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Abstract

In this paper, a wavelet numerical method for solving nonlinear Volterra

integro-differential equations of fractional order is presented. The method is based

upon Euler wavelet approximations. The Euler wavelet is first presented and an

operational matrix of fractional-order integration is derived. By using the operational

matrix, the nonlinear fractional integro-differential equations are reduced to a system

of algebraic equations which is solved through known numerical algorithms. Also,

various types of solutions, with smooth, non-smooth, and even singular behavior

have been considered. Illustrative examples are included to demonstrate the validity

and applicability of the technique.

Keywords: Volterra integro-differential equations; Euler wavelet; operational matrix;

Caputo derivative; numerical solution

1 Introduction

The fractional calculus is a mathematical discipline that is  years old, and it has de-

veloped progressively up to now. The concept of differentiation to fractional order was

defined in the th century by Riemann and Liouville. In various problems of physics,

mechanics, and engineering, fractional differential equations and fractional integral equa-

tions have been proved to be a valuable tool inmodelingmany phenomena [, ]. However,

most fractional-order equations do not have analytic solutions. Therefore, there has been

significant interest in developing numerical schemes for the solutions of fractional-order

differential equations.

In the past  years, the theory and applications of the fractional-order partial differ-

ential equations (FPDEs) have become of increasing interest for the researchers to gen-

eralize the integer-order differential equations. Conventionally various technologies, e.g.

modified homotopy analysis transform method (MHATM) [], modified homotopy anal-

ysis Laplace transform method [], homotopy analysis transform method (HATM) [, ],

fractional homotopy analysis transformmethod (FHATM) [], local fractional variational

iteration algorithms [] were used for the solutions of the FPDEs. Meanwhile, local frac-

tional similarity solution for the diffusion equation was discussed in []. The inverse prob-

lems for the fractal steady heat transfer described by the local fractional Volterra integro-

differential equations were considered in [].
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Recently, many effective methods for obtaining approximations or numerical solutions

of fractional-order integro-differential equations have been presented. These methods in-

clude the variational iteration method [–], the adomian decomposition method [],

the fractional differential transformmethod [], the reproducing kernel method [], the

collocation method [, ], and the wavelet method [–].

Wavelet theory is a relatively new and an emerging area in the field of applied science

and engineering.Wavelets permit the accurate representation of a variety of functions and

operators. Moreover, wavelets establish a connection with fast numerical algorithms [].

So the wavelet method is a new numerical method for solving the fractional equations

and it needs a small amount of calculation. However, the method will produce a singu-

larity in the case of certain increased resolutions. Using wavelet numerical method has

several advantages: (a) the main advantage is that after discretizing the coefficient matrix

of the algebraic equation shows sparsity; (b) the wavelet method is computer oriented,

thus solving a higher-order equation becomes a matter of dimension increasing; (c) the

solution is a multi-resolution type; (d) the solution is convergent, even the size of the in-

crement may be large []. Many researchers started using various wavelets for analyzing

problems of high computational complexity. It is proved that wavelets are powerful tools

to explore new directions in solving differential equations and integral equations.

In this paper, the main purpose is to introduce the Euler wavelet operational matrix

method to solve the nonlinear Volterra integro-differential equations of fractional order.

TheEulerwavelet is first presented and it is constructed byEuler polynomials. Themethod

is based on reducing the equation to a system of algebraic equations by expanding the

solution as Euler wavelet with unknown coefficients. The characteristic of the operational

method is to transform the integro-differential equations into the algebraic one. It not

only simplifies the problem but also speeds up the computation. It is worth noting that

the Euler polynomials are not based on orthogonal functions, nevertheless, they possess

the operational matrix of integration. Also the Euler wavelet is superior to the Legendre

wavelet and the Chebyshev wavelet for approximating an arbitrary function, which can be

verified by numerical examples.

The structure of this paper is as follows: In Section , we recall some basic definitions

and properties of the fractional calculus theory. In Section , the Euler wavelets are con-

structed and the operationalmatrix of the fractional integration is derived. In Section ,we

summarize the application of the Euler wavelet operational matrix method to the solution

of the fractional integro-differential equations. Some numerical examples are provided to

clarify the approach in Section . The conclusion is given in Section .

2 Fractional calculus

There are various definitions of fractional integration and derivatives. The widely used

definition of a fractional integration is the Riemann-Liouville definition and the definition

of a fractional derivative is the Caputo definition.

Definition  The Rieman-Liouville fractional integral operator Iαt of order α is defined as

[]

(

Iαt f
)

(t) =

{


Ŵ(α)

∫ t


(t – τ )α–f (τ ) dτ , α > , t > ,

f (t), α = .
()



Wang and Zhu Advances in Difference Equations  ( 2017)  2017:27 Page 3 of 16

For the Riemann-Liouville fractional integral we have

Iαt t
v =

Ŵ(v + )

Ŵ(v +  + α)
tv+α , v > –. ()

Definition  The Caputo definition of fractional differential operator is given by

(

Dα
t f

)

(t) =


Ŵ(n – α)

∫ t



f (n)(τ )

(t – τ )α+–n
dτ , n –  < α ≤ n,n ∈N , ()

where α >  is the order of the derivative and n is the smallest integer greater than α if

α /∈ N or equal to α if α ∈N .

For the Caputo derivative we have the following two basic properties:

(

Dα
t I

α
t

)

(t) = f (t) ()

and

(

Iαt D
α
t f

)

(t) = f (t) –

n–
∑

k=

f (k)
(

+
) tk

k!
, t > , ()

where f (k)(+) := limt→+ D
k f (t), k = , , . . . ,n – .

3 Euler wavelet operational matrix of the fractional integration

3.1 Wavelets and Euler wavelet

Wavelets constitute a family of functions constructed from dilation and translation of a

single function ψ(x) called the mother wavelet. When the dilation parameter a and the

translation parameter b vary continuously we have the following family of continuous

wavelets [, ]:

ψab(t) = |a|– 
 ψ

(

t – b

a

)

, a,b ∈ R,a �= .

If we restrict the parameters a and b to discrete values as a = a–k ,b = nba
–k
 ,a > ,b >

, we have the following family of discrete wavelets:

ψkn(t) = |a|
k
 ψ

(

akt – nb
)

, k,n ∈ Z,

where ψkn form a wavelet basis for L(R). In particular, when a =  and b =  then ψkn(t)

form an orthonormal basis.

The Euler wavelet ψnm(t) = ψ(k,n,m, t) involves four arguments, n = , . . . , k–, k is as-

sumed to be any positive integer, m is the degree of the Euler polynomials, and t is the

normalized time. They are defined on the interval [, ) as

ψnm(t) =

{


k–
 Ẽm(

k–t – n + ), n–
k–

≤ t < n

k–
,

, otherwise,
()
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with

Ẽm(t) =

⎧

⎨

⎩

, m = ,


√

(–)m–(m!)

(m)!
Em+()

Em(t), m > . ()

The coefficient 
√

(–)m–(m!)

(m)!
Em+()

is for normality, the dilation parameter is a = –(k–),

and the translation parameter b = (n–)–(k–). Here, Em(t) are the well-known Euler poly-

nomials of order m which can be defined by means of the following generating functions

[]:

ets

es + 
=

∞
∑

m=

Em(t)
sm

m!

(

|s| < π
)

.

In particular, the rational numbers Em = mEm(/) are called the classical Euler numbers.

Also, the Euler polynomials of the first kind for k = , . . . ,m can be constructed from the

following relation:

m
∑

k=

(

m
k

)

Ek(t) + Em(t) = tm,

where (mk ) is a binomial coefficient. Explicitly, the first basic polynomials are expressed by

E(t) = , E(t) = t –



, E(t) = t – t, E(t) = t –




t +




, · · · .

These polynomials satisfy the following formula:

∫ 



Em(t)En(t) dt = (–)n–
m!(n + )!

(m + n + )!
Em+n+(), m,n≥ , ()

and the Euler polynomials form a complete basis over the interval [, ]. Furthermore,

when t = , we have

E() = , E() = –



, E() =




, E() = –




, · · · .

3.2 Function approximation

A function f (t), square integrable in [, ], may be expressed in terms of the Euler wavelet

as

f (t) =

∞
∑

n=

∑

m∈Z
cnmψnm(t), ()

and we can approximate the function f (t) by the truncated series

f (t)≃
k–
∑

n=

M–
∑

m=

cnmψnm(t) = CT�(t), ()
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where the coefficient vector C and the Euler function vector �(t) are given by

C = [c, c, . . . , c(M–), c, . . . , c(M–), . . . , ck–, . . . , ck–(M–)]
T, ()

�(t) = [ψ,ψ, . . . ,ψ(M–),ψ, . . . ,ψ(M–), . . . ,ψk–, . . . ,ψk–(M–)]
T. ()

Taking the collocation points as follows:

ti =
i – 

kM
, i = , , . . . , k–M,

we define the Euler wavelet matrix �m̂×m̂ as

�m̂×m̂ =

[

�

(



m̂

)

,�

(



m̂

)

, . . . ,�

(

m̂ – 

m̂

)]

,

where m̂ = k–M. Notation: from now we define m̂ = k–M.

To evaluate C, we let

aij =

∫ 



ψij(t)f (t) dt.

Using equation () we obtain

aij =

k–
∑

n=

M–
∑

m=

cnm

∫ 



ψnm(t)ψij(t)f (t) dt =

k–
∑

n=

M–
∑

m=

cnmd
ij
nm,

where d
ij
nm =

∫ 


ψnm(t)ψij(t)f (t)dt and i = , , . . . , k–, j = , , . . . ,M – .

Therefore,

AT = CTD,

with

A = [a,a, . . . ,a(M–),a, . . . ,a(M–), . . . ,ak–, . . . ,ak–(M–)]
T

and

D =
[

dij
nm

]

,

where D is a matrix of order k–M × k–M and is given by

D =

∫ 



�(t)�T (t) dt. ()

The matrix D in equation () can be calculated by using equation () in each interval

n = , , . . . , k–. For example, with k =  and M = , D the identity matrix, and for k = 
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andM =  we have

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

  –
√



  

     

–
√



    

     –
√



     

   –
√



 

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Hence, CT in equation () is given by

CT = ATD–. ()

Similarly, we can approximate the function k(s, t) ∈ L([, ]× [, ]) as

k(s, t) = �(s)TK�(t), ()

where K is a k–M × k–M matrix given by []

K =D–

[∫ 



∫ 



k(s, t)�(s)�(t)dt

]

D–.

3.3 Convergence of Euler wavelets basis

Wefirst state some basic results as regards Euler polynomials approximations. The impor-

tant properties will enable us to establish the convergence theorem of the Euler wavelets

basis. The Euler polynomials of degree m are defined by []. Now we defined 	(t) =

[E(t),E(t), . . . ,EN (t)]
T , so a function f (t) ∈ L[, ] can be expressed in terms of the Euler

polynomials basis 	(t). Hence,

f (t)≃
N

∑

i=

eiEi(t) = ET	(t),

where E = [e, e, . . . , eN ]
T .

Lemma Suppose that the function f : [, ]→ R ism+ times continuously differentiable,

and f ∈ Cm+[, ], Y = span{E,E, . . . ,EN } is vector space. If ET	(t) is the best approxima-

tion of f out of Y, then the mean error bound is presented as follows:

∥

∥f – Et	
∥

∥


≤

√
M̃S

m+


(m + )!
√
m + 

,

where M̃ = maxt∈[,] |f (m+)(t)|, S = max{ – t, t}.

Proof Consider the Taylor polynomials

f̂ (t) = f (t) + f ′(t)(t – t) + f ′′(t)
(t – t)



!
+ · · · + f (m)(t)

(t – t)
m

m!
,
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where we have

∣

∣f (t) – f̂ (t)
∣

∣ =

∣

∣

∣

∣

f (m+)(ζ )
(t – t)

m+

(m + )!

∣

∣

∣

∣

, ∃ζ ∈ (, ).

Since ET	(t) is the best approximation of f (t), we have

∥

∥f – ET	
∥

∥




≤ ‖f – f̂ ‖ =

∫ 



[

f (t) – f̂ (t)
]
dt

=

∫ 



[

f (m+)(ζ )
(t – t)

m+

(m + )!

]

dt

≤ M̃

[(m + )!]

∫ 



(t – t)
m+dt

≤ M̃Sm+

[(m + )!](m + )
. �

Theorem  Suppose that the function f : [, ] → R is m +  times continuously differen-

tiable and f ∈ Cm+[, ]. Then f̃ (t) = CT�(t) approximates f (t) with mean error bounded

as follows:

∥

∥f (t) – f̃ (t)
∥

∥


≤

√
M̃

(k–)(m+)(m + )!
√
m + 

,

where M̃ = maxt∈[,] |f (m+)(t)|.

Proof We divide the interval [, ] into subintervals Ik,n = [ n–
k–

, n

k–
], n = , . . . , k– with

the restriction that f̃ (t) is a polynomial of degree less thanm +  that approximates f with

minimummean error. The approximation approaches the exact solution as k approaches

∞. We use Lemma , to obtain

∥

∥f (t) – f̃ (t)
∥

∥




=

∫ 



[

f (t) – f̃ (t)
]
dx

=
∑

n

∫

Ik,n

[

f (t) – f̃ (t)
]
dt

≤
∑

n

[

√
M̃n(


k–

)
m+


(m + )!
√
m + 

]

≤ M̃

(k–)(m+)[(m + )!](m + )
,

where M̃n = maxt∈Ik,n |f (m+)(t)|. By taking the square roots we arrive at the upper bound.
The error of the approximation f̃ (t) of f (t) therefore decays like –(m+)(k–). �

3.4 Operational matrix of the fractional integration

We first give the definition of block pulse functions (BPFs): an m-set of BPFs on [, ) is

defined as

bi(t) =

{

, i/m ≤ t < (i + )/m,

, otherwise,
()
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where i = , , , . . . ,m – . The BPFs have disjointness and orthogonality as follows:

bi(t)bj(t) =

{

, i �= j,

bi(t), i = j,

and

∫ 



bi(τ )bj(τ ) dτ =

{

, i �= j,

/m, i = j.

Every function f (t) which is square integrable in the interval [, ) can be expanded in

terms of BPFs series as

f (t)≈
m–
∑

i=

fibi(t) = FTBm(t), ()

where F = [f, f, . . . , fm–]
T, Bm(t) = [b(t),b(t), . . . ,bm–(t)]

T. By using the orthogonality of

BPFs, for i = , , . . . ,m – , the coefficients fi can be obtained:

fi =m

∫ 



bi(t)f (t) dt.

By using the disjointness of the BPFs and the representation of Bm(t), we have

Bm(t)B
T
m(t) =

⎡

⎢

⎢

⎢

⎢

⎣

b(t) 

b(t)

. . .

 bm–(t)

⎤

⎥

⎥

⎥

⎥

⎦

. ()

The block pulse operational matrix of the fractional integration Fα has been given in

[],

Iα
(

Bm̂(t)
)

≈ FαBm̂(t), ()

where

Fα =


m̂α



Ŵ(α + )

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

 ξ ξ ξ · · · ξm̂–

  ξ ξ · · · ξm̂–

   ξ · · · ξm̂–

...
...

. . .
. . .

. . .
...

  · · ·   ξ

   · · ·  

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

()

and

ξκ = (κ + )α+ – κα+ + (κ – )α+.

Note that, for α = , Fα is BPF’s operational matrix of integration.
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Figure 1 1/2 order integration of t.

There is a relation between the block pulse functions and Euler wavelets,

�(t) = �Bm̂(t). ()

If Iαt is fractional integration operator of Euler wavelet, we can get

Iαt
(

�(t)
)

≈ Pα�(t), ()

where matrix Pα is called the Euler wavelet operational matrix of fractional integration.

Using equations () and (), we have

Iαt
(

�(t)
)

≈ Iαt
(

�Bm̂(t)
)

= �Iαt
(

Bm̂(t)
)

≈ �FαBm̂(t). ()

Combining equation () and equation (), we can get

Pα = �Fα�–. ()

We select the function t to verify the correctness of fractional integration operational ma-

trix Pα . The fractional integration of order α for the function f (t) = t is given by

Iαt f (t) =
Ŵ()

Ŵ(α + )
tα+. ()

The comparison results are shown in Figure  (α = ., m̂ = ).

4 Method of numerical solution

Consider the nonlinear fractional-order integro-differential equation

Dα
t y(x) = λ

∫ x



k(x, t)
[

y(t)
]p
dt + g(x), ()

subject to the initial conditions

y(i)() = δi, i = , , . . . , r – , r ∈N , ()

where y(i)(x) stands for the ith-order derivative of y(x), Dα
t (r –  < α ≤ r) denotes the Ca-

puto fractional-order derivative of order α, g(x) ∈ L[, ],k ∈ L([, ]) are given func-
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tions, y(x) is the solution to be determined, λ is a real constant, and p ∈ N . The given

functions g,k are assumed to be sufficiently smooth.

Now we approximate Dα
t y(x),k(x, t), and g(x) in terms of Euler wavelets as follows:

Dα
t y(x) ≈ YT�(x), k(x, t) = �(x)TK�(t) ()

and

g(x)≈ GT�(x), ()

where K = [kij], i, j = , , . . . , m̂, and G = [g, g, . . . , gm̂]
T .

Using equations () and (), we have

y(x) ≈ YTPα�(x) +

m̂–
∑

k=

y(k)
(

+
)xk

k!
. ()

In the above summation, we substitute the supplementary conditions () and approxi-

mate it with the Euler wavelet, we can get

y(x) ≈
(

YTPα + ỸT
)

�(x), ()

where Ỹ is an m̂-vector. According to equation (), the above equation can be written as

y(x) ≈ YTPα�Bm̂(x) + ỸT�Bm̂(x). ()

Let E = [e, e, . . . , em̂–] = (YTPα + ỸT)�. Then equation () becomes

y(x) ≈ EBm̂(x).

By using the disjointness property of the BPFs, we have

[

y(x)
] ≈

[

EBm̂(x)
]

=
[

eb(x) + eb(x) + · · · + em̂–bm̂–(x)
]

= eb(x) + eb(x) + · · · + em̂–bm̂–(x)

=
[

e, e

 , . . . , e


m̂–

]

Bm̂(x) = EBm̂(x),

where E = [e, e

 , . . . , e


m̂–

]. By induction we can get

[

y(x)
]p ≈

[

e
p
, e

p
 , . . . , e

p

m̂–

]

Bm̂(x) = EpBm̂(x), ()

where p is any positive integer. Using equations (), (), and () we will have

∫ x



k(x, t)
[

y(t)
]p
dt =

∫ x



�T(x)K�(t)BT
m̂(t)E

T
p dt

=

∫ x



�T(x)K�Bm̂(t)B
T
m̂(t)E

T
p dt
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= �T(x)K�

∫ x



Bm̂(t)B
T
m̂(t)E

T
p dt

= �T(x)K�

∫ x



diag(Ep)Bm̂(t) dt

= �T(x)K�diag(Ep)

∫ x



Bm̂(t) dt

= �T(x)K�diag(Ep)F
Bm̂(x)

= BT
m̂(x)�

TK�diag(Ep)F
Bm̂(x)

= Q̃TBm̂(x), ()

where Q̃ is an m̂-vectorwith elements equal to the diagonal entries of the followingmatrix:

Q = �TK�diag(Eq)F
.

Substituting the above equations into equation (), we have

YT�Bm̂(x) = λQ̃TBm̂(x) +GT�Bm̂(x). ()

Using Bm̂(x) to multiply two sides of equation () and integration in the interval [, ],

according to orthogonality of the BPFs we can get

YT� = λQ̃T +GT�, ()

which is a nonlinear systemof algebraic equations. By solving this systemwe can obtain the

approximation of equation (), and we solve the nonlinear system by using the Newton

iterative method.

5 Numerical examples

In this section, six examples are given to demonstrate the applicability and accuracy of

our method. Examples - have smooth solutions, while Example  has a non-smooth

and singular solution. In all examples the package ofMatlab . has been used to solve the

test problems considered in this paper.

Using equation () the absolute error function is defined as

Rm̂(x) =
∣

∣YT�Bm̂(x) – λQ̃TBm̂(x) –GT�Bm̂(x)
∣

∣,

where m̂ = k–M; M is the degree of the Euler polynomials and usually takes small val-

ues in a computation. Since the truncated Euler wavelet series is an approximate solution

of equation (), we must have Rm̂(x) ≈ . In the following examples, we can find that

when M is fixed, the larger the value of k, the more accurate the approximation solution

of equation. So the optimum value of k is determined by the prescribed accuracy.

To demonstrate the effectiveness of this method, we will adopt the same error definition

as []. The approximate norm- of the absolute error is given by

∥

∥em̂(x)
∥

∥


=

∥

∥y(x) – ym̂(x)
∥

∥


≈

(



N

N
∑

i=

(

y(xi) – ym̂(xi)
)

)/

,

where y(x) is the exact solution and ym̂(x) is the approximation solution obtained.
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Table 1 The absolute errors of different k andM = 3 for Example 1

t Euler SCW Euler SCW Euler SCW

k = 4 k = 4 k = 5 k = 5 k = 6 k = 6

0.0 5.3744e-003 6.0169e-003 2.1912e-003 2.5058e-003 9.7161e-004 1.1272e-003

0.1 5.9284e-004 1.2504e-003 3.6354e-004 4.3350e-004 1.6976e-005 3.2831e-004

0.2 1.6221e-003 5.1499e-005 1.0167e-004 6.1143e-004 1.0476e-004 2.0079e-004

0.3 1.6909e-003 1.1123e-004 1.1436e-004 5.5204e-004 1.0746e-004 1.7628e-004

0.4 4.6755e-004 1.0434e-003 4.3188e-004 2.0180e-004 3.0374e-005 2.3828e-004

0.5 2.0212e-003 3.4768e-003 5.0356e-004 1.1110e-003 1.2551e-004 3.8232e-004

0.6 4.8121e-004 9.2652e-004 4.3422e-004 1.5066e-004 3.0730e-005 2.1590e-004

0.7 1.7295e-003 3.6739e-004 1.2103e-004 4.4277e-004 1.0861e-004 1.2863e-004

0.8 1.7247e-003 4.0781e-004 1.1954e-004 4.2369e-004 1.0818e-004 1.1993e-004

0.9 4.6700e-004 8.0375e-004 4.2982e-004 9.2562e-005 2.9460e-005 1.8947e-004

Table 2 Approximate norm-2 of absolute errors for some k of the Euler and SCW

Example Euler SCW

‖e8‖2 ‖e16‖2 ‖e32‖2 ‖e8‖2 ‖e16‖2 ‖e32‖2

Example 1 8.3942e-007 7.2293e-008 7.1159e-009 7.1538e-007 2.3580e-007 5.7642e-008

Example 2 9.4203e-007 5.9209e-008 3.7129e-009 1.6350e-005 1.1839e-006 8.6352e-008

Example  Let us consider the following fractional nonlinear integro-differential equa-

tion:

D


t y(x) =

∫ x



(x – t)
[

y(t)
]
dt + g(x),  ≤ x < ,

where g(x) = 
Ŵ(/)

( 

x/ –x/) – 


x + x


– x


, and the equation is subject to the initial

conditions y() = . The exact solution of this equation is y(x) = x – x. Table  shows the

absolute errors obtained by Euler wavelets and SCW [], respectively. Table  shows the

approximate norm- of absolute errors obtained by the Euler wavelet and SCWmethods.

FromTable , we find that the absolute errors become smaller and smallerwith k increas-

ing. Table  shows that the Euler wavelet method can reach a higher degree of accuracy

than the SCWmethod.

Example  Consider the nonlinear fractional-orderVolterra integro-differential equation

D


t y(x) =

∫ x



(x – t)
[

y(t)
]
dt + g(x),  ≤ x < ,

where g(x) = 
Ŵ(/)

x/ – x


, and subject to the initial conditions y() = y′() = . The

exact solution of this equation is y(x) = x.

Table  shows the approximate norm- of absolute errors obtained by the Euler wavelet

and SCW methods. The comparisons between approximate and exact solutions for var-

ious k and M =  are shown in Figure . With the value of k increasing, the numerical

results become more accurate and we infer that the approximate solutions converge to

the exact solution.

Example  Consider the nonlinear Volterra integro-differential equation

D


t y(x) –

∫ x



xt
[

y(t)
]
dt = g(x), ≤ x < ,
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Figure 2 The approximate solution of Example 2 for some k.

Table 3 Comparison of approximate norm-2 of absolute errors with reproducing kernel and

CAS

Example Euler Reproducing kernel CAS

k = 2,M = 3 k = 3,M = 3 k = 2,M = 1 k = 3,M = 1 k = 2,M = 1 k = 3,M = 1

Example 3 1.2666e-005 2.5664e-006 7.3137e-004 1.39304e-004 1.0019e-003 5.6933e-004

Example 4 3.9541e-005 2.3107e-006 5.4969e-004 5.75596e-006 3.5560e-003 9.0145e-004

where g(x) = 
Ŵ(/)

( 

x/ – x/) + 


x + 


x – 


x + 


x + 


x, and the equation is

subject to the initial conditions y() = y′() = . The exact solution of this equation is y(x) =

x – x. Table  shows the approximate solution obtained by our method (m̂ = (k–)M),

reproducing the kernel method (m̂ = k(M + )) [] and CAS wavelet methods (m̂ =

k(M + )) []. To make each method having the same number of wavelet bases, we

select M =  for the Euler wavelet. Under the condition of the same error, our method is

closer to the exact solution.

Example  Consider this equation:

D


t y(x) –

∫ x



(x + t)
[

y(t)
]
dt = g(x),  ≤ x < ,

where g(x) = 

Ŵ(  )

√
x – x


– x


– 


, and the supplementary condition y() = y′() = . The

exact solution is y(x) = x. Table  shows the approximate solution obtained by the Euler

wavelet method, reproducing the kernel method and CAS wavelet methods. FromTable 

we can see our method is closer to the exact solution.

Example  In the following we consider the fourth-order equation []

Dα
t y(x) –

∫ x



e–t
[

y(t)
]
dt = ,  ≤ x < ,  < α ≤ ,
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Table 4 Numerical results for Example 5 with comparison to CAS

x α = 3.25 α = 3.5 α = 3.75

CAS Euler CAS Euler CAS Euler

0.0 1.0000 1.0006 1.0000 1.0006 1.0000 1.0006

0.1 1.1053 1.1060 1.1052 1.1059 1.1052 1.1059

0.2 1.2219 1.2228 1.2216 1.2224 1.2216 1.2223

0.3 1.3523 1.3527 1.3510 1.3516 1.3510 1.3510

0.4 1.4968 1.4972 1.4941 1.4948 1.4941 1.4934

0.5 1.6635 1.6581 1.6565 1.8295 1.8334 1.8248

0.7 2.0444 2.0346 2.0293 2.0240 2.0293 2.0167

0.8 2.2776 2.2534 2.2537 2.2386 2.2537 2.2281

0.9 2.5265 2.4943 2.4949 2.4747 2.4949 2.4603

Figure 3 Numerical and exact solution of

Example 5 for m̂ = 8.

such that y() = y′() = y′′() = y()() = , and when α = , the exact solution is y(x) = ex.

The numerical results, for some α between  and , are presented in Table  with a com-

parison with []. Table  shows the Euler wavelet numerical solution to be in excellent

agreement with the solution of CAS method in [].

It is worth noticing that the method introduced above only can solve equation () for

x ∈ [, ]. That is because the Euler wavelet is defined on the interval [, ]. However, the

variable x of equation () is defined on the interval [, ], so we should turn �(x) into

�(x/) in the discrete procedure. The numerical result with α =  for x ∈ [, ] is shown

in Figure . The numerical solution is in perfect agreement with the exact solutions.

Let us consider examples with non-smooth and singular solutions.

Example  Consider the following equation:

Dα
t y(x) = –

∫ x



[y(t)]

(x – t)/
dt + g(x),

which has y(x) = x–/ as the exact solution, with this supplementary condition y() = ,

where g(x) = –Ŵ(–/)x–/

Ŵ(/)
+π . In this case, there is a singularity at point x = . The solution

around this point is not good (see Figure  with k = , M = ). The Euler wavelet method

can be combined with the definition of Riemann-Liouville fractional integral operator to

deal with the weakly singular integral. As observed, our method provides a reasonable

estimate even in this case with singular solution.
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Figure 4 The approximate solution of Example 6

for k = 4,M = 2.

In the examples above, we do not show the computational times of the different meth-

ods. In fact, the Euler wavelet method has the faster computing speed, compared with

the CAS wavelet method and the second Chebyshev wavelet method. In Example , for

instance, when k = , , , the computational times of the second Chebyshev wavelet are

. s, . s, and . s, while the computational times of the Euler wavelet are . s,

. s, and . s. The same conclusion can be drawn from the other examples.

6 Conclusion

In this paper, we construct the Euler wavelet and derive the wavelet operational matrix of

the fractional integration, and we use it to solve the fractional integro-differential equa-

tions. By solving the nonlinear system, approximate solutions are got. Graphical illustra-

tions and tables of the numerical results with the aid of Euler wavelets indicate that the

numerical results are well in agreement with exact solutions and superior to other results.

Also the proposedmethod can be efficiently applied to a large number of similar fractional

problems. Of course, the convergence of this algorithm has not been derived, which will

be future research work.
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