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SOLVING PDES IN COMPLEX GEOMETRIES: A DIFFUSE

DOMAIN APPROACH∗

X. LI† , J. LOWENGRUB‡ , A. RÄTZ§ , AND A. VOIGT¶

Abstract. We extend previous work and present a general approach for solving partial differ-
ential equations in complex, stationary, or moving geometries with Dirichlet, Neumann, and Robin
boundary conditions. Using an implicit representation of the geometry through an auxilliary phase
field function, which replaces the sharp boundary of the domain with a diffuse layer (e.g. diffuse
domain), the equation is reformulated on a larger regular domain. The resulting partial differential
equation is of the same order as the original equation, with additional lower order terms to approx-
imate the boundary conditions. The reformulated equation can be solved by standard numerical
techniques. We use the method of matched asymptotic expansions to show that solutions of the re-
formulated equations converge to those of the original equations. We provide numerical simulations
which confirm this analysis. We also present applications of the method to growing domains and
complex three-dimensional structures and we discuss applications to cell biology and heteroepitaxy.
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interface, adaptive finite element methods, adaptive finite difference methods, multigrid methods.
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1. Introduction

Complex geometric shapes are ubiquitous in our natural environment which arise
in biological systems and man-made objects. A few illustrative examples include vein
networks in plant leaves, tumors in human bodies, microstructures in materials, or
simply a complicated engine in classical engineering applications. Here, we are inter-
ested in numerically solving partial differential equations (PDEs) in such geometries.
Using standard discretization methods to solve these problems requires a triangula-
tion of the complicated domain and thus rules out coarse-scale discretizations and
with it efficient multi-level solutions. In addition the automatic generation of proper
three-dimensional meshes for complex geometries remains a challenge. Furthermore,
in many applications the complex geometry might even evolve in time, which would
require a new discretization at each time step.

Various methods have been proposed to circumvent these problems. In one ap-
proach, known as the fictitious domain method, non-body fitted meshes are used and
the complex geometry is embedded in a larger, simpler domain. This requires only
a triangulation of the simpler domain. The PDE to be solved is extended to the
larger domain, although now that the complex geometry is no longer resolved by the
mesh one has to find a way to incorporate the original boundary conditions. Different
strategies have been developed for doing this. One strategy, within a finite element
context, is to build the necessary modifications in the vicinity of the boundary into the
basis functions to account for the boundary conditions. Such an approach is known
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as the composite finite element method which was introduced in [18]. Recent work
on image based computing [28] demonstrates the applicability of this approach in the
case of zero flux boundary conditions. Extensions to Dirichlet boundary conditions are
discussed in [41]. Other approaches in this direction enlarge the set of test functions
to account for the boundary conditions. Such methods include the extended finite
element method (e.g., [7, 34, 36]), the immersed interface method (e.g., [17, 27]) and
generalized nonconforming finite element methods, e.g., [42]. In a similar approach
it is also possible to only modify the quadrature in the assembly process for those
elements in the vicinity of the boundary; see for example [2] for a treatment of Robin-
type boundary conditions, and [45] for a general discussion. In the finite difference
context similar treatments typically require a local modification of the scheme near
the boundary; see the modified finite volume/embedded boundary/cut-cell methods
(e.g., [20, 21, 22, 32, 33, 43]), the immersed interface method (e.g., [24, 26, 44, 49])
and the ghost fluid method (e.g., [9, 12, 13, 14, 30, 31]).

All methods discussed thus far require nonstandard tools and are therefore typ-
ically not available in standard finite element or finite difference software packages.
Alternative methods for introducing the boundary conditions, e.g., using the penalty
method [16] or using Lagrange multipliers [15], are typically restricted to Dirichlet or
Neumann boundary conditions. Only recently have other boundary conditions been
discussed; see for example [39] where a penalty method is used.

In the approaches described above the complex geometry is either given explicitly
through a surface triangulation or implicitly as a level set function. Another approach,
which we call the diffuse domain method and which we follow here, is to represent the
complex geometry using a phase-field function. In this case, the phase-field function
is an approximation of the characteristic function of the domain such that the sharp
boundary of the domain is replaced by a narrow diffuse interface layer. In particular,
the phase-field function is approximately equal to one in the domain interior and to
zero in the exterior of the domain, with a rapid transition between the two. Thus,
a diffuse domain is introduced. The phase-field function may be constructed from a
signed-distance function that describes the distance of a spatial point to the domain
boundary or the phase-field function may be constructed by solving an auxilliary
equation.

The PDE is then reformulated on a larger, regular domain with additional source
terms that approximate the boundary conditions. This diffuse domain approach does
not require any modification of standard finite element or finite difference software.
The diffuse domain method was introduced in [23] to study diffusion inside a cell
with zero Neumann boundary conditions (no-flux) at the cell-boundary. The diffuse
domain approach has also been used to simulate electrical waves in the heart [10]. In
[25], this approach was extended to couple bulk diffusion with an ordinary-differential
equation description of reaction-kinetics on the bounding surface of the domain to
simulate membrane-bound Turing patterns. The coupling between the bulk and sur-
face equations was through a flux condition for the bulk diffusion and a corresponding
source term in the surface equations that relates the normal derivative of the bulk
concentration to the bulk and surface concentrations at the boundary in a Robin-type
boundary condition. In [3, 4], a similar diffuse domain approach was used for solving
PDEs in complex domains with zero Neumann boundary conditions using spectral
methods.

Here we extend this previous work and present a general diffuse domain approach
for solving partial differential equations in complex, stationary, or moving geometries
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with Dirichlet, Neumann, and Robin boundary conditions. We use the method of
matched asymptotic expansions to show that solutions of the reformulated equations
converge to those of the original equations. We provide numerical simulations using
adaptive, multi-level finite-difference, and finite-element methods, which confirm this
analysis. We also present applications of the method to growing domains and complex
three-dimensional structures and discuss applications to cell biology and heteroepi-
taxy.

The paper is organized as follows. In section 2 we review phase field methods,
present the diffuse domain approximation, and discuss its applicability as a numer-
ical tool to solve partial differential equations in complex geometries. In section 3
we give numerical examples to demonstrate convergence for simple two-dimensional
problems and in section 4 we show simulations on growing domains and complex
three-dimensional geometries. In section 5 we draw conclusions.

2. Diffuse domain approximation

Phase field models are typically used to describe complex evolution of patterns.
An order parameter is introduced which smoothly varies between the values 0 and 1
in the two phases and has a rapid transition within a narrow diffuse interface layer
between them. Phase field methods were originally developed to describe solid-liquid
phase transitions and the method has since seen tremendous growth in use. It has
been applied to a wide variety of physical and biological phenomena; see for example
[8] for a recent review. Besides its success in modeling complex patterns, the phase
field approach has also been recognized as a numerical tool to solve partial differential
equations on surfaces [5, 29, 40]. The underlying idea is to describe the surface as
the level set of the phase field function in a three-dimensional domain and solve an
extended partial differential equation, while restricting the evolution to the diffuse
interface. Using matched asymptotic expansions, it can be shown that if the diffuse
interface width tends to zero the solution of the extended partial differential equation
along the 1/2 level set of the phase field function approximates the solution of the
original partial differential equation on the surface.

Here, we follow this and previous work described above, and use a similar ap-
proach, termed the diffuse domain method, to solve partial differential equations in
complex geometries. Letting the phase field function be a smeared-out version of the
characteristic function of the complex domain, the original PDE is reformulated and
extended to a larger, regular domain. The original domain with a sharp boundary is
thus replaced by a domain with a diffuse boundary. To be more precise we consider a
time-dependent domain Ω1(t)⊂Ω⊂R

n (see figure 2.1) implicitly described by a phase
field function [40]

φ(x,t) :=
1

2

(

1−tanh

(

3r(x,t)

ǫ

))

, x∈Ω, (2.1)

where r= r(x,t) denotes the signed distance function from the point x to the bound-
ary ∂Ω1(t) which is assumed to be negative in Ω1(t) and positive in Ω\Ω1(t). The
boundary ∂Ω1(t) is given by the level set ∂Ω1(t)={x|φ(x,t)=1/2}. In equation (2.1),
ǫ is a small parameter that sets the width of the diffuse interface layer that bounds the
diffuse domain (the actual width is 2ǫ). Note that different imaging tools for biolog-
ical or medical structures today enable the construction of signed distance functions
to represent the geometry. The same is true for modern construction tools such as
computer aided design programs. In addition, there are efficient algorithms for calcu-
lating signed distance functions (e.g., [38, 46]). Alternatively, the phase-field function
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Fig. 2.1. Domain Ω1⊂Ω⊂R
n described by a phase-field function φ.

can be obtained by solving an auxilliary phase-field equation (e.g., [10, 29]).
We next reformulate partial differential equations in Ω1 with boundary conditions

on ∂Ω1 into partial differential equations on Ω. The method of matched asymptotic
expansions is used to show that when ǫ→0 we recover the original partial differential
equation in Ω1 and its boundary conditions.

2.1. Model problem in Ω1. Although the approach we take is general, we
begin by describing the method for the Poisson equation on a fixed domain. Later,
in section 2.6, we describe the approach for a general PDE. Consider the Poisson
equation

∆u=f in Ω1, (2.2)

for a right hand side function f :Ω1→R, with three different types of boundary con-
ditions:

• Dirichlet boundary condition

u=g on ∂Ω1, (2.3)

for a function g :∂Ω1→R.

• Neumann boundary condition

∇u ·n=g on ∂Ω1, (2.4)

for a function g :∂Ω1→R and with n being the outward unit normal vector
to ∂Ω1. There is of course a compatibility condition for f and g that must
be satisfied.

• Robin boundary condition

∇u ·n=k(u−g) on ∂Ω1 (2.5)

for a function g :∂Ω1→R, and k∈R with k<0.
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Remark 2.1. For Neumann and Robin boundary conditions we can formally rewrite
the problem on Ω using the characteristic function χΩ1

(x)=1 for x∈Ω1 and χΩ1
(x)=

0 for x∈Ω\Ω1 and the surface delta function δ∂Ω1

1 as

∇·(χΩ1
∇u)+δ∂Ω1

g=χΩ1
f in Ω, (2.6)

and

∇·(χΩ1
∇u)+δ∂Ω1

k(u−g)=χΩ1
f in Ω, (2.7)

respectively. A derivation of these forms of the equations may be found in the ap-
pendix. The diffuse domain approximation of these equations will result from approx-
imations of χΩ1

and δ∂Ω1
obtained from φ and its derivatives, as described below.

Remark 2.2. For Dirichlet boundary conditions, the equations can also be formally
rewritten as

∇·(χΩ1
∇u)+(u−g)∇·∇χΩ =χΩ1

f in Ω, (2.8)

where we have used that ∇χΩ =−δ∂Ω1
n, where n is the outward unit normal of ∂Ω1.

A derivation may be found in the appendix. A direct diffuse domain approximation
of this equation was found to be less robust than the other approximations described
below.

2.2. Asymptotic analysis. In order to provide diffuse domain approxima-
tions for these boundary value problems, we consider extensions of f and g to the
domain Ω which we again denote by f and g. The method of matched asymptotic
expansions (e.g., see [37]) is used here to provide a formal justification of the diffuse
domain approximations presented below. In this approach, the domain is separated
into two regions — the regions far from ∂Ω1 (the outer region) and the region near ∂Ω1

(the inner region). In each region, the variables are expanded in powers of the diffuse
interface thickness ǫ. In a region where both expansions are valid, the expansions are
matched.

We first introduce a local coordinate system. Define r= r(x;ǫ) to be the signed
distance of x from ∂Ω1. Furthermore let X :S→R

d be a parametric representation
of ∂Ω1, where S is an oriented manifold of dimension d−1. Let n=n(s;ǫ) denote the
outward unit normal, and let s be the arclength. Then we assume that for 0<ρ≪1
there exists a neighborhood

Uǫ ={x∈Ω: |r(x;ǫ)|<ρ}

of ∂Ω1 such that one can write x=X(s;ǫ)+r(x;ǫ)n(s;ǫ) for x∈Uǫ. Now one trans-
forms u and φ to the new coordinate system:

u(r,s;ǫ) :=u(x;ǫ)=u(X(s;ǫ)+rn(s;ǫ);ǫ), x∈Uǫ, (2.9)

φ(r,s;ǫ) :=φ(x;ǫ)=φ(X(s;ǫ)+rn(s;ǫ);ǫ), x∈Uǫ. (2.10)

Here, we simply expand u and φ in non-negative powers of ǫ:

u(r,s;ǫ)=u0(r,s)+ǫu1(r,s)+ .. ., (2.11)

φ(r,s;ǫ)=φ0(r,s)+ǫφ1(r,s)+ .. .. (2.12)

1i.e.,
R

Ω
hδ∂Ω1

dx=
R

∂Ω1
hdS for any smooth function h.
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To find the inner expansion, we introduce a stretched variable z := r
ǫ
, and define

U(z,s;ǫ) :=u(r,s;ǫ), (2.13)

Φ(z,s;ǫ) :=φ(r,s;ǫ). (2.14)

As in the outer expansion, we expand U and Φ in non-negative powers of ǫ:

U(z,s;ǫ)=U0(z,s)+ǫU1(z,s)+ .. ., (2.15)

Φ(z,s;ǫ)=Φ0(z,s)+ǫΦ1(z,s)+ .. .. (2.16)

By matching the inner and outer expansions in an overlapping region where both
expansions are valid, the following matching conditions hold (e.g., [6, 37, 11]):

lim
r→±0

u0(r,s,t)= lim
z→±∞

U0(z,s,t), (2.17)

lim
r→±0

φ0(r,s,t)= lim
z→±∞

Φ0(z,s,t), (2.18)

lim
r→±0

∇u0(r,s,t) ·n= lim
z→±∞

∂zU1(z,s,t), (2.19)

lim
r→±0

∇φ0(r,s,t) ·n= lim
z→±∞

∂zΦ1(z,s,t). (2.20)

We further assume that there are analogous expansions for f and g.

2.3. Dirichlet boundary condition.

2.3.1. Formulation. Below, we present four diffuse domain approximations
for the Dirichlet problem:

Approximation 1: ∇·(φ∇u)−ǫ−3(1−φ)(u−g)=φf in Ω, (2.21)

Approximation 2: ∆u−ǫ−3B(φ)(u−g)=φf in Ω, (2.22)

Approximation 3: ∇·
{

(1+ǫ−1B(φ))∇u)
}

−ǫ−2B(φ)(u−g)=φf in Ω, (2.23)

Approximation 4: ∇·(φ∇u)+(u−g)∆φ=φf in Ω, (2.24)

where B(φ)∼φ2(1−φ)2 (i.e. B(φ)=36φ2(1−φ)2) in equations (2.22) and (2.23),
assuming that φ is given by the hyperbolic tangent function in equation (2.1). In
addition, Approximations 3 and 4 assume g to be extended such that the extension
is constant in the normal direction off ∂Ω1. Note that Approximation 4 is the di-
rect diffuse domain approximation of equation (2.8). Numerical experimentation has
shown that Approximation 4 is not as robust as Approximations 1–3. To justify these
approximations, we use the method of matched asymptotic expansions. We note that
this list is by no means exhaustive; there are many other possible diffuse domain
approximations. If φ is not given by equation (2.1), then another choice of B may be
required.

2.3.2. Matched asymptotic expansion for Approximation 1.

Outer expansion:. At leading order O(ǫ0), we obtain

∆u0 =f0 in Ω1.

Thus we recover the Poisson equation (2.2) at leading order.
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Inner expansion:. At O(ǫ−3), we obtain

(1−Φ0)(U0−G0)=0.

Since (1−Φ0)>0 for all z∈R, we obtain

U0 =G0 ∀z∈R.

Taking limits and using the matching conditions, we obtain

lim
r→−0

u0 = lim
r→−0

g0.

Thus we also recover the boundary condition in equation (2.3) at leading order.

2.3.3. Matched asymptotic expansion for Approximation 2.

Outer expansion:. The outer expansion is the same as in section 2.3.2.
Inner expansion:. At O(ǫ−3), we obtain

B(Φ0)(U0−G0)=0.

Since B(Φ0)>0 for all z∈R, we obtain

U0 =G0 ∀z∈R

Arguing as above, we recover the boundary condition in equation (2.3) at leading
order.

2.3.4. Matched asymptotic expansion for Approximation 3.

Outer expansion:. The outer expansion is the same as in section 2.3.2.
Inner expansion:. At O(ǫ−3), we obtain

∂z(B(Φ0)∂zU0)=0.

It follows from the matching conditions that

∂zU0 =0.

At the next order O(ǫ−2), we obtain:

∂z(B(Φ0)∂zU1)−B(Φ0)(U0−G0)=0.

Assuming that G0 is independent of z, integrating the above equation from −∞ to
∞, using the matching conditions, and the fact that

∂zΦ0 =−6Φ0(1−Φ0),

and

∫ ∞

−∞

B(Φ0)dz=

∫ 0

1

B(Φ0)

∂zΦ0
dΦ0 =

1

6

∫ 1

0

B(Φ0)

Φ0(1−Φ0)
dΦ0∼

1

6

∫ 1

0

Φ0(1−Φ0)dΦ0 6=0,

(2.25)
we recover the boundary condition in equation (2.3) at leading order.
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2.3.5. Matched asymptotic expansion for Approximation 4.

Outer expansion:. The outer expansion is the same as in section 2.3.2.

Inner expansion:. At O(ǫ−2), we obtain

∂z (Φ0∂zU0)+(U0−G0)∂zzΦ0 =0. (2.26)

DefiningW0 =U0−G0 and using that G0 is independent of z, we may rewrite equation
(2.26) as

∂zz (Φ0W0)−∂zW0∂zΦ0 =0.

Integrating from −∞ to ∞ and using the matching conditions, we conclude that

∫ +∞

−∞

∂zW0∂zΦ0 dz=0.

Since ∂zΦ0<0, we conclude that ∂zW0 must have at least one zero. Denote the
zero point by z=z∗. An analysis of the equation shows that in fact W0 and all its
derivatives vanish in a neighborhood of z∗. Thus, assuming sufficient smoothness of
the solution, we conclude that W0 =0 identically, hence

U0 =G0

and so we recover the boundary condition in equation (2.3) at leading order.

2.4. Neumann boundary condition.

2.4.1. Formulation. We next present four diffuse domain approximations for
the Neumann problem:

Approximation 1: ∇·(φ∇u)+∇(φg) ·
∇φ

|∇φ|
=φf in Ω, (2.27)

Approximation 2: ∇·(φ∇u)+g|∇(φ)|=φf in Ω, (2.28)

Approximation 3: ∇·(φ∇u)+ǫg|∇φ|2 =φf in Ω, (2.29)

Approximation 4: ∇·(φ∇u)+ǫ−1gB(φ)=φf in Ω, (2.30)

where B(φ)=36φ2(1−φ)2 in equation (2.30). Approximations 2–4 assume g to be
extended such that the extension is constant in the normal direction off ∂Ω1. Observe
that in all these approximations, the characteristic function of Ω1 is approximated by
χΩ1

≈φ while the surface delta function δ∂Ω1
is approximated by |∇φ|, ǫ|∇φ|2 and

ǫ−1B(φ), respectively. Note that in equation (2.28) a lower order term φ∇g ·∇φ/|∇φ|
is also present. Also, if φ is not given by equation (2.1), then the lower order terms in
Approximations 3 and 4 need to be rescaled [25] and B may also need to be redefined.

2.4.2. Matched asymptotic expansion for Approximation 1.

Outer expansion:. At O(ǫ0), we obtain

∆u0 =f0 in Ω1.

Thus we recover the Poisson equation (2.2) at leading order.
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Inner expansion:. At O(ǫ−2), we obtain

∂z(Φ0∂zU0)=0.

It follows that

∂zU0 =0.

At O(ǫ−1), we obtain

∂z(Φ0∂zU1)−∂z(Φ0G0)=0.

Integrating the above equation from −∞ to ∞ we obtain

lim
z→−∞

∂zU1 = lim
z→−∞

G0,

and by matching the inner and outer expansions it follows that

lim
r→−0

∇u0 ·n= lim
r→−0

g0.

Thus we also recover the boundary condition in equation (2.4) at leading order.

2.4.3. Matched asymptotic expansion for Approximation 2.

Outer expansion:. The outer expansion is the same as in section 2.4.2.
Inner expansion:. At O(ǫ−2), we obtain

∂z(Φ0∂zU0)=0 ⇒ ∂zU0 =0.

At O(ǫ−1), we have

∂z(Φ0∂zU1)−G0∂zΦ0 =0.

Assuming that G0 is independent of z, integrating the above equation from −∞ to
∞, and using the matching conditions, we recover the boundary condition in equation
(2.4) at leading order.

2.4.4. Matched asymptotic expansion for Approximation 3.

Outer expansion:. The outer expansion is the same as in section 2.4.2.
Inner expansion:. At O(ǫ−2), we obtain

∂z(Φ0∂zU0)=0 ⇒ ∂zU0 =0.

At O(ǫ−1), we obtain

∂z(Φ0∂zU1)+G0(∂zΦ0)
2 =0.

Assuming that G0 is independent of z, integrating the above equation from −∞ to
∞, using the matching conditions, and the fact that

∫ ∞

−∞

(∂zΦ0)
2dz=

∫ 0

1

∂zΦ0dΦ0 =6

∫ 1

0

Φ0(1−Φ0)dΦ0 =1,

we recover the boundary condition in equation (2.4) at leading order.
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2.4.5. Matched asymptotic expansion for Approximation 4.

Outer expansion:. The outer expansion is the same as in section 2.4.2.
Inner expansion:. At O(ǫ−2), we have

∂z(Φ0∂zU0)=0 ⇒ ∂zU0 =0.

At O(ǫ−1), we obtain

∂z(Φ0∂zU1)+G0B(Φ0)=0.

Assuming G0 is independent of z, integrating the above equation from −∞ to ∞,
and using that

∫ +∞

−∞
B(Φ0) dz=1 (following the analysis in equation (2.25)) together

with the matching conditions, we recover the boundary condition in equation (2.4) at
leading order.

2.5. Robin boundary condition.

2.5.1. Formulation. We next present two diffuse domain approximations for
the Robin problem:

Approximation 1: ∇·(φ∇u)+ǫk(u−g)|∇φ|2 =φf in Ω, (2.31)

Approximation 2: ∇·(φ∇u)+ǫ−1B(φ)k(u−g)=φf in Ω, (2.32)

where B(φ)=φ2(1−φ)2. Actually, all four diffuse interface approximations of the
Neumann problem described earlier could be used here. Approximation 1 was used
previously in [25].

2.5.2. Matched asymptotic expansion for Approximation 1.

Outer expansion:. At leading order O(ǫ0), we obtain

∆u0 =f0 in Ω1,

Thus we recover the partial differential equation in equation (2.2) at leading order.
Inner expansion:. At O(ǫ−2), we obtain

∂z(Φ0∂zU0)=0 ⇒ ∂zU0 =0.

At O(ǫ−1), we have

∂z(Φ0∂zU1)+k(U0−G0)(∂zΦ0)
2 =0.

Assuming that G0 is independent of z, integrating the above equation from −∞ to
∞ we obtain

lim
z→−∞

∂zU1 =k lim
z→−∞

(U0−G0).

By matching the inner and outer expansions we obtain

lim
r→−0

∇u0 ·n=k lim
r→−0

(u0−g0).

Thus we also recover the boundary condition in equation (2.5) at leading order.



X. LI, J. LOWENGRUB, A. RÄTZ AND A. VOIGT 91

2.5.3. Matched asymptotic expansion for Approximation 2.

Outer expansion:. The outer expansion is the same as in section 2.5.2.
Inner expansion:. At O(ǫ−2), we have

∂z(Φ0∂zU0)=0 ⇒ ∂zU0 =0.

At O(ǫ−1), we have

∂z(Φ0∂zU1)+B(Φ0)k(U0−G0)=0.

Assuming that G0 is independent of z, integrating the above equation from −∞ to
∞, and using the matching conditions, we recover the boundary condition in equation
(2.5) at leading order.

2.6. Summary. The preceding analyses show that all that is needed to
approximate a PDE in a complex geometry by a PDE on a larger regular domain is
a restriction of the partial differential operators using the phase field variable φ and
adding an additional lower order term to take care of the boundary conditions. Here,
we consider a more general second order partial differential equation in an evolving
domain Ω1(t) of the form

∂tu−∇·(A∇u)+b ·∇u+cu=f in Ω1(t), (2.33)

with A=A(u,∇u,x,t) :Ω1(t)→Ω1(t) a positive definite matrix, b=b(u,∇u,x,t) :
Ω1(t)→R a vector, c= c(u,∇u,x,t)∈R, and f =f(x,t), as well as appropriate bound-
ary conditions:

• Dirichlet boundary condition

u=g on ∂Ω1(t), (2.34)

• Neumann boundary condition

A∇u ·n+uV =g on ∂Ω1(t), (2.35)

where V is the normal velocity of ∂Ω1(t), and

• Robin boundary condition

A∇u ·n+uV =k(u−g) on ∂Ω1(t). (2.36)

The Neumann and Robin boundary conditions (2.35) and (2.36) respectively are nat-
ural generalizations of the stationary domain conditions and are justified in the ap-
pendix (see also [23]). The diffuse domain approximation reads as

∂t(φu)−∇·(φA∇u)+φb ·∇u+φcu+B.C.=φf in Ω, (2.37)

where A, b, and c are now extended coefficients, with the only requirement for the
extension of A is that it should remain positive definite. The notation B.C. refers
to the appropriate diffuse domain forms for the boundary conditions discussed in the
previous subsections. A justification of this diffuse domain formulation can be done by
performing matched asymptotic expansions along the same lines as above using that
in the inner expansion, ∂t =−V

ǫ
∂z +O(ǫ0) where V is the normal velocity of ∂Ω1(t).

This is seen as follows. For simplicity, we perform the analysis using Approximation



92 PDEs IN COMPLEX GEOMETRIES

1 of the Robin boundary condition (2.31) and we assume that φ is given by equation
(2.1). That is, we consider

∂t(φu)−∇·(φA∇u)+φb ·∇u+φcu−ǫk(u−g)|∇φ|2 =φf in Ω. (2.38)

In the outer expansion at O(ǫ0), we obtain equation (2.33). In the inner expansion,

assuming A= Â0 +Â1 + .. ., and likewise for b and c, we obtain at O(1/ǫ2):

∂z

(

Φ0

(

nÂ0n
)

∂zU0

)

=0 ⇒ ∂zU0 =0. (2.39)

At the next order O(1/ǫ), we obtain

−V ∂z (Φ0U0)−∂z

(

Φ0nÂ0 (n∂zU1 +s∂sU0)
)

−k(U0−G0)(∂zΦ0)
2 =0. (2.40)

Since V is independent of z, integrating from −∞ to ∞, and using the matching
conditions (assuming also that G0 is independent of z), the specific form of φ, and
that A0∇u0 ·n=(nA0n)∇u0 ·n+(nA0s)∇u0 ·s, yields

lim
r→−0

(V u0 +A0∇u0 ·n)=k lim
r→−0

(u0−g0),

where A0 is the leading order term in the outer expansion of A. Thus, equation (2.36)
is recovered at leading order.

Alternatively, let us consider a conservative generalization of equation (2.33):

∂tu−∇·(A∇u)+∇·(ub)+cu=f in Ω1(t). (2.41)

For this equation, we may consider alternative forms of the Neumann and Robin
boundary conditions considered above:

• Neumann boundary condition alternative

A∇u ·n+u(V −b ·n)=g on ∂Ω1(t), (2.42)

where b ·n is the normal component of b on ∂Ω1(t), and

• Robin boundary condition alternative

A∇u ·n+u(V −b ·n)=k(u−g) on ∂Ω1(t). (2.43)

These boundary conditions are justified in the appendix. Note that if b ·n=V , then
these reduce to the stationary Neumann and Robin boundary conditions.

The diffuse domain approximation reads:

∂t(φu)−∇·(φA∇u)+∇·(φub)+φcu+B.C.=φf in Ω, (2.44)

where as before, the B.C. refers to the appropriate diffuse domain forms for the
boundary conditions discussed in the previous subsections. As before, equation (2.44)
can be justified using the method of matched asymptotic expansions. To see this, again
use Approximation 1 of the Robin boundary conditions and φ given from equation
(2.1). That is, we consider:

∂t(φu)−∇·(φA∇u)+∇·(φub)+φcu−ǫk(u−g)|∇φ|2 =φf in Ω. (2.45)
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In the outer expansion at O(ǫ0), equation (2.41) is recovered. In the inner expansion
at O(1/ǫ2), equation (2.39) is obtained. At O(1/ǫ), we obtain

∂z

(

Φ0U0

(

b̂0 ·n−V
))

−∂z

(

Φ0nÂ0 (n∂zU1 +s∂sU0)
)

−k(U0−G0)(∂zΦ0)
2 =0.

(2.46)
Integrating from −∞ to ∞ and using the matching conditions yields

lim
r→−0

((V −b0 ·n)u0 +A0∇u0 ·n)=k lim
r→−0

(u0−g0),

so that equation (2.43) is recovered at leading order.
In summary, given a signed distance representation of the geometry Ω1, a phase

field function can be constructed either using equation (2.1) or by solving an auxilliary
phase field equation. If φ differs from equation (2.1), then some of the diffuse domain
approximations of the Neumann and Robin boundary conditions need to be rescaled,
as indicated earlier. The PDE and its boundary conditions are then reformulated
in the larger domain as described above. The reformulated PDE can be solved by
standard approaches. In particular, since the larger domain Ω typically has a simple
shape, most likely a box in R

3, a coarse grid representation is easy to construct.
Starting from this coarse grid a hierarchy of finer meshes can be created using adaptive
or global refinements.

Remark 2.3. Since φ=0 in Ω\Ω1, we ensure that the reformulated equations are
well posed in Ω by replacing φ❀φ+δ with a small parameter δ. For the asymptotic
analysis it is sufficient to set δ= ǫ. However, to obtain satisfactory numerical results
a much smaller value of δ is required. In the simulations that follow, we set δ=10−6.

3. Numerical examples

As a benchmark for the diffuse domain approach, we consider the Poisson equa-
tion with Dirichlet and Robin boundary conditions and the quasi-steady reaction-
diffusion equation ∆u−u=f on a circular domain Ω1 =B1(0)⊂R

2 (with B1(0) being
the unit circle) with Neumann boundary conditions. The equations are reformulated
as above using the phase field function in equation (2.1) and the computational do-
main Ω=(−2,2)2 with periodic boundary conditions on ∂Ω. As indicated in [4], the
boundary conditions imposed at ∂Ω do not influence the solution in Ω1 provided ∂Ω1

is sufficiently far from ∂Ω.
In the tests that follow, we set the right hand side f and the boundary function

g such that we obtain the following analytic solution:

u(r,θ)=
1

4
r2 =

1

4
(x2 +y2). (3.1)

This enables us to quantify the errors introduced by the diffuse domain approach. As
discussed above, the reformulated problem can be solved using standard numerical
techniques. In this section, we use a finite element discretization (FEM) implemented
with the adaptive FEM toolbox AMDiS [47]. To discretize space, a conforming trian-
gulation Th is introduced and the mesh is locally adapted using a bisection algorithm
(see [47] and references therein) such that the mesh is refined near the domain bound-
ary ∂Ω1 and a coarse mesh is used elsewhere. Globally continuous piecewise linear
finite elements are used with a standard weak form of the equations. To show the
versatility of the diffuse domain approach, we also provide results using an adaptive
finite difference method in section 4.1.
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3.1. Dirichlet boundary conditions. We set f(x,y)=1, g(x,y)=1/4 and
solve ∆u=f using each of the three diffuse domain Approximations (2.21)–(2.23). In
figure 3.1, the y=0 slices of the discrete solution for different values of ǫ are shown
in comparison with the analytic solution. The results reproduce the convergence
result from the asymptotic analysis in section 2.3. While extrapolation could be
used in principle to obtain a more accurate solution (essentially second-order in ǫ),
this requires interpolation since the meshes are different when ǫ is varied because of
adaptivity. Hence we do not present extrapolated results here. We do not present
results for Approximation 4 since this was found to be less robust than Approximations
1–3. Observe that Approximation 3 appears to provide more accurate results than
the others. In figure 3.2, the numerical solution in the whole domain Ω is shown for
Approximation 3.

3.2. Neumann boundary conditions. We set f(x,y)=1−1/4(x2 +y2),
g(x,y)=1/2 and solve ∆u−u=f using the diffuse domain Approximations (2.27)–
(2.29). The analytic solution is the same as in the previous example. The corre-
sponding numerical results for the different diffuse domain approximations are shown
in figure 3.3. The results reproduce the convergence result in the asymptotic analysis
in section 2.4. In this case, Approximation 1 appears to be the most accurate of the
three.

3.3. Robin boundary conditions. We solve ∆u=f with Robin boundary
conditions using f(x,y)=1, g(x,y)=3/4, and k=−1. The analytic solution is the
same as in the previous examples. We use Approximation 1 in equation (2.31). The
corresponding numerical results are shown in figure 3.4, and again reproduce the
convergence result in the asymptotic analysis in section 2.5.

4. Applications

4.1. Time dependent and moving domains. We next consider the follow-
ing PDE in an evolving domain Ω1(t):

∂tu+∇·(uv)−∇·(∇u)+u=f in Ω1(t), (4.1)

with Neumann boundary condition

∇u ·n=g on ∂Ω1(t). (4.2)

We take Ω1(t) to be a growing, perturbed circular domain and suppose that the
velocity of the domain v(x,t) is given. The initial domain is enclosed by the polar
curve

r(θ,0)=1+0.1cos(3θ)+0.02cos(5θ), (4.3)

and the velocity v is given by

v= ṙ(θ,t)(cos(θ),sin(θ)), (4.4)

where

ṙ(θ,t)=0.2e2tcos(3θ)+0.12e6tcos(5θ). (4.5)

Thus, the domain increasingly deviates from a circle as time proceeds and acquires
a complex shape. We choose f and g such that the solution is u(r,θ,t)= 1

4r
2. The

initial condition is u0(r,θ)= 1
4r

2.
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Fig. 3.1. Diffuse interface approximation of Dirichlet problem for the Poisson equation. A slice
of u(x,y) along y =0 for different values of ǫ as labeled. [a]: result using Approximation 1 in equation
(2.21), [b]: result using Approximation 2 in equation (2.22) and [c]: result using Approximation 3
in equation (2.23).

To approximate equation (4.1), we solve the diffuse domain model using Approx-
imation 2 in equation (2.28),

∂t(φu)+∇·(φuv)−∇·(φ∇u)−g|∇φ|+φu=φf in Ω, (4.6)
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Fig. 3.2. The numerical solution u(x,y) in the whole domain Ω using Approximation 3 in
equation (2.23) with ǫ=0.1.

in the square (−2,2)2 with zero Neumann boundary conditions. To determine φ, we
have several choices. Here, we reconstruct φ from the signed distance function r via
equation (2.1). Because the velocity v is given analytically (see equation (4.4)), we
construct r exactly. More generally, one could solve a Hamilton-Jacobi equation for
the signed distance function

∂tr+V |∇r|=0, (4.7)

where V is an extension of v|∂Ω1
·n off ∂Ω1 such that ∇V ·n=0 in a neighborhood

of ∂Ω1 (e.g., [1, 30]). Alternatively, one could solve for φ directly using an advective
Cahn-Hilliard equation

∂tφ+v ·∇φ=∇·
(

ν∇
(

F ′(φ)−ǫ2∆φ
))

, (4.8)

where ν and F are appropriately defined mobility and double well free energy func-
tions, respectively.

To solve equation (4.6) we use an adaptive finite-difference, multilevel-multigrid
method with block-structured Cartesian mesh refinement (see [48]). Centered finite
difference approximations are used for the space discretization and the time stepping
is performed by the Crank-Nicholson method. The overall scheme is second order
accurate in space and time. The complexity of this method is optimal, i.e., the number
of operations to solve the equations is O(N), where N is the number of unknowns.
The mesh is refined in the diffuse interface region around ∂Ω1 where φ exhibits a
sharp transition.

In figure 4.1 we present the results using an adaptive mesh with six levels of re-
finement. The mesh size ranges from hcoarse =0.25 to hfine =4/1024≈0.0039. We
use the interface thickness parameter ǫ=0.025 in equation (2.1); there are approxi-
mately 10 grid points across the diffuse interface layer. The boxes correspond to the
boundaries of the adaptive Cartesian patches. Each interior box contains a mesh that
is one half of the size of the mesh in the box that contains it. The bounding box
corresponding to coarsest mesh is the boundary of the computational domain itself.
In figure 4.2[a], the numerical solution from figure 4.1[f] (‘o’) is shown together with
the exact solution (solid line) along the y=0 slice of the domain (restricted to Ω1).
The absolute value of the difference between the numerical and exact solutions (error)
on the y=0 slice is shown in figure 4.2[b]. The error is on the order of 10−3 with the
largest error occurring near the rightmost finger. Clearly the solution of the diffuse
domain model provides a good approximation of the true solution.

4.2. Three dimensional results. Next, we consider the solution of the
Poisson equation ∆u=f in a complex domain Ω1 with boundary consisting of two
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Fig. 3.3. Diffuse interface approximation of the Neumann problem. A slice of u(x,y) along
y =0 for different values of ǫ as labeled. [a]: result using Approximation 1 in equation (2.27), [b]:
result using Approximation 2 in equation (2.28), and [c] result using Approximation 3 in equation
(2.29).

rectangular cuboids and a 4×4 array of cylindrical connecting pillars. The height
and radius of the pillars is 1.8 and 0.1, respectively. The rectangular cuboids have
dimension 2×2×0.2; see figure 4.3. We apply Robin boundary conditions ∇u ·n=
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Fig. 3.4. The diffuse domain approximation of the Robin problem using Approximation 1 in
equation (2.31). [a] The y =0 slice of the numerical solution u(x,y) for different values of ǫ as
labeled. [b]: The numerical solution u with ǫ=0.1.

k(u−g) on ∂Ω1 with

g(x)=g(x3)=
x3−zt

zb−zt

gb +
x3−zb

zt−zb

gt, (4.9)

where x=(x1,x2,x3). The numbers zb and zt denote x3-values for which g attains the
values gb and gt, respectively. In figure 4.3, we present the numerical solutions (shown
on ∂Ω1) obtained by solving the diffuse interface Approximation 1 from equation
(2.31). The function φ is obtained from a level set description of the domain via
equation (2.1) with ǫ=0.05. The equations are solved in the computational domain
Ω=(−4.0,4.0)3 with periodic boundary conditions using the AMDiS adaptive finite
element framework described earlier. A BiCGStab algorithm is used to solve the
system of discrete equations. In this simulation, we have taken k=1, gb =2, gt =1,
zb =−2, zt =2. The right hand side is f =1. In figure 4.3[a], the solution is shown
with approximately 5 grid points across the diffuse interface layer (949,704 degrees of
freedom (DOFs)) and in [b] the mesh is refined so that there are approximately 10
grid points across the layer (6,346,674 DOFs). The solution can be interpreted as a
stationary temperature field (with blue and red denoting low and high temperatures
respectively), where the structure is heated at the bottom and cooled at the top. In
figure 4.4, a cross section of the mesh corresponding to figure 4.3[a] is shown together
with the level contours of φ. Next, we modify the functions g and k in the Robin
boundary conditions using the same complicated cuboid-pillar geometry as above. We
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[e] [f]

Fig. 4.1. Solution of the diffuse domain approximation equation (4.6), at different times as
labeled, with Ω1 being a perturbed, growing growing circular domain. In [f ], the boxes correspond to
the boundaries of the adaptive Cartesian mesh patches. Each interior box contains a mesh that is
one half of the size of the mesh in the box that contains it. See text for additional parameters.

take

g(x)=g0−|x−x0|, (4.10)

with g0 =10 and x0 =





cbx− lx/2
cby − ly/2
cbz − lz/2



, where





cbx

cby

cbz



 denotes the center of the bottom

cuboid and lx, ly and lz denote the edge lengths in x1-, x2- and x3-directions, respec-
tively. For the function k, we take

k=k(x,∇φ) :=−h(x3)
∇φ

|∇φ|
·





0
0
1



=−h(x3)
∂x3

φ

|∇φ|
, (4.11)
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[a] [b]

Fig. 4.2. The y =0 slice of the result in figure 4.1[f ]. [a]: The numerical solution (‘o’) and
the exact solution (‘-’), [b]: The absolute value of the difference between the numerical and exact
solutions along the y =0 slice.

[a] [b]

Fig. 4.3. Solution u of the diffuse domain Approximation 1 with Robin boundary conditions
(4.9) on the boundary of the domain Ω1. Blue and red denote small and large values of u. [a]:
simulation using at least 5 grid points across the diffuse interface (949.704 DOFs), [b]. refined
simulation using at least 10 grid points across the diffuse interface (6.346.674 DOFs).

and

h(z)=h0 +(h1−h0)
1

2

(

1−tanh

(

3z

ǫ

))

,

with h0 =10 and h1 =2. Thus, h is large in the lower part of the domain and moderate
in the upper part. However, in the lateral directions k≈0 which approximates no
flux boundary conditions. Again, the computational domain is Ω=(−4.0,4.0)3 with
periodic boundary conditions. The result is shown in figure 4.5 using an adaptive
mesh with at least 5 grid points across the diffuse interface (e.g. as in figure 4.3[a]
and figure 4.4). Again the solution can be interpreted as a stationary temperature
field.
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Fig. 4.4. Phase field function φ on cross section of the mesh from the simulation shown in
figure 4.3[a].

Fig. 4.5. Solution u of the diffuse domain Approximation 1 on the boundary of the domain
Ω1 with Robin boundary conditions (4.10) and (4.11) using at least 5 grid points across the diffuse
interface (949,704 DOFs).

5. Conclusions and outlook

We have extended previous work and presented a general approach for solving
PDEs in complex, stationary or moving geometries with Dirichlet, Neumann and
Robin boundary conditions. Using a phase field approach, the partial differential
equations are reformulated on a larger regular domain with additional lower order
terms that approximate the boundary conditions. Matched asymptotic analyses were
performed to demonstrate convergence to the original problem as the diffuse interface
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width tends to zero. Numerical simulations were performed which confirm the con-
vergence analysis and show the effectiveness of the approach in simulating PDEs in
complex domains.

Up to now, the geometry of the domain has been given analytically. This is not a
restriction of the approach. For example, the phase field function can be the solution
of another problem that determines the geometry. We now give an example of this in
the context of heteroepitaxial growth where phase separation may occur in a growing
thin crystal film. The model involves the solution of a Cahn-Hilliard equation in
a film [19] which evolves due to surface diffusion (and also deposition/desorption).
Neglecting deposition and desorption, the simplest set of governing equations for a
binary film is

V =∆ΓH on ∂Ω1(t),

∂tu=∆µ in Ω1(t),

µ=−ǫ∆u+
1

ǫ
G′(u) in Ω1(t),

∇µ ·n+uV =0 and ∇u ·n=g on ∂Ω1(t),

where Ω1(t) is the evolving thin film domain, V is the normal velocity of the surface
∂Ω1(t), n is the outward unit normal vector to ∂Ω1(t), and H is the mean curvature.
The operator ∆Γ denotes the surface Laplacian on ∂Ω1(t), u is the concentration
of one of the film components, and µ is the chemical potential. A diffuse domain
approximation for this system combines a phase field approach for both the evolving
surface and a diffuse domain equation for the Cahn-Hilliard equation in the moving
domain:

∂tφ=∇·(ǫ−1B(φ)∇ω) in Ω,

g(φ)ω=−ǫ∆φ+
1

ǫ
G′(φ) in Ω,

∂t(φu)=∇·(φ∇µ) in Ω,

φµ=−ǫ∇·(φ∇u)+
1

ǫ
φG′(u)−ǫg|∇φ| in Ω,

where B(φ)=36φ2(1−φ)2, g(φ)=30φ2(1−φ)2 and we have used Approximation 2
for the Neumann boundary condition from equation (2.28) in the last equation. We
could have used any of the diffuse domain approximations of the Neumann boundary
conditions here, although Approximations 3 and 4 need to be rescaled where the
rescaling is determined from the leading order term of the inner asymptotic expansion
for φ.

An additional advantage of the diffuse domain approach is that it can easily be
combined with a diffuse interface approximation of PDEs on surfaces introduced in
[40], where the surfaces are implicitly described as a level set of a phase field function.
Applications for these type of problems can for example be found in cell biology,
where proteins diffusing inside the cell can bind to the membrane and diffuse along
the membrane, whereas membrane-bound proteins can dissociate and become free to
diffuse in the cytoplasm. Assuming a stationary membrane and cellular domain, a
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simple model for such a situation is (e.g., see [25, 35]):

∂tv=∆Γv+R1 +j on ∂Ω1

∂tu=∆u+R2 in Ω1,

j=−∇u ·n=−rdv+rau on ∂Ω1,

where v and u are the surface and volume concentrations, respectively, the Ri, i=1,2
are reaction terms depending on u and v, respectively, and rd and ra are desorption
and absorption rate coefficients. The operator ∆Γ again denotes the surface Laplacian
on the boundary ∂Ω1. A diffuse domain approximation for this system is

B(φ)∂tv=∇·(B(φ)∇v)+B(φ)(R1 +j) in Ω,

φ∂tu=∇·(φ∇u)+φR2−ǫj|∇φ| in Ω,

j=−rdv+rau in Ω,

using Approximation 2 for the Neumann boundary condition from equation (2.28)
in the volume concentration equation. Here, u, v and j are extended variables in Ω
and B(φ) is as above. For a generalization in which a moving elastic membrane is
considered and thus φ is evolving we refer the reader to [29].

Appendix A. In this appendix, we derive equations (2.6), (2.7) and (2.8). We
also justify the Neumann and Robin boundary conditions given in equations (2.35),
(2.36) and (2.42), (2.43) for moving domains.

Stationary domains. equations (2.6) and (2.7) are actually the distribution
forms of equation (2.2) with Neumann and Robin boundary conditions. To see how
these equations arise, we briefly derive the weak form of equation (2.2) with Neumann
boundary conditions (the case with Robin boundary conditions is analogous). Multi-
ply equation (2.2) by a test function ψ and integrate over Ω1. Using integration by
parts and that ∂u

∂n
=g on ∂Ω1, it follows that:

−

∫

Ω1

∇ψ ·∇udx+

∫

∂Ω1

ψgds=

∫

Ω1

ψfdx,

which is the weak form of the equation (2.2) with Neumann boundary conditions.
Introducing the characteristic function χΩ1

of the domain Ω1 and the surface delta
function δ∂Ω1

, and changing the integration domain to Ω, we obtain

−

∫

Ω

χΩ1
∇ψ ·∇udx+

∫

Ω

δ∂Ω1
ψgdx=

∫

Ω

χΩ1
ψfdx.

Next, integrate by parts and use that χΩ1
vanishes on ∂Ω. This gives

∫

Ω

ψ
(

∇·(χΩ1
∇u)+δ∂Ω1

g−χΩ1
f
)

dx=0,

and hence equation (2.6) follows.
The derivation of equation (2.8) follows from a similar line of reasoning, except

that integration by parts is performed twice. Using that u=g on ∂Ω1, we obtain

∫

Ω1

u∆ψdx+

∫

∂Ω1

(

ψ
∂u

∂n
−g

∂ψ

∂n

)

ds=

∫

Ω1

ψfdx,
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which is the weak form of the equation. Introducing χΩ1
, δ∂Ω1

and changing the
domain of integration to Ω as before gives

∫

Ω

χΩ1
u∆ψdx+

∫

Ω

δ∂Ω1

(

ψ
∂u

∂n
−g

∂ψ

∂n

)

dx=

∫

Ω

χΩ1
ψfdx.

Integrating by parts twice and using that χΩ1
vanishes on ∂Ω, it follows that

∫

Ω

ψ∆(χΩ1
u)dx+

∫

Ω

δ∂Ω1
ψ
∂u

∂n
dx−

∫

Ω

δ∂Ω1
g
∂ψ

∂n
dx=

∫

Ω

χΩ1
ψfdx.

Using the fact that ∇χΩ1
=−δ∂Ω1

n and that g is constant in the normal direction,
we may write

∫

Ω

δ∂Ω1
ψ
∂u

∂n
dx=−

∫

Ω

ψ∇χΩ1
·∇u dx,

and
∫

Ω

δ∂Ω1
g
∂ψ

∂n
dx=

∫

Ω

ψg∇·∇χΩ1
dx,

where we have also integrated by parts and used that δ∂Ω1
vanishes on ∂Ω. Putting

everything together gives
∫

Ω

ψ
(

∇·(χΩ1
∇u)+(u−g)∇·∇χΩ1

−χΩ1
f
)

dx=0,

from which equation (2.8) follows.
Moving domains. To justify the Dirichlet and Robin boundary conditions in

equations (2.35), (2.36) we derive the weak form of the equations as follows. The
result in 1D can be found in [23]. Multiply equation (2.33) by a time and space
dependent test function ψ and integrate from 0 to T in time and over Ω1 in space.
Integrating by parts in both space and time gives

−

∫ T

0

∫

Ω1

u∂tψ dxdt+

∫ T

0

∫

Ω1

∇ψ ·A∇udxdt+

∫ T

0

∫

Ω1

ψ (b ·∇u+cu−f)dxdt

=

∫ T

0

∫

∂Ω1

ψ (n ·A∇u+uV )dsdt+

∫

Ω1(0)

ψ(x,0)u(x,0)dx−

∫

Ω1(T )

ψ(x,T )u(x,T )dx,

which is the weak form of equation (2.33). Thus, the natural boundary condition is
to specify n ·A∇u+uV as in equations (2.35) and (2.36). In the above, we have used
the fact that

∫ T

0

∫

Ω1

∂t (ψu) dxdt = −

∫ T

0

∫

∂Ω1

ψuV dsdt

+

∫

Ω1(T )

ψ(x,T )u(x,T ) dx−

∫

Ω1(0)

ψ(x,0)u(x,0) dx.

To derive the diffuse interface approximation (2.37) of equation (2.33) we follow the
procedure outlined earlier and introduce φ≈χΩ1

. Then, integrating over Ω and per-
forming integration by parts in both space and time yields

∫ T

0

∫

Ω

ψ (∂t (φu)−∇·(φA∇u)+φb ·∇u+φcu−φf+B.C.) dxdt=0,
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where B.C. stands for the approximation of the boundary conditions. For exam-
ple, if approximation 1 of the Robin boundary conditions is used, then B.C.=
−ǫk(u−g)|∇φ|2. Finally, a similar analysis can be used to derive the boundary
conditions (2.42) and (2.43) for the conservative equation (2.41) and to justify the
corresponding diffuse interface approximation (2.44).
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[48] S.M. Wise, J.S. Kim and J. Lowengrub, Solving the regularized, strongly anisotropic Cahn-
Hilliard equation by an adaptive nonlinear multigrid method, J. Compt. Phys., 226, 414–
446, 2007.

[49] J.J. Xu, Z. Li, J. Lowengrub and H. Zhao, A level-set method for interfacial flows with surfac-
tant, J. Compt. Phys., 212, 590–616, 2006.


