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Abstract

Deep learning is a crucial point of valuable intelligence resources to deal with complicated mathematical problems. The 
effectiveness of deep learning in solving differential equations has been considered over the past few years. Supervi-
sion of the learning process requires significant information to be marked in order to train the network. Nevertheless, 
this approach could not be a helpful strategy in case of unknown differential equations that we have no identified data. 
In order to address this problem, a new method for solving differential equations will be introduced in this paper using 
only the boundary and initial conditions. As an efficient method, inadequate monitoring can provide an ideal bed to fix 
boundary and initial value issues. For verification of the proposed method, a reaction–diffusion equation was performed. 
This equation has a variety of applications in engineering and science.
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1 Introduction

Reaction–diffusion equation (RDE) is one of the well-
known partial differential equations (PDEs) in engineer-
ing sciences as well as chemistry and finance [12]. RDE, by 
considering the simultaneous diffusion and dissipation of 
a property in the system gives an accurate model to pre-
dict the value of that property in the space-time domain. 
Coefficients, variables, boundary conditions type and 
dimensions of the RDE are highly dependent on the case 
which is studying, and based on the way that they are cho-
sen, proper technique must be taken. All techniques aim 
to represent a precise solution (C(X, t)) of the RDE which 
describe diffusive property concentration in each time and 
position [21].

Although there are numerous numerical and analytical 
techniques to solve PDEs with different conditions, there 

is no global method which can handle all kinds of PDEs. In 
recent years, by the explosive increment in available data, 
several heuristic approaches which all rely on the Machine 
Learning (ML) have been introduced for solving linear and 
non-linear PDEs [1, 2]. In all of them, models, by the utility 
of available data set tries to discovery the governing rule 
between initial/boundary conditions and the solution. 
Nevertheless, data-driven models can adequately learn 
the physics of the PDEs, but it requires the solution of the 
PDE before the solving process, which is not available in 
most cases.

In this work, weakly supervised learning was utilized to 
solve the one-dimensional RDE with constant coefficients 
and Dirichlet boundary condition. The benefit of this tech-
nique is that the network is trained whit only the bound-
ary condition without providing any solution before the 
solving process. For the validation purpose, the analytical 
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solution of the corresponding problem has been provided 
by taking advantage of Danckwert’s transform. Also, the 
dimensional analysis method was used to assess the func-
tion of the neural network in solving pure reaction and 
pure diffusion without any training process.

2  Related work

The present study is a connection between artificial intel-
ligence and dynamical systems, which each of them has 
been conducted in a variety of research studies. The for-
mer subject is researched by data scientists and AI devel-
opers. The main objective of weakly supervised learning 
is to provide a general platform technique for learning 
algorithms to be able to learn at the training stage with 
minimal initial marked data. The latter topic is aiming for a 
reliable method for solving PDEs. The use of various math-
ematical techniques for the estimation of the solution of 
PDEs is one of the essential aspects of this work.

Changing traditional numerical methods to alterna-
tive meshless approaches, such as machine learning, has 
become increasingly popular in recent years. Particularly in 
the event of problems with complex mathematical formu-
lation, machine learning schemes are replaced by classical 
models [11]. Oquab et al. [13] have used a weakly super-
vised convolutional neural network to identify objects in 
image processing to reduce the number of input labelled 
images. This method was a general concept and has been 
used in various applications, such as automated identi-
fication, medical image analysis and differential equa-
tion resolution [3, 8, 18]. Sharma et al. [17] trained an 
encoder–decoder U-Net architecture, which was a com-
pletely convoluted neural network to solve a steady-state 
two-dimensional heat equation on a regular square. For 
this reason, weakly supervised learning techniques have 
been used to describe the proper convolutional kernel 
and loss function to train the network only by using the 
boundary conditions of the PDE, rather than having a 
large number of marked data sets [17]. Han et al. [6] have 
introduced a new approach to use deep learning to solve 
high-dimensional PDEs. In the form of backward stochastic 
differential equations (BSDEs), they reformulate the PDEs 
and then use deep learning to approximate the gradient 
of the solution. Though their method is effective in dealing 
with high-dimensional situations, this method’s limitations 
justify looking for the comprehensive approach to resolv-
ing linear and low-dimensional PDEs [6, 19].

Then again, customary numerical strategies, for example, 
FDM and FVM, have been broadly created to handle various 
sorts of scientific issues which portrayal of a precise answer 
for them is not available [12]. For example, for the above 
case of the utilization of the response dispersion condition 

in sulfate assault, Zuo et al. [22] have utilized the limited 
contrast technique to discover the fixation dissemination of 
sulfate particles in concrete. Additionally, expanded looks 
into have led on the use of AI in various designing fields, for 
example, handling with violent streams and control theory 
[5, 10, 20].

3  Physics

3.1  Reaction–diffusion equation

For explaining 1-D RDE, a primary line has been considered 
as a domain with Dirichlet boundary condition at the parts 
of the bargains. By doling out the self-assertive consistent 
to the dissemination coefficients, we are able to control the 
part of the fabric on the transport phenomena. Too, the 
response coefficient indicated the impact of the interaction 
between the diffusive substance and medium. In this recrea-
tion, a high concentration connected to the boundaries, and 
the point is modelling the engendering of that substance 
among the space.

The general form of the RDE in one-dimensional space 
is shown in Eq. 1. Also, the initial/boundary conditions are 
given in Eq. 2 , and we want to determine C(x, t), the concen-
tration field in arbitrary time.

where D, R > 0 are the diffusion coefficient and reaction 
rate between specified material and domain respectively.

The analytical procedures are not accessible in most 
cases. Be that as it may, by expecting the straight line as 
space and Dirichlet boundary condition, the expository 
arrangement of the RDE is appeared in taking after. Since 
convergence analysis within the neural networks is an 
impossible task [14], this arrangement plays a critical part 
within the approval of profound learning comes about.

3.2  Analytical solution

For the utility of Danckwert’s method to represent the ana-
lytical solution and by considering Eq. 1 with constant coeffi-
cients (D and R), firstly, the equation must be solved without 
any source term (reaction term). Consequently, Eq. 1 reform 
to the Eq. 3 as follows:
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where C
1
 represents the solution of the RDE without any 

reactive term.
Let us attempt to find a nontrivial solution of (3) sat-

isfying the boundary conditions (2) using separation of 
variables:

Substituting C1(x, t) back into Eq. 3 one obtains:

where � is an arbitrary positive coefficient. The solution of 
the corresponding ODEs of Eq. 5 are:

leading to a of Eq. 3 of the form:

where A and B are constants of integration. Since Eq. 3 is a 
linear equation, the most general solution is obtained by 
summing solutions of type Eq. 8, so that we have:

where A
�
 , B

�
 , and �

�
 are determined by the initial and 

boundary conditions for any particular problem. The 
boundary conditions Eq. 2 demand that:

By utility of Fourier series, the final solution of the Eq. 3 
have been extracted as the following form:

Based on the Danckwert’s transform [9], the solution of the 
Eq. 1 can be calculated by the following integral transform:

Finally, after the integration, the final solution of the 1-D 
RDE (Eq. 1) can be shown as follow:
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where a
n
 , �

n
 and �

n
 are represented as follows:

3.3  Finite difference method

The finite-difference is considered as a powerful numerical 
strategy which is utilized to compute the precise solution 
of the PDEs in arbitrary domains. In this strategy, govern-
ing physical equations and space both discretized, and all 
equations solve iteratively on the discrete space. Consider-
ing the discretization of the domain 16 and time 17, the 
discretized shape of RDE for position m and time n would 
be:

where Cn

m
 is the concentration in time n and position m, 

also indices 0, L and ∞ represent the boundaries in time 
and positions, ends of the domain and last time step 
respectively.

With solving the Eq. 15 iteratively, the value of the C 
in each time and position converge to the correct value.

4  Deep learning solver

The point of this work is utilizing the deep neural network 
to solve the RDE with as it was utilizing boundary and 
initial conditions, without knowing the numerical or ana-
lytical solution or indeed having any labelled information. 
For this reason, the differential form of the equation has 
been decoded into a physical-informed loss function. This 
method makes a difference for us to discover the solution 
of the PDE without utilizing supervision within the frame 
of information.

To define the initial and boundary conditions of the 
problem into the deep neural network, we utilized a n ×m 
matrix which its columns and rows represent the positions 
and time steps respectively. All of the matrix components 
for the input matrix are zero except the primary and final 
columns which their values represent to the boundary 
condition values (which in this case is C

0
 ). Moreover, in this 
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matrix each row demonstrates the concentration distribu-
tion in a specified time-frame.

4.1  Deep learning architecture

A fully convolutional encoder–decoder organize within the 
shape of U-Net engineering has been utilized in this con-
sider, as Ronneberger et al. [15] have utilized this design 
for biomedical picture segmentation. The most reason for 
choosing a fully convolutional design among other struc-
tures is the adaptability of this structure to fathom issues 
at different scales. The arrange contains a few encoding 
convolutional and translating pooling layers which spare 
the input matrix estimate amid the learning handle. At last, 
the output matrix gives the solution of the PDE within the 
discretized space-time space. The schematic structure of 
the network has appeared in Fig. 1.

As it appears in Fig. 1, each encoding layer has been 
connected to the corresponding decoder layer utilizing 
Fusion link. The reason for the utility of fusion link is to 
pass the boundary values of the input to the output lay-
ers, and by this procedure, the network is not constrained 
to memorize the structure of the input in its bottleneck 
layers. The number of layers in our design is self-assertive, 
and it is conceivable to include layers into the network as 
much as essential.

4.2  Kernel

To make an intelligent network that can solve the equa-
tion in any time and position, it is necessary to define 
the governing rule in that equation in a simple way 
for the neural network. It is similar to the method that 
FDM use for solving the discretized equation. In fact, by 

discretization of a continues equation and transferring 
that equation into the algebraic form we can observe the 
governing rule for every point in space and time.

By reforming the Eq. 15, we can find the state of an 
arbitrary point in the space-time domain based on its 
neighbours as shown in Eq. 18:

And B defined as follow:

For transferring the relation among variables into the 
neural network, Eq. 18 have been decoded into the 3 × 3 
convolutional kernel as follow:

where

Discussed Kernel has been convolved into the across the 
input matrix, and the output matrix after normalization 
was used to calculate the Loss function:

By minimizing the Eq. 22, the deep neural network tries 
to make its’ solution closer to the real values which can be 
found in Eq. 18 and changing in boundary and initial con-
ditions train the network for solving any type of problems 
governed by reaction–diffusion physics.
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Fig. 1  Schematic diagram of 
the network architecture
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5  Results

In this section, the solutions of the RDE which have been 
conducted by analytical and Deep Learning methods ana-
lyze and compare with previously validated solutions. The 
solution of the proposed equation has been represented 
by taking advantage of the numerical method (FDM) for 
determining the concentration of the sulfate ion in con-
crete. To have better judgment, boundary and initial con-
dition of the demonstrated solution in this section have 
been chosen precisely similar to the Zuo et al. [22].

As it was raised in the deep learning section, the output 
of the U-Net network for specific input is a matrix which 
its columns and rows represent the position and time, and 
the value of each element demonstrates the concentration 
in ith time and jth position. On the other hand, the pro-
posed analytical solution in Sect. 3.2 gives the continues 
field of solution. Figures 2 and 3 illustrate the contour of 
the analytical solution of the proposed equation.

Looking at Fig. 2 in more detail, the concentration dif-
fusion along the time axis is apparent. Both the left and 
right edges of the demonstrated illustration represent the 
boundary conditions of the problem within this case are 
the same and equal to ( C

0
 ). By moving through the y-axis 

(Time-axis) of the contour, the propagation of the concen-
tration advance, although this phenomenon is less visible 
in this image and more evident in Fig. 3, because of the 
way the coefficients have chosen.

Figure 3 shows the contours of the RDE solution with 
different coefficients compares to Fig. 2. Reaction and Dif-
fusion coefficients have chosen in a way that after some 

time, the diffusion process fills all the domain rather than 
Fig. 2. In both Figs. 2 and 3, the reaction and diffusion pro-
cess plays a significant role, and none of then can not be 
neglected.

One of the demanding features of Fig.  3 is the bell 
shape of the iso-contours of the concentration. The rea-
son for this shape is the nature of the propagation in such 
cases which behave such as waves. Although the wave 
base solution of such systems is much developed for 
semi-infinite domains with pure diffusion, the nature of 
the wave behaviour of the RDE is evident in Fig. 3. Several 

Fig. 2  The contour of the concentration conducted by the analyti-
cal solution. ( D = O(10−8) , R = O(10−4))

Fig. 3  The contour of the concentration conducted by the analyti-
cal solution. ( D = O(10−8) , R = O(10−6))

Fig. 4  2D comparison of deep learning with FDM solver in different 
times
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Fig. 5  3D comparison of deep learning with analytical solution
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cases of wave solution of such systems can be found in the 
mathematical literature of diffusion phenomena [4, 7, 16].

Figure 4 compares the deep learning solution with finite 
difference method comes about in terms of concentration 
propagation along with space at various times. With look-
ing more accurately to Fig. 4, we watch that deep learning 
comes about to have high consistency with FDM comes 
about. However, it seems that deep learning can not accu-
rately forecast the concentrations values in primary time-
steps such as 1s. Many reasons can be named for the lack 
of deep learning in predicting the correct values in primary 
time-steps, but the most critical and compelling reason is 
the high gradient in this space-time.

In Fig. 5, 3D results of the reaction–diffusion solutions 
conducted by deep learning and analytical solution have 
been demonstrated. To have a better perspective of the 
physics of the reaction–diffusion process, the propor-
tion of the reaction rate and diffusion coefficient have 
chosen meticulously. The proportion of reaction and 
diffusion coefficient can determine the physics of the 
system among pure diffusion, pure reaction, and simul-
taneous reaction–diffusion. In fact, by choosing the cor-
rect range of coefficient, the role of the arbitrary term in 
the equation( reaction or diffusion) can outweigh the 
other term. For this reason, a dimensionless coefficient 
has been characterized which offer assistance us to cal-
culate the right extent of response and dissemination 
coefficients to have all three state of the arrangement 
in our computation.

Damköhler number is an important dimensionless 
parameter in chemical engineering which clarifies the role 
of diffusion, reaction or simultaneous reaction–diffusion 
phenomena in transport phenomena and define as follow:

(23)Da =
Rate of reaction

Diffusion rate

In our model Eq. 1, Damköhler number is defined as:

This number represents the states of reaction–diffusion 
in different states where D

a
≅ 1 , D

a
≫ 1 , and D

a
≪ 1 mean 

the physics of Reaction–Diffusion, pure Reaction, and pure 

Diffusion respectively.
The Mean Square Error (MSE) index has been utilized to 

calculate the deep learning faults in predicting the correct 
values of the equation. It has been observed that the final 
value of the concentration in space-time is dependent 
on the reaction and diffusion coefficients. However, this 
dependency is not as much as affect the accuracy of the 
final results in a way that they become unreliable.

To have a quantitative assessment of deep learning 
solution, we assumed one of the coefficients constant, 
and by changing the other coefficient MSE value has 
been computed, and the result of this analysis is reported 
in Table 1.

6  Conclusion

In this paper, the capability of weakly supervised learn-
ing in comprehending the transient one-dimensional 
reaction–diffusion equation has been studied. Also, an 
analytical solution for the RDE based on the separation 
of variable technique and the utility of Danchwert’s trans-
form has proposed.

It appeared that the results conducted by deep learning 
method have grate consistency with analytical and numer-
ical results. Moreover, it was observed that the values of 
the reaction and diffusion coefficients could cause the 
miss estimation by deep learning. Although these noises 

(24)D
a
=

RL2

D

Table 1  Accuracy analyze based on changing coefficients

R coefficient MSE value

(a) D = 2.7 × 10−9

   2.25 × 10−2 0.587

   2.25 × 10−5 0.495

   2.25 × 10−7 0.623

   2.25 × 10−10 0.341

D coefficient MSE value

(b) R = 2.25 × 10−7

   2.7 × 10−2 0.305

   2.7 × 10−7 0.576

   2.7 × 10−8 0.588

   2.7 × 10−10 0.534
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were not in such a level that manipulates our results in this 
case, it could be the source of destructive faults in other 
problems like BSDEs.

Finally, it is worth emphasizing that weakly supervised 
learning, cloud successfully tackle the lack of sufficient 
labelled data to learn the physics of the governing equa-
tions. Furthermore, this method can be considered for 
complex problems with limited labelled data and complex 
governing equation.
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