SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT
CLOUDS*
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Abstract. In this paper we present a general framework for solving partial differential equations
on manifolds represented by meshless points, i.e., point clouds, without parametrization or connection
information. Our method is based on a local approximation of the manifold as well as functions
defined on the manifold, such as using least squares, simultaneously in a local intrinsic coordinate
system constructed by local principal component analysis (PCA) using K-nearest neighbors (KNN).
Once the local reconstruction is available, differential operators on the manifold can be approximated
discretely. The framework extends to manifolds of any dimension. The complexity of our method
scales well with the total number of points and the true dimension of the manifold (not the embedded
dimension). The numerical algorithms, error analysis, and test examples are presented.
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1. Introduction. Point cloud data is defined simply as a set of points with no
specific ordering and connection. In 2D or 3D, points are defined by their X, Y and
X, Y, Z coordinates respectively. Point cloud is the most basic and intrinsic way for
sampling and representation of geometric objects or information in high dimensions.
For examples, 3D point cloud can be easily obtained through scanner for shape model-
ing, images can be thought as points in high dimensions, etc. In this work we present
a general framework for solving partial differential equations (PDE) on manifolds
represented by point clouds. The motivation comes from many problems in science
and engineering such as surfactant distribution along a moving interface in fluids [1],
surface diffusion in sintering [2], in biology [3, 4], in image processing [5, 6, 7, 8] and
etc. Another important application is in data science, where the task of visualizing,
extracting information, analyzing and inferring underlying structure from data sam-
ples is ubiquitous. In many cases, point cloud data resides or is believed to reside
on or near a low-dimensional manifold in a much higher dimensional ambient space.
Although there are useful tools, such as the principal component analysis (PCA), to
provide local or global linear structure approximation, it is very challenging to extract
global nonlinear structure or information in general. Mathematically and computa-
tionally one can obtain a lot of intrinsic information, such as manifold learning, by
studying the behavior of differential equations, such as heat equation, or eigenvalue
problem for differential operators, such as Laplace-Beltrami operator, on manifolds
[9, 10, 11, 12, 13, 14, 15, 16, 17]. By studying these intrinsic geometric differential
equations/operators, one can piece together local structures to characterize the global
structure.

There are different approaches to solve PDEs on manifold depending on how the
manifold is represented. For a nicely parameterized manifold the natural way is to
express differential operators in the parameter space and then discretize the result-
ing equations. [18] gives a decent tutorial and survey of methods for parameterizing
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surfaces. However, it can be very difficult to construct a global parameterization for
complicated surfaces and especially for high dimensional manifolds. For a nicely tri-
angulated manifold, one can discretize a PDE directly on the triangulation, which
can be effective for certain classes of equations, such as for elliptic equations using
standard finite element method. However, this approach could also have a few diffi-
culties. First, to get a nice triangulation can be difficult if not impossible when the
dimension of the manifold is three or higher. Second, it is difficult to define high
order geometric quantities, such as normal and curvature, accurately based on piece-
wise linear approximation. These are discussed in [19, 20]. To avoid the difficulty of
parametrization or triangulation, an alternative is to use implicit representation, e.g.,
using level set representation, which embeds the manifold as well as the differential
equation defined on the manifold into the ambient space. Then discretize the ex-
tended differential equation in the ambient space using a Cartesian grid [20, 21, 22].
Similar in nature, Ruuth et al. [23] proposed closest point method to solve PDEs
on surfaces, which uses a closest point representation of the underlying surface and
embeds differential equations on the surface to the ambient space and then solve it
using finite difference method on a uniform Cartesian grid in a narrow tube around
the manifold in the ambient space. First, a Cartesian grid is not intrinsic or naturally
adaptive to the sampling of the point cloud. Second, laying down a grid in a high
dimensional ambient space and performing computation on it can be very expensive,
even though the true dimension of the manifold may be low, e.g. manifold with high
co-dimension.

Since point cloud is the simplest and intrinsic way for sampling and representation
of manifold in practice, we propose a framework of solving PDEs directly on point
clouds without using parametrization, triangulation or grid, which can be difficult to
construct and may introduce artifacts. The key idea is that one can define differential
operators on manifold by local construction of the manifold, which is first proposed in
[24]. In another word, once we can construct a function as well as the manifold locally
in a common reference coordinate, we can differentiate the function with respect to
the metric of the underlying manifold simply using chain rule. So in our method,
we only need to use the K-nearest neighbor (KNN) points to define a local intrinsic
coordinate system using PCA and to construct the manifold and function locally using
least squares. Our method can handle manifold of any dimensions or co-dimensions in
the same way and the complexity scales well with the total number of sample points
and the real dimension of the manifold. Our method is aimed at solving geometric
PDEs on manifolds represented by point clouds for which geometry and metric of the
underlying manifold has to be incorporated into the discretization. It is different from
typical meshless methods for solving PDEs in Euclidian space.

The paper is organized as follows. Section 2 gives some brief mathematical formu-
lations about differentiation on manifolds and moving least squares (MLS) method,
which will be used throughout the paper. In Section 3, we describe our approach to
approximate differential operators. Briefly, our approach consists of three main parts,
construction of local coordinate system, local approximation of manifold and local ap-
proximation of function. In Section 4, we use our approximated differential operators
to solve PDEs directly on point clouds. How to handle boundary conditions for open
surfaces is also discussed. Numerical experiments in 3D and higher dimension spaces
are presented in Section 5. In Section 6, we give a brief summary. Finally, Appendix
A gives error estimates for MLS and Appendix B gives the connection between MLS
and a constrained quadratic optimization problem.
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2. Mathematical formulations. Before explaining our idea of solving PDEs on
point clouds based on local approximation, we first briefly introduce some mathemat-
ical background and notation of differential geometry about derivatives on manifolds
and the MLS problem. They will be used throughout the rest of the paper.

2.1. Derivatives on manifolds. For simplicity, we only consider two-dimensional
manifold in R? and only briefly introduce definition of gradient and Laplace-Beltrami
(surface Laplacian). We refer [25] to readers for more details and definitions of the
derivatives for other dimensional manifolds.

Let M C R3 be a two-dimensional manifold and suppose it is parameterized by
(x1,22). We can write the manifold as I'(x1, z2) = (X (21, 22), Y (21, 22), Z(x1,22)),
the metric tensor G' = [gy5] is given by g;; = (T's,,T'z;), where Ty, = (X3, Yz, Zz,),
and I'y, = (Xg,, Yas, Zs, ). The tangent space TxM at x € M is spanned by I'y, (x)
and Ty, (x).

Let f € C?(M). Under this parameterization, one has the gradient operator,
given by (see [25] page 102)

_ of of of of
— 1 _ 11 ~J 12 ¥J 21 ~YJ 22 YJ
va - [I‘wlarﬁh] G vf - <g a.’El + g (9.’)32) I‘331 + (g 61’1 +g 61'2) I‘$2
(2.1)

where ¢ are the components of G™!, the inverse of the metric tensor G. And the
gradient V o f(x) is a vector in the tangent space Tx M.
The Laplace-Beltrami operator (surface Laplace) can be written as
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aui= 3 oo (vas'57) (2.2)
where g = det(G).

Both the gradient V o f and Laplace-Beltrami operator A f are geometric in-
trinsic, though the expression (2.1) and (2.2) depend on a local surface parameter-
ization. Keep this in mind, we will use this important property to introduce local
parameterization while the computation based on local parameterization is still geo-
metric intrinsic.

2.2. Moving least squares. Moving least squares (MLS) is a method of ap-
proximating functions by linear combination of certain basis functions, such as poly-
nomials, from a set of point samples using (weighted) least square formulation with
the origin positioned at a location depending on the point samples (moving). MLS is
a powerful tool for function approximation from scattered points. Compared to stan-
dard interpolation, which can be viewed as a special case of least square approximation
where the degree of freedom matches the number of constraint from data, although
using more data points, the key advantages of MLS is its robustness with respect to
perturbations and extra degree of freedom that may be utilized to incorporate other
desired structures. We briefly introduce MLS problem and its solution here. We refer
the readers to [26, 27, 28] for more details of MLS. We present some error analysis
for MLS in Appendix A. Also we recast the MLS problem as a constrained quadratic
optimization problem in Appendix B, from which we can add additional constraint
to incorporate desired properties of the continuous operator during discretization,
such as requiring diagonal dominance which corresponds to maximal principle, in the
resulting discretized Laplace-Beltrami operator matrix.
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We use polynomials for our MLS. Given K points located at positions x; around
point X in R¢ where k € [1,--- , K]. We wish to obtain a local d-dimensional degree
m polynomial fg(x) that approximates f(x) given scaler values fi = f(xx). We can
compute such fx(x) by minimizing the following weighted sum:

min, Z (e = =D fe(xi) = fiell* (2.3)

nlkl

where I1¢ is the space of polynomials of total degree m in d-dimensions and w(-)
is some positive weight function. The above sum is weighted by w(dy) where dy =
|lxx — X|| are the Euclidian distances between X and the position of data point x.

Since I1¢, is shift invariant, we take the basis functions to be the monomials shifted
to X, which makes computations easier and clearer. fx can then be written as

f=(x) = b(x)Tc(X) = b(x) - c(X) (2.4)
where b(x) is the polynomial basis vector, and ¢(X) = [e1,ca, - ,cI]T is the coef-
ficient vector to be determined by (2.3), I = (i;{ﬁ)! is the number of basis in II¢,.

For example, b(X) = [1, r1 —T1,T9 — Ta, (.131 — 51)27 (.231 — fl)(J?g — 52), (1‘2 — EQ)Q]T
for T2, bivariate (d = 2) degree 2 polynomial space. By taking partial derivatives
with respect to the unknown coefficients ¢y, co, -+ , ¢y, we obtain a linear system of
equations and we can compute c(X) as

K
X) = [Z wkb(xk)b(xk)T] > wib(x) fi (2.5)
k=1 k=1

where wy, = w(||x;—X||). Suppose b; = (x—X)* with multi-index a; = (a1,a2, - ,aq),
that is b; = (x1 —T1)* - - - (xq —Tq)%, then we can use «;lc¢; to approximate D% f(X).
A key point is that all the ¢; and hence the approximation of D% f(X) is a linear
operation on fj if the neighboring points x; are given. The local approximation er-
ror is of order O(h™*1~1%l) if the sampling points x; are well distributed, where
h = maxy, ||xx —X||. Actually one order higher super-convergence can be observed of-
ten in practice due to error cancelation when points distribution has some symmetry.
Both error estimates and super-convergence are presented in Appendix A.

3. Approximation of differential operators on point clouds. We explain
our approach of using local construction to approximate differential operators on
manifold, such as gradient Vf and Laplace-Beltrami operator A, f, numerically
for point clouds in this section. The main issue is how to compute derivatives with
respect to local metric. The key idea is simply based on chain rule, i.e., computing
the metric of the manifold and the derivatives of a function with respect to a reference
coordinates locally. Our method consists of three main parts. First we use PCA on
KNN to estimate local dimensions and construct a local coordinate system for both
tangent and normal spaces. In this coordinate system, the manifold can be param-
eterized in terms of the tangent space. We use MLS to construct the manifold and
compute the metric tensor g;; = (I'z,,T'z;) in this coordinate system. Finally, we can
approximate differential operators on the manifold by using MLS approximation of a
function and its derivatives in the same coordinate system and then using formulas
like (2.1), (2.2). Again the key point is that the operation is linear in terms of the
values of the function at the neighboring points. Hence we construct a finite difference



SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS 5

scheme directly on point clouds. Actually we use the example of Laplace-Beltrami
operator to show that we can design the finite difference scheme either based on MLS
or using a constrained quadratic optimization approach which guarantees both the
accuracy and that the resulting discretized Laplace-Beltrami operator satisfies the dis-
crete maximal principle. Also we will discuss how to incorporate boundary conditions
(both Dirichlet and Neumann) for open manifolds in Section 4. For simplicity, we
use two-dimensional manifold in R? to illustrate our approach, it is straightforward
to generalize the approach to higher dimensions.

3.1. Local coordinate system. First we use local PCA to construct a local
coordinate system which is a direct sum of tangent space and normal space at each
point [29, 30]. Then we parameterize the manifold locally on the tangent space and
then use equations such as (2.1) and (2.2) to compute differential operators on mani-
fold. For example for a point cloud P = {p;|¢ = 1,2,--- , N} sampled from a smooth
two-dimensional manifold M in R3, denote the indices set of the K-nearest-neighbors
(KNN) of each point p; € P by N(i). Define the covariance matrix P; at p; by the
KNN:

Pi= Y (pr—c)"(pr—ci), (3.1)

kEN(i)

where c; is the local barycenter ¢; = & 2 ken(i) Pk The eigenvectors (et, el el) of
P; form an orthogonal frame associated with eigenvalues (A, A5, A) with XY > X} >
)\g > 0. The relative size of the eigenvalues can reveal the true dimension of the
manifold locally. The eigenvectors corresponding to the small eigenvalues form the
basis of the normal space. In our example, for point cloud sampled from a smooth
two-dimensional manifold M in R3, if the sampling rate is fine enough to resolve
the variation of the underlying manifold, we will have A > A5 > X} > 0. Hence
(et,eb) form the basis of the local tangent plane. In another word, the plane that
goes through ¢; and orthogonal to €} fits the KNN best in terms of least squares. In
our computation, p; is always taken as the origin of the local coordinate system. In
this way, we have defined a local coordinate system (p;;e},eb, el) at each point in
P. KNN of p; have local coordinates (z%,y}, %), which will be used for surface and
function approximations.

3.2. Local approximation of manifold and the metric tensor. To compute
the differentiation on manifold one needs the metric tensor. Here we use the MLS
method (Section 2.2) to approximate the manifold in the local coordinate system
constructed above and then compute the local metric tensor at each point. Other
approximation methods can also be used in our approach.

In principle, one can use MLS to construct polynomials of any degree as long as
enough KNN are used. To compute the Laplace-Beltrami operator, which is a second
order differential operator, it suffices to construct quadratic polynomial through the
KNN at each point. Again, assuming the surface is dimension two, once a local
coordinate system for a point p; is constructed, a local degree two bivariate polynomial
z;(x,y) is approximated by minimizing the following weighted sum:

3 w(llor — pill) (zizh vk) — 24)° (3.2)

kEN (4)

where (z%,y},21) are local coordinates of point py, in the KNN of p; and w(-) is some
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positive weight function. T'; = (z,y, z;(z,y)) is thus a smooth representation of the
surface near the point p; under local coordinate system (p;; e}, e}, e}).

Assume z; (w, y) = a1 + agsx + asy + a4x2 + asry + a6y2. The two tangent vector
basis are given by T (p;) = (1,0, 22(0,0)) = (1,0, a2) and T (p;) = (0,1, %Zy’ (0,0)) =
(0,1, as3), notice that we take p; as origin of the local coordinate system. Under such
parameterization, the metric tensor G(x) is some function of coefficients of z;. So

s it -1 : 11 _ _1+a® —
is its inverse G~ 1(x). For instance, g''(x) = Tiar57, where a = a2 + 2a47 + asy,
. 14a?
b= a3 + asx + 2agy and (x,y, z) are local coordinates of x and g'!(p;) = ﬁ
2 3

The gradient in local coordinate system is

Vo (pi) = (6 5 (01) + 925 BT p0) + (7 G (00) + 975 (BT, ()
(3.3)

To simplify notation, we use g* instead of g/ (p;). For Laplace-Beltrami operator,
we can write Aus(p;) as

Oug
ox

Us 2ug 2 2ug
(pi) + AQ%(PJ + A3%?(Pi) + A43T8y(pi) + A588?(Pz‘)

(3.4)
where A;’s are obtained by expanding and simplifying equation (2.2) and they only
depend on coefficients of local surface approximation as, as, - - - , ag, which only depend
on locations of the KNN. Notice that terms in (3.3) g/, T, and T, and terms in (3.4)
A,;’s are computed based on local approximation of the surface/manifold and they are
independent of the function wu.

Apmus(pi) = A

3.3. Local approximation of function and its derivatives on manifold.
Now that the manifold is locally approximated, which can be viewed as a local
parametrization in tangent space, one can use MLS to locally approximate a function
ug, which is defined on the manifold, and its derivatives in the local coordinate system.
Again we locally approximate u, in the local coordinate system (p;;et,eb, el) using
a degree two bivariate polynomial u;(x,y) near point p; by minimizing the following
weighted least squares sum:

S wlllpr — pil) (ui(rh vh) — us(pr))” (3.5)

kEN(i)

Assume u;(z,y) = by + box + b3y + byz? + bsxy + bey?, the surface gradient in
local coordinate system (3.3) becomes

Vomus(pi) = (9702 + ¢203)Tu (pi) + (9% b2 + g*2b3) T (ps) (3.6)
which is equivalent to
Varus(pi) = (9" b2 + g™bs) (€] + azel) + (g7'b2 + g*°bs) (e} +azel)  (3.7)
Similarly for Laplace-Beltrami operator, we can write (3.4) as
Apus(Pi) = Arba + Aobs + A3(2bs) + Asbs + As(206) (3.8)

where A;’s are obtained by expanding and simplifying equation (2.2) and they only
depend on coefficients of local surface approximation as, as, - - - ,ag. Using error anal-
ysis for MLS in the Appendix, we can easily derive error estimate for approximations
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of the above differential operators on manifolds. We point out that super-convergence
can be achieved by MLS in certain situations. More details can be found in Section
5 and Appendix A.

In general, given a point cloud P = {p;|i = 1,2,--- , N} with N points sampled
from a two-dimensional manifold in R3. We can represent a function u, defined on
the manifold as a N-dimensional vector U = [u1, ug, - - ,uN]T with u; = us(p;). All
the g%, eé and A; are computed from local manifold approximation I';. For b;, when
using (2.5) to solve (3.5), we can write b; computed from (3.5) as a linear function of
U as shown in (2.5), i.e., b; = B;U where B; is some N-dimensional row vector, and
only points in the KNN of p; have nonzero coefficients. After all, we can discretize
surface gradient and Laplace-Beltrami operator as

Vmus = [Vi Vo V3]U (3.9)
and
Apus = MU (3.10)

where Vi, V5, V3 and M are N x N matrices and these matrices are sparse.
REMARK 1. Although the weight function in MLS does not affect the approzi-

mation order as shown in Theorem A.2 in Appendiz A, however the stability can be

affected. Two popular weight functions used in MLS are Wendland function defined

w(d) = (1 _ ,d3>4 (‘gl + 1) , (3.11)

which is defined on the interval d € [0,D] and w(0) = 1, w(D) = 0, w'(D) = 0
and w" (D) = 0, and inverse of squared distance function 1/(d* + €2). These two
weight functions work fine for well sampled point clouds but may be unstable for quite
non-uniform ones. On the other hand, the special weight function

w(d)_{ }/K %;8 (3.12)

introduced in [17] works better in our numerical experiments for more general data
sets.

REMARK 2. All the above formulations extend naturally to embedded manifolds
with high-codimensions. Using local PCA one can find the true dimension of the mani-
fold as well as the tangent and normal spaces. Local approximation of the manifold and
function defined on the manifold can be parameterized by the tangent space. For exam-
ple, assume a manifold of n dimension is embedded in R, n < d. Local PCA provides
a local coordinate system (x1,-+ ,Tp, Tpt1, - ,2Lq), where x1,--- ,x, belong to the
tangent space and Tp41,- - ,xq belong to the normal space. One can construct a local
approximation of the manifold (z1, -+ ,Tn, Tnt1(T1, - ,Tn), - ,xa(T1,  * ,Zpn)) as
well as a local approzimation of a function f defined on the manifold as f(x1,--- ,zp)
in the same coordinate system using MLS. Local metric g;; = (T'y,,Ty,),i,5 = 1,--- ,n
as well as differentiation of functions on the manifold can be approzimated as before.
The complexity of our method scales well with the true dimension of the manifold
rather than the embedded dimension. We will show examples of solving PDEs on high
co-dimensional manifold in Section 5.
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3.4. Maximum principle preserving discretized Laplace-Beltrami oper-
ator. One issue of using MLS to approximate a function and its derivatives is that
it only takes into account local approximation error. When solving a PDE, one also
needs to preserve certain property of the differential operator after discretization. For
examples, for an elliptic or a parabolic PDE, such as Laplace equation or heat equa-
tion, maximum principle is a very important property that should be preserved after
discretization. Here we present a constrained optimization approach to approximate
a function and its derivatives which can utilize the flexibility of having more degrees
of freedom than constraints to enforce desired properties in the discretization. We
use Laplace-Beltrami operator as an example to design a discretization that preserves
the maximal principle using constrained optimization. As shown in Appendix B, esti-
mates of partial derivatives of us can also be obtained from the following constrained
quadratic optimization problem: finding coefficients vector a; € RX for the approxi-
mation b; = a;‘FUN for 1 =2,3,---,6 where by, b3, by, b5, bg are estimates of %1;“ (ps),

2 2 2 . T .
9 (p,), L2 (py), Lt (py), L% (p,) respectively and Uy = [u, (x)] k € N(i) by

minimizing the quadratic form

RO
Qzl Z i (3.13)

2 S wllpe = pill)
subject to the linear constraints
S oalbix) =r) forj=1,2, 1 (3.14)
kEN (i)
T
where r; = [r%l),rél), e ,rgl)} = q;le; and e; is the [-th standard basis for R'.

For degree two bivariate polynomial, I = 6, b(x) = [1,x,y,x2,xy,y2]T, ay = (0,0),
az = (1,0) ag = (0,1), ag = (2,0), a5 = (1,1) and ag = (0,2). We call (3.14) as
“consistency constraint” (more details can be found in Appendix B).

To obtain estimates of 831;5 (ps), %(pi), %(pi), g;—g;(pi) and %2;25‘ (ps), we can
either solve the MLS problem or solve the above constrained quadratic optimization
problem for [ = 2,3,--- ;6. And the estimates from MLS are the same as those from
the above constrained quadratic optimization (more details in Appendix B). How-
ever, the constrained quadratic optimization formulation allows us to add additional
constraint to enforce extra properties in the discretization. For example, one desirable
property for the discretized Laplace-Beltrami operator matrix M in (3.10) is diagonal
dominance, which is the discretized version of the maximum principle for Laplace-
Beltrami operator. Following [31] and section 6.5 of [32], we impose a sign restriction.

Using by = al Uy, expression (3.8) becomes
AM'UJs(pi) = (Alag + Asaz + Aszay + Azas + A5a6)TUN (315)

Suppose N (i) = {i1,i9, - ,ix } and without loss of generality ¢ = i1, that is p; = py, -
Compare with expression (3.10), we know only K entries in each row of M are non-
zero. And they are

Miik = A1a§€2) + Agag’) + A3a§€4) + A4a§€5) + A5a§€6) (316)
We impose the following sign restriction constraints.

Miik <0 ifi= Tk, Miik >0 ifq 75 ik (317)
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Notice that by(x) = 1 implies ), a,(gl) =0, so >, My;, = 0. The resulting matrix
M will then be diagonal dominant. We call constraint (3.17) “diagonal dominant
constraint”. However, symmetry is a global property. We can not use variational
formulation to get a symmetric matrix without a global mesh in general.

By solving the quadratic minimization problem (3.13) with “consistency con-
straint” (3.14) and “diagonal dominant constraint” (3.17), we obtain a discretized
Laplace-Beltrami operator matrix M that satisfies the discrete maximum principle.
In general, (3.13)4(3.14)+(3.17) does not have a closed form solution. One can use
“quadprog” function in Matlab to solve the quadratic optimization problem with the
two systems of constraints.

REMARK 3. Notice that the starting point of MLS approach is to provide a local
function approximation, while that of the constrained quadratic optimization approach
is to provide estimates of a function and its derivatives evaluated at a point. On the
other hand both methods produce the local Taylor expansion of the function. We give
an exact relation between these two constructions in Appendiz B. Although two meth-
ods can achieve the same accuracy, the constrained quadratic optimization approach is
more computationally expensive. However it preserves maximum principle in discrete
solution and is more robust for more challenging examples, such as when the data
points are non-uniform.

4. Solving PDEs on point clouds. Once we know how to discretize differential
operators on point clouds, we can solve PDEs on point clouds. Here we use a few
different types of PDEs as examples. We start with the eigenvalue problem for the
Laplace-Beltrami operator defined in (2.2),

~Amb = Ao (4.1)

This eigenvalue problem is turned into an eigenvalue problem for a linear system
after discretization based on MLS (3.4) or the constrained optimization approach
(3.13)+(3.14)+(3.17) and using boundary condition discussed below for open man-
ifold. Then we can use Matlab (or any other eigenvalue solver) to solve it. A few
examples based on MLS and some applications in computer vision were reported in
[17]. In Section 5, we will show a few more examples, especially using the discretization
based on the constrained optimization approach and for manifolds with boundary.
Next we solve time dependent PDE of the following form

Oug
ot

= F(X7 usvau37AMus) (42)

For this time dependent problem, we use simple time discretization, such as forward
Euler,

Ut = U™ 4+ At F(x, U™, Vi Vs VaJU™, MU™) (4-3)

More sophisticated time discretization to relax time step constraint, such as Crank-
Nicolson scheme, was designed in [24], which will not be discussed in this paper. In
Section 5 we show an example of solving heat equation on point clouds for Bunny
using Crank-Nicolson scheme for time discretization.

As the last example we design an upwind scheme for hyperbolic PDE on point
clouds using the semi-Lagrangian approach. To compute the solution at a given point
p at time t" 1!, one can first find the characteristic along the manifold that starts at p
and goes backward by At to p, and then solve an ODE along the characteristic from
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p to p with initial value given at p. To find the characteristic along the manifold
may not be easy itself. One can use a local first order linear approximation and then
project p back to the manifold. To get the value at p at ", we first find the KNN of
P, and then use local PCA through the KNN to define a local coordinate system. The
value at p at t" is then interpolated by the values at the KNN at ¢ using MLS in
this local coordinate system. For a concrete example and details, please see advection
equation on a torus in Section 5.1.2.

4.1. Boundary condition. For closed manifold, there is no boundary condition
involved. For open manifold one has to deal with boundary conditions at the manifold
boundary. A reasonable assumption is that we know what are boundary points and
interior points in the point cloud. We use the time dependent PDE (4.2) as an example

to demonstrate our approach. Without loss of generality, we assume p1, po, -+ , Pr are
boundary points, that is we have L boundary points and N — L interior points. And we
can write U as [U; UQ]T where Uy = [ug,uz, - ,uL]T and Uy = [up41,Up42,  * , UN]-

4.1.1. Dirichlet boundary condition. Dirichlet boundary condition is easy
to implement. At interior points we simply discretize the PDE using KNN as before.
Whenever boundary points are involved in the KNN;, their prescribed values are used.
As an example, the time dependent PDE (4.2) with Dirichlet boundary condition has
the following form

Ous __
{ 5 = F(x,us, Vaus, Apus) x €Q (4.4)

us(x,t) = g(x,1t) x € 00

where ¢ is a given function. We can discretize g(x,t) as a L-dimensional vector G(x, t)

and write F as [F} FQ]T7 since we know pi1,p2,- - ,pr are boundary points. Using
(4.3), we have the following solver

{ U™t = U + At - Fy(x, U™, [Vi Vo V3)U™, MU™) (4.5)

Uptt = G(x, )

4.1.2. Neumann boundary condition. Implementation of Neumann bound-
ary condition is a little bit more complicated since geometry of the boundary, i.e., the
normal, is involved. However, we can use the same procedure as before to construct
the boundary and approximate its normal in a local coordinate system and then set up
a discretized equation at a boundary point using the boundary condition. Again we
use the PDE (4.2) with Neumann boundary condition on two-dimensional manifold
in R? as an example,

Jus __
{ gt - F(X7 U'va./\/lusaAMus) x € (46)

%7:15 = g(x,1) x € 00

where n denotes the normal to the boundary 9€2 in the tangent plane of {2 and g is a
given function.

At interior points we simply discretize the PDE using KNN as before. At the
boundary, which is a one-dimensional curve for a two-dimensional manifold, we need
to approximate %ﬁf =n-Vyus. At each boundary point, we first find its KNN from
the point cloud and approximate V aus as before. Next we approximate the normal
to the boundary in the tangent plane, n. Since we already have the normal to the
surface in the first step when we approximate V pqus, we only need to approximate the
tangent direction of the boundary curve. To do this we have to construct the boundary
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curve in a similar fashion as we do for the surface. We find KNN of a boundary point
p: € {pili =1,2,---, L} where all these KNN points belong to boundary points and
this K can be different from that for surface approximation. Then we construct a
local coordinate system (p;;et,eh,es) using PCA from these boundary KNN. MLS
is used to approximate the boundary curve near p; as r;(x) = (z,y;(x), z;(z)) in this
local coordinate system (p;;et,e5,e4). From the MLS construction we can compute
the tangent direction of the boundary curve. Finally the normal n is defined as
the direction orthogonal to both the normal of the surface and the tangent of the
boundary. Use the above procedure, Neumann boundary condition can be discretized
as AU = G(x,t) where A is a L x N matrix and G(x,t) is a L-dimensional vector
function. We can write A as [A; Ag] where 4; and A are L x L and L x (N — L)
matrices and F as [F} FQ]T. For the time dependent problem (4.6), we use the
following scheme

{ Ut = Up + At - Fy(x, U™, [V Vo V3]U™, MU™) (4.7)

AU = G(x, ) — AUy

5. Numerical experiments. In this section we present numerical examples in
three and higher dimensions. In particular, convergence studies are carried out for ex-
amples where exact solutions are known. Some of the examples used here come from
[22], [23] and [16]. For simplicity, we use degree 2 polynomial for all examples. For
PDEs that contain Laplace-Beltrami operator, we use both MLS and quadratic opti-
mization approach with “consistency constraint” and “diagonal dominant constraint”
to discretize the PDEs.

5.1. Time dependent PDEs.

U s

5.1.1. Diffusion equation on sphere. Consider first diffusion 88 = Apus on
the unit sphere. The unit sphere is parameterized as I' = (cos 0 sin ¢, sin 0 sin ¢, cos ¢),

the Laplace-Beltrami operator can be written as Ay = ﬁ (%22 + Z?ﬁi % + a‘%. With
initial condition

us(0,¢,0) = cos ¢,
the solution at any time ¢ is given by
us(0,¢,t) = e 2" cos ¢.

We apply our method to discretize the diffusion operator directly on point clouds
and use forward Euler (4.3) with time step At = 0.1Az? where Az = min; ; [|p; — p;|
and constant K = 15 (number of KNN to be used). We calculate the max-norm
relative errors of the numerical solution at the final time ¢t = 1 for several uniformly
distributed point clouds with different sample sizes. We calculate numerical solutions
for both MLS approach and constrained quadratic optimization approach, also we
use 2 popular weight functions, one is the Wendland function (3.11), the other is the
inverse of squared distance. For simplicity, we use D = 1.1 maxy, dy, for all experiments
and ¢ = 1073 for 1/(d? + £2). These results are reported in Table 5.1.

This convergence test indicates a first-order convergence in the value of u; with
respect to sample size (N) and second-order with respect to space (h) for both MLS
approach and constrained quadratic optimization approach. Also, we observe the
same convergence orders for both Wendland and inverse of squared distance weight
functions, which is also observed for the rest of the examples. For simplicity, we
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sample size MLS [Wendland] MLS [1/(d? + £2)]
N Error Conv. in N | Conv. in h Error Conv. in N | Conv. in h
1002 1.54e-02 2.35e-02
1962 7.88e-03 1.00 1.99 1.19e-02 1.01 2.03
4002 3.90e-03 0.99 1.97 5.83¢-03 1.00 2.00
7842 2.01e-03 0.99 1.97 2.96e-03 1.01 2.02
16002 9.97¢-04 0.98 1.97 1.45e-03 1.00 2.00
sample size Constraint [Wendland] Constraint [1/(d? + €2)]
N Error Conv. in N | Conv. in h Error Conv. in N | Conv. in h
1002 1.54e-02 2.35e-02
1962 7.88e-03 1.00 1.99 1.19e-02 1.01 2.03
4002 3.90e-03 0.99 1.97 5.83e-03 1.00 2.00
7842 2.01e-03 0.99 1.97 2.96e-03 1.01 2.02
16002 9.97¢-04 0.98 1.97 1.45e-03 1.00 2.00
TABLE 5.1

Maz-norm relative errors for the diffusion equation on a unit sphere.

only present Wendlend weight function results in the rest experiments. Notice that
the convergence is about one order higher than we expect from Theorem A.2 due
to symmetry of the sphere and uniform sampling of the point clouds, which agrees
with the super-convergence result (Theorem A.3) in Appendix A. We will see similar
results in later experiments. An interesting observation is that the difference between
MLS approach and constrained quadratic optimization approach is very tiny for this
simple shape with uniform sampling. In other words, the discretized Laplace-Beltrami
matrix from MLS approach is close to be diagonal dominant in this case.

5.1.2. Advection equation on a torus. We next solve an advection equation

Ous  Oug Oug

2 =0 5.1
at a0 T ae (51
on a torus given by ' = ((R + r cos ¢) cos 0, (R + r cos ¢) sin 0, r sin ¢) with R = 1 and
r = 0.5. The surface gradient can be written as V4 = mre% + T%l"(ba%
and (5.1) can be written as

Oug
ot

+v-Vpmus =0 with v =Ty + 2]__‘¢ (52)

We consider the initial profile
us(0,¢,0) = cos @ + sin ¢

Our computation measures the max-norm of the relative difference between our com-
puted solution and the exact analytical solution

us(0, ¢, t) = cos(0 — t) + sin(¢p — 2t)

Due to periodicity and smoothness of the solution, we can use MLS approximation
using all KNN for the discretization for this hyperbolic problem. Time-stepping is
carried out using forward Euler with 2 different time step-sizes At = 0.01Axz and
At = 0.1Az where Az = min; ; ||p; — p;|| and constant K = 15 (number of KNN to
be used). Relative errors in the result at the final time ¢t = 1 are computed on the
torus using the max-norm for a variety of sample sizes. These results are reported in
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sample size At = 0.01Az MLS [Wendland] At = 0.1Az MLS [Wendland]
N Error Conv. in N | Conv. in h Error Conv. in N | Conv. in h
1035 9.54e-03 1.60e-02
1800 4.96e-03 1.18 2.36 1.10e-02 0.68 1.35
4050 2.07e-03 1.08 2.16 7.12e-03 0.54 1.07
7200 1.15e-03 1.02 2.04 5.27e-03 0.52 1.05
16200 5.49e-04 0.91 1.82 3.48e-03 0.51 1.02
TABLE 5.2

Max-norm relative errors for the advection equation on a torus.

related error

1039 1800 4060 oo " ezon

point size: N

Fic. 5.1. Point cloud sampled from torus with 1800 points. Convergence plot of mazx-norm
relative errors (for At = 0.01Az) using MLS approach with Wendland function as weight function
for the advection equation on a torus.

Table 5.2 and a convergence plot of the relative errors (for At = 0.01Ax) is shown in
Figure 5.1.

Since we use forward Euler, a first order discretization in time, if At is small
enough (0.01Az), first-order convergence in the value of u, with respect to sample
size (N), which means second-order in space (h), are observed for this first order
PDE, which agrees with Theorem A.2; if At is large (0.1Az), the error from time
discretization will dominate. As a result only first-order convergence in space (h) is
observed. Standard high order discretization in time, which will not be discussed in
this paper, can be used.

Now we apply the semi-Lagrangian method based on upwind scheme explained
in Section 4. Given the discretized time step At, from the PDE we can approximate
u™(p;) by u™(p;) where p; = p; — At - v(p;). We then use MLS to approximate
u™(p;). We first find KNN of p; in the point cloud, then use local PCA through
the KNN to compute a local coordinate system. Under this coordinate system, we
locally approximate the surface and the function u™. Notice that p; may not lie on the
surface. Suppose p; has coordinate (xg,yo, 2z0) in the local coordinate system. Since
the local MLS approximation u™ of u™ only depends on the first two local coordinates,
so we use U"(zg, o) as the estimate of u™(p;) and u" 1 (p;) ~ u"(xo,yo). We test our
upwind scheme using the same data and same parameters. These results are reported
in Table 5.3.

Upwind scheme will be more stable in general. The accuracy can be further
improved if characteristics can be computed more accurately on the manifold to get
P; and integration along the characteristics are evaluated more accurately.

5.1.3. Diffusion on a filament in 3D. We consider the diffusion equation on
an open helical curve in R? parameterized by

(x,y,2) = (sin(2ws), cos(27s), 2s — 1),
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sample size At = 0.01Az upwind At = 0.1Az upwind
N Error Conv. in N | Conv. in h Error Conv. in N | Conv. in h

1035 2.36e-02 1.12e-02

1800 1.06e-02 1.45 2.89 8.10e-03 0.59 1.17
4050 3.25e-03 1.46 2.92 5.28e-03 0.53 1.06
7200 1.46e-03 1.39 2.78 3.95e-03 0.50 1.01
16200 5.28e-04 1.25 2.51 2.64e-03 0.50 0.99

TABLE 5.3

Max-norm relative errors for the advection equation on a torus using upwind scheme.

where 0 < s < 1 and homogeneous Neumann condition is imposed at endpoint s = 0
and homogeneous Dirichlet condition is imposed at endpoint s = 1.
The initial condition is given by

us(s,0) = cos(0.57s).

We measure the max-norm of the relative difference between our computed solution
and the analytical solution

us(s,t) = exp (7(1)215) cos(0.57s)
2L
where L = 2v/1 + 72 is the length of the helix.

We apply our approach and time-stepping is carried out using forward Euler with
time step-size At = 0.1Az? where Az = min, ; |p; — p;|| and constant K = 15
(number of KNN to be used). We use both MLS approach and constrained quadratic
optimization approach. Relative errors in the results at the final time ¢ = 1 are
computed on the filament using the max-norm for a variety of sample sizes. These
results are reported in Table 5.4 and a convergence plot of the relative errors for MLS
approach with Wendland function as weight function is shown in Figure 5.2.

sample size MLS [Wendland] Constraint [Wendland)]
N Error Conv. in N | Conv. in h Error Conv. in N | Conv. in h
90 1.00e-02 2.21e-03
180 2.06e-03 2.28 2.28 5.06e-04 2.13 2.13
360 3.47e-04 2.57 2.57 1.21e-04 2.06 2.06
720 5.21e-05 2.74 2.74 2.96e-05 2.03 2.03
1440 6.85¢-06 2.93 2.93 7.31e-06 2.02 2.02
TABLE 5.4

Max-norm relative errors for the diffusion equation on a helix with boundary conditions.

This convergence test indicates at least a second-order (super-)convergence with
respect to both sample size (V) and space (h) for both MLS approach and constrained
quadratic optimization approach for this 1D curve.

5.1.4. Reaction diffusion system on sphere. We solve a reaction diffusion
system to get a spiral wave evolving on the point cloud of a unit sphere. The simulated
system in this experiment is the well-known Fitzhugh-Nagumo equations [33]

aauts = (a — ug)(us — Dus — vs + vAprug (5.3)
9vs = €e(Bus — vs) (5.4)

ot
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related error

360 2 1440

upoint size: N

a0 18l

Fi1c. 5.2. Point cloud sampled from a filament with 180 points. Convergence plot of maz-norm
relative errors using MLS approach with Wendland function as weight function for the diffusion
equation on a helix with boundary conditions.

where u, is the excitation variable, ¢ = 0.01, a = 0.1, 8 = 0.5 and v = 0.0001. We set
our initial conditions according to

(1,0) ifz>0,y>0,2z>0,
(us,vs) =< (0,1) ifz<0,y>0,2>0, (5.5)
(0,0) otherwise.

to obtain an attractive spiral wave. This simulation uses forward Euler with At = 0.01
and K = 15 (number of KNN to be used). In this example, we use 16002 points
sampled from unit sphere and Az = 0.0227. The results of excitation variable ug are
displayed at time t = 400, 450, 500 and 550 in Figure 5.3. The solution is displayed
on a triangulated mesh for better visual effect.

5.1.5. Diffusion equation on a flat 2-tours in 4D. We consider diffusion on
a flat 2-tours T2, which is a two dimensional manifold embedded in R* parameterized
as T' = (cos a, sin e, cos 3, sin B), with «, 3 € [0,27]. The Laplace-Beltrami operator
can be written as Ay = a(% + 8‘9—;2.

For an initial profile

us(a, f,0) = sin(a) + sin(20)
the solution at any time ¢ is given by
us(a, B,t) = e tsin(a) + e~ 4 sin(2).

We apply our method and use forward Euler with At = 0.1Az? where Az =
min; ; ||p; — p;|| and constant K = 15 (number of KNN to be used). We calculate
numerical solutions at the final time ¢ = 1 for several point clouds with different sample
sizes. We use both MLS approach and constrained quadratic optimization approach
when discretizing the diffusion operator. Relative errors in the results are computed
on a flat 2-tours T2 using the max-norm. These results are reported in Table 5.5 and
a convergence plot of the relative errors for MLS approach with Wendland function
as weight function is shown in Figure 5.4.

This test indicates a first-order convergence in the value of us; with respect to sam-
ple size (N) and second-order in space (h) (since the true dimension of the manifold
is 2) for both MLS approach and constrained quadratic optimization approach.
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Fic. 5.3. Fitzhugh-Nagumo equation evolving on a sphere. The excitation variable us is dis-
played at time t = 400, 450, 500 and 550. We use triangular mesh for better visualization, although
our solution is computed based on point cloud.

sample size MLS [Wendland] Constraint [Wendland]
N Error Conv. in N | Conv. in h Error Conv. in N | Conv. in h

1600 1.37e-02 1.37e-02

3600 6.16e-03 0.99 1.97 6.16e-03 0.99 1.97
6400 3.46e-03 1.00 2.01 3.46e-03 1.00 2.01
14400 1.55e-03 0.99 1.98 1.55e-03 0.99 1.98
25600 8.67e-04 1.01 2.02 8.67e-04 1.01 2.02

TABLE 5.5

Maz-norm relative errors for the diffusion equation on a flat 2-tours T2,

5.2. Eigenvalue problems. Here we show a few examples of eigenvalue prob-
lem for Laplace-Beltrami operator on point clouds. We mainly test our method for
open manifolds with Dirichlet or Neumann boundary conditions. More examples and
applications in computer vision can be found in [17].

5.2.1. Hemisphere in 3D with Dirichlet boundary condition. Consider
first eigenvalue problem for unit hemisphere in 3D. With homogeneous Dirichlet
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related error
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point size: N

Fic. 5.4. Convergence plot of maz-norm relative errors using MLS approach with Wendland
function as weight function for the diffusion equation on a flat 2-tours T2.

boundary condition, the problem becomes

Amb=2é x€Q
{ S =0 xeon (5.6)

The exact value of the n-th eigenvalue is given by A\, = n(n + 1), with multiplicity n
for n =1,2,---. To measure the error of our approach in computing eigenvalues, we
compute the normalized error Epax,n = max(l’\"’;\i_k"‘), where S\n’i’s are the eigenval-
ues computed from our approach for eigenvalue )\,: , and 4 runs over each multiplicity.
Emax,n represents the worst possible error in computing A,,. We use constant K = 15
(number of KNN to be used) and calculate numerical solutions for both MLS ap-
proach and constraint quadratic optimization approach. We show Epax, for n =5
and 13 for several point clouds with different sample sizes to illustrate convergence of
our approach. These results are reported in Table 5.6 and a convergence plot of the
relative errors for MLS approach with Wendland function as weight function is shown
in Figure 5.5.

sample size A = 30 MLS [Wendland] A = 30 Constraint [Wendland)]
N Error Conv. in N | Conv. in h Error Conv. in N | Conv. in h
521 3.98e-02 4.03e-02
1009 2.22e-02 0.88 1.77 2.25e-02 0.88 1.76
2041 1.18e-02 0.90 1.79 1.19e-02 0.90 1.81
3977 6.39¢-03 0.92 1.84 6.43e-03 0.92 1.85
8081 3.31e-03 0.93 1.86 3.32e-03 0.93 1.86
sample size A = 182 MLS [Wendland] A = 182 Constraint [Wendland]
N Error Conv. in N | Conv. in h Error Conv. in N | Conv. in h
521 3.14e-01 2.44e-01
1009 1.31e-01 1.32 2.65 1.33e-01 0.92 1.84
2041 6.96e-02 0.90 1.80 7.01e-02 0.91 1.82
3977 3.76e-02 0.92 1.85 3.79e-02 0.92 1.84
8081 1.91e-02 0.96 1.91 1.93e-02 0.95 1.90
TABLE 5.6

Maz-norm relative errors Emax,n for eigenvalues 30 and 182.

This test indicates a first-order convergence in the value of eigenvalue A, with
respect to sample size (V) and second-order with respect to space (h) for both MLS
approach and constrained quadratic optimization approach.

5.2.2. Hemisphere in 3D with Neumann boundary condition. Next we
consider eigenvalue problem for unit hemisphere in 3D with homogeneous Neumann
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related error
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point size: N

F1a. 5.5. Point cloud sampled from hemisphere with 1009 points, and points with blue circle are
boundary points. Convergence plot of mazx-norm relative errors using MLS approach with Wendland
function as weight function for eigenvalue problem on unit hemisphere with Dirichlet boundary
condition.

boundary condition. The problem becomes

_AM¢:/\¢ x €N
{ g—ﬁ: x € 00 (5.7)

The exact value of the n-th eigenvalue is given by A,, = (n — 1)n, with multiplicity n
forn =1,2,.--. Again we compute En.x ,, for n =6 and 14 for several point clouds
with different sample sizes to illustrate convergence of our approach. We use constant
K =15 (number of KNN to be used) and calculate numerical solutions for both MLS
approach and constraint quadratic optimization approach. These results are reported
in Table 5.7 and a convergence plot of the relative errors for MLS approach with
Wendland function as weight function is shown in Figure 5.6.

sample size A = 30 MLS [Wendland] A = 30 Constraint [Wendland]
N Error Conv. in N | Conv. in h Error Conv. in N | Conv. in h
521 6.42e-02 4.92e-02
1009 3.11e-02 1.10 2.19 2.60e-02 0.96 1.93
2041 1.47e-02 1.06 2.13 1.31e-02 0.97 1.95
3977 7.46e-03 1.02 2.03 6.89e-03 0.96 1.93
8081 3.67¢-03 1.00 2.00 3.48e-03 0.96 1.93
sample size A = 182 MLS [Wendland] A = 182 Constraint [Wendland]
N Error Conv. in N | Conv. in h Error Conv. in N | Conv. in h
521 3.13e-01 2.59e-01
1009 1.97e-01 0.70 1.40 1.49¢-01 0.84 1.67
2041 9.94e-02 0.97 1.94 7.82e-02 0.92 1.83
3977 4.86e-02 1.07 2.15 4.12e-02 0.96 1.92
8081 2.29e-02 1.06 2.12 2.05e-02 0.98 1.97
TABLE 5.7

Maz-norm relative errors Emax,n for eigenvalues 30 and 182.

This convergence test indicates a first-order convergence in the value of eigenvalue
A with respect to sample size (N) and second-order with respect to space (h) for
both MLS approach and constrained quadratic optimization approach.

5.2.3. Flat 3-tours T° in 6D. Consider eigenvalue problem for flat 3-torus 73,
a three dimensional manifold embedded in R® parameterized as

T' = (cos a, sin a, cos 3, sin (3, cos 6, sin )
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Fic. 5.6. Convergence plot of maz-norm relative errors using MLS approach with Wendland
function as weight function for eigenvalue problem on unit hemisphere with Neumann boundary
condition.

with «, 3,60 € [0,27]. As explained in Remark 2 we first use PCA to find the true
dimension, which is 3 in this case, and construct a local 3-dimensional tangent space
(21, 22,23). The manifold is locally approximated as

= ($1,$2,$37y1(5€1,9€2,333),y2($1,$2,$3)7y3($1,$27$3))

using MLS and the eigenfunction ¢ is locally approximated as ®(z1,z2,x3), where
Y1,Y2,ys and ® are 3-dimensional degree 2 polynomials. Based on these local con-
struction, we can discretize the Laplace-Beltrami operator as before and compute
eigenvalue problem for this 3D manifold in RS. The “ground truth” eigenvalues and
their multiplicities are not available, instead we use some test functions to measure
the error. We compute the L, error for A, f for the functions f = x, 22, e” on T3,
where z is the first coordinate in RS, and the closed forms of their surface Laplacian
are known. The L, error is defined as F,, = %, where M is the discretized
Laplace-Beltrami operator defined in (3.10), F' is the N-dimensional vector for f eval-
uated on data points and V' is the N-dimensional vector for the known values of A x4 f
in its closed form.

We calculate E relative errors of the numerical solution for several point clouds
with different sample sizes. We use constant K = 20 (number of KNN to be used)
and both MLS approach and constrained quadratic optimization approach. These
results are reported in Table 5.8 and a convergence plot of the relative errors for MLS
approach with Wendland function as weight function for test function f = x is shown
in Figure 5.7.

related error
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point size: N

Fic. 5.7. Convergence plot of Eoos relative errors using MLS approach with Wendland function
as weight function for test function f = x on T3.
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sample size f =« MLS [Wendland] f = « Constraint [Wendland]
N Error Conv. in N | Conv. in h Error Conv. in N | Conv. in h
3375 4.51e-02 4.51e-02
8000 2.51e-02 0.68 2.04 2.51e-02 0.68 2.04
15625 1.60e-02 0.67 2.02 1.60e-02 0.67 2.02
27000 1.10e-02 0.69 2.06 1.10e-02 0.69 2.06
46656 7.64e-03 0.67 2.00 7.64e-03 0.67 2.00
sample size f = 22 MLS [Wendland] f = 22 Constraint [Wendland]
N Error Conv. in N | Conv. in h Error Conv. in N | Conv. in h
3375 6.43e-04 6.43e-02
8000 2.65e-04 1.03 3.08 2.65e-04 1.03 3.08
15625 1.41e-04 0.94 2.83 1.41e-04 0.94 2.83
27000 9.21e-05 0.78 2.34 9.21e-05 0.78 2.34
46656 5.21e-05 1.04 3.12 5.21e-05 1.04 3.12
sample size f = e®* MLS [Wendland] f = e® Constraint [Wendland]
N Error Conv. in N | Conv. in h Error Conv. in N | Conv. in h
3375 2.65e-02 2.65e-02
8000 1.45e-02 0.70 2.10 1.45e-02 0.70 2.10
15625 9.62e-03 0.61 1.84 9.62e-03 0.61 1.84
27000 6.85¢-02 0.62 1.86 6.85e-02 0.62 1.86
46656 4.60e-03 0.73 2.18 4.60e-03 0.73 2.18
TABLE 5.8

E relative errors for test functions f = x, 2, e* on T3.

Again, second-order super-convergence with respect to space (h) for both MLS
approach and constrained quadratic optimization approach is observed.

5.3. Diffusion on Stanford bunny. We conclude our numerical experiments
by solving the diffusion equation on the point cloud for Stanford bunny with a point
source in the left ear. The total number of points is 35296. The minimal distance
between data points Az may not be a good indicator of h for complicated shape. In-
stead, we report the mean of the distance between data point and its closest neighbor
Az = meanAz; where Az; = min; ||p; — p;|. For our normalized bunny, we have

Axz = 0.0047 . To improve both stability, since the data is not uniform, and compu-
tation efficiency, we use Crank-Nicolson scheme for time discretization as described
in [24],

At 171 A
Untt = [I - 2M] [I + ;M] u" (5.8)

where M is our discretized Laplace-Beltrami operator. We use At = 0.001, which
would be unstable if forward Euler is used, and K = 20. The results of numerical
solution us are displayed at time t = 0.1, 0.2, 0.4 and 0.8 in Figure 5.8. Again, the
solution is displayed on a triangulated mesh for better visual effect.

The above simulation is based on the constraint quadratic optimization approach
with the Wendlend weight function. We want to point out that using MLS approach
with standard Wendland or inverse of squared distance weight function works well for
pretty uniformly distributed point clouds. However, in more challenging situation,
such as for non-uniform point clouds, one may need to use the constrained quadratic
optimization approach which is more robust and works independent of the choice of
weight function. The MLS approach with the Wendlend weight function produces
negative values for this example. Similarly, using MLS with the Wendlend weight
function to solve eigenvalue problem for Laplace-Beltrami operator on this point cloud
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FiG. 5.8. Solve heat equation on Stanford bunny. The numerical solution us is displayed at
time t = 0.1, 0.2, 0.4 and 0.8. The black dot is the heat source. Again, we use triangular mesh for
better visualization, although our solution is computed directly on point cloud.

produces negative eigenvalues, while using the constrained quadratic optimization
approach does not. Another interesting fact is that the special weight function (3.12)
for MLS is more robust and works fine for this non-uniform point cloud.

6. Conclusion. In this work, we present a general approach to solve PDEs on
manifolds represented by point clouds. The key idea is to approximate differential
operators on the manifold by constructing the function, the manifold and hence the
metric in a local coordinate system at each point. In this way a global parametrization
or mesh can be avoided, which allows this approach to handle manifolds with arbitrary
dimensions and co-dimensions. Moreover, the complexity of the methods scales well
with the total number of points and the true dimension of the manifold. Different
least square approximations, treatment of boundary conditions, approximation error
analysis, and numerical tests are presented.

Appendix A. Approximation error for MLS. In this appendix, we quote a
basic results in [28] on the pointwise error estimates for MLS (2.3) and then show a
new superconvergence result for MLS.

First, we introduce some notations. To expedite the presentation, multi-index
notation is used. If o := (a1,as9, - ,aq) is a d-tuple of nonnegative integers a; and
its length is defined as

d
la| == Zai (A.1)
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We then denote

X i=aftey? - al? (A.2)

and the a order derivative of function f as

ou 9oz gaa
DOf = . f (A.3)

- a1 az : aq
Ozt Oxg Oz

Use the same notations in Section 2.2, I1¢ is the space of polynomials of total de-

gree less than or equal to m in d-dimensions and b(x) = [(x — )1, (x — X)*2, -+, (x — x)*7|"
is the polynomial basis vector where I = % is the number of basis in I1¢. De-

note E as a K x I matrix with Ey; = b;(x), k = 1,2,---  K,i =1,2,--- , I, W =
Diag{wlaw27 T 7U)K} with Wy = w(”Xk? - i||) and F' = [f(X]),f(Xg), T 7f(xK)]T'
Assume I < K, Rank(F) = I and w(-) > 0, the solution (2.5) of MLS problem can
be written as

¢(®) = (E"WE) ™ ETWF (A.4)

Define (f(x),9(X))w = Z,[le wi f(xx)g(x;) and A = ETWE = [a;;]. Then
aij = (bi(x),b;(%))w, ETWE = [(b1(x), f(X))w, -+, (b1(x), f(x))w]T. The most basic
and well-known fact for MLS is that it can reproduce polynomials up to certain order
of degree.

LEMMA A.1. Assume I < K, Rank(E) = I and w(-) > 0. The moving least

squares (MLS) approxzimation function fg(x) (2.4) can reproduce any polynomials
f(x) e g, viz.

fx(x) = b(x)"e(X) = f(x) (A.5)

where c(X) is given by (2.5) or (A.4) and the result holds for any weight function
w(-) > 0.

Proof. 1t suffices to show that for 1 < i < I, if f(x) = b;(x) = (x —X)*, then
c(X) = e; where e; is the i-th canonical basis for R?.

Assume f(x) = b;(x), we have

C(i) = A_1[<b1 (X)a bi(x»wv Tty <bI(X), bi(X)>w]T =€;

|
Using the above fact one can get the following error estimate for MLS approxi-
mation (Theorem 3.1 in [28]).
THEOREM A.2. Assume f € C™Y(RY), I < K, Rank(E) = I and w(-) > 0.
The solution (2.5) of MLS method can be used to approximate a function f and its
derivatives,

. det(AM—wkb(xk))
det(A)
(A.6)
where 0 < 0, <1 and Ajy,b(x,) denotes the matriz which replaces the i-th column
of A by the vector wrb(xy).

1 1
e DM@ = 3 D DM R+ (e — ) (0 %)

la|=m+1 k=1
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REMARK 4. To have a more explicit error estimate, the key issue is how to
estimate det(A), where A can be regarded as a discrete approximation of the covariance
matriz Crxr, Cij = (bi(x),b;(x))w. Here

(b (), by (X)) = / w()bi ()b (x)7dx,

By, (f)

where h = maxy, ||xx — X|| and Bp(X) is the ball centered at X that contains the KNN
Xp,k=1,2,--- K. Let s = Zle || If the data points are well distributed, such as
uniformly sampled or the distribution scales with h, det(A;w,b(x,)) ~ O(h?s~lel)
and det(A) ~ O(h?%). Hence the error estimate can be explicitly written out,

Lo rm m+1—|ov]|
Cl_aT!D fX)|~O(h )

Now we show a super-convergence result for MLS approximation due to can-
celation of error when the degree of polynomial used and the order of derivative
approximated have the same parity and the point distribution has certain symmetry.

THEOREM A.3. If || and m has the same parity and X1,Xa, -+ ,Xg are symmet-
rically distributed around X such that (b;(x),br(x))w = 0 for any pair b;(x),br(x) €
¢, ., and || + || odd,

1 det (A w,b(x
Ci —7Da Z Z ~ FE+ O (x — %)) (x5 — X)° G(det(A)b())
laj=m+2 k=1
(A.7)
Proof. By Taylor expansion
Lo Lo e —a
flxi) = ZJD FERbi(xR) Y P @G —X)
=1 . la=m+1 (A.8)
+ > D+ O (3 = %) (xx — %)°
lal=m+2

and

c(X) = A7 (b1(x), F(%))w, -, (br(x), f(x))]

Denote the three sums in (A.8) as three functions Sy, Sa, S5 respectively. We have

I
A7 (b1 (%), S1(%))w, <+, (br(x), S _ Z@L

from the reproducing property for polynomials in IT¢,. And

A_1[<b1 (X),lsQ(X)>w, T <b[(X), SQ(X)>w]T
= > DU FEAT(b1(6), (6 = F) w5 (br (%), (x = K) "]

|a]=m+1
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gives the leading term in the error. For approximating the «; derivative, only the i-th
component of the above vector is involved, and it is

1 a £z det(Aﬂ—oz)
alg-&-l aD f(X)T(A) (A.9)

by Cramer’s rule. Here A;, , is the matrix which replaces the i-th column of A by

[(b1(x), (X — X)), (br(x), (x — X)*)w]T. To be consistent, we assume b; € 112,
for j=1,---,I. By the definition,

I
det(A) = Z signy H (bp, (%), b5 (%)) w

where p runs over all permutations of {1,2,---,I}. We can see that the total sum
of powers for each fixed permutation Z§=1(|apj| + |e|) = 2s, where s = 25:1 laj].
Similarly

det(Ai<—04) = Z Signp <bp1 (X)7 (X - E)a> H<bpj (X)’ bj (X)>w

J#i
where p runs over all permutations of {1,---,I}. The total sum of powers for each
fixed permutation is 2s + |a| — |a;| = 28 + 1 + m — |a;|. When |o;| has the same

parity as m, this is an odd number. Notice that (x — X)* is also in II¢, , ;. Hence for
any « in the sum of equation (A.9) and for any permutation p in det(A;.,), at least
one of |ay, | + |af and |y, | + [ay| (j # 4) is odd. Due to the symmetry property of
X1, -+ ,Xx around X, we have det(A;—,) = 0 and hence

A_1[<b1 (X)v S2(X)>w’ Tty <b[(X), SQ(X)>W]T =0

O
REMARK 5. In 1D, the symmetry of xy around T can be precisely characterized
as: if xp, € P = 2T — x, € P. Although symmetry condition is difficult to satisfy
in high dimensions, perfect cancellation is not necessary. Often one observes super-
convergence up to one order due to error cancellation to some extent as shown in our
numerical examples in Section 5.
REMARK 6. We point out that there are also super-convergence phenomena, such
as gradient recovery, in finite element methods [34).

Appendix B. Connection between MLS and constrained quadratic op-
timization problem. We show how we use approach in [27] to recast the MLS
problem (2.3) as a constrained quadratic optimization problem, from which we can
add additional constraint. Based on equation (2.4) and (A.4), f(x) can be approxi-
mated by fx(x) where fx is the MLS approximation computed around X and it can
be written as

fx(x) = b(x)"c(%) (B.1)
And D f£(X) = [D*b(X)]" ¢(X) = a;lelc(X) = ayle; is an estimate of the true

derivative D% f(X). Such approximation is a linear combination of f; = f(x;), since
¢(X) is a linear combination of f; (see (2.5) or (A.4)). Let us consider the following
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problem: finding coefficients vector a; € R¥ for the approximation ﬁ = al'F of
D% f(X) by minimizing the quadratic form

N2
(@)
Q_li (a’C ) —laTW_la‘ (B.2)
T2 wy 27 ' '
k=1
subject to the linear constraints
K . .
Zagcl)bj(xk) :Tj('z) fOI‘j = 172a"' 7I (B3)
k=1
N 4T
where r; = [r%l),rél), e ,TEZ)] = ayle;.

Now we prove that MLS estimate evaluated at X is equivalent to the solution
from the above minimization problem. The proof is almost the same as that of the
proof for Proposition 1 in [27] with some minor modification. We present it here for
completion.

LEMMA B.1. The MLS approzimation D% f£(X) of D% f(X) is equivalent to
the estimate ﬁ from the above constrained quadratic optimization problem for all
i=1,2,---,1, assuming I < K, Rank(E) = I and w(-) > 0.

Proof. The constraint minimization problem (B.2)-(B.3) is transformed, using
Lagrange multipliers 21, 2, - - - , 21, into the linear system

W la,+ Fz=0and ETa; =1, (B.4)

Notice that the matrix of the system,
w-1 E
e ®3

is non-singular, and the solution is given by
a;=WE(ETWE) 'r; and z=—(ETWE) 'r;

Hence, f; = al F = rI(ETWE)"'ETWF. Using (A.4), we have fi = rlc(X) =
a;lelc(X) = a;le; = D% fx(X) foralli =1,2,--- , I. O
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