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Abstract. This paper introduces the problem of solving ordinary differential equations with extra
linear conditions written in terms of ranges, and deals with the corresponding existence and
uniqueness problems. Some methods for analyzing the existence of solutions and obtaining
the set of all solutions, based on the theory of cones and polyhedra, are given. These
solutions are found by first converting the problem to a system of linear algebraic equations
and then applying the corresponding well-known theory for solving and discussing the
existence and uniqueness of solutions of these systems. Finally, the methods are illustrated
by their application to some practical examples of the beam problem.
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1. Introduction. When dealing with ordinary differential equation (ODE) prob-
lems one normally looks for unique solutions, so that the differential equation must
be complemented with some extra conditions (initial, boundary, etc.) such that the
infinite set of functions associated with the solutions of the differential equation is
so restricted that only one of these functions satisfies the extra conditions (see, for
example, Boyce and DiPrima [1] and Coddington and Levinson [8]). This is the stan-
dard paradigm in the field of differential equations, where uniqueness has played an
outstanding role and has been the concern of many researchers.

For example, consider a problem that is defined by the linear ODE of order n in
standard form:

dnx

dtn
+ a1(t)

dn−1x

dtn−1 + · · ·+ an−1(t)
dx

dt
+ an(t)x = h(t).(1)
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308 E. CASTILLO, A. J. CONEJO, C. CASTILLO, AND R. MÍNGUEZ

The general solution to problem (1) is of the form

x(t) =
n∑
i=1

ciφi(t) + ψp(t),(2)

where c1, c2, . . . , cn are arbitrary constants, the set of functions {φ1(t), φ2(t), . . . , φn(t)}
is a fundamental system of solutions for the corresponding homogeneous equation, and
ψp(t) is a particular solution to problem (1).

This implies that (1) has infinitely many solutions which can be characterized by
the set of constants c1, c2, . . . , cn.

In order to reduce this set of solutions one can, for example, consider the extra
linear set of conditions

s∑
j=1

djx
(rij)(tij) = bi, i = 1, 2, . . . , �,(3)

where dj ∈ R, j = 1, 2, . . . , s, x(rij)(tij) refers to the rijth derivative of x(t) at t = tij ,
and bi ∈ R, i = 1, 2, . . . , �.

In particular, one can choose the ψp(t) function in (2) to be the solution to
problem (1) with the homogeneous conditions

s∑
j=1

djx
(rij)(tij) = 0, i = 1, 2, . . . , �,(4)

which implies

s∑
j=1

djψ
(rij)
p (tij) = 0, i = 1, 2, . . . , �.(5)

Conditions (3) restrict the set of possible solutions, and, if adequately chosen,
they lead to a unique solution, i.e., to a particular subset of constants {c1, c2, . . . , cn}
in (2).

However, in practice, users are frequently unable to give conditions (3) with fixed
numbers (the bi constants), and they prefer to define the extra conditions in a more
imprecise way, e.g., providing intervals or ranges. For example, in engineering one
cannot assure fixed values and one has to deal with different assumptions, so that
ranges or intervals are much more appropriate than fixed values to define the bi
parameters. It is worth mentioning that these problems have important applications
in practically all fields and do not necessarily lead to uniqueness of solutions.

When fixed values bi, i = 1, 2, . . . , �, for the extra conditions are used, n (the
order of the differential equation) independent conditions can be given; otherwise,
the problem may have no solution (for � > n). However, when ranges replace fixed
values, the number of extra conditions can be unlimited. This makes the existence
and uniqueness theorems, and the methods for obtaining solutions, very different from
the standard ones. Consequently, new methods are required.

The main original contributions of this paper are as follows: (a) to introduce
(to our knowledge) for the first time the problem of solving ODEs with range linear
conditions as an interesting and useful alternative to the standard practice of fixed
conditions, (b) to give methods for solving this problem, i.e., for obtaining the set of
all solutions, and (c) to explain how the existence of a solution and its uniqueness can
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ODEs WITH RANGE CONDITIONS 309

be tested. In addition, the proposed methods are illustrated by their application to
one practical example.

In this paper we assume that the functional space to which x(t) belongs is ade-
quately chosen so that the required regularity conditions hold, and thus our problems
are well posed and we can concentrate on the range problem.

The paper is structured as follows. Section 2 states the differential equation
problem in terms of ranges or intervals. Section 3 shows how the set of all solutions can
be obtained. Section 4 discusses the existence and uniqueness problems. In section 5
an application to beams is described. Finally, in section 6, some conclusions are given.

2. Statement of the Problem of Differential Equations with Range Condi-
tions. In this section we analyze what happens if we replace the point conditions in
(3) by interval conditions; i.e., our new problem can be defined by the linear ODE

dnx

dtn
+ a1(t)

dn−1x

dtn−1 + · · ·+ an−1(t)
dx

dt
+ an(t)x = h(t),(6)

and linear conditions of the type
blower

i ≤
s∑
j=1

djx
(rij)(tij) ≤ bupper

i , i = 1, 2, . . . , �


 ,(7)

where (blower
i , bupper

i ) are the intervals replacing the constant values bi, and � does not
need to equal n.

Before dealing with solving the problem (6)–(7), we assume that we have already
determined a fundamental system of solutions {φ1(t), φ2(t), . . . , φn(t)} using well-
known methods.

3. Solving the Problem. Since the general solution of (6) is of the form (2), we
must have

blower
i ≤

s∑
j=1

(
dj

n∑
i=1

ciφ
(rij)
i (tij)

)
+

s∑
j=1

djψ
(rij)
p (tij) ≤ bupper

i , i = 1, 2, . . . , �,(8)

and by (5) and interchanging the sums, we get

blower
i ≤

n∑
i=1


ci s∑

j=1

djφ
(rij)
i (tij)


 ≤ bupper

i , i = 1, 2, . . . , �,(9)

which is a system of linear inequalities in the ci’s.
As the general solution of a complete system of linear equations can be written as

a particular solution plus a linear space, the general solution of a complete system of
linear inequalities is a polyhedron and can be written as a linear space plus an acute
cone (a cone C is said to be acute if no vector s ∈ C satisfies −s ∈ C) plus a polytope,
i.e., in the form

c1
c2
...
cn


 =

I∑
i=1

ρi



u1i
u2i
...
uni


+

J∑
j=1

πj



v1j
v2j
...
vnj


+

K∑
k=1

λk



w1k
w2k
...

wnk


 , ρi ∈ R, πj ≥ 0, λk ≥ 0,

(10)
where

∑K
k=1 λk = 1.
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310 E. CASTILLO, A. J. CONEJO, C. CASTILLO, AND R. MÍNGUEZ

In other words, sets of vectors u,v, and w exist such that the general solution
of (9) can be written as in (10), where the linear space is generated by the set of
vectors {ui, i = 1, 2, . . . , I}, the cone is generated by the set {vj , j = 1, 2, . . . , J}, and
the polytope is generated by the set {wk, k = 1, 2, . . . ,K}. Due to the unbounded,
unbounded-from-below, and bounded character of the corresponding coefficients ρi,
πj , and λk, these linear space, cone, and polytope components play an important role
in discussing the nature of all possible solutions.

The problem of obtaining the sets u, v, and w, which depend on the bupper, blower,
and d vectors, the (tij) matrix, and the fundamental system of solutions {φ1(t), φ2(t),
. . . , φn(t)} is not trivial. Detailed methods for obtaining minimal sets of generators
ui, vj , and wj of this polyhedron can be seen in Padberg [9] and Castillo et al.
[4, 2, 3, 7, 5, 6]. The main idea of the methodology is as follows.

Solving the problem (6) with (7) is in fact merely a question of solving the system
of linear inequalities (9) in c1, c2, . . . , cn, which can be written as

−
n∑
i=1


ci s∑

j=1

djφ
(rij)
i (tij)


+ blower

i cn+1 ≤ 0, i = 1, 2, . . . , �,(11)

n∑
i=1


ci s∑

j=1

djφ
(rij)
i (tij)


− bupper

i cn+1 ≤ 0, i = 1, 2, . . . , �,(12)

−cn+1 ≤ 0,(13)
cn+1 = 1,(14)

where the artificial variable cn+1 and the redundant constraint (−cn+1 ≤ 0) have been
added for convenience and so cn+1 must be removed later.

The solution of the system (11)–(13) is the dual cone C of the cone generated by
the vectors, the components of which are the row coefficients of this system. Standard
methods for obtaining this dual cone can be seen in Padberg [9] and Castillo et al.
[4, 2, 3, 7, 5, 6]. This dual cone can be written in standard form, i.e., as the sum of a
linear space plus an acute cone.

Once the dual cone has been obtained, cn+1 is forced to be 1 (see (14)). In this
step, the polytope part of the cone is obtained if some of the linear space and acute
cone generators of the dual cone contain a nonnegative n+1 component. Finally, the
artificial (n + 1)th component is removed, and the polyhedral set of all solutions of
the form (10) is obtained. A detailed example is given in section 5.

Then, the set of solutions of the problem (6) with (7) is

x(t) = (φ1(t) φ2(t) . . . φn(t) )



c1
c2
...
cn


+ ψp(t)

=
n∑
r=1

ψr(t) + ψp(t),

(15)

where

ψr(t) =


 I∑
i=1

ρiuri +
J∑
j=1

πjvrj +
K∑
k=1

λkwrk


φr(t), r = 1, 2, . . . , n,(16)

and ρi ∈ R, πj ≥ 0, λk ≥ 0,
∑K
j=1 λk = 1.
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ODEs WITH RANGE CONDITIONS 311

Equations (15) and (16) provide a method for obtaining the set of all solutions
of the problem (6) with (7) if they exist. The method is illustrated in the example in
section 5.

4. Testing for Existence and Uniqueness. One interesting problem is that of
existence and uniqueness of solution to the problem (6) with (7), which leads to the
problem of existence and uniqueness of solution of the system of linear inequalities
(9).

To analyze the existence problem, i.e., if this system is compatible (a solution to
the problem (6) with (7) exists), one can proceed as follows. First, the system (9) is
written as

−
n∑
i=1


(c∗i − c∗0)

s∑
j=1

djφ
(rij)
i (tij)


+ c∗n+i = −blower

i , i = 1, 2, . . . , �,(17)

n∑
i=1


(c∗i − c∗0)

s∑
j=1

djφ
(rij)
i (tij)


+ c∗n+�+i = bupper

i , i = 1, 2, . . . , �,(18)

c∗i ≥ 0, i = 0, 1, . . . , 2�+ n,(19)

where we have replaced the real variables ci by the difference of two nonnegative
variables c∗i and c∗0, i.e., ci = c∗i − c∗0.

The system (9) is compatible if there exist nonnegative c∗i ’s such that (17)–(19)
hold, but this means that the vector

h =
(
−blower

1 ,−blower
2 , . . . ,−blower

� , bupper
1 , bupper

2 , . . . , bupper
�

)T
of its independent terms (in (17)–(18)) belongs to the cone generated by the columns
of this system, i.e., if the dot products of h by the generators of the corresponding
dual cone are nonpositive.

So, to test for existence, we proceed as follows:
1. The generators of the dual cone of the cone generated by the columns of the

coefficient matrix of the system (17)–(18) are obtained.
2. The dot products of the vector h by all generators are calculated.
3. If at least one of the dot products is positive, the system is incompatible;

otherwise, it is compatible and the initial problem (6) with (7) has a solution.
This method for testing the existence of a solution will be illustrated in section 5.
The uniqueness problem leads to the uniqueness of a solution of the system (9)

(see Castillo et al. [2, p. 218]), so that uniqueness holds if and only if the set of possible
c constants degenerates to a point (a polytope with a unique generator), i.e., if the
cone C, solution of (11)–(13), is generated by a single vector.

5. Application to the Beam Problem. In this section the above method is il-
lustrated by its application to the beam problem.

Consider a beam subject to a vertical load p(t). It is well known that the differ-
ential equation for the beam is

x(iv)(t) =
p(t)
EI

, 0 ≤ t ≤ L,(20)
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312 E. CASTILLO, A. J. CONEJO, C. CASTILLO, AND R. MÍNGUEZ

where x(t) is the deflection of the beam at point t, and E and I, which are assumed
to be constant, are the Young modulus and the moment of inertia of the cross section
of the beam, respectively. To be specific, we let p(t)/(EI) = −100 and L = 1.

Then, the general solution of (20) is of the form

x(t) =
4∑
i=1

ciφi(t) + ψp(t).(21)

The particular solution ψp(t) in this case is the solution of (20) with the boundary
conditions

x(0) = x′(0) = 0, x(1) = x′(1) = 0(22)

that leads to the particular solution

ψp(t) =
−25t2
6

+
25t3

3
− 25t4

6
(23)

and

n∑
i=1

ciφi(t) = c1 + c2t+ c3t
2 + c4t

3.(24)

If the deflections and rotations at the two ends (t = 0 and t = 1) of the beam are
bounded, say, by −1 and 1, we have

− 1 ≤ x(0) ≤ 1,(25)
− 1 ≤ x′(0) ≤ 1,(26)
− 1 ≤ x(1) ≤ 1,(27)
− 1 ≤ x′(1) ≤ 1,(28)

and using (21) and (24) the following constraints are obtained:



−1
−1
−1
−1


 ≤



1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3





c1
c2
c3
c4


 ≤



1
1
1
1


 .(29)

To solve this system of inequalities as in (11)–(14), an artificial unknown c5 = 1 is
used, so that the two systems in (29) become



1 0 0 0 −1
0 1 0 0 −1
1 1 1 1 −1
0 1 2 3 −1
−1 0 0 0 −1
0 −1 0 0 −1
−1 −1 −1 −1 −1
0 −1 −2 −3 −1







c1
c2
c3
c4
c5


 ≤




0
0
0
0
0
0
0
0



,(30)

the solution of which is the cone

c = Vπ,(31)
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ODEs WITH RANGE CONDITIONS 313

where

c=



c1
c2
c3
c4
c5


,V=



−1 1−1 1−1 1−1 1−1 1−1 1−1 1−1 1
1 1−1−1 1 1−1−1 1 1−1−1 1 1−1−1
3−3 7 1−3−9 1−5 5−1 9 3−1−7 3−3
−2 2−4 0 2 6 0 4−4 0−6−2 0 4−2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


 ,π=




π1
π2
π3
π4
π5
π6
π7
π8
π9
π10
π11
π12
π13
π14
π15
π16




,

πj > 0, j = 1, 2, . . . , 16.(32)

Note that V is the matrix whose columns are the vectors v in (10). Since c5 must be
forced to be 1 (see (14)),

∑16
j=1 πj = 1; i.e., the πj ’s become λk’s, i.e., the nonnegative

linear combination in (31) becomes a linear convex combination.
For the polyhedron to have linear space and acute cone parts, the dual cone

must also have linear space and acute parts and their generators must contain null
and nonnull last components. Since in this particular case the cone (32) has no linear
space part and the last components of all its generators are equal to 1, the polyhedron
degenerates to a polytope.

Finally, removing the artificial unknown c5, the general solution of (20) with
(25)–(28) becomes

x(t) =
(
1 t t2 t3 ψp(t)

)
Vλ, λk > 0, k = 1, 2, . . . , 16,

16∑
k=1

λk = 1.(33)

The 16 generator functions, which allow all the corresponding possible solutions
to be generated (as a polytope) and the associated bounds to be obtained, are shown
in the upper left corner of Figure 1, where the particular solution ψp(t) is also shown
(dotted line). The remaining plots correspond to the first, second, and third deriva-
tives, which correspond to rotations (upper right plot), bending moments (lower left
plot), and shear forces (lower right plot). Note that from a practical point of view
these derivatives of x(t) are more relevant than the deflection x(t), because they allow
the defining of the steel reinforcement in the case of concrete beams and the checking
of its strength for steel beams.

If an extra constraint is added, consisting of limiting to −1.2 the deflection of the
beam at t = 1/2 (i.e., the problem (20) with (25)–(28) and

x(1/2) ≥ −1.2

is solved), Figure 2 shows the 21 generators of the new polytope of solutions, and the
particular solution ψp(t) (dotted line).

Finally, Figure 3 shows the resulting 14 generator functions if the shear force at
t = 0 is limited to 50 and the deflection constraint at t = 1/2 is removed; i.e., those
associated with the problem (20) with (25)–(28) and

x′′′(0) < 50.

D
ow

nl
oa

de
d 

03
/2

1/
13

 to
 1

93
.1

44
.1

85
.2

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



314 E. CASTILLO, A. J. CONEJO, C. CASTILLO, AND R. MÍNGUEZ
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Fig. 1 Illustration of the generators of the polytope of all solutions for deflections, rotations, bending
moments, and shear forces.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

t

x

Fig. 2 Illustration of the 21 generators of the polytope of all solutions and a particular case (dotted
line) if the deflection of the beam at t = 1/2 is limited to −1.2.

5.1. Existence of Solutions. To illustrate how the existence method described in
section 4 can be applied, two cases of parameterized constraints such as those in (25)–
(28) are considered and the conditions for the existence of a solution are determined.
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Fig. 3 Illustration of the 14 generators of the polytope of all solutions and a particular case (dotted
line) for the deflections, rotations, bending moments, and shear forces, if the shear force at
t = 0 is limited to 50.

Case 1. Consider the following set of constraints:

blower
1 ≤ x(0) ≤ bupper

1 ,(34)
blower
2 ≤ x′(0) ≤ bupper

2 ,(35)
blower
3 ≤ x(1) ≤ bupper

3 ,(36)
blower
4 ≤ x′(1) ≤ bupper

4 .(37)

In this case, the system (34)–(37) becomes




1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3
−1 0 0 0
0 −1 0 0
−1 −1 −1 −1
0 −1 −2 −3






c1
c2
c3
c4


 ≤




bupper
1
bupper
2
bupper
3
bupper
4
−blower

1
−blower

2
−blower

3
−blower

4



,(38)

which, using the techniques explained in section 4, leads to

blower
i ≤ bupper

i ∀i,(39)

which are the well-known and obvious conditions for existence of solution.
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Case 2. If the constraint x(1/2) ≥ a is added to the constraints (34)–(37), the
existence conditions become (39) together with

4bupper
1 + bupper

2 + 4bupper
3 − blower

4 + 8a ≥ 0,(40)

which is a symbolic expression. Since a = −1.2 and bupper
i = −blower

i = 1 in the second
example in section 5, the existence conditions are satisfied.

Case 3. If condition x′′′(0) ≤ q is added to the conditions (34)–(37), the existence
conditions become (39) together with the symbolic constraint

−12bupper
3 + 12blower

1 + 6blower
2 + 6blower

4 − q + 50 ≤ 0.(41)

Since q = 50 and bupper
i = −blower

i = 1 in the third example in section 5, the existence
conditions are satisfied.

Note that for large enough q, condition (41) holds, and then these conditions are
equivalent to conditions (39).

6. Conclusions. In this paper we have introduced for the first time the problem
of differential equations with range constraints and justified how important it is in
practical applications.

Within the context of solving ODEs with range constraints, we have introduced
in this paper a general method for the following applications.

1. Testing the existence of solutions, which is, in fact, merely a question of find-
ing the generators of the dual cone of a cone, calculating some dot products,
and checking that they are nonpositive. In addition, the method makes it
possible to use a parametric treatment; i.e., the set of symbolic constraints
that the initial or boundary values must satisfy for the problem to have a
solution can be easily obtained.

2. Obtaining the set of all solutions of an ODE, the conditions of which are
given not by point values, but as ranges.

3. Determining whether or not the problem has a unique solution.
4. All the proposed methods reduce the initial problem to a system of linear

inequalities, which is treated (discussed its existence and uniqueness of solu-
tions, and solved it) using existing methods.

Finally, the method has been illustrated by its application to the beam problem,
as an example of the many possible applications of the range constraints case in
different fields of science and technology.
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