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S U M M A R Y
We propose a class of spherical wavelet bases for the analysis of geophysical models and for the
tomographic inversion of global seismic data. Its multiresolution character allows for modeling
with an effective spatial resolution that varies with position within the Earth. Our procedure is
numerically efficient and can be implemented with parallel computing. We discuss two possible
types of discrete wavelet transforms in the angular dimension of the cubed sphere. We describe
benefits and drawbacks of these constructions and apply them to analyze the information in two
published seismic wavespeed models of the mantle, using the statistics of wavelet coefficients
across scales. The localization and sparsity properties of wavelet bases allow finding a sparse
solution to inverse problems by iterative minimization of a combination of the ℓ2 norm of the
data residuals and the ℓ1 norm of the wavelet coefficients. By validation with realistic synthetic
experiments we illustrate the likely gains of our new approach in future inversions of finite-
frequency seismic data and show its readiness for global seismic tomography.
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1 I N T R O D U C T I O N

As long as tomographic Earth models remain the solutions to

mixed-determined (Menke 1989) inverse problems (Nolet 1987,

2008) there will be disagreement over the precise location, shape,

and amplitude of lateral and radial anomalies in seismic wavespeed

that exist within the Earth; there will be attempts to derive the

best-fitting mean structure (e.g. Becker & Boschi 2002), and the

needed efforts to validate them (e.g. Capdeville et al. 2005; Qin

et al. 2009; Bozdağ & Trampert 2010; Lekić & Romanowicz 2011).

At the same time, patterns, second-order structure and correlations

between and within models will continue to be sought with the goal

of characterizing seismic heterogeneities (e.g. Passier & Snieder

1995; Bergeron et al. 1999; Hernlund & Houser 2008) or relat-

ing them to geochemical (e.g. Gurnis 1986), tectonic (e.g. Yuen

et al. 2002; Becker et al. 2006), or geodynamical (e.g. Jordan et al.

1993; Piromallo et al. 2001; Houser & Williams 2009) processes. It

has also become clear that model characteristics such as the power

spectrum of tomographic anomalies (Chevrot et al. 1998a,b; Boschi

& Dziewoński 1999) may teach us as much about the modeler’s

choices of parameterization and regularization as about the model,

without imparting much information about the physical or statisti-

cal nature of our complex, physically and chemically differentiated

system Earth — yet the latter should be our target. As pioneered

by Gudmundsson et al. (1990) and Davies et al. (1992), in recent

work questions about the size and scale distribution of Earth struc-

ture have more fruitfully been addressed by direct inference from

the data themselves (e.g. Hedlin & Shearer 2000; Margerin & Nolet

2003; Becker et al. 2007; Garcia et al. 2009) without the detour of

first deriving a global three-dimensional model and analyzing that.

By no means are the analysis and representation of volumet-

ric properties the sole purview of seismology or geodynamics, and

thus it is not surprising that there is a large literature on the subject

in virtually every area of scientific inquiry (e.g. medical imaging,

astronomy, cosmology, computer graphics, image processing, ...).

While in prior seismological work the mathematical framework and

terminology appropriate to discuss “parsimonious” parameteriza-

tions to solve inverse problems may not have been as explicit, ap-

proaches using irregular parametrizations, either in a static (chosen

in advance) or dynamic sense (adapted to the data constraints dur-

ing the inversion) have touched upon many aspects of the problem

with which we will concern ourselves here (see, e.g. Sambridge &

Rawlinson 2005, and references therein), and so have several tech-

niques that pertain to inversions using model “simplicity” as ex-

plicit constraints (e.g. Pulliam et al. 1993; Vasco et al. 1994, 1999).

In this context much has come to be expected of the spe-

cial powers of wavelets, with their built-in discriminating sen-

sitivity to structure in the space and spatial frequency domains

(Daubechies 1992; Strang & Nguyen 1997; Mallat 2008). Notwith-

standing a continued interest and clear and present progress in the
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field (e.g. Foufoula-Georgiou & Kumar 1994; Klees & Haagmans

2000; Freeden & Michel 2004b; Oliver 2009), the use of wavelets

is still no matter of routine in the geosciences, beyond applications

in one and two Cartesian dimensions. This despite, or perhaps be-

cause, there being a wealth of available constructions relevant for

global geophysics, in other words: on the sphere (e.g. Schröder

& Sweldens 1995; Narcowich & Ward 1996; Antoine et al. 2002;

Holschneider et al. 2003; Freeden & Michel 2004a; Fernández &

Prestin 2006; Hemmat et al. 2005; Schmidt et al. 2006; Starck et al.

2006; McEwen et al. 2007; Wiaux et al. 2007; Lessig & Fiume

2008; Bauer & Gutting 2011), if not on the ball. Indeed, inasmuch

as they involve the analysis of cosmological data, satellite observa-

tions or computer-generated images, the above studies are mostly

concerned with surfaces, not volumes.

In seismology, Chiao & Kuo (2001) were, to our knowledge,

the first to develop a “biorthogonal-Haar” wavelet lifting scheme

(Schröder & Sweldens 1995) for a triangular surface tesselation of

the sphere suitable for multiscale global tomography. Later, these

same authors formed a (biorthogonal) spline basis for a Cartesian

cube useful in exploration geophysics (Chiao & Liang 2003) and

for regional studies (Hung et al. 2010). Finally, Chevrot & Zhao

(2007) constructed a three-dimensional (orthogonal) Haar basis on

an equidistant geographical grid which was also used for a regional

inversion. To this date, a truly three-dimensional wavelet basis on

the ball with practical utility in the geosciences has been lacking.

Whatever the role that wavelets will play in it, the future of

global seismic tomography will involve massive amounts of het-

erogeneous data spanning a range of resolutions, from travel times

reported by global networks to waveforms of portable deployments,

with strong regional concentrations of station coverage in areas

such as Japan, the United States, and Europe, supplemented with

sparse networks in less densely populated or oceanic regions. It is

also clear that finite-frequency kernels, which allow for the cor-

rect volumetric sensitivity-based weighting of the measurements

in distinct frequency bands, are here to stay, whichever the vari-

ous ways in which they are calculated (see Nolet 2008, and refer-

ences therein). Accounting for finite-frequency sensitivity requires

an effective overparameterization if one wishes to exploit the ex-

tra resolution offered by the spatial variations in their sensitivity,

something for which wavelet seem ideally suited also.

This paper documents the extensive prospective work that we

have done in preparation for realistic wavelet-based global seismic

inversions. Our goal remains to ensure that there exist performant

and efficiently calculable, flexible wavelet methods on the three-

dimensional ball, to fulfill the promise of multiresolution analysis

(Mallat 1989; Jawerth & Sweldens 1994) in global seismology. Not

just for the representation and analysis of seismic models after the

fact, but rather for their determination, as an integral part of a par-

simonious parameterization of the inverse problem — of the sen-

sitivity matrix, of the model space, or both. Although there is no

objective guarantee that Nature, or the interior of the Earth in par-

ticular, is parsimonious in character, sparsity is worth striving for.

By simplifying a tomographic image to contain a relatively small

number of recognizable objects we facilitate interpretation (Sam-

bridge et al. 2006). Moreover, such models can be more accurate

than their data (Gauch 2003), a point not to be overlooked in view

of the large relative errors of seismic delay times and amplitudes.

By flexibility we mean the ability to substitute a particular

wavelet design for another in any of the three coordinate directions;

by efficiency we intend to avoid the tedious case-by-case deriva-

tion of different bases and calculation methods. By performance

we target the ability to capture the unknown model by explaining

the data (in an ℓ2 sense) with a minimum of wavelet and scaling

coefficients, both where the data require the solution to be smooth

and where they necessitate the presence of sharp contrasts. It is of

course in this capacity also (e.g. Donoho & Johnstone 1994, 1995)

that wavelets will distinguish themselves from many other tradi-

tional methods of seismic inversion (except, perhaps, Bayesian par-

tition modeling and related methods, see Denison et al. 2002; Bodin

et al. 2009; Bodin & Sambridge 2009). As to sparsity, it is both

numerically and philosophically attractive (Constable et al. 1987)

and physically plausible or at least testable that the interior of the

Earth should be sparse when expressed in a wavelet basis. Fortu-

nately, for most large underdetermined systems of linear equations

the minimal ℓ1 norm solution is also the sparsest (Candès et al.

2006; Donoho 2006), for which (fast, iterative) algorithms exist

(Daubechies et al. 2004; Loris 2009). Elsewhere, Loris et al. (2007,

2010) and Gholami & Siahkoohi (2010) explored the suitability of

sparsity-seeking thresholded wavelet-based inversion approaches

in two-dimensional (2D) and three-dimensional (3D) Cartesian set-

tings relevant to seismic tomography. All of the above issues will

again be the guiding principles behind the new spherical wavelet

construction(s) that we present in this paper.

This paper is organized as follows. In Section 2 we de-

velop a first class of wavelet constructions on the sphere via a

well-known Cartesian-to-spherical mapping known as the “cubed

sphere” (Ronchi et al. 1996; Komatitsch & Tromp 2002). As this

surface tesselation has “seams” separating each of six subdivisions

or “chunks”, we acknowledge these boundaries in the construction

by using so-called “wavelets on the interval”. These revert to the

classical compactly supported (bi)orthogonal Cartesian construc-

tions of Daubechies (1988) and Cohen et al. (1992) in the interior

domains but receive special consideration on the edges as put forth

by Cohen et al. (1993). In Section 3 we study the sparsity of two

global seismic tomographic Earth models by thresholded recon-

structions of their wavelet transforms applied to the angular coordi-

nates of the cubed sphere, at constant depth intervals, and consider-

ing a variety of goodness-of-fit criteria. We furthermore character-

ize, in Section 4, the scale lengths of heterogeneity in these models

by reporting the absolute and relative contributions of their wavelet

and scaling coefficients in the expansion as a function of depth and

location in the Earth. We calculate the correlation of both models

as a function of scale and position in the Earth, and where this ap-

pears sensible, present estimates for the variable δ ln VS/δ lnVP

ratios that can be derived from it. Sections 3 and 4 are relatively

self-contained and discuss aspects of geophysical interest that are

not properly part of the mathematical treatment of the tomographic

inverse problem. Readers with an interest limited to the latter will

appreciate the motivation for our approach from these sections but

may wish to skip them for a first reading. In Section 5 we review

the main approach to obtain sparse wavelet-based solutions to the

inverse problem of seismic tomography, which were previously dis-

cussed in a Cartesian framework by Loris et al. (2007, 2010). As us-

ing the initial construction with such schemes led to undesirable ar-

tifacts at the edges between the chunks, we derive a second wavelet

construction in Section 6, which appears to be free of such artifacts,

as we show using realistic synthetic tests in Section 7. As we en-

visage it, the first wavelet construction remains the tool of choise

for the analysis of seismic Earth models, whereas the second con-

struction is an adaptation that should be used in the inversion for

such models from primary data. While in this paper we focus on

the angular part of the cubed sphere we generalize our construction

to including the case of the ball and provide an outlook for further

research in global seismic tomography in the concluding Section 8.



Wavelets, Sparsity, and Seismic Tomography 3

2 A F I R S T C O N S T R U C T I O N

Simple latitude-longitude grid coverings of the sphere are very in-

homogeneous and suffer from meridian convergence and singular-

ities at the poles (e.g. Swinbank & Purser 2006; González 2010;

Lauritzen et al. 2010). For this reason no wavelet transform is ever

expected to be naturally formulated in such traditional coordinates.

As Ronchi et al. (1996), we define the coordinate quartet (ξ, η, r, κ)
for each of the κ = 1 → 6 chunks. The angular coordinates

−π/4 ≤ ξ, η ≤ π/4 and the radial coordinate r are mapped to

the usual Cartesian triplet (x, y, z) using the transformation

(x, y, z) =



























r (tan η,−1,− tan ξ)/s if κ = 1,
r (−1,− tan ξ, tan η)/s if κ = 2,
r (tan η,− tan ξ, 1)/s if κ = 3,
r (− tan ξ, tan η,−1)/s if κ = 4,
r (1, tan η,− tan ξ)/s if κ = 5,
r (− tan ξ, 1, tan η)/s if κ = 6,

(1)

whereby s =
√

1 + tan2 ξ + tan2 η. The inverse mapping is ob-

tained, for t = max(|x|, |y|, |z|),

(ξ, η, κ) =



























[ atan(z/y), atan(−x/y), 1 ] if t = −y,
[ atan(y/x), atan(−z/x), 2 ] if t = −x,
[ atan(−y/z), atan(x/z), 3 ] if t = z,
[ atan(x/z), atan(−y/z), 4 ] if t = −z,
[ atan(−z/x), atan(y/x), 5 ] if t = x,
[ atan(−x/y), atan(z/y), 6 ] if t = y,

(2)

whereby r =
√

x2 + y2 + z2. This parametrization is non-smooth

across the edges separating the chunks. The above formulas corre-

spond to the drawing in Fig. 1, where only one of the chunk faces

is gridded to reveal the angular coordinate lines (ξ, η) at a resolu-

tion that divides this face into 24 × 24 distinct surface elements.

Throughout this paper we will quote N as the angular resolution

level of our cubed sphere, which implies that it has 6 × 22N such

elements, with typical tomography grids having N = 7.

In principle there are many possibilities to choose the surficial

coordinates (ξ, η) in each chunk. We picked ours so as to minimize

the splitting of continents over more than one chunk. Our choice

differs from the canonical version of Ronchi et al. (1996) by a rigid

rotation of the coordinate system, as can be seen by comparing our

Fig. 2 with their Figs 15–16. The Euler angles used in our construc-

tion are α = 0.0339, β = 1.1705, and γ = 1.1909, respectively.

It is important to note that within a chunk ξ and η are not spherical

coordinates; a shift in ξ (with η fixed) or in η (with ξ fixed) does

not correspond to a rotation on the sphere. This is apparent from

the pinching of coordinate lines in Fig. 1.

Armed with the coordinate conversions of eqs (1) and (2) we

are able to regard the problem of designing a wavelet transform for

the sphere as simply requiring the selection of a certain Cartesian

wavelet transform which is mapped to and from the sphere. Such

an approach is philosophically related to those involving stereo-

graphic projection (Antoine & Vandergheynst 1999; Antoine et al.

2002; Wiaux et al. 2005), though the fundamental domain of our

transform remains a single chunk. Within each such chunk, the sur-

face Jacobian of our mapping is given by the smoothly varying

J (ξ, η) = (1 + tan2ξ)(1 + tan2η)/s3,
√

2/2 ≤ J ≤ 1. (3)

For each of the chunks then the area is given by

∫ π/4

−π/4

∫ π/4

−π/4

J (ξ, η) dξ dη =
4π

6
. (4)

Figure 1. Aerial view showing our first adaptation of the cubed sphere of

Ronchi et al. (1996). Of the front-facing four of the in total six “chunks”,

one is gridded to reveal its 22N distinct surface elements (N = 4).

Without this being a uniform mapping, one of the main advantages

of the chosen coordinate system is thus that the meshes defined on

each region span the surface of the sphere with an almost constant

spatial resolution, as noted by Ronchi et al. (1996).

Ignoring any and all such distortions we are able to unlock

the power of popular Cartesian wavelet constructions, of which

we choose the two best known: the orthogonal construction of

Daubechies (1988) and the biorthogonal construction of Cohen

et al. (1992). Both of these lead to compactly supported wavelets

and scaling functions, though only the biorthogonal ones can be

(anti)symmetric (except for Haar). Examples of scaling functions

and wavelets at scales of decreasing dominant wavelength are

shown in Fig. 3 for the four-tap Daubechies basis (D4) and in Fig. 4

for the Cohen-Daubechies-Feauveau family with four and two van-

ishing moments (CDF 4–2) in analysis and synthesis, respectively.

To get a sense of the physical size of wavelets and scaling func-

tions at a certain scale, which depends on the original cubed-sphere

resolution parameter N , we calculate reference circles of various

angular radii ∆, and quote their values in degrees above each panel.

The literature on Cartesian wavelet analysis is vast, and it is

not our intention to repeat any of it here. Most useful for the prac-

ticing geophysicist will perhaps be the treatises by Mallat (2008)

and Strang & Nguyen (1997); texts focused on algorithms are Press

et al. (1992) and, in particular, Jensen & la Cour-Harbo (2001). All

of the computer code required to reproduce the figures and conduct

the analyses presented in this paper is molded after these general

references and will be available from the authors.

Two aspects of wavelet analysis bear specific mentioning here.

The first intricacy is how we treat the seams between the chunks.

In agreement with Cohen et al. (1993) the argument is easily made

that neither ignoring the seams nor periodization or reflection are

viable options, as each of these leads to artifacts in the represen-

tation. We thus follow their suggestion to the letter and construct

a multiresolution basis requiring 22N wavelet and scaling coeffi-

cients for each of the chunk faces having 22N surface elements.

For this we switch to special boundary filters at each of the edges,

and apply preconditioners to the data prior to transformation in or-

der to guarantee the usual polynomial cancellation throughout the
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Figure 2. Geometry, nomenclature, and numbering of the six faces of our first adaptation of the cubed sphere of Ronchi et al. (1996) in a two-dimensional

“unfolded” view. Rendered is the Earth’s topography from the model ETOPO5, courtesy of NOAA’s National Geophysical Data Center. The projection was

obtained by spherical-harmonic expansion of the coefficients from this model (Georg Wenzel, pers. comm.) truncated at degree and order L = 2N+1,

evaluated at the 6× 22N cubed-sphere grid points ξ, η, for N = 8. Minimum, median, and maximum values in this approximation are shown in the legend.
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Figure 3. Wavelet and scaling functions of the D4 construction in the angular coordinates of the N = 7 cubed sphere, at various scales. Continental outlines

and circles of varying angular radii ∆ are plotted to make reference to physical spatial scales. The positions of the coefficients belonging to the functions in the

lettered panels are shown in the diagram in the top left. The scaling function (a), which is averaging in nature, captures what remains to be explained after the

breakdown into wavelets down to scale 4 is complete. Each of the wavelets, which pick up detailed, derivative, structure, is sensitive in a particular direction:

to ξ in (b), to η in (c), or diagonally in (d). In the interior domain, away from the edges where boundary functions (not shown) live, the patterns repeat exactly,

with the footprint at each successive scale half that of the preceding scale. The diagonally sensitive wavelet at scale 2 is not shown. Every function shown is

orthonormal in (ξ, η) and their inner products with respect to every other one vanish.
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Figure 4. Wavelet and scaling functions arising from the CDF 4–2 construction in the angular coordinates of the cubed sphere, with their scale levels indicated.

The layout is identical to that of Fig. 3. As opposed to the D4 wavelets, the CDF 4–2 construction is biorthogonal, which renders every shown synthesis function

orthogonal in (ξ, η) to its dual, which is used for analysis; none of the dual functions are shown. Unlike the D4 functions the CDF 4–2 have mirror symmetry.

closed rectangular interval. The acknowledgment of the edges in

this way is the hallmark of the wavelet construction in this section

here (which we call the First Construction). This is as easily done

for the orthonormal as for the biorthogonal constructions, though

we have limited the implementation and illustration of this proce-

dure, in Fig. 5, to the compactly supported two-tap (Haar), four-tap,

and six-tap orthonormal families (D2, D4 and D6).

Before we discuss Fig. 5 in any more detail we should intro-

duce the second important feature that renders wavelet transforms

in general useful for the analysis and representation of (geophysi-

cal) data. This second topic is the idea of thresholding, or shrink-

age. In many applications the wavelet transformation amounts to

a projection under which many of the expansion coefficients are

very small: so small that we might as well throw them away; the

resulting reconstruction will still be close to the original (Donoho

& Johnstone 1994). Intuitively, the “best” wavelet basis that we can

select to represent our data is the one that yields the most near-zero

coefficients. When these are replaced by zeroes prior to reconstruc-

tion, as under the definition of hard thresholding (Mallat 2008), we

obtain highly compressed versions of the data at hand, with only

negligible degradation.

Fig. 5 explores the effects of thresholding, coefficient statis-

tics, and reconstruction errors for a model of terrestrial topography,

a general proxy for the length scales of heterogeneities to be found

not only at the surface, but also in the interior of the Earth. We fo-

cus on the sixth, or “African” chunk of our cubed sphere, and use

the D2, D4 and D6 wavelet bases (on the interval, with precondi-

tioning). The top row uses the (common) conventions introduced in

Fig. 3 in plotting the wavelet and scaling coefficients in each of the

basis after (hard) thresholding them such that only the coefficients

larger than their value at the 85th percentile level survive. The co-

efficients that have now effectively been zeroed out are left white

in these top three panels. The middle series of panels of Fig. 5 plots

the spatial reconstruction after thresholding at this level; the root

mean squared (rms) error of these reconstructions are quoted as a

percentage of the original root mean squared signal strength. The

thresholded wavelet transforms allow us to discard, as in these ex-

amples, 85% of the numbers required to make a map of African

topography in the cubed-sphere pixel basis: the percentage error

committed is only 5.8%, 4.9% and 6.7% according to this energy

criterion in the D2, D4 and D6 bases, respectively. From the map

views it is clear that despite the relatively small error, the D2 ba-

sis leads to unsightly block artifacts in the reconstruction, which

are largely avoided in the smoother and more oscillatory D4 and

D6 bases. A view of the coefficient statistics is presented in the

lowermost three panels of Fig. 5. The coefficients are roughly log-

normally distributed, which helps explain the success of the thresh-

olded reconstruction approach. While the example here was strictly

designed to illustrate our algorithms and procedures, we conclude

that the D4 basis is a good candidate for geophysical data repre-

sentation, provided the edges between cubed-sphere chunks have

properly been accounted for.

3 E A R T H M O D E L S P A R S I T Y

In tomographic studies, either as an integral part of the inversion

or after a solution has been found, the target model is parameter-

ized by local or global basis functions (Nolet 2008). Blocks, cells,

nodes, or voxels (e.g., Aki et al. 1977; Zhang & Tanimoto 1993;

Spakman & Bijwaard 2001; Simons et al. 2002; Debayle & Sam-

bridge 2004; Nolet & Montelli 2005) are all strictly local functions.

Cubic B-splines (e.g., Wang & Dahlen 1995; Wang et al. 1998;

Boschi et al. 2004) or wavelets (e.g., Chiao & Kuo 2001; Chevrot

& Zhao 2007; Loris et al. 2007) are more generally localized func-

tions. Spherical harmonics (e.g., Dziewoński 1984; Woodhouse &

Dziewoński 1984; Ekström et al. 1997; Trampert & Woodhouse

1996, 2001) are ideally localized spectrally but have global support

(Freeden & Michel 1999). An intermediate approach that combines

spatial and spectral localization was developed using spherical har-

monic splines by Amirbekyan & Michel (2008) and Amirbekyan

et al. (2008), but this produces an inverse problem that scales with

the square of the number of data collected, rendering it impractical

for the large-scale tomographic systems of the future.

In preparing for the study of the suitability for solution of such

massive inverse problems of the wavelet transforms that we intro-

duced in the previous section, we take a detour in this section by

addressing the question: is the Earth sparse in a wavelet basis? Of



6 Simons, Loris, Nolet, Daubechies & others

D2 coefficients (m)
−16140 0 3798

 

 

D2 reconstruction (m)
−5079 −1347 1235

rmse 5.8% | 85%ile | 85% zero

 

 

−1.4 0.9 2.1 3.2 4.8

−4

−2

0

2

4

log
10

(D2 coefficients)

D4 coefficients (m)
−11949 477 3748

 

 

D4 reconstruction (m)
−5098 −1319 1243

rmse 4.9% | 85%ile | 85% zero

 

 

D6 coefficients (m)
−6704 −498 4201

 

 

−1 0.8 2 3.2 4.8

−4

−2

0

2

4

log
10

(D4 coefficients)

D6 reconstruction (m)
−5115 −1328 1240

rmse 6.7% | 85%ile | 85% zero

 

 

−1.2 0.8 2 3.2 4.9

−4

−2

0

2

4

log
10

(D6 coefficients)

Figure 5. Wavelet and scaling coefficients (top), space-domain reconstructions after thresholding (middle), and “signed” histograms (bottom) of the wavelet and

scaling coefficients of the “African” (sixth) face of the cubed-sphere version of the Earth’s topography first shown in Fig. 2. We have used the preconditioned

interval wavelet transforms on the faces of the cubed sphere, as described in the text. All coefficients were hard-thresholded at the 85th percentile level,

retaining only the 15% largest coefficients by absolute value. In the top row, the locations of zeroed coefficients are rendered white; those are also captured by

the white bars in the histograms. The root mean squared (rms) error of the reconstruction after thresholding is indicated as a percentage of the signal rms. Tick

marks on the color bars identify the 5th, 50th and 95th percentile of the coefficients or the spatial reconstructions after thresholding, respectively. Interior

ticks on the histograms roughly coincide with these same percentiles as applied to either the positive and negative coefficients when expressed on a logarithmic

scale. Histograms for the positive coefficients point up and have ordinates in positive percentages, histograms for the negative coefficients point down and have

ordinates in negative percentages; these percentages are with respect to the total number of positive and negative coefficients. The blue and red shaded areas

of the histograms reflect the coefficients retained at the global 85th thresholding level.

course we will never be able to answer this question with any de-

gree of certainty, but we can investigate, at the very least, whether

Earth models are sparse in such bases. Because they are, as we

shall see, we will gain from parameterizing the inversion for fu-

ture Earth models using the spherical wavelets developed in this

paper. The expected gains are with respect to numerical efficiency

but also in terms of regularization. Since wavelets are not global

functions (ours, as can be seen from Figs. 3 and 4, are compactly

supported, i.e. vanishing outside their scale-dependent footprint),

and yet, (bi)orthogonal, the function basis will not dictate the model

structure in areas of poor data coverage as is the case with spherical

harmonics (Trampert & Snieder 1996; Boschi & Dziewoński 1999;

Amirbekyan et al. 2008). Moreover, though this depends on pre-

cisely what wavelet construction is being used, they are capable of

representing both smoothly varying functions as well as preserving

sharp edges, and their natural multi-resolution nesting will allow

for the model resolution to vary spatially, as required by the data.

There is, however, another reason to find out how seismic

Earth models behave under wavelet transformation: because it en-

ables us to study the relative importance of model heterogeneity at
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Figure 6. Sparsity and reconstruction stability of two global seismic wavespeed models under incremental hard thresholding of their wavelet and scaling

coefficients using the preconditioned edge-cognizant D4 wavelet basis (Daubechies 1988; Cohen et al. 1993) in the angular coordinates of the cubed sphere, as

developed in this paper. (a–e) Results for the P-wave seismic model of Montelli et al. (2006) and (f–j) for the S-wave seismic model of Ritsema et al. (2010),

at the same depth of 406 km below the surface of the Earth, for cubed spheres with 6 × 22N elements (N = 7), and to a 2J dyadic subdivision (J = 3).

As a function of the percentage of the coefficients that are being thresholded, and relatively to the original unthresholded values, the bottom panels quote the

spatial ℓ2 norms of the reconstruction error (in black), the total variation norms of the reconstructed images in the space domain (in red), and the ℓ1 norms of

the coefficients that remain (in blue). The values obtained for the cases shown in map view are shown as filled circles on these graphs, and the corresponding

metrics in the D2, D4 and D6 bases are tabulated in Table 1. The reconstructions remain faithful to the originals even at elevated levels of thresholding.
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Montelli et al. (2006) Ritsema et al. (2010)

depth thresholding relative ℓ2 error norm (%) relative ℓ2 error norm (%)

(km) percentile D2 D4 D6 D2 D4 D6

203 50 1.816 0.808 3.025 1.014 0.236 0.229

85 9.212 4.653 6.324 5.028 1.360 0.722

95 18.721 11.214 11.456 10.073 4.351 3.172

406 50 2.294 1.107 3.983 1.267 0.311 0.297

85 10.559 5.757 7.701 6.182 1.786 0.968

95 20.689 13.231 13.481 12.393 5.717 4.125

609 50 2.661 1.244 3.499 1.562 0.397 0.393

85 11.471 6.419 7.775 7.428 2.211 1.230

95 21.622 14.145 14.384 14.589 7.121 5.162

1015 50 3.099 1.311 3.884 2.083 0.533 0.531

85 12.727 6.896 8.440 9.517 2.775 1.592

95 23.296 15.107 15.139 18.621 9.009 6.462

2009 50 1.995 0.461 1.799 1.582 0.379 0.372

85 8.890 3.662 5.174 7.363 2.021 1.145

95 16.946 9.208 9.104 14.527 6.572 4.695

Table 1. A companion to Fig. 6, this table lists the ℓ2 error norms, relative to the original, of the reconstructions of the P-wave speed model of Montelli et al.

(2006) and the S-wave model of Ritsema et al. (2010) under hard wavelet thresholding in the angular coordinates. See Fig. 6 and text for more details.

different scale lengths, which is important to help constrain geo-

chemical and geodynamical models and interpretations of Earth

structure. The Earth is heterogeneous at all scales but not likely

everywhere to the same degree; thermally induced deviations from

the radial average one-dimensional Earth structure are expected to

be smoother and with longer wavelengths than those due to compo-

sitional variations; the presence of distinct scatterers further com-

plicates this picture (Shearer & Earle 2004). In short, we are inter-

ested in obtaining a power spectral density of sorts (Chevrot et al.

1998a,b; Boschi & Dziewoński 1999), as applied to seismic struc-

ture and how it may vary spatially within the Earth. As we are not

in the position to return to direct measurements of the energy distri-

bution of heterogeneity (Hedlin & Shearer 2000; Margerin & Nolet

2003; Becker et al. 2007; Garcia et al. 2009) we will instead study

the sizes and scales within reported tomographic Earth models.

From the plethora of seismic Earth models that are available to

study, we select two mantle models: one by Montelli et al. (2006)

of compressional (P) wavespeed heterogeneity and another by Rit-

sema et al. (2010) of shear (S) wavespeed perturbations. Neither

model has much at all in common with the other in terms of its

construction, and from the point of view of parameterization, Mon-

telli’s model has a tetrahedral grid underlying it, whereas Ritsema’s

expands wavespeed anomalies in a spherical harmonic basis com-

plete to degree and order 40. At a depth of about 400 km, Figs 6a

and 6f show P-wave (Montelli et al. 2006) and S-wave (Ritsema

et al. 2010) anomalies from the average at that depth. Montelli’s

model was interpolated (from the tetrahedral grid on which it was

built) onto the 6 × 2N (N = 7) points of our cubed sphere,

whereas Ritsema’s model was evaluated (from the listed spher-

ical harmonic and radial spline expansion coefficients) at these

same points. Subsequently, the wavelet transform in the D4 basis

(with special boundary filters and after preconditioning, and up un-

til scale J = 3) was thresholded and the results re-expanded to

the spatial grid, identically as we did for the topography in Fig. 5.

The results for specific values of the thresholding (quoted as the

percentile of the original wavelet coefficients) are shown in Figs 6a

and 6g for the 50th, Figs 6c and 6h for the 85th, Figs 6d and 6i

for the 95th percentile, respectively. At each level of threshold-

ing the number of nonzero wavelet/scaling expansion coefficients

is quoted: at 0% thresholding this number is identical to the number

of pixels in the surficial cubed sphere being plotted.

As we have written before, the wavelet transformation does

not change the number of pieces of information with which it is pre-

sented. Rather, it dramatically redistributes information in a man-

ner that allows us to simply omit those coefficients with low values,

with limited degradation to the field being represented. This recon-

struction “error” can be visually assessed from the pictures; it is

also quoted next to each panel as the percentage of the root mean

squared error between the original and the reconstruction, normal-

ized by the root mean squared value of the original in the origi-

nal pixel representation, in percent. Specifically, we calculate and

quote the ratio of ℓ2 norms in the pixel-basis model vector m,

100 × ‖m − S {T [A(m)]}‖
2

/

‖m‖
2
, (5)

which, in the lower-right annotations is called the “% error norm”.

We have written A for any of the wavelet (analysis) transforms that

are used and S (synthesis) for their inverses, and T for the “hard”

thresholding (Mallat 2008) of the wavelet and scaling coefficients.

In Figs 6e and 6j, this same misfit quantity (5) is represented

as a black line relevant to the left ordinate labeled “ℓ2 error norm”,

which shows its behavior at 1% intervals of thresholding; the filled

black circles correspond to the special cases shown in the map view.

Only after about 80% of the coefficients have been thresholded

does the error rise above single-digit percentage levels, but after

that, the degradation is swift and inexorable. The blue curves in

Figs 6e and 6j show another measure of misfit relevant in this con-

text, namely the ratio of the ℓ1 norms of the thresholded wavelet

coefficients compared to the original ones, in percent, or

100 × ‖T [A(m)]‖
1

/

‖A(m)‖
1
. (6)

As we can see from the figure the ℓ2 ratios (5) in the black curves

(and the left ordinate) evolve roughly symmetrically to the ℓ1 ra-

tios (6) in the blue curves (and the right ordinate), though evidently

their range is different.

Finally, a third measure that is being plotted as the red curve

is the “total variation” norm ratio, in percent, namely



Wavelets, Sparsity, and Seismic Tomography 9

0 10 20 30 40

0

410

660

1000

2000

CMB  

 

D4 wavelet | scaling coefficients

d
e
p
th

 (
k
m

)

a

wavs 1

wavs 2

wavs 3

wavs 4

scals 4

0 25 50 75 100
 

 

contribution to ℓ2 model norm

b

0 20 40 60 80

0

410

660

1000

2000

CMB  

 

D4 wavelet | scaling coefficients

d
e
p
th

 (
k
m

)

c

wavs 1

wavs 2

wavs 3

wavs 4

scals 4

0 25 50 75 100
 

 

contribution to ℓ2 model norm

d

Figure 7. Scale lengths of seismic heterogeneity as a function of depth in the Earth, to the core-mantle boundary (CMB), obtained from the complete angular

expansion in the D4 wavelet basis of (a–b) the P-wave speed model of Montelli et al. (2006) and (c–d) the S-wave speed model of Ritsema et al. (2010). See

Fig. 3 for the wavelet and scaling functions and Fig. 6 for the seismic models: all calculations are with reference to cubed spheres with 6 × 22N elements

(N = 7), and to a 2J dyadic subdivision (J = 4). Panels a and c show the maximum absolute values of the wavelet or scaling coefficients (wavs and scals

in the legend, respectively) at the scales quoted, differentiated by color. The scaling coefficients at the fourth scale have the largest values: at all depths the

maximum at this scale and the overall maximum (not shown) coincide. Panels b and d show the proportion (in %) of the contribution to the overall ℓ2 norm of

the seismic models at every depth by the ensemble of the coefficients at each of the scales. Ritsema’s model has much more structure in the top 410 km of the

Earth (not shown because of the axis truncation is a peak with a value of 137.2 centered at 135 km) compared to the bottom 1000 km, as opposed to Montelli’s

model which has a more uniform distribution of heterogeneity. Both models are characterized by minima of seismic structure at mid-mantle depths.

100 × ‖∇ S {T [A(m)]}‖
1

/

‖∇m‖
1
, (7)

whereby ‖∇m‖
1

is the sum over all voxels of the length of the

local gradient of m. By this measure, which is popular in im-

age restoration applications (Rudin et al. 1992; Dobson & Santosa

1996; Chambolle & Lions 1997), the quality of the reconstruction

stays very high even at very elevated levels of thresholding; we note

that its behavior is not monotonic and may exceed 100%.

As with terrestrial topography in Fig. 5 we conducted all of

the experiments on the seismic models that are presented in Fig. 6

in the D2, D4 and D6 wavelet bases. A summary of the ℓ2 error

norm ratios as a function of thresholding levels for each of those

bases is presented in Table 1. On the strength of its behavior under

the criteria (5)–(7) and upon visual inspection of the results, we

conclude that the D4 basis remains a very appropriate choice for

the efficient representation of seismic models. To this choice we

adhere in the geophysically motivated study of mantle structure in

those same models which follows below.

4 T O M O G R A P H I C M O D E L S T R U C T U R E

There is much geophysical interest in tying seismic observations

of mantle structure to models incorporating geodynamic modeling

and mineral physics observations (e.g. Jordan et al. 1993; Kárason

& van der Hilst 2000; Becker & Boschi 2002; Bull et al. 2009).

Our study is an attempt to provide a flexible, quantitative, mul-

tiresolution framework for such analyses that may add to the more

traditional power-spectral (e.g. Becker & Boschi 2002; Houser &

Williams 2009; Schuberth et al. 2009) and statistical analyses (e.g.

Hernlund & Houser 2008). In obliterating the phase of the anoma-

lies, the former line of inquiry largely loses the relative spatial loca-

tion of seismic structure, while the latter type of study is no longer

sensitive to its scale and wavelength dependence. While in this pa-

per we do not explicitly study the radial correlation of mantle struc-

ture (Puster et al. 1995; van der Hilst & Kárason 1999), the analysis

below readily lends itself to adaptation in the third dimension: our

study is thus as much an initial exploration into the richness of the

wavelet transform as a way of characterizing terrestrial heterogene-

ity as an encouragement to further study.

The first breakdown is as a function of depth and by scale

of the D4 decomposition, as shown in Fig. 7. To aid in the inter-

pretation we remind the reader of the dominant wavelengths that

are represented at a specific scale by referring to Fig. 3, where of

course it should be noted that the area of the panels decreases with

the square of the depth in the Earth.

The main observations relevant to both the Montelli et al.

(2006) and the Ritsema et al. (2010) models are that seis-

mic wavespeed heterogeneity has a dominantly “red spectrum”

(Chevrot et al. 1998a,b; Boschi & Dziewoński 1999). Figs. 7a

and 7c show the maximum absolute values of the wavelet and scal-

ing coefficients at each of the four scales in the D4 decomposition,

as a function of depth. The scaling functions at scale 4 (denoted

“scals 4” in the legend; these are depicted in Fig. 3a) require the

largest expansion coefficients; the maxima of the coefficients cor-

responding to the wavelets at scale 4 (“wavs 4”, see Figs 3b–d) are

only about half as large; those at scale 3 (“wavs 3”, see Figs 3e–g)
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Figure 8. Scale lengths of seismic heterogeneity as a function of depth in the Montelli et al. (2006) P-wave and the Ritsema et al. (2010) S-wave models.

The calculations are identical to those reported in Fig. 7 but they are now broken per cubed-sphere chunk to reveal geographical variations in seismic mantle

structure. See Fig. 2 for the numbering scheme used in the legend identifying the colored lines: roughly speaking, 1 corresponds to the Pacific, 2 to Antarctica, 3

to Asia, 4 to South America, 5 to North America, and 6 to Africa. The relative lack of fine structure at scales 1 and 2 and the less geographically differentiated

character at scales 3 and 4 of the Ritsema model clearly distinguishes it statistically from the Montelli model. Other features are more persistent between

models, such as the predominantly large-scale structure near the core-mantle boundary underneath Africa and the Pacific, and the predominantly smaller-scale

features in the shallow mantle and crust underneath Asia and North America.

peak at about half that; and so on. While noting that the Montelli

model has peak amplitudes that are about half as large as the ones in

the Ritsema model, in both models the overall largest values are in

the lithosphere, which encompass the crust and shallowmost man-

tle down to about 250 km. The upper mantle (down to 660 km)

and the transition zone (410–660 km) in particular are charac-

terized by strong maxima that fluctuate with depth. Both seismic

models have a somewhat different take on this measure of man-

tle structure: the maxima in the Ritsema model (Fig. 7c) are more

oscillatory with depth and have a strong peak around the 660 km

mantle discontinuity which is broader than the corresponding one

in the Montelli model (Fig. 7a). Each of the curves in Figs. 7a

and 7c decays sharply with increasing depth in the lower mantle

below 660 km depth to reach their smallest maxima in the mid-

mantle before increasing again in the bottom 1000 km, near the

core-mantle boundary (CMB). This identification of dominantly

long-wavelength structure near the core-mantle boundary (see also

Wysession 1996; van der Hilst & Kárason 1999) is relatively more

pronounced in the Montelli model than in Ritsema’s. In Mon-

telli’s P wave model (Fig. 7a) both scales 3 and 4 have significant

“bumps” near the CMB, while the corresponding increase in maxi-

mum structure in Ritsema’s S wave model (Fig. 7c) is more gradual

and confined mostly to the longest-wavelength scaling functions at

scale 4 (see also Wysession et al. 1999).

The maximum values of the expansion coefficients in the

wavelet basis provide but one part of interpretation of mantle struc-

ture, thus in Figs. 7b and 7d we plot the percentage-wise relative

contribution of the wavelet and scaling coefficients at each scale

to the overall ℓ2 norm of the respective seismic models. These

curves again reveal the scale and depth dependence of mantle het-

erogeneity, but now in terms of how much variance is explained by

each scale at every depth individually: each of the curves sums to

very nearly 100% at every depth. Their failure to sum to exactly

100% arises from the preconditioning of the wavelet transforms

at the edges, which renders even the D4 transforms slightly non-

orthonormal overall; however, these small (< 1%) deviations are

not sufficiently important to influence any of the interpretations. In

this analysis we note that once again the relative contributions to

model structure are more variable with depth in the Ritsema model

(Fig. 7d) than in the Montelli model (Fig. 7b), which is particu-

larly smooth in this regard. In both, however, the importance of the

structure at scale 3 grows as a function of depth to reach a maxi-

mum about one third of the way down. This maximum is particu-

larly well pronounced in Ritsema’s model where it is well localized

at the top of the lower mantle, between 660 km and 1000 km depth.
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Figure 9. Joint properties of seismic mantle structure in the Montelli et al. (2006) P-wave and Ritsema et al. (2010) S-wave speed models, at 474 km depth in

the Earth. Every row corresponds to a different scale in the D4 wavelet decomposition of the models. Each panel shows the logarithmic density of observations.

Black shading corresponds to the maximum density in each panel, all patches that account for less than 1% of the observations are rendered white. Using total

least squares a regression line was fit to all sets with correlation coefficients exceeding 0.35. The slope of the line, a measure of the δ lnVS/δ lnVP ratio

appears in the top right corners. Correlation coefficients are quoted in the bottom left corners when they are deemed significant at the 95% level.

The growth of scale 3 structure comes at the expense of scale 4

structure, suggesting that in that depth range long-wavelength het-

erogeneity is broken down to smaller scales.

Serving as a window into the Earth’s structural heterogeneity

as well as a useful comparison between models comes in the form

of Fig. 8, where we are able to deconstruct both of the seismic mod-

els under consideration on a chunk-by-chunk basis. The (arbitrary

and thus easily modified) choice we made in Fig. 2 to deviate from

the canonical Ronchi et al. (1996) orientation of the cubed sphere

by approximately centering each of the faces on a major continen-

tal landmass now allows us to study the relative contributions of

the depth-dependent seismic structure broken down by preponder-

ant scale length as a function of location in the Earth. Each of the

curves originally plotted in Figs 7b and 7d degenerates to six indi-

vidual ones with their own geographical affiliation. The numbering

scheme is the one introduced in Fig. 2, thus in order of appearance,

1 corresponds to the Pacific realm, 2 to Antarctica, 3 to most of

Asia, 4 to South America, 5 to North America and parts of Eura-

sia, and 6 to Africa, the middle East and the Arabian Peninsula. In

the computer code that accompanies this paper any other wholesale

rotation may be applied to the master grid, e.g. to undo the some-

what unfortunate splitting of Australia over chunks 2 and 3 and of

Eurasia over chunks 3, 5 and 6. In other words, the cubed-sphere

wavelet transform may be applied in “detector” mode by rigid rota-

tion to center on any point of interest. Moreover, provided the scales

to be analyzed allow it, any geographical portion of the wavelet-

transformed coefficients may be zeroed out to provide even more

geographical selectivity without compromise. Such is the power de-

rived from multi-resolution and scale-space localization under the

wavelet transform.

Among other features the results presented in Fig. 8 re-

veal how the dominantly long-wavelength structure near the core-

mantle-boundary is mostly due to what lies beneath Africa and the

Pacific: indeed these are regions that have been long known for
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being the source of various long-wavelength mantle upwellings or

(super-)plumes (Ni & Helmberger 2003). As to Ritsema’s model, it

is surprising how little mantle structure is present at the very short-

est wavelengths of scale 2 (see Figs 3h–i) and scale 1 (whose foot-

print, not shown in Fig 3, is exactly half that of scale 2). While also

in Montelli’s model the heterogeneity at these scales remains lim-

ited at the sub-percentage level, there is considerable more energy

that contributes to the model norm, and there is much more geo-

graphical variability between chunks in this latter model. The rel-

ative lack of a geographical signature when comparing Ritsema’s

to Montelli’s model continues to be apparent at the larger scales 3

and 4; only at scale 4 do both models ascribe mantle structure with

significant difference to each of the six gross mantle domains. Pre-

sumably this rather different character between both models is due

to the data selection and model parameterization: Ritsema’s model

contains the effect of the whole-mantle sensitivity of normal-mode

splitting functions and the spread-out influence of long-period sur-

face waves. Moreover, this model is derived in terms of global

spherical harmonics (Ritsema et al. 2010), although the resolution

gains from including spherical harmonic basis functions to degree

and order 40 as compared to an earlier iteration of this model (Rit-

sema et al. 1999, 2004; Ritsema 2005) appear modest. Montelli’s

model, in contrast, contains only body-wave observations, albeit

using finite-frequency sensitivity theory which noticeably “fattens”

their traditional, ray-theoretical, zone of influence (Montelli et al.

2004, 2006), and it is parameterized on a grid of tetrahedral nodes

that, while globally distributed throughout the Earth’s volume, al-

lows for more degrees of freedom and hence spatial variability in

the recovered seismic model. Undoubtedly the scale- and space-

dependent breakdown of both models is also influenced by the dif-

ferent choices of damping and smoothing in the inverse problem

that led to their construction (Boschi & Dziewoński 1999). Thus,

while our analysis cannot claim to uncover the “truth” in charac-

terizing Earth structure, it does however, endow us with a measure-

ment tool for the multi-scale dependence of seismic model struc-

ture. This will serve as a target to reconcile such models with what

we can learn from forward geodynamical modeling or in their con-

frontation with mineral physics observations (e.g. Mégnin et al.

1997; Piromallo et al. 2001; Cammarano et al. 2005; Piazzoni et al.

2007; Ritsema et al. 2007; Bull et al. 2009).

A more detailed multi-scale comparison between both seismic

models involves the joint properties of their wavelet coefficients at

all depths in the Earth. An example is shown in Fig. 9, where we

report the correlation between wavelet coefficients in the Montelli

and Ritsema models as a function of scale and approximate ge-

ographical position (see Fig. 2 for the numbering scheme of the

cubed-sphere chunk). A rendering of the two-dimensional density

of the data is accompanied by the value of their correlation coef-

ficient (lower left labels) where this is deemed significant at the

95% level, and the slope of the total-least-squares based fit in this

space (upper right labels), which is only quoted when the correla-

tion coefficients exceeded 0.35. This should provide an estimate of

the logarithmic ratio of shear-wave to compressional-wave speed

perturbations, δ ln VS/δ ln VP , an important discriminant in the in-

terpretation of the (thermal or chemical) cause of seismic velocity

anomalies (Masters et al. 2000; Trampert & van der Hilst 2005).

The variation of this ratio as a function of scale and chunk position

yields information that will be of use for geochemical and geody-

namical studies, and the orthogonality of the wavelet basis in scale

and physical space removes some of the arbitrariness in the calcula-

tion. The depth of 474 km that we selected for illustration displays

the largest overall correlation between both models. The absence

of information at the smallest scales 1 and 2 in Ritsema’s model

is now apparent from the top two rows in Fig. 9: invariably, the P

anomalies from Montelli’s model map to much smaller S pertur-

bations in Ritsema’s. From scale 3 onward a positively correlated

pattern begins to emerge, though at this particular scale, the corre-

lation coefficients remain below the somewhat stringent 0.35 level

that we have set for ourselves. Wavelets and scaling coefficients are

rather well correlated at the largest scale 4 considered, with several

of the correlation coefficients comfortably exceeding our thresh-

old. The value of the δ lnVS/δ ln VP ratios vary between about 1.5

and 4.5, which represents about half the range that they reach when

all depths are being considered. This is in agreement with previ-

ous studies, e.g. those by Tkalčić & Romanowicz (2002), Saltzer

et al. (2001) and Deschamps & Trampert (2003). With these last

two authors we emphasize how regionally variable such ratios are,

and how ultimately, they remain dependent on data availability and

modelling assumptions entering the production of independently

derived P and S mantle models Trampert & van der Hilst (2005).

Robust as these determinations of δ lnVS/δ ln VP ratios are using

the wavelet decomposition scheme, our analysis has now identified

an additional dependence, on scale length.

5 T H E I N V E R S E P R O B L E M

In the previous sections we have constructed a new wavelet trans-

form on the three-dimensional ball. We have shown that, in a suit-

ably chosen wavelet basis, Earth models require few significant co-

efficients. We have used our wavelet scheme to deconstruct two

tomographic Earth models and evaluated those, both for their spar-

sity and to study the distribution of mantle structure as a function

of scale, depth, and geographical location (s). While we have ar-

gued that we can learn much from such exercises, we have only

partially reached our end goal, which is to harness the power and

performance of spherical wavelet bases to build new seismic tomo-

graphic models, directly from the data, and which are expected to

be sparse in such bases. In other words, we have not solved any in-

verse problems yet. In this section we explain how the new wavelets

can be used to do that, too.

Wavespeed models are constructed from seismic data. With

respect to a reasonably sized global model parametrization these

data are incomplete, as seismic stations are mostly concentrated in

a limited number of regions around the globe — that is, until the

oceanic arrays of the future (Simons et al. 2009; Vincent & Si-

mons 2011). As usual we shall assume that a background velocity

model is known, and that our goal is to solve the data for a per-

turbation m(x) to that reference model. We may approximate the

seismic observations
∫

⊕

K(x)m(x) d3
x = d, (8)

which are of the most general kind described by such integral equa-

tions and with K any of a veritable plethora of possible kernel

functions (Nolet 2008), by the discretization on the grid defined

in Section 2. This leads to an inverse problem in matrix form,

K · m = d, (9)

where the aim is to reconstruct the model values m from the data

vector d. The elements of m are the values of the model inside of

each voxel and the elements of every row of K will be the numeri-

cal values of the integral of the kernel K(x) over those voxels.

Eq. (9) remains beholden to the usual assumption of linearity
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in linking the model perturbation m to the data d. Acknowledg-

ing that the data may be contaminated by (Gaussian) noise n, the

inverse problem is defined as requiring us to find the best choice

of m by which to reduce the data misfit: the squared ℓ2 norm

‖K · m − d‖2
2, to the noise level, ‖n‖2

2. Because the data are in-

complete, the problem is ill-posed and infinitely many such models

exist. Additional conditions need to be imposed to arrive at a unique

and physically acceptable solution. This is often done by adding a

penalty term P(m) to the data misfit, which leads to the functional

F(m) = ‖K · m − d‖2
2 + P(m), (10)

which is to be minimized. The role of the penalty term is to ensure

that F has a unique and acceptable minimizer. The trade-off be-

tween data fit and a priori information is encoded in the penalty P .

A convenient and often advocated choice for P(m) is a multi-

ple of the norm-squared of the Laplacian of the model, P(m) =
λ‖∇2

m‖2
2, which favors smoothness in the solutions (see, e.g.,

Yanovskaya & Ditmar 1990; VanDecar & Snieder 1994). The equa-

tions for the minimum of F(m) remain linear,

K
T · K · m + λ(∇2)T∇2

m = K
T · d, (11)

and can thus be handled by standard algorithms. The trade-off pa-

rameter λ needs to be carefully chosen (Hansen 1992).

The novelty now is that we should be able to use model spar-

sity rather than smoothness as prior information, though we should

qualify this statement by the admission that the choice of wavelet

basis itself (D4, CDF 4–2, and so on) introduces a certain level

of smoothness in built into the representation itself. As discussed

in Section 3 seismic tomographic models may be very well rep-

resented by a sparse wavelet expansion. Incorporating this knowl-

edge from the start may therefore lead to important benefits to the

behavior of the inversion scheme. In the following we shall assume

that we have chosen a particular family of wavelet and scaling ba-

sis functions, see Section 2, to represent and build the unknown

model. Below we describe an algorithm that chooses, based on the

data, the number, position and magnitude of the nonzero coeffi-

cients with respect to this basis as it iterates (i.e. during the in-

version, not beforehand). Once the family of wavelet functions is

chosen, the selection of the non-zero coefficients is therefore part

of the inversion algorithm itself. The choice of the nonzero coef-

ficients is not a pre-processing step: the representation of the un-

known model is both parsimonious and data-driven, much like in

partition-modelling approaches (Bodin et al. 2009; Bodin & Sam-

bridge 2009). On the other hand, the choice of basis is made up

front, and a basis of smooth functions will introduce some smooth-

ness in the model (e.g. when, due to absence of data, a whole region

can be well approximated using a single large-scale smooth wavelet

function).

With the model m(x) expanded in our wavelet basis via the

transform A as in the notation of Section 3, and the individual basis

functions collected in the columns of a matrix S, the synthesis map,

the pixel-basis model vector m is

m = S(w) = S · w, (12)

with w the vector of expansion coefficients in this basis. In having

previously defined our construction in terms of a discrete wavelet

transform we do not need to devise a separate form of discretization

for each of the many choices of wavelet bases that are available to

us. In this flexible approach we define the grid size of the cubed

sphere at the outset and we are thus able to switch between the

various wavelet bases without much additional effort. As we shall

remark later on S will usually be provided as a (fast) software algo-

rithm and not as a matrix per se. We shall also see that the seismic

inversions only require application of S and its transpose S
T. The

inverse S
−1, the analysis map, is not required to be known — or

even exist, as is the case for a redundant set of basis functions.

The sparsity of the model parameters w can now be encour-

aged by choosing the penalty P to be proportional to the number

of nonzero entries in w, which we write as ‖w‖0 for short. The

functional to be minimized then becomes

F0(w) = ‖K · m− d‖2
2 + λ‖w‖0. (13)

We define the solution to the inverse problem as

ŵ = arg min
w

(

‖K · S · w − d‖2
2 + λ‖w‖0

)

, (14)

and the reconstructed model is

m̂ = S · ŵ. (15)

The functional in eq. (14) however is not convex: there exist lo-

cal minima which makes the minimization much less feasible than

solving a system of linear equations. Despite this an iterative al-

gorithm based on hard thresholding exists (Blumensath & Davies

2008, 2009), as briefly discussed by Loris et al. (2010).

An alternative, and computationally much more tractable,

method for imposing model sparsity in a given basis is to use an

ℓ1 norm penalty (Donoho 2006; Daubechies et al. 2004; Bruck-

stein et al. 2009). By identifying ‖w‖1 =
∑

i
|wi|, and choosing

P = 2λ‖w‖1 for the penalty function, then

F1(w) = ‖K · S · w − d‖2
2 + 2λ‖w‖1 (16)

is to be minimized. This functional is convex: a local minimum

is therefore automatically a global minimum (Loris et al. 2007).

This minimum is not necessarily identical to global minimum in

eq. (14), but mathematical conditions on the matrix K exist that

guarantee this (Donoho 2006). The important point is that mini-

mizing eq. (16) is atractable way of obtaining a model with many

coefficients exactly equal to zero.

The functional (16) is not differentiable but because F1 is the

sum of a differentiable and a separable non-differentiable part, con-

vex optimization techniques can find ŵ = arg minw F(w) and

the corresponding model (15) with reasonable efficiency. Indeed

the iteration

wn+1 = U [wn + βn(wn −wn−1)] , (17a)

U(w) = Tαλ

[

w + αS
T · KT · (d − K · S · w)

]

, (17b)

converges to the minimizer of (16), as shown by Beck & Teboulle

(2009). Hereby Tαλ now stands for “soft” thresholding (Mal-

lat 2008) of the coefficients on a component-by-component ba-

sis, which is to say Tτ (w) = 0 for |w| ≤ τ , and Tτ (w) =
w − τ sgn(w) for |w| > τ . This is a non-linear operation. The

parameter α in eq. (17b) can be chosen as the reciprocal of the

largest eigenvalue of S
T · KT · K · S. We choose t0 = 1 and

βn = (tn − 1)/tn+1, (17c)

tn+1 = (1 +
√

1 + 4t2n)/2. (17d)

A non-iterative direct algorithm also exists (Efron et al. 2004; Loris

2008), but because of the large problem sizes typically encountered

in seismic tomography, we focus here on this so-called Fast Iter-

ative Soft Thresholding Algorithm (FISTA). It has an 1/n2 rate

of convergence to F1(ŵ), which is in a sense optimal. The algo-

rithm (17) was used by Loris et al. (2010) on a 3D toy tomographic

model. There is however a typographical error in that work, which

missed the factor 4 under the square root in eq. (17d).
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The iterative algorithm (17) requires only two linear maps, and

their transposes. First there is the linear map from model to data

space, given by the matrix K in eq. (9). The second is the linear

map S from model parameters to model space, eq. (12). This map

is typically available in the form of a (fast) algorithm, in casu the

inverse wavelet transform S, rather than explicitly in matrix form.

Each iteration step of algorithm (17) requires one application of K,

K
T, S and S

T each. Eqs (17a–17d) demonstrate that the iterative

inversion algorithm does not require the inverse of the map S, much

as it does not require the inverse of K. Moreover, neither S nor K

need be invertible. As already mentioned, this means that a model

may be represented by a sparse superposition of a redundant set of

functions in which the expansion of the model is no longer unique.

For example, redundant dual-tree wavelets were used in a synthetic

tomography experiment by Loris et al. (2007).

In practice it turns out to be easier to keep K ·S and S
T ·KT

in eq. (17b) in factorized form. One can then easily switch bases by

modifying S and rerunning the inversion algorithm. No new ma-

trix K · S needs to be pre-computed, which is important given

that K may have several hundreds of thousands of rows. This is

particularly useful in the case of sparse reconstructions, where the

choice of basis itself (e.g. D4, CDF 4–2, and so on, and this be-

fore the inversion determines which members of the basis set most

usefully contribute to the solution) is one of the factors to be as-

sessed by prior evaluation of the performance of synthetic model

inversions or by inspection during the inversion. In other words,

the iterative inversion procedure can be performed for a number of

different choices of wavelet families. Section 3 made it clear that

using model sparsity as a priori information depends on the details

of the basis used. Setting up the inversion software in this manner is

therefore forward-looking as new transforms can easily be incorpo-

rated later. Examples of emerging techniques that can be evaluated

in this context are curvelets and shearlets (Candès et al. 2005; La-

bate et al. 2005; Easley et al. 2008), which offer better directional

sensitivity than classical wavelet transforms but are redundant. The

described flexibility of our approach was a major design require-

ment and will yield many dividends in future applications.

6 A S E C O N D C O N S T R U C T I O N

In principle we are now ready to apply the first family of wavelet

constructions on the cubed sphere that we introduced in Section 2 to

the inverse problem in the manner outlined in Section 5. As shown

in Section 3 we expect our solutions to be sparse, and as discussed

in Section 4 we will be able to use this sparsity and the location-

and scale-dependence of the results to make geophysical inference

about the structure of seismic heterogeneity in the Earth.

As we recall, our First Construction entailed defining wavelet

and scaling functions on a single chunk ξ, η ∈ [−π/4, π/4] and

then mapping them onto the sphere using eq. (1). By this definition

the basis functions live on a single chunk. Without the modifica-

tions and preconditioning of the basis at the boundaries between

the chunks that we introduced, sharp discontinuities in the behavior

of the coefficients occur at the chunk edges; making the transforms

edge-cognizant, as we did in the manner of Cohen et al. (1993), re-

quired special tailoring of the transforms. This is often cumbersome

and in general harms our stated goal of keeping our procedure flex-

ible enough to be able to switch from one wavelet family to another

which might be more suitable with hindsight. In addition, the inter-

val wavelet transforms that we used so far are not norm-preserving.

Extensive experimentation with such bases revealed that despite

Figure 10. Aerial view showing our second adaptation of the cubed sphere

of Ronchi et al. (1996). The black lines identify the boundaries of the six

chunks that were apparent also in Fig. 1. The blue lines correspond to the

boundaries of the overlapping “superchunks” as discussed in the text.

their qualities in the representation of geophysical functions, i.e. in

performing the forward mappings, when used for the inverse prob-

lem the solutions obtained using eq. (17) were plagued by unsightly

artifacts at the seams between chunks. These we do not show as

they appeared predominantly in synthetic tests with simple, iso-

lated “phantoms” where their nature was immediately obvious; as

the density of path coverage increases and the target structure be-

comes more Earth-like, their presence becomes harder to distin-

guish visually. Presumably the ℓ1-thresholding could be adapted

locally to counter this effect, but to be truly practical we should

not have to resort to this. We thus desire a mechanism to map any

localized basis function defined on a Cartesian grid to the sphere,

with smoothness even across chunk boundaries. Here we present a

straightforward, universal method that accomplishes this.

As opposed to the geometry of the Ronchi et al. (1996) cubed

sphere shown in Fig. 1, we now cover the sphere with six larger

chunks, by extending the coordinates by 50% on each chunk, to

ξ̃, η̃ ∈ [−3π/8, 3π/8], see Fig. 10. We shall refer to these par-

tially overlapping domains as “superchunks”. In (ξ̃, η̃) coordinates

they are simply six large squares (rather: cubes if we take the radial

direction into account also), with the “original” chunks at their cen-

ters. Functions defined on this central part can now smoothly cross

into the outer part, that is, they are allowed to spill over into an-

other chunk while staying in the same superchunk. Fig. 11 shows a

selection of examples where this is the case. The smoothness of the

functions across the boundaries is apparent, though we note that if

we were to plot them in the manner in which Fig. 2 was presented,

they would appear to have kinks in them; this is simply because the

coordinate transform of eq. (1) itself is non-smooth.

To map a function defined on a single superchunk κ̃ = 1 → 6
to the corresponding chunk and its neighbors, one loops over all

the voxels in this central chunk and its four neighbors. The center

(ξ, η, r, κ) of each such voxel is mapped to (x, y, z) coordinates

using formula (1). In the same way as eq. (2) we then calculate



Wavelets, Sparsity, and Seismic Tomography 15

1 2 3

4 5 6

Min=−0.28076 Max=0.80719

Min=−0.28076

Max=0.80719 −0.6 −0.3 0.0 0.3 0.6

Figure 11. Top: Six superchunks, as defined in Fig. 10 with a number of

wavelet and scaling functions defined on them. Bottom: The same functions

mapped to the sphere by the procedure described in Section 6. They are

smooth everywhere.

(ξ̃, η̃) =



























[ atan(z/y), atan(−x/y) ] if κ̃ = 1,
[ atan(y/x), atan(−z/x) ] if κ̃ = 2,
[ atan(−y/z), atan(x/z) ] if κ̃ = 3,
[ atan(x/z), atan(−y/z) ] if κ̃ = 4,
[ atan(−z/x), atan(y/x) ] if κ̃ = 5,
[ atan(−x/y), atan(z/y) ] if κ̃ = 6,

(18)

to convert these (x, y, z) to the (ξ̃, η̃, r̃ = r) coordinates in the

superchunk κ̃, limited to −3π/8 ≤ ξ̃, η̃ ≤ 3π/8. This then deter-

mines which voxel in the superchunk is mapped to the voxel in the

original chunk. The index of the voxel in each superchunk κ̃ is

i = 1 +
⌊(

ξ̃ +
3π

8

)

2N

π

⌋

, j = 1 +
⌊(

η̃ +
3π

8

)

2N

π

⌋

, (19)

where N is the number of voxels in the ξ and η directions of a

chunk and ⌊ ⌋ indicates rounding down. Voxel indices run from

1 → N in an original chunk and from 1 → 3N/2 in a super-

chunk. The central part of a superchunk is a copy of the original

chunk, whereas the voxels outside the center of a superchunk are

mapped to neighboring chunks. As the superchunks partially over-

lap, a chunk voxel on the sphere may receive contributions from up

to three superchunks: a voxel near a chunk corner may receive three

contributions, a voxel near a chunk edge may receive two, and vox-

els near chunk centers only one. The identifications are most easily

made by table look-up.

In Fig. 11 we show a number of wavelet functions from this

Second Construction at a variety of locations. These now map

smoothly to the sphere. The wavelets shown here are from the Co-

hen et al. (1992) CDF 4–2 wavelet family, as in Figure 4. These

are mirror-symmetric in the (ξ, η) domain, but they are no longer

orthogonal. As in Section 2 the wavelets at a fixed scale are not

rotations of each other on the sphere, but rather translates in the

superchunk (ξ̃, η̃) domain. This effect is most noticeable for the

wavelet and scaling functions that are located on or near chunk

edges, specifically near the corners. Basis functions that have the

same norm in the superchunk domain may not have the same norm

in the chunk domain.

7 N U M E R I C A L E X P E R I M E N T S

We consider a set of great-circle paths that is a global collection

of 2469 earthquakes and 199 stations yielding 8490 surface-wave

paths, a situation based on, if not identical to, the ray path cover-

age in the models of Rayleigh-wave phase speeds at 80 s period

obtained by Trampert & Woodhouse (1995, 1996, 2001). For sim-

plicity we convert this path coverage to the ray-theoretical values of

arrival-time sensitivity expressed in our model domain. The image

in Fig. 12 (top panel) renders all rays in this data set of realistically

heterogeneous global seismic sensitivity. For synthetic input model

we chose a single interval of the Montelli et al. (2006) model cen-

tered on 722 km depth, shown in Fig. 12 (second from the top). In

addition, and this is an admitted departure from realism, we select

four circular regions of null structure. Their purpose is to test the

inversion algorithm and the choice of basis when sharp wavespeed

contrasts are known to be present in the true model. We calculate

the travel-time perturbations over these 8490 ray paths and add

Gaussian noise to them with an rms value that is 10% of that of

the rms of the data. The variance of this noise is denoted σ2.

The reconstruction is by the algorithm (17) using the four-

level CDF 4–2 wavelets under the Second Construction by which

smooth chunk crossings were enabled, as shown in Fig. 11. In keep-

ing with the description of Section 5 the dual aim is to satisfy the

noisy data in the traditional ℓ2 sense while favoring a model that is

sparse in the wavelet basis by minimizing the ℓ1 norm of the coeffi-

cients. Fig. 12 (third from the top) shows the obtained solution. Of

the 6× 1282 = 98304 degrees of freedom in this parameterization

the algorithm terminates on a model with 1670 nonzeroes. Due to

lack of data, the relative output error is high: 33.5%.

The behavior of the solution through the 1000 iterations is

shown in Fig. 12 (bottom panel), which plots the ℓ1 norm of the

wavelet coefficients against a measure of the evolving misfit calcu-

lated as the “reduced chi-square”

χ2

N
=

‖d − d̂‖2
2

σ2‖d‖0

=
‖d − K · m̂‖2

2

σ2‖d‖0

, (20)

in other words, the squared ℓ2 norm of the data misfit normalized

by the noise variance and the total number of data constraints, for

which it is reasonable to assume (Nolet 2008) that it is distributed

as a χ2
1 variable. The starting point of the iteration is marked by the

filled white circle, and the final solution by the filled white square,

which is arrived at when the χ2/N variable in eq. (20) reaches its

expectation 1. Every one of the 1000 solutions in the sequence is

marked by a black cross. As we notice the algorithm (17) rapidly

reduces the data misfit in the first few steps, slowing down after

that, at the same time increasing the sum of the absolute values

of the wavelet coefficients. After “turning a corner” in this space,

the remainder of the time spent is in reducing the ℓ1 norm of the
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Figure 12. Synthetic experiment under realistic conditions with a twist,

illustrating the recovery of a seismic tomographic model with artificially

introduced “blank spots” from noisy data, using the Second Construction

discussed in Section 6 and the iterative algorithm of Section 5. The solu-

tion after one iteration is represented by the filled white circle in the bottom

panel; the solution after 1000 iterations by the filled white square.

coefficients of the solution while slowly converging to the target

reduced chi-square of χ2/N = 1.

The solution is very good; the input model is well matched and

the leakage of the solution into the areas where no structure should

be recovered is relatively minor. The global map views in Fig. (12)

had all values that fall below a threshold of 1/20th of their maxi-

mum absolute value rendered white for visual guidance, and they

receive several additional annotations for us to be able to judge the

quality of the solution quantitatively. The minimum and maximum

values of the models are quoted in the top left corner, and in the top

right corner we show their mean and the root mean squared values.

The four sets of numbers in the bottom left and right hand corners

quote these same metrics for the areas contained inside of the cir-

cular areas. As the input model has no structure there, all of these

are zeroes. This is no longer the case for the output which serves as

our way to evaluate the leakage of the solution into those areas. As

we can see the comparison is very favorable.

While we have conducted numerous synthetic tests with a

multitude of synthetic input models (including checkerboard tests,

Gaussian shaped anomalies positioned at various locations, and us-

ing a variety of ray path coverages), only one of these tests is re-

ported here. As noted by Loris et al. (2007, 2010) there are more

algorithms available to us than the one described in eq. (17), and as

we have argued in this paper there is a plethora of wavelet construc-

tions that can be brought to bear on the inverse problem of global

seismic tomography. All of these alternatives remain in principle

candidates to be implemented using our First or Second Construc-

tion for wavelets on the sphere. A more detailed comparison of

their relative performance is well underway and will be reported in

forthcoming work. It is there also that we will fully integrate the

third dimension into our formalism. Conceptually, there is no diffi-

culty in doing this: we have transformed the ball of the Earth into

six independent or partially overlapping Cartesian model domains

with three separable coordinates. Taking into account the depth di-

mension merely involves applying a third wavelet transform to the

result of the transform in the two angular coordinates, but as there

remain choices to be made, a thorough discussion remains outside

the scope of the current paper.

8 C O N C L U S I O N S

Until now, seismic wavespeed models of the Earth have been rou-

tinely parameterized in terms of spherical harmonics, networks of

tetrahedral nodes, rectangular voxels, or spherical splines. How-

ever, there were few approaches to Earth model parameterization

by wavelets on the three-dimensional ball. To the rich field of

wavelets on the ball or its surface, the sphere, we have contributed

two new flexible constructions that are eminently suited to solve

seismological tomographic inverse problems.

To form the numerical grid we considered a surface tessela-

tion known as the “cubed sphere”, popular in fluid dynamics and

computational seismology, which can be combined with a (semi-

regular) radial subdivision. This mapping transforms the entire vol-

ume of the mantle into six portions. In the new variables, these

“chunks” correspond to rectangular boxes with Cartesian coordi-

nates. Standard algorithms can then be used to perform the wavelet

transformation (or any other) in each of the six bounded volumes.

We developed two possible classes of discrete wavelet transforms

in the angular dimension of the cubed sphere. One relies on pre-

conditioning and special boundary filters to account for the edges

separating the chunks; another one broadens the definition of the
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cubed sphere to include chunks that partially overlap, on which we

implement standard wavelet transforms.

Much has been gained by our design of procedures that effi-

ciently parameterize the seismological inverse problem. First, the

multiresolution character of a wavelet basis allows for the models

to be represented with an effective spatial resolution that varies as

a function of position within the Earth. Second, inversion schemes

that are formulated in terms of wavelets can exploit recent theo-

retical and numerical advances by which the most sparse solution

vector, in wavelet space, is found through iterative minimization of

a combination of the ℓ2 (to fit the data) and ℓ1 norms (to promote

sparsity in wavelet space).

In preparation of the continuing increase in high-quality seis-

mic data that is expected in the decades to come, our focus has also

been on numerical efficiency and the ability to use parallel com-

puting in constructing the model. We have shown how our seis-

mic model representation behaves under progressive thresholding

of the wavelet coefficients, and how the geographically distributed

power of published seismic models varies over the scale lengths

that can be independently resolved. Synthetic tests under realistic

conditions validates the approach that we advocate for the future

of seismic tomography, which shows the ability to explain hetero-

geneous, massive data sets under the constraint that the best-fitting

models should also be sparse in the wavelet bases used.
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