting from a linear
approximation to the model around steady state, and we have discussed applications to some
standard business cycle economies.

A distinctive feature of the method is the consideration of each conditionai expectation,
as well as the associated expectations error, as additional variables in the model. The ad-
dition of stability conditions, derived from the eigenvalue/eigenvector decomposition of the
coefficient matrices in the linear system of stochastic difference equations, allows for gener-
ating a numerical soiution, in the form of a set of time series for ali the relevant variables,
inctuding the conditional expectations and the rational expectations errors.

The approach is similar in spirit to any other method based on linear—quadratic ap-
preximation, even though it fully exploits the nonlinear structure of the original model to
produce a numerical solution. The stability conditions can be written as relationships be-
tween conditional expectations of {generally) nonlinear functions of future state and decision
variables, and state variables known at the time the expectations were made. These func-
tions could be compared to those emerging from the parameterized expectations method of
den Haan and Marcet (1990) and Marcet and Lorenzoni [{1998) this volume], which does
not explicitly consider stability conditions. On the other hand, the methed based on the
eigenvalue/eigenvector decomposition is quite close to the undetermined coefficients method
praposed by Uhtig {(1998) this volume], to which it would look even more similar if we started
from a log-linear, rather than from a linear approximation. A more developed set of rules to
characterize the stable manifold in Uhlig (1998) would also approximate his proposal to the
method we have described in this chapter.

After applying the method to a standard growth model, we have shown that it performs
well in situations where identification is weak, as it is the case with physical capital and
inventories as production jnputs, We have also explained, in that same context, how the
method will produce information on analytical restzictions among expectations in the model,
that the researcher might not have perceived from the outset.

Finally, we have described how the method can easily be adapted to deal with endogenous
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growth models. Tn them, the steady state is not constant over time in the levels of the relevant
variables, so that the standard linear approximation to the model cannot be obtained. and
the method would not. directly apply. However, extracting the deterministic trend from the
variables and transforming the model in ratios of the relevant variables, allows for a stable
solution to be obtained. The reason is that the stability conditions for the model in ratios,
whose steady state is constant over time, can be used to solve for the variables in levels, once
they have been normalized by their deterministic trend.

Solving for expectations errors is central to the solution of dynamie, stochastic economic
models. Besides, the assumption of rationality imposes very tight conditions on the stochastic
structure of these errors, which should be routinely analyzed as a standard part of any
solution strategy. We have indicated that alternative solution methods for nonlinear models
differ essentially in the amount of nonlinearity that preserve when computing the msmerical
solution. Even though it is arguable that diverse degrees of nonlinearity might produce strong
differences in qualitative results, they may lead te expectations errors that fail to pass tests
for rationality, in the form of autocorrefation or significant cross correlations between them or
with variables contained in the information set which was available when expectations were
made. Results from testing the implications of rationality on expectations errors should be
an integral compenent of any reported numerical solution which, unfortunately, usually tend
to focus more on the characteristics of the time series for the rest of the variables, The
standard practice of numerically solving rational expectations models will have to evolve in
this direction, since it might well be a criterion on which to base the choice of a particular
solution method.
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