
 

 

 

 

 

Journal of Advanced Computer Science & Technology, 4 (1) (2015) 68-74 

www.sciencepubco.com/index.php/JACST 

©Science Publishing Corporation 
doi: 10.14419/jacst.v4i1.4094 

Research Paper 

 

 

 

 

Solving optimization problems using black hole algorithm 
 

Masoum Farahmandian 
1
*, Abdolreza Hatamlou 

2
 

 
1 Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran  

2 Department of Computer Engineering, Khoy Branch, Islamic Azad University, Khoy, Iran  

*Corresponding author E-mail: gmasafat@gmail.com 

 

 
Copyright © 2015 Masoum Farahmandian, Abdolreza Hatamlou. This is an open access article distributed under the Creative Commons Attribution License, 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Abstract 
 

Various meta-heuristic optimization approaches have been recently created and applied in different areas. Many of 

these approaches are inspired by swarm behaviors in the nature. This paper studies the solving optimization problems 

using Black Hole Algorithm (BHA) which is a population-based algorithm. Since the performance of this algorithm was 

not tested in mathematical functions, we have studied this issue using some standard functions. The results of the BHA 

are compared with the results of GA and PSO algorithms which indicate that the performance of BHA is better than the 

other two mentioned algorithms. 
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1. Introduction 

Optimization algorithms are powerful methods for solving complex problems [1]. Optimization approaches are divided 

into exact algorithms [2] and approximate algorithms [3-5]. Exact approaches are able to find the exact optimal answer; 

however, these approaches are not useful in NP-hard [2], [6-7] problems since their solving time for these NP-hard 

problems increases exponentially. Approximate algorithms are able to find good answers (near to optimal solutions) for 

NP-hard in a short time. They are divided into two groups of heuristic algorithms [8-10] and meta-heuristic 

algorithms[11]. Heuristic approaches create suitable and good solutions which normally are not the best solution. Meta-

heuristic approaches have been formed according to inspiration by nature, physics and human being. In recent years, 

many of these algorithms and their improved algorithms have been successfully applied to various problems of 

engineering optimization [12-16]. A common feature in meta-heuristic approaches is that they combine rules and 

randomness to imitate natural phenomena. These phenomena include the biological evolutionary process (e.g., the 

Genetic Algorithm (GA)[17-18] and the Differential Evolution (DE) [12-13]), animal behavior (e.g., Particle Swarm 

Optimization (PSO) [14] and Ant Colony Algorithm (ACA) [15-16]), and the physical annealing process (e.g., 

Simulated Annealing (SA) [1, 19]). These algorithms are one of the approximate optimization approaches that have 

mechanism of departing from local optimum.  

Many of the meta-heuristic algorithms have been successfully applied to various engineering optimization problems 

over the recent years [12-16]. In order to get suitable solutions, they have better performance than conventional 

calculations methods for some complicated and difficult real-world optimization problems. Two main problems of 

heuristic approaches are their existence in local optimum and their incapability to be used in various problems. While, 

Meta-heuristic approaches are presented to solve these problems[20]. Some of the algorithms which are used to 

categorize the meta-heuristic approaches are as follows [21-22]:  

 Population-based algorithms [23]. 

 nature-inspired and non-nature-inspired algorithms [24-25] (most of the meta-heuristic approaches are inspired by 

nature.). 

 with-memory and without-memory algorithms [26]. 

 exact and approximate algorithms [22], [27]. 

http://creativecommons.org/licenses/by/3.0/
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Solving optimization problems based on the BHA is proposed here. Then, the obtained results are compared with the 

two optimization GA and PSO algorithm. This paper is organized as follows: in section 2, the BHA and its 

characteristics are reviewed. In section 3, experimented and comparative studies are presented and experimental results 

are shown. Finally the section 4 is the conclusion for the performed experiments. 

2. Black hole algorithm (BHA) 

BHA [28] is a population-based and one of the newest approaches that has been recently created and used successfully 

for solving optimization problems. However, its performance and operation has not yet been tested on standard 

functions. This research studies the performance of BHA over the standard functions and then compares it with other 

optimization algorithms.  

The population of candidate solutions (stars) in this algorithm is generated randomly from the existed points in research 

space. After initialization, the fitness values of the population are evaluated and the best candidate –which has the best 

fitness values –is introduced as black hole and the other stars are selected as normal stars. Then, all the stars commence 

moving towards the black hole and the black hole absorbs the stars around it. The movement formal of stars towards 

black hole is as follows [28]: 

 

                                                                                                                                          (1) 

 

Where xi (t + 1) and xi (t) are the locations of the ith star at iterations t+1 and t. Rand is a random number between zero 

and one. xBH is the location of the BH in our search space. N is the number of candidate solutions (stars) [28]. 

After the movement of the star to the new position (towards the black hole), if its fitness value is better than the value of 

black hole, the star is selected as the black hole. Then this algorithm continue with the black hole in the new location 

and stars start moving towards this new black hole. 

Moreover, there is the probability of crossing the event horizon (star’s distance with black hole) during stars movement 

towards the black hole. Candidate solution (star) that crosses the event horizon of the black hole will be swallowed by 

the black hole.  Then a new star following the swallowed one is generated and distributed randomly in the search space 

[28-29]. This generation is to keep the number of stars (candidate solutions) constant. When all the stars moved once, 

next iteration takes place. 

The radius of the event horizon (R) is formulated as follows[28]: 

 

  
   

   
 
   

                                                                                                                                                                            (2) 

 

Where fBH is the fitness value of the black hole and N is the number of candidate solutions (stars) and fi is the fitness 

value of the ith star. when the star’s distance with black hole is less than a defined radius (R), this star is swallowed by 

the black hole [28-29]. 

According to the above explanation the main step in BHA is summarized as follows[28]. 

3. Experiments 

In order to study the performance of BHA on unconstrained optimization problems, we use nineteen standard test 

functions, which are benchmarks from[30]. The evaluated results are compared with the prominent algorithms (GA and 

PSO) reported in[30]. Related test functions are shown in tables 1, 2, 3. Tables 1, 2, 3 give the details of the test 

functions, including dimensions, their equations, optimal values and the domains. These functions encoded by 

MATLAB R7 with PC system, Pentium IV, CPU 3 GHZ and 1GB RAM is performed and tested.  

Each of these test functions have been solved by black hole for 30 times. The starting values of the variables for each 

problem are selected randomly for all runs from the solution space. The results found by black hole such as the best 

average function value, numbers of functions evaluation and solution time in seconds are recorded in table 4, 5, 6, 

whereas for the other algorithms only the function value and numbers of function evaluation are given, because the 

solution times for some algorithms are not given. As it is deduced from table 4, 5, 6, the black hole is successful while 

finding the optimum solution of the given functions. These results suggest that BHA is better than two other algorithms 

i.e. GA and PSO. 

In this section, a comparative study has been carried out to evaluate the proposed approach concerning quality and 

performance of the solution. On one hand, evolutionary techniques suffer from the quality of solution; therefore, BH 

approach is used to increase the solution quality by combining the features of two heuristic algorithms. On the other 

hand, unlike classical techniques it doesn’t search from a single point but search from a population of points. Therefore, 

it provides a globally optimal solution. In addition, this approach uses only the objective function information, not 

derivatives or other auxiliary knowledge. Therefore, it can deal with the non-continuous, non-smooth and non-

differentiable functions which are actually existed in practical optimization problems. Another peculiarity is that the 
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simulation results prove superiority of the BHA to those reported in the literature, where our proposed approach is 

completely better than the other approaches. So, the BHA is quite competitive when it is compared with the other 

existing approaches. Finally, the fact of using the BH approach to handle complex problems of realistic dimensions is 

approved due to procedure simplicity. 

 

 
Fig. 1: The Flowchart of BHA 

 

2.1. Benchmark functions 
 

The used functions in this article are shown in tables 1, 2, 3. In these tables S-D is the used limit for function and n is 

the number of that function.  The minimum value (fopt) for all functions in table 1 and 2 is zero except F8 which is a 

minimum value of -418.9829× n. The Optimum location (Xopt) also for all functions in table 1 and 2, are in [0]
 n
, except 

for F5 and F12 with Xout in [1]
 n

 and F8 in [420.96]
n
. A detailed description of the functions of Table 3 is given in 

Appendix A. 
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Table 1: Unimodal Test Functions. 

Test functions S-D 

         
  

     [-100,100]
n 

           
 
         

 
     [-10,10]

n 

           
 
      

     [-100,100]
n 

                       [-100,100]
n 

                   
               

     [-30,30]
n 

                   
     [-100,100]

n 

          
  

                 [-1.28,1.28]
n
 

 
Table 2: Multimodal Test Function. 

Test functions S-D 

                    
 
     [-500,500]

n 

          
                  

     [-5.12,5.12]
n 

                   
 

 
   

  
         

 

 
                 
     [-32,32]

n 

       
 

    
   

       
  

  
    

   
 
     [-600,600]

n 

                                                                        
 
   

 =1  (  ,5,100,4)  
[-50,50]

n
 

 
Table 3: Multimodal Test Functions with Fix Dimension. 

Test functions S-D 

        
 

   
  

 

           
  

   

  
    

  

  [-65.536,65.536]
2 

            
     

       

  
         

 
 

  
     [-5,5]

4
 

          
       

  
 

 
  
          

     
   [-5,5]

2 

           
   

   
  
  

 

 
            

 

  
           [-5,10]×[0,15] 

                                
                

                 
  

 8   x1+12x12+48x2   x1x2+27x22  
[-5,5]

2 

                            
  

     
     [0,1]

3 

                            
  

     
     [0,1]

6 

 

After the evaluation of algorithms by these functions the following results are achieved: 

 

2.1.1. Unimodal high-dimensional functions 

 

The current functions in table 1 (F1 to F7) are in the category of unimodal high-dimensional Function. Each of these 

functions was performed for 30 times and their Average best so far and Median best so far and Average mean fitness 

are registered in table 4. The values of this tables shows that the performance of BH approach in these functions is 

better than GA and PSO. 

 
Table 4: Minimization Result of Functions in Table 1 with N=30. 

  GA[1] PSO[1] BHA 

F1 

Average best so far 

Median best so far 

Average mean fitness 

23.13 

21.87 

23.45 

1.8×10
-3

 

1.8×10
-3

 

1.8×10
-2 

9.57×10
-9

 

2.94×10
-4

 

1.34×10
-2

 

F2 

Average best so far 

Median best so far 

Average mean fitness 

1.07 

1.13 

1.07 

2.0 

1.9×10
-3

 

2.0 

5.49×10
-3

 

8.81×10
-3

 

9.17×10
-3

 

F3 

Average best so far 

Median best so far 

Average mean fitness 

5.6×10
+3

 

5.6×10
+3

 

5.6×10
+3

 

4.1×10
+3

 

2.2×10
+3

 

2.9×10
+3

 

4.7×10
+1

 

1.1×10
+2

 

1.1×10
+2

 

F4 

Average best so far 

Median best so far 

Average mean fitness 

11.78 

11.94 

11.78 

8.1 

7.4 

23.6 

4.2×10
-2

 

9.42×10
-2 

1.1×10
-1

 

F5 Average best so far 1.1×10
+3

 3.6×10
+4

 17.4 
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Median best so far 

Average mean fitness 

1.1×10
+3

 

1.1×10
+3

 

1.7×10
+3

 

3.7×10
+4

 

57.16 

61.19 

F6 

Average best so far 

Median best so far 

Average mean fitness 

24.01 

24.55 

24.52 

1.0×10
-3

 

6.6×10
-3

 

0.02 

3.4×10
-4

 

6.3×10
-4

 

7.1×10
-4

 

F7 

Average best so far 

Median best so far 

Average mean fitness 

0.06 

0.06 

0.56 

0.04 

0.04 

1.04 

0.02 

0.07 

0.07 

 

 
Fig. 2: Comparison of Performance of GA, PSO and BHA for Minimization of F1(X) with N=30 and Iteration=1000. 

 

2.1.2. Multimodal high-dimensional functions 

 

These functions (F8 to F12) are in the category of Multimodal high-dimensional Functions. These functions are one of 

those difficult functions in the field of optimization. Each of these functions was performed for 30 times and their 

Average best so far and Median best so far and Average mean fitness were registered in table 5.The achieved values in 

table 5 show that the performance of BH approach in these functions especially in functions F10 and F11 is better than 

GA and PSO. 

 
Table 5: Minimization Result of Functions in Table 2 with N=30. 

BHA PSO[1] GA[1]   

-6.8×10
+3

 

-5.4×10
+3

 

-5.5×10
+3

 

-9.8×10
+3

 

-9.8×10
+3

 

-9.8×10
+3

 

-1.2×10
+4

 

-1.2×10
+4

 

-1.2×10
+4

 

Average best so far 

Median best so far 

Average mean fitness 

F8 

14.9 

28.3 

28.9 

55.1 

56.6 

72.8 

5.90 

5.71 

5.92 

Average best so far 

Median best so far 

Average mean fitness  

F9 

3.8×10
-3

 

6.6×10
-3

 

7.4×10
-3

 

9.0×10
-3

 

6.0×10
-3

 

0.02 

2.13 

2.16 

2.15 

Average best so far 

Median best so far 

Average mean fitness  

F10 

3.8×10
-4

 

9.3×10
-3

 

1.4×10
-2

 

0.01 

0.0081 

0.055 

1.16 

1.14 

1.16 

Average best so far 

Median best so far 

Average mean fitness  

F11 

4.7×10
-4

 

9.3×10
-4

 

1.0×10
-3

 

3.1×10
-18

 

2.2×10
-23

 

4.8×10
+5 

0.081 

0.032 

0.081 

Average best so far 

Median best so far 

Average mean fitness  

F12 

 

2.1.3. Multimodal low dimensional functions 

 

The functions F13 to F 19 are in the category of Multimodal low - dimensional Functions. Each of these functions was 

performed for 30 times and their Average best so far and Median best so far and Average mean fitness were registered 

in table 6.the achieved values in these functions suggest that BH approach in these functions are very near and better 

than the values of GA and PSO. 
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Table 6: Minimization Result of Functions in Table 2 with N=30.Maximum Number of Iterations=500. 

BHA PSO[1] GA[1]   

0.998 

0.998 

0.998 

0.998 

0.998 

0.998 

0.998 

0.998 

0.998 

Average best so far 

Median best so far 

Average mean fitness  

F13  n=2 

3.2×10
-4

 

4.7×10
-4

 

6.8×10
-4

 

2.8×10
-3

 

7.1×10
-4

 

215.60 

4.0×10
-3

 

1.7×10
-3

 

4.0×10
-3

 

Average best so far 

Median best so far 

Average mean fitness  

F14  n=4 

-1.0316 

-1.0316 

-1.0316 

-1.0316 

-1.0316 

-1.0316 

-1.0313 

-1.0315 

-1.0313 

Average best so far 

Median best so far 

Average mean fitness  

F15  n=2 

0.3978 

0.3978 

0.3978 

0.3979 

0.3979 

2.4112 

0.3996 

0.3980 

0.3996 

Average best so far 

Median best so far 

Average mean fitness  

F16  n=2 

1.0 

1.0 

1.0 

3.0 

3.0 

3.0 

5.70 

3.0 

5.70 

Average best so far 

Median best so far 

Average mean fitness  

F17  n=2 

-3.8794 

-3.8794 

-3.8794 

-3.8628 

-3.8628 

-3.8628 

-3.8627 

-3.8628 

-3.8627 

Average best so far 

Median best so far 

Average mean fitness  

F18  n=3 

-3.3225 

-3.3224 

-3.2817 

-3.2369 

-3.2031 

-3.2369 

-3.3099 

-3.3217 

-3.3098 

Average best so far 

Median best so far 

Average mean fitness  

F19  n=6 

4. Conclusion 

Since even a minor shift in the answer of a problem can change the cost and the duration of the project to a large extent, 

the solving optimization problems is one of the most significant parts of implementation of research projects. In order to 

get this goal, using meta-heuristic algorithms will be suitable because they are suitable both in time and cost.  In this 

regard, BHA is introduced as a new and successful algorithm since it’s based on population and has less complexity in 

comparison with other algorithms. Because the performance of BHA in the field standard functions had not been 

studied and tested before, we studied the effect of this algorithm on the mathematic issues and compared the results 

with GA and PSO algorithms. The results suggested that BHA has better performance than other algorithms. Therefore, 

this algorithm can be used for optimization of different and complex projects.  Due to this reason, this algorithm will be 

one of the known and widely used algorithms in near future.  

 

Appendix A 
Table A.1: aij in F13 

 J=1 
J 

=2 

J 

=3 

J 

=4 

J 

=5 

J 

=6 

J 

=7 

J 

=8 

J 

=9 

J 

=10 
……….. 

J 

=21 

J 

=22 

J 

=23 

J 

j=24 

J 

=25 

I=1 -32 -16 0 16 32 -32 -16 0 16 32 ……….. -32 -16 0 16 32 

I=2 -32 -32 -32 -32 -32 -16 -16 -16 -16 -16 ……….. 32 32 32 32 32 

 
Table A.2: ai and bi in F14. 

I 1 2 3 4 5 6 7 8 9 10 11 

   0.1957 0.1957 0.1735 0.1600 0.0844 0.0627 0.0456 0.0342 0.0342 0.0235 0.0246 

   0.25 0.5 1 2 4 6 8 10 12 14 16 

 
Table A.3: aij and ci in F18. 

12 ai1 ai2 ai3 ci 

1 3 10 30 1 

2 0.1 10 35 1.2 

3 3 10 30 3 

4 0.1 10 30 3.2 
 

Table A.4: Pij in F18. 

i Pi1  Pi2 Pi3 

1 0.3689 0.1170 0.2673 

2 0.4699 0.4387 0.7470 

3 0.1091 0.8732 0.5547 

4 0.03815 0.5743 0.8828 
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Table A.5: aij and ci in F19. 

I  ai1 ai2 ai3 ai4 ai5 ai6 ci 

1 10 3 17 3.5 1.7 8 1 

2 0.05 10 17 0.1 8 14 1.2 

3 3 3.5 17 10 17 8 3 

4 17 8 0.05 10 0.1 14 3.2 

 
Table A.6: Pij in F19. 

I  Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 

1 0.131 0.169 0.556 0.012 0.828 0.588 

2 0.232 0.413 0.830 0.373 0.100 0.999 

3 0.234 0.141 0.352 0.288 0.304 0.665 

4 0.404 0.882 0.873 0.574 0.109 0.038 
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