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Abstract

We study one-sided partial-information 2-player con-

current stochastic games with parity objectives. In

such a game, one of the players has only partial

visibility of the state of the game, while the other player

has complete knowledge. In general, such games are

known to be undecidable, even for the case of a single

player (POMDP). These undecidability results depend

crucially on player strategies that exploit an infinite

amount of memory. However, in many applications

of games, one is usually more interested in finding

a finite-memory strategy. We consider the problem of

whether the player with partial information has a

finite-memory winning strategy when the player with

complete information is allowed to use an arbitrary

amount of memory. We show that this problem is

decidable.

1. Introduction

Two player infinite stochastic games play an impor-

tant role in many areas of computer science as they

provide a natural setting to model nondeterminism and

reactivity in the presence of uncertainty or random-

ness. In particular, infinite games with omega-regular

objectives are a fundamental tool in the analysis of

many aspects of reactive systems such as modeling,

verification, refinement, and synthesis [1], [8], [12].

For example, the standard approach to the synthesis

problem for reactive systems reduces the problem to

finding the winning strategy of a suitable game [15].

The formalism of infinite games can vary depending

on a number of factors such as the number of players,

the order in which the players make moves (concur-

rent or turn-based), the degree of randomness allowed

(stochastic or deterministic), the type of objective

(reachability, Büchi, or parity), the type of winning

condition (deterministic, qualitative probabilistic, or

quantitative probabilistic), and the presence or absence

of information asymmetry (perfect information, partial

information, or one-sided partial-information) [2], [5].

The expressiveness of the formalism varies with these

parameters. In this framework, the most general class

of games is the class of partial-information 2-player

concurrent stochastic games with parity objectives. In

this work we focus on an important subclass of partial-

information concurrent games: the class of one-sided

partial-information 2-player concurrent stochastic par-

ity games.

The most common approach to games assumes a

setting with perfect information where both players

have complete knowledge of the state of the game.

However, in many settings, the assumption of perfect

information is not valid and it is natural to allow an

information asymmetry between the players. Examples

include controllers with noisy sensors and software

modules that expose partial interfaces [16].

Since such partial-information games are more gen-

eral than perfect-information games and also quite use-

ful in their own right, it would be desirable to develop

algorithms to solve them. Unfortunately, the addition

of partial information substantially increases the dif-

ficulty of solving games. While perfect-information

stochastic parity games can be solved in NP ∩ co-NP

[7], allowing partial information makes the problem

undecidable even for single player stochastic games

(i.e., Partially Observable Markov Decision Process)

[14]. Despite the obstacle of undecidability, some pos-

itive results have been proved for partial-information

games. Typically these results have been obtained for

restricted classes of partial-information games such as

requiring objectives to be completely visible [4] or

restricting objectives to weaker conditions than parity

[2], [3].

In contrast, our approach here is to focus on the gen-

eral case of parity objectives, which suffice to represent

all omega-regular objectives. Instead of weakening the

expressiveness of the objective, we restrict the partial-

information player to using a finite-memory strategy,



while allowing the player with complete information

to play an unrestricted strategy. In practice, many ap-

plications of games depend upon obtaining a winning

strategy for the system against an adversarial envi-

ronment. Often the goal is to obtain a finite-memory

strategy and use it some constructive fashion. Thus,

if the existence of an unrestricted winning strategy

is undecidable, it is natural to ask whether a finite-

memory winning strategy exists. Note that in the world

of perfect-information games, it is almost always the

case that memoryless determinacy holds (that is, there

is a winning strategy iff there is a winning strategy that

uses no memory).

There are two standard approaches to solving games:

the automata-theoretic approach which has strong con-

nections to deterministic games [19], and techniques

based on Markov chains that are used to solve stochas-

tic games [7]. We cannot use either directly, because

the presence of partial information complicates any

potential Markov-chain-based ergodic analysis, while

the automata-theoretic method is complicated by the

presence of probabilistic transitions. Instead, our ap-

proach is a novel application of techniques combined

from the two methods.

An outline of our approach: We represent the game

as a labeled regular tree (this is simply the unfolding of

the finite game graph). We first show that while there

is no a priori restriction on the amount of memory used

by the player with complete-information, we can safely

assume that it uses only a finite amount of memory.

Then a pair of opposing player strategies can be em-

bedded into the game tree by labeling the nodes with

the player actions generated when the play proceeds

according to those strategies. The resulting labeling

is regular if both the strategies are finite-memory.

This embedding can be viewed as an abstraction in

that it discards all the quantitative information about

probabilities contained in the strategies.

In the conventional approach to stochastic games,

one uses ergodic sets (strongly connected components)

of the resulting Markov chain to obtain a combina-

torial characterization of the qualitative probabilistic

behaviour. One of our key contributions is a method

to perform an analogous ergodic analysis directly on

labeled trees. This has the dual benefits of avoiding

the blowup caused by generating the Markov chain

and allowing the use of powerful techniques based

on tree automata. Using this result, we characterize

winning strategies in terms of reachability of the nodes

of the strategy labeled game tree and show that this

condition can be checked by a tree automaton. Finally,

we show how to ensure that the winning strategies

obtained are observation-based by applying techniques

from synthesis with incomplete information [10].

The main result of this paper is that one-sided

partial-information stochastic parity games are decid-

able when the partial-information player is restricted

to playing finite-memory strategies with no restric-

tions on the player with complete information. This

stands in contrast to the undecidability of the problem

for general strategies. One-sided partial-information

games are important because they are a natural model

for the behavior of modular systems that interact with

an environment, where the interactions between the

modular components are globally visible but the com-

putation within each component is not visible to other

components. For example, synthesis from components

can be viewed as such a game [11].

The structure of the rest of the paper is as fol-

lows: Section 2 contains the required mathematical

background on trees, automata and Markov chains,

while in Section 3 we formally describe our model

of one-sided partial-information games and state the

problem of finding a observation-based pure finite-

memory winning strategy in such a game, and in

Section 4 we show that the problem is decidable and

discuss the complexity of our solution. Finally, in

Section 5 we briefly discuss how our solution can

easily be extended to the case of randomized finite-

memory strategies.

2. Preliminaries

Labeled Trees: Given a set D of directions, a D-

tree is a set T ⊆ D∗ such that (a) there is an element

x0 ∈ T , called the root of T, such that, for all x ∈ T

there exists y ∈ D∗ with x = x0 · y, and (b) if x · c is

a non-root element of T , where x ∈ D∗ and c ∈ D,

then x is also an element of T . The elements of T

are called its nodes. For every node x ∈ T , the set of

successors of x is given by {x · c ∈ T : c ∈ D}. A

node with no successors is called a leaf. A path π of

a tree T is a set π ⊆ T such for every pair of nodes

x, y in π, there exists z ∈ D∗ such that x = y · z or

y = x · z. A path is infinite if it has no leaf nodes,

otherwise it is finite. A subtree of T is a tree T ′ ⊆ T .

For a node x ∈ T , the subtree rooted at x, denoted

T (x), is the tree {x ·y ∈ T : y ∈ D∗}. The full D-tree

is D∗. The full subtree at x is the tree whose set of

nodes is x ·D∗.

Given an alphabet Σ, a Σ-labeled D-tree is a pair

〈T, τ〉, where T is a tree and τ : T → Σ maps each

node of T to a letter in Σ. A subtree of 〈T, τ〉, is

a Σ-labeled D-tree 〈T ′, τ ′〉, where T ′ is a subtree of

T and τ ′(x) = τ(x), for all x ∈ T ′. Given Γ ⊆ Σ,

we say a Σ-labeled D-tree 〈T, τ〉 is Γ-recurrent if T



contains no leaf nodes and for each x ∈ T there exists

y ∈ D∗ such that τ(x · y) ∈ Γ and x · y ∈ T . In a

Γ-recurrent tree, from every node there is a path to

some Γ-labeled node. As we show below, the size of

Γ can be controlled by passing to a suitable subtree.

Lemma 2.1: Let 〈T, τ〉 be a Γ-recurrent tree. Then

there exists γ ∈ Γ and x ∈ T such that 〈T (x), τ〉 is

γ-recurrent.

Proof: We first note that if 〈T, τ〉 is Γ-recurrent,

then for every node x ∈ T , the subtree 〈T (x), τ〉 is also

Γ-recurrent. We now prove the statement of the lemma

by induction on the size of Γ. In the base case, when

Γ is a singleton, 〈T, τ〉 itself is the required subtree.

Let |Γ| > 1, and let γ′ ∈ Γ be such that 〈T, τ〉 is not

γ′-recurrent. Then there exists y ∈ T such that there

is no path from y to a γ′-labeled node and therefore

〈T (y), τ〉 only contains labels from Γ′ = Γ − {γ′}.

Since 〈T (y), τ〉 is Γ-recurrent, it must actually be

Γ′-recurrent. Thus, by the induction hypothesis, there

must exist a node z ∈ T (y) and γ ∈ Γ′ such that

〈T (z), τ〉 is γ-recurrent.

Transducers: A transducer is a deterministic finite

automaton with outputs. Formally, a transducer is a

tuple B = 〈ΣI ,ΣO, Q, q0, δ, λ〉, where: ΣI is a finite

input alphabet, ΣO is a finite output alphabet, Q is a

finite set of states, q0 ∈ Q is an initial state, λ : Q →
ΣO is an output function labeling states with output

letters, and δ : Q × ΣI → Q is a transition function.

We define δ∗ : Σ∗
I → Q as follows: δ∗(ǫ) = q0 and

for x ∈ Σ∗
I and a ∈ ΣI , δ∗(x · a) = δ(δ∗(x), a). We

denote by tree(B), the ΣO-labeled ΣI -tree 〈Σ∗
I , τ〉,

where for all x ∈ Σ∗
I , we have τ(x) = λ(δ∗(x)). We

say tree(B) is the unwinding of B. A Σ-labeled D-

tree T is called regular, if there exists a deterministic

transducer C such that T = tree(C).
Tree Automata: For a set X , let B+(X) be the set

of positive Boolean formulas over X (i.e., Boolean

formulas built from elements in X using ∧ and ∨),

including the formulas True (an empty conjunction)

and False (an empty disjunction). For a set Y ⊆ X

and a formula θ ∈ B+(X), we say that Y satisfies θ iff

assigning True to elements in Y and assigning False

to elements in X−Y makes θ true. An alternating tree

automaton is tuple A = 〈Σ, D,Q, q0, δ, β〉 , where Σ
is the input alphabet, D is a set of directions, Q is

a finite set of states, q0 ∈ Q is an initial state, δ :
Q × Σ → B+(D ×Q) is a transition function, and β

specifies the acceptance condition that defines a subset

of Qω . Each element of B+(D×Q) is called an atom.

The alternating automaton A runs on Σ-labeled full

D-trees. A run of A over a Σ-labeled D-tree 〈T, τ〉
is a (T ×Q)-labeled N-tree 〈Tr, r〉. Each node of Tr

corresponds to a node of T . A node in Tr, labeled by

(x, q), describes a copy of the automaton that reads the

node x of T and visits the state q. Note that multiple

nodes of Tr can correspond to the same node of T .

The labels of a node and its successors have to satisfy

the transition function. Formally, 〈Tr, r〉 satisfies the

following conditions:

1) ǫ ∈ Tr and r(ǫ) = (ǫ, q0).
2) Let y ∈ Tr with r(y) = (x, q) and

δ(q, τ(x)) = θ. Then there is a set S =
{(c0, q0), (c1, q1), . . ., (cn, qn)} ⊆ D × Q such

that S satisfies θ, and for all 0 ≤ i ≤ n, we

have y · i ∈ Tr and r(y · i) = (x · ci, qi). S is

allowed to be empty.

An infinite path π of a run 〈Tr, r〉 is labeled by a

word in Qω . Let inf(π) be the set of states in Q that

occur infinitely often in r(π). The Büchi acceptance

condition is given as β ⊆ Q, and π satisfies β if

inf(π) ∩ β 6= ∅. The parity acceptance condition is

given as a function β : Q → {1, . . ., k}, and π satisfies

β if min({β(q) : q ∈ inf(π)}) is even. A run 〈Tr, r〉 is

accepting if all its infinite paths satisfy the acceptance

condition. An automaton accepts a tree iff there exists a

run that accepts it. The language of A, denoted L(A),
is the set of all Σ-labeled D-trees accepted by A.

Theorem 2.2: [13] Let A be an alternating tree

automaton. Then L(A) is non-empty if and only if

A accepts some regular tree.

The transition function δ of an alternating tree au-

tomaton is nondeterministic if every formula produced

by δ can be written in disjunctive normal form such

that if two atoms (c1, q1) and (c2, q2) occur in the same

conjunction then c1 and c2 must be different. A non-

deterministic tree automaton A is an alternating tree

automaton with a nondeterministic transition function.

In this case the transition function returns a set of |D|-
ary tuples of states and can be represented as a function

δ : Q× Σ → 2Q
|D|

.

Markov Chains and Ergodic Sets: Given a directed

graph G = (V,E), a strongly connected component

(SCC) of G is a subset U of V , such that for all u, v ∈
U , u is reachable from v. We can define a natural

partial order on the set of maximal strongly connected

components of G as follows: U1 ≤ U2 if there exists

u1 ∈ U1 and u2 ∈ U2 such that u1 is reachable from

u2. Then U ⊆ V is an ergodic set of G if it is a

minimal element of the partial order.

A Markov chain is a tuple M = 〈X,x0, µ〉, where

X is a finite set of states, x0 is the initial state

and µ : X2 → [0, 1] is a function that assigns

transition probabilities to each pair of states such that
∑

x′∈X µ(x, x′) = 1 for all x ∈ X . A subset Y of X

is called an ergodic set of M if Y is an ergodic set of

the directed graph (X,Z) where Z = {(x, x′) ∈ X2 :



µ(x, x′) > 0}. A path in M means a path in the graph

(X,Z), and a state x of M is reachable if there is a

path in M from x0 to x.

3. One-Sided Partial-Information Games

A one-sided partial-information 2-player concurrent

stochastic game is a tuple G = 〈S, s0, A1, A2, δ, O〉,
where

• S is a finite set of states.

• s0 is the starting state of the game.

• Ai is a finite set of actions for player i.

• δ : Si × A1 × A2 → Dist(S), is the transition

function which returns a probability distribution

on the set of all states.

• O ⊆ 2S is a finite set of observations for Player

1 that partition the state space S. This partition

defines a function obs : S → O that maps each

state to its observation such that s ∈ obs(s) for

all s ∈ S. If O = {{s} : s ∈ S}, then all states

are completely visible and we omit O from G.

Plays and Observation Sequences: A play in G is

an infinite sequence of states ρ = s0s1. . . such that

for all j ≥ 0, there exists a1j ∈ A1 and a2j ∈ A2 with

δ(sj , a
1
j , a

2
j )(sj+1) > 0. The set of plays in G is de-

noted Plays(G). The observation sequence of a play ρ

is the unique infinite sequence obs(ρ) = o0o1. . . ∈ Oω

such that obs(sj) = oj for all j ≥ 0.

Finite-memory Strategy: A randomized strategy in

G for Player i is a function f : S∗ → Dist(Ai).
A pure strategy in G for Player i is a function

f : S∗ → Ai. A (pure or randomized) strategy f for

Player 1 is observation-based if for all ρ, ρ′ ∈ S∗,

if obs(ρ) = obs(ρ′), then f(ρ) = f(ρ′). A pure

finite-memory strategy for Player i, is a strategy f

that can be represented as a finite transducer Bf =
(S,Ai, Q, q0,∆, λ), such that for ρ ∈ S∗, f(ρ) =
λ(∆∗(ρ)). f can also be represented by a regular Ai-

labeled S-tree 〈S∗, f〉. Similarly, a pure finite-memory

observation-based strategy f can be represented as a

finite transducer with input alphabet O and output

alphabet A1, or as a regular A1-labeled O-tree 〈O∗, f〉.
Parity Objective: An objective for Player 1 in G

is a set φ ⊆ Sω of infinite sequences of states.

A play ρ ∈ Plays(G) satisfies the objective φ if

ρ ∈ φ. For k ∈ N , let α : S → {0, 1, . . ., k}
be a priority index function, which maps each state

to a nonnegative integer priority. The parity objective

φα requires that the minimum priority that occurs

infinitely often in a play should be even. Formally,

φα = {ρ ∈ Sω : min{α(s)|s ∈ Inf(ρ)} is even}.

For priority p ≤ k, we define the sub-objective

φp = {ρ ∈ Sω|min({α(s) : s ∈ inf(ρ)}) = p}. Then

the parity objective can be partitioned into simpler

sub-objectives as φα = φ0 ∪ φ2 ∪ · · · ∪ φm where

m ≤ k < m+ 2.

Almost-sure winning: Given strategies f and g for

the two players, the probabilities of measurable subsets

of Sω are well defined, and φα is measurable for a

priority index α [17]. For a measurable objective φ, we

denote by Pr
f,g
G (φ) the probability that φ is satisfied

by the play obtained from the starting state s0 when

the strategies f and g are used. Given a game G, an

observation-based strategy f for Player 1 is almost-

sure winning for the objective φ if for all randomized

strategies g for Player 2, we have Pr
f,g
G (φ) = 1.

In this paper we focus on 2-player concurrent

stochastic games with parity objectives where only

one of the players has complete information about the

state of the game at all times. We use the convention

that Player 1 is the player with partial information

and Player 2 has complete information. Our winning

condition is almost-sure winning, that is, the play must

satisfy the objective with probability 1. Our goal is

to decide whether the player with partial information

has an observation-based pure finite-memory winning

strategy and to find such a strategy if it exists.

Our problem: Given a one-sided partial-information

concurrent stochastic game G = 〈S, s0A1, A2, δ, O〉,
with parity objective φα, is there an observation-based

pure finite-memory almost-sure winning strategy for

player 1?

Note that we put no restriction on Player 2, who

is allowed to play arbitrary strategies. Since 2-player

games are frequently used for the verification of system

behaviour in the presence of an adversarial environ-

ment, it is quite natural here to not restrict the power

of the second player. However, as we show in the next

section, it turns out that it is sufficient to consider only

pure finite-memory strategies for Player 2.

For the rest of the paper, we use the following

convention: winning means almost-sure winning; game

means a one-sided partial-information stochastic game,

in particular we use the letter G to represent the game

〈S, s0, A1, A2, δ, O〉; α is a priority index function and

φα is the corresponding parity objective.

4. Solving One-Sided Games

4.1. Restricting Memory for Player 2

We first show that we can safely restrict Player 2 to

a finite amount of memory without losing any expres-



siveness for Player 1. The key idea is that once Player 1

decides on a finite-memory strategy, the game reduces

to a one-player stochastic game (i.e. a Markov decision

process) with Player 2 the only player remaining. It is

well-known that only memoryless strategies are needed

to win in a one-player game [7]. But a memoryless

strategy in the one player game can be converted into

a finite-memory strategy in the original game. Thus

if Player 2 can defeat the particular strategy chosen

by Player 1 in the original game, then he can defeat

it using finite-memory. Conversely, if a finite-memory

Player 1 strategy can defeat every finite-memory Player

2 strategy, then it is a winning strategy.

Proposition 4.1: Player 1 has a pure finite-memory

winning strategy f iff for every pure finite-memory

player 2 strategy g we have Pr
f,g
G (φα) = 1.

Proof: Let f be a pure finite-memory player

1 strategy for G. Let B = (S,A1, Q, q0,∆, λ) be

the transducer representation of f . Suppose f is not

winning for the objective φα. Then there exists a player

2 strategy g for G such that Pr
f,g
G (φα) < 1. We

consider the complete-information 1-player stochastic

game G′ obtained by incorporating the choices of

f into G. Then G′ = (S × Q, ∅, A2, δ
′), where

δ′((s, q), a)(s′, q′) = δ(s, λ(q), a)(s′) if ∆(q, s) = q′

and 0 otherwise. Let α′ : S × Q → {1, . . ., k} be de-

fined as α′(s, q) = α(s), and let g′ : (S×Q)∗ → A2 be

defined as g′((s1, q1). . .(sn, qn)) = g′(s1. . .sn). Then

we have Pr
g′

G′(φ′
α) < 1. Further, since it is known that

pure memoryless strategies are sufficient for complete

information 1-player stochastic games [7], therefore

there must exist a pure memoryless player 2 strategy

h : S×Q → A2 for G′ such that PrhG′(φ′
α) < 1. Now

consider the transducer B′ = (S,A2, S×Q, q0,∆
′, λ′),

where ∆′((s, q), s′) = (s′,∆(q, s)) and λ′((s, q)) =
h(s, q). Let h′ be the pure finite-memory player 2

strategy for G that is represented by B′. Then we have

Pr
f,h′

G (φα) < 1. Therefore if an arbitrary strategy g

defeats f in G, then a pure finite-memory strategy h′

can also defeat f in G. This implies that to ensure that

a given finite-memory player 1 strategy f is winning

in G, it is sufficient to check that f wins against all

pure finite-memory strategies of player 2.

4.2. Markov Chains and Labeled Trees

For the rest of Section 4, we only consider pure

finite-memory strategies for both players. Given a

game G, a pair of finite-memory strategies can resolve

all the strategic choices in the game, leaving behind

a finite-state probabilistic structure. Here we consider

two such structures: Markov chains and regular labeled

trees. The analysis of stochastic games using Markov

chains is well understood. The standard approach in-

volves taking the product of the game with the finite-

state strategies to obtain a larger composite memo-

ryless system that is a Markov chain. By analyzing

the ergodic structure of the Markov chain, qualitative

questions about probabilities are reduced to problems

involving simple graph reachability. While this ap-

proach is quite elegant, it suffers from two drawbacks:

it involves a potentially large increase in the state

space, and more importantly for our purpose, it is not

very amenable to solving problems involving partial

or incomplete information. In contrast, the automata-

theoretic approach deals well with incomplete infor-

mation [10], but tree automata are rarely used to

analyze probability directly. Our aim here is to use

the standard Markov-chain-based analysis to develop

a similar ergodic treatment for regular labeled trees.

We first give the definition for the standard Markov

chain construction.

Definition 4.2: Given pure finite-memory strategies

f and g for Player 1 and Player 2 respectively,

where Bf = (S,A1, Qf , q
f
0 ,∆f , λf ) and Bg =

(S,A2, Qg, q
g
0 ,∆g, λg) are the transducer representa-

tions of f and g respectively, the product of G with

Bf and Bg is a Markov chain G×Bf ×Bg , defined

as follows:

• The set of states is S ×Qf ×Qg .

• The initial state is (s0, q
f
0 , q

g
0).

• For s, s′ ∈ S, q1, q
′
1 ∈ Qf and q2, q2 ∈ Qg ,

the probability to transition from (s, q1, q2) to

(s′, q′1, q
′
2), is given by δ(s, λf (q1), λg(q2))(s

′)
if ∆f (q1, s) = q′1 and ∆g(q2, s) = q′2, and 0
otherwise.

States of this Markov chain inherit priority indices

from states of the game. Formally, we extend the

priority index function α to the states of the Markov

chain as follows: For (s, q1, q2) ∈ S × Qf × Qg ,

α(s, q1, q2) = α(s).

A strategy f : S∗ → Ai for player i can be viewed

as a labeling function for the full S-tree S∗. So a pair

of strategies can be simply represented as a labeled

S-tree, where each node ρ ∈ S∗ is labeled with

the actions chosen by the strategies at that node. In

addition we find it convenient to also label each node

with its corresponding game state. As we will see, this

labeled tree is sufficient for qualitative analysis of the

game.

Definition 4.3: For a word γ, let last(γ) denote the

last symbol of γ. We denote by tree(G, f, g), the

(A1 × A2 × S)-labeled S-tree 〈s0S
∗, ν〉 with ν(ρ) =

(f(ρ), g(ρ), last(ρ)). We also extend the priority index



function α to nodes in S∗ as follows: For ρ ∈ S∗,

α(ρ) = α(last(ρ)).
Let x and y = x · z be nodes in 〈T, τ〉 =

tree(G, f, g). We inductively define a notion of proba-

bilistic reachability. A node is always probabilistically

reachable from itself. We say that y is probabilistically

reachable from x if there exists s ∈ S such that

δ(last(x), f(x), g(x))(s) > 0 and y is probabilisti-

cally reachable from x · s. We say a node in a tree

is probabilistically reachable if it is probabilistically

reachable from the root.

We point out that the labeled tree representation is

more abstract than the product Markov chain represen-

tation. It lets us avoid computing the product and the

associated blowup. The Markov chain representation

and the label tree representation are closely related.

We first state without proof some simple properties of

this relationship.

Definition 4.4: Let tree(G, f, g) = 〈T, τ〉 and M =
G× Bf × Bg . Given a state x = (s, q1, q2) ∈ M , we

define x|S = s to be the game-state component of x.

Given a finite path π = (s1, q
f
1 , q

g
1). . .(sn, q

f
n, q

g
n) in

M , we define play(π) = s1. . .sn ∈ S∗.

Lemma 4.5: If π is a finite path in G × Bf × Bg

starting from the initial state, then play(π) is prob-

abilistically reachable in tree(G, f, g). Conversely, if

ρ ∈ S∗ is probabilistically reachable in tree(G, f, g),
then there is a unique path π from the initial state of

G×Bf ×Bg such that play(π) = ρ.

We define a notion of a p-ergodic subtree that

allows us to reduce the probabilistic analysis of the

game structure to the reachability properties of labeled

subtrees. Intuitively, these subtrees can be viewed as

the analogue of ergodic sets. They play the same role

for labeled trees as ergodic sets do for Markov chains.

Definition 4.6 (p-ergodic subtree): Given a (A1 ×
A2 × S)-labeled S-tree 〈T, τ〉, a node x ∈ T , and

p ∈ N, we say the subtree 〈T (x), τ〉 is p-ergodic, if x

is probabilistically reachable in T and for all y ∈ T (x)
we have:

• If y is probabilistically reachable from x then

α(y) ≥ p.

• There exists z ∈ T (x) such that z is probabilisti-

cally reachable from y and α(z) = p.

We show that p-ergodic subtrees are similar to

ergodic sets in terms of their probabilistic behavior.

This is one of the main technical results of this paper.

Theorem 4.7: Let f and g be pure finite-memory

strategies for Players 1 and 2 respectively. Then the

following are equivalent:

1) Pr
f,g
G (φp) > 0.

2) The Markov chain G×Bf ×Bg has a reachable

ergodic set whose lowest priority is p.

3) tree(G, f, g) has a p-ergodic subtree.

Proof: The equivalence of (1) and (2) is well

known and follows directly from the fact that every in-

finite play of the game must end up in an ergodic set of

the Markov chain with probability 1 [17]. We show that

(2) and (3) are equivalent. Let tree(G, f, g) = 〈T, τ〉
and M = G×Bf ×Bg . Let X be the set of states of

M and x0 be its start state.

(2) ⇒ (3): Suppose M has a reachable ergodic set

Z ⊆ X whose lowest priority is p. Then there exists

z ∈ Z such that α(z) = p and z is reachable from x0.

Let π be the shortest path from x0 to z in M . Let ρ =
play(π) ∈ S∗. We show that the subtree 〈T (ρ), τ〉 is p-

ergodic. Since z is reachable in M along π, therefore,

by Lemma 4.5, the node ρ is probabilistically reachable

in tree(G, f, g). Let ρ′ ∈ S∗ be such that ρ · ρ′ is

probabilistically reachable from ρ. Then, by Lemma

4.5, there exists a path π′ in M from z to some z′ such

that play(π′) = ρ′ and z′|S = last(ρ′). Since there is

a path from z to z′, z′ is also in the ergodic set Z and

α(z′) ≥ p, which implies α(ρ · ρ′) = α(last(ρ′)) ≥
p. Thus, every node in T (ρ) that is probabilistically

reachable from ρ has priority at least p. Finally, since

an ergodic set is connected, there is a path π′′ from

z′ to z in M . Let ρ′′ = play(π′′). Then ρ · ρ′ · ρ′′ is

probabilistically reachable from ρ·ρ′ and α(ρ·ρ′ ·ρ′′) =
α(last(ρ′′)) = α(z) = p. Therefore all the conditions

in Definition 4.6 are satisfied and so 〈T (ρ), τ〉 is a

p-ergodic subtree of tree(G, f, g).
(3) ⇒ (2): Suppose the subtree 〈T (ρ), τ〉 of

tree(G, f, g) is a p-ergodic subtree. Let Sp = {s ∈
S : α(s) = p}. Then 〈T (ρ), τ〉 is also Sp-recurrent.

By Lemma 2.1, there exists s ∈ Sp and ρ ∈ T (ρ),
such that ρ′ is probabilistically reachable from ρ and

〈T (ρ′), τ〉 is s-recurrent, that is, there is a path from

every node in 〈T (ρ′), τ〉 to a node with label s.

Since every subtree of a s-recurrent tree is also s-

recurrent, we can assume without loss of generality

that last(ρ′) = s and α(ρ′) = p. Consider the path π

in M that corresponds to ρ′. Let π end in state z of

M . Then α(z) = p. Let Z ⊆ X be the set of all the

states of M that are reachable from z. If z′ ∈ Z and

π′ is a path from z to z′, then ρ′′ = play(π′) is such

that ρ′ ·ρ′′ is probabilistically reachable from ρ′. Since

T (ρ) is p-ergodic, and ρ′′ ∈ T (ρ′) ⊆ T (ρ), we have

p ≤ α(ρ′ · ρ′′) = α(last(ρ′′)) = α(z′). Thus, all states

in Z have priority at least p. Also, since 〈T (ρ′), τ〉
is s-recurrent, there must exist ρ′′′ ∈ S∗ such that

ρ′ · ρ′′ · ρ′′′ is probabilistically reachable from ρ′ · ρ′′

and ρ′ ·ρ′′ ·ρ′′′ is labeled with s. Let π′′ be the path in

M that corresponds to ρ′′′. Then π′′ is a path from z′



to some state z′′ with α(z′′) = p. Since reachability is

closed under transitivity, therefore from every state in

Z, there is a path to a state with priority p. Note that

it is not necessary for Z to itself be an ergodic set.

We show however, that Z contains an ergodic set with

the desired property. In a directed graph, by the very

definition of ergodic sets, from every vertex there is a

path to some ergodic set. So Z contains at least one

ergodic set Y of M . Since Y is a subset of Z, every

state in Y has priority at least p. Suppose that no state

in Y has priority exactly p. But since there is no path

that leaves an ergodic set, this would then contradict

the fact that from every state in Z we can reach a state

with priority p. Therefore at least one state in Y must

have priority p. This proves that M has a reachable

ergodic set with lowest priority p.

4.3. Solving for Finite-memory Strategies

The most important feature of the definition of

p-ergodic subtree is that it is defined in terms of

local reachability properties that can be checked by a

nondeterministic Büchi tree automaton. We next build

such a tree automaton.

Lemma 4.8: There exists a nondeterministic Büchi

tree automaton (NBT) Ap that accepts a (A1×A2×S)-
labeled S-tree T iff T has a p-ergodic subtree.

Proof: For clarity of exposition, we assume that

S = {0, 1} and define the automaton over binary trees,

but the definition can be easily extended to n-ary trees.

We define Ap = (A1 × A2 × S,Q, q0, δ, β), where

Q = {search, cut,wait, look, visit, err}, q0 = search,

and β = {visit,wait, cut}. The states of the automaton

can then be described as follows:

• search: In this state the automaton is searching

for the root of the special subtree.

• cut: This represents a branch not taken.

• wait and look: In these states the automaton has

entered the subtree and is looking for nodes with

priority p.

• visit: In this state the automaton has just visited

a node with priority p in the subtree.

• err: This is an error state that is entered if there

is a priority lower than p in the subtree.

Given a label ν = (a, b, s) ∈ A1 × A2 × S, we

define Xν = {s′ ∈ S : δ(s, a, b)(s′) > 0}. Then the

transition function δ is defined as follows:

1) For q ∈ {cut, err}, δ(q, ν) = {q, q}.

2) For q = search

δ(q, ν) =



















{(search, cut), (wait, cut)} if Xν = {0}

{(cut, search), (cut,wait)} if Xν = {1}

{(search, cut), (cut, search),

(wait, cut), (cut,wait)} if Xν = {0, 1}

3) For q ∈ {wait, look, visit}, if α(s) < p then

δ(q, ν) = {err, err}, if α(s) = p then

δ(q, ν) =











{(visit, cut)} if Xν = {0}

{(cut, visit)} if Xν = {1}

{(visit, visit)} if Xν = {0, 1}

and if α(s) > p then

δ(q, ν) =











{(look, cut)} if Xν = {0}

{(cut, look)} if Xν = {1}

{(look,wait), (wait, look)} if Xν = {0, 1}

In the first stage, Ap guesses the location of the

root of the special subtree T . While searching for

this root, Ap remains in the state search. When it

encounters the root of T , it enters the state wait for

the first time. This starts the second stage, where

Ap considers only probabilistically reachable nodes

in T . In directions that correspond to a node that is

not probabilistically reachable in T , Ap moves to the

state cut and remains there perpetually. From every

probabilistically reachable node in T , Ap guesses a

path to another probabilistically reachable node with

label p, using the states wait and look. It starts this

search in state wait, moves to state look immediately,

remains there until it encounters a probabilistically

reachable node with label p, and then moves to state

visit. If there is no path from some node to another

node with label p, all runs corresponding to the choice

of T as subtree will eventually get stuck in look. Thus,

some run corresponding to T as the required subtree

is accepting iff T satisfies the required conditions.

We now transform Ap to obtain an automaton A
that accepts trees corresponding to winning strategies

for Player 1. While Ap accepts (A1×A2×S)-labeled

S-trees, A accepts A1-labeled S-trees. The transfor-

mation proceeds in steps: first we build A′
p which

nondeterministically guesses the moves of Player 2,

then get rid of the S labels by enlarging the state

space to obtain A′′
p , and next we unify multiple A′′

p

automata corresponding to different sub-objectives to

obtain an automaton A′ for the parity objective. Note

that Ap accepts trees corresponding to strategy pairs

where Player 2 beats Player 1, so A′ accepts all losing

Player 1 strategies. So the required automaton A is

obtained by complementing A′. Formally:



Theorem 4.9: There exists a nondeterministic parity

tree automaton (NPT) A such that A is non-empty iff

Player 1 has a finite-memory winning strategy for φα.

Proof: Given two labelings u : S∗ → X , v :
S∗ → Y , we define the product labeling u× v : S∗ →
X × Y as u× v(x) = (u(x), v(x)) for all x ∈ S∗.

Let Ap = (A1 × A2 × S,Q, q0, δ, β) be the NBT

defined in Lemma 4.8. We define A′
p = (A1 ×

S,Q, q0, δ
′, β), where

δ′(q, (a, s)) =
∨

a′∈A2

δ(q, (a, a′, s))

Thus A′
p takes player 1 strategy as input, guesses

the strategy of player 2 and checks the resulting

labeled tree for the presence of a p-ergodic subtree

by simulating Ap.

Note that A′
p expects (A1 × S)-labeled S-trees as

input. In order to get rid of the S portion of the

labeling, we move it into the state space as follows:

we define A′′
p = (A1, Q×S, (q0, s0), δ

′′, β×S), where

for every q ∈ Q, s ∈ S and a ∈ A1, the transition

δ′′((q, s), a) is obtained from δ(q, (a, s)) by replacing

each atom (s′, q′) by the atom (s′, (q′, s′)). Then A′′
p

accepts A1-labeled S-trees. Note that if Ap is an NBT

then so are A′
p and A′′

p .

Let f be an arbitrary strategy for Player 1. Let ν :
S∗ → S be the labeling ν(x) = last(x). If there exists

a strategy g for Player 2 such that Pr
f,g
G (φp) > 0, then,

by Lemma 4.8, Ap accepts 〈S∗, f × g × ν〉. Then, by

construction, A′
p accepts 〈S∗, f × ν〉 and A′′

p accepts

〈S∗, f〉. Alternately, if for all player 2 strategies g, we

have Pr
f,g
G (φp) = 0, then, by Lemma 4.8, 〈S∗, f ×

g× ν〉 is not accepted by Ap for all possible labelings

g. Consequently, 〈S∗, f × ν〉 is not accepted by A′
p,

so A′′
p will not accept 〈S∗, f〉. Thus, A′′

p accepts an

A1-labeled S-tree 〈S∗, f〉 iff there exists some player

2 strategy g, such that Pr
f,g
G (φp) > 0.

Consider the automaton A′ whose language is the

union of the language of each A′′
p , for all odd p ≤

max(α). Let f be a finite-memory strategy for Player

1. Then A′ accepts an A1-labeled S-tree 〈S∗, f〉 iff

there exists a player 2 strategy g such that Pr
f,g
G (φk) >

0 for some odd k ≤ max(α). The latter condition is

equivalent to Pr
f,g
G (φα) < 1. Therefore, A′ accepts

〈S∗, f〉 iff f is not winning.

Finally, consider the automaton A = A′, which is

the complement of A′. Then A accepts 〈S∗, f〉 iff f is

a winning strategy for Player 1. Now, by Theorem 2.2,

an NPT is nonempty iff it accepts a regular tree, and

a regular A1-labeled S-tree 〈S∗, f〉 is equivalent to a

finite-memory strategy f , therefore A is non-empty iff

Player 1 has a finite-memory winning strategy.

4.4. Solving for Observation-based Strategies

Note that the finite-memory strategy found by

the method of Theorem 4.9 is not required to be

observation-based. In fact, we have not used the con-

cept of partial information anywhere in the techni-

cal development so far. However, the automata-based

method we have developed is robust in the presence

of partial information, and with one further transfor-

mation we can obtain an automaton that accepts only

observation-based winning strategies.

While a general strategy is a A1-labeled S-tree, an

observation-based strategy is best viewed as a A1-

labeled O-tree. We already have an automaton A that

accepts A1-labeled S-trees corresponding to winning

finite-memory strategies. We now develop an automa-

ton B that accepts A1-labeled O-trees corresponding

to the trees accepted by A. We use a variant of a

technique first developed for synthesis from incomplete

information [10].

Theorem 4.10: There exists an alternating parity

tree automaton (APT) B such that B is non-empty

iff Player 1 has an observation-based finite-memory

winning strategy for φα.

Proof: Let A = (A1, Q, q0, δ, β) be the NPT

defined in Theorem 4.9. Then A accepts A1-labeled

S-trees. Let B = (A1, Q, q0, δ
′, β) where for every

q ∈ Q and a ∈ A1, the transition δ′(q, a) is obtained

from δ(q, a) by replacing each atom (s, q′) by the

atom (obs(s), q′). Then B accepts A1-labeled O-trees.

Let f : O∗ → A1 be an observation-based strategy

for Player 1. We define a general Player 1 strategy

g : S∗ → A1 as follows: for ρ ∈ S∗, g(ρ) = f(obs(ρ))
(recall that obs maps each game state in a play to its

corresponding observation). Then B accepts 〈O∗, f〉 iff

A accepts 〈S∗, g〉. Also, from the perspective of the

opponent, f and g are exactly the same strategy, so f

is a winning strategy iff g is a winning strategy.

Let f be an observation-based finite-memory strat-

egy. Assume first that B accepts 〈O∗, f〉. Then A
accepts 〈S∗, g〉. But then g also has finite-memory,

and by Theorem 4.9, g is a winning strategy, which

implies that f is also a winning strategy. Now, for the

converse, assume that f is a winning strategy. Then g

must also be a finite-memory winning strategy, and by

Theorem 4.9, A accepts 〈S∗, g〉. Therefore B accepts

〈O∗, f〉. Thus, B accepts 〈O∗, f〉 iff f is a winning

strategy, and B is the required automaton.

4.5. Computational Complexity

The NBT A′
p accepts |S|-ary trees and has O(1)

states with an alphabet of size O(|A1| · |S|), so the



NBT A′′
p accepts |S|-ary trees and has O(|S|) states

with an alphabet of size O(|A1|). Then A′ is an

NBT with O(k|S|) where k = max(α). Therefore A,

which is obtained by complementing A′, is an NPT

with 2Poly(|S|) states and parity index O(k|S|). The

translation from A to B adds no blowup, but B is

an APT, while A is an NPT. Since emptiness for an

alternating parity tree automaton can be checked in

time exponential in the size of the automaton [13],

therefore B can be checked for emptiness in time

doubly exponential in the size of the game G.

Theorem 4.11: The complexity of finding if the

partial-information player has a finite-memory winning

strategy in a one-sided partial-information stochastic

parity game is at most 2EXPTIME.

5. Discussion and Future Work

Randomized Finite-memory Strategies: While our

focus in this work is on pure finite-memory strategies

for the partial-information player, it is straightforward

to extend our methods and results to the case of mixed

or randomized finite-memory strategies. If Player 1

uses a randomized finite-memory strategy, this would

not increase the state space of the resulting Markov

chain but instead would increase the number of transi-

tions with positive probability as a randomized strategy

would activate multiple actions for Player 1 in each

game state. This could be represented on a labeled

tree by letting the labels for Player 1 range over sets of

actions instead of single actions, that is, we would have

to consider a (2A1 × A2 × S)-labeled tree. Thus the

situation is essentially equivalent to restricting Player

1 to a pure finite-memory strategy but allowing an

exponentially larger set of actions instead. Solving the

equivalent game using our method would still take

time doubly exponential in the state space, so allowing

randomized finite-memory strategies does not change

the upper bound on time complexity.

Future Work: We have shown that the prob-

lem of finding a finite-memory winning strategy for

the partial-information player in a one-sided partial-

information concurrent game is in 2EXPTIME. The

question of tighter lower and upper bounds we leave

for the future. It would also be interesting to consider

the problem from the perspective of the stronger player.

Whether we can find a finite-memory winning strategy

for the player with complete-information (Player 2), if

it exists, is an open question.
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