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ABSTRACT
We propose an efficient algorithm to solve polynomial systems of
which equations are globally invariant under an action of the sym-
metric group SN acting on the variable xi with σ(xi) = xσ(i) and
the number of variables is a multiple of N. For instance, we can
assume that swapping two variables (or two pairs of variables) in
one equation gives rise to another equation of the system (perhaps
changing the sign). The idea is to apply many times divided dif-
ference operators to the original system in order to obtain a new
system of equations involving only the symmetric functions of a
subset of the variables. The next step is to solve the system using
Gröbner techniques; this is usually several order faster than com-
puting the Gröbner basis of the original system since the number
of solutions of the corresponding ideal, which is always finite has
been divided by at least N!.

To illustrate the algorithm and to demonstrate its efficiency, we
apply the method to a well known physical problem called equi-
libria positions of vortices. This problem has been studied for al-
most 150 years and goes back to works by von Helmholtz and Lord
Kelvin. Assuming that all vortices have same vorticity, the problem
can be reformulated as a system of polynomial equations invariant
under an action of SN . Using numerical methods, physicists have
been able to compute solutions up to N ≤ 7 but it was an open chal-
lenge to check whether the set of solution is complete. Direct naive
approach of Gröbner bases techniques give rise to hard-to-solve
polynomial system: for instance, when N = 5, it takes several days
to compute the Gröbner basis and the number of solutions is 2060.
By contrast, applying the new algorithm to the same problem gives
rise to a system of 17 solutions that can be solved in less than 0.1
sec. Moreover, we are able to compute all equilibria when N ≤ 7.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Algebraic Ma-
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1. INTRODUCTION
Solving general polynomial systems is a fundamental problem

in Computer Algebra. However it must be emphasized that poly-
nomial systems arising in applications are very often highly struc-
tured. For instance, in several algebraic problems coming from ap-
plications the solutions (the algebraic variety) is invariant under the
action of a finite group: for example the Cyclic-n problem [10], in
Cryptography the NTRU Cryptosystem [12] or the membrane in-
clusions curvature equations in biology [6]. Hence an important
subproblem is to solve efficiently such algebraic problems. We
should consider two distinct cases. First, if all the equations are
invariant under the action of the group, there are two ways to solve
the system using the symmetries. In [3] Colin propose to use invari-
ants [17] to solve the system. This method is very efficient if the
Hironaka Decomposition of the ring of invariants is simple, but for
the Cyclic-n problem, for example, it seems better to use a second
method based on SAGBI Gröbner Basis techniques [8]. The second
class of problems, which is probably the most important in practice,
is to consider polynomial systems of which the set of solutions is
globally invariant under the action of a finite group (this is the case
of the biology example [6]). The goal of the present paper is to
propose an efficient method to solve such problems assuming that
the group is the whole symmetric group. To illustrate the algorithm
and to demonstrate its efficiency, we apply the method to a well
known physical problem called equilibria positions of vortices.

The problem of finding and classifying all relative equilibria of
N-point vortices in the plane is of long-standing interest. In the
plane, attacks on the problem date back to the 1800s with the works
of von Helmholtz [11] and later in the works by Thomson [14] (the
later Lord Kelvin). A complete bibliography of papers on the sub-
ject can be found in [16] or [2]. Several families of equilibria have
been found [2] and other solutions have been found numerically,
see [5]. More generally, the problem of equilibria on manifolds
with different potentials has been studied by Albouy [1].

In the planar case, the problem is equivalent to solve the follow-
ing algebraic system (in the following Z symbolizes the complex

conjugate of z): Zi =
N

∑
j=1, j 6=i

1
zi− z j

. In this paper we describe a

general algorithm and for each step we apply it to the equilibria of
N-point vortices. The proposed algorithms is a 3 steps process:

1. We apply many times divided difference operators (see sec-



tion 3) to the original system in order to obtain a new system
of equations involving only invariant equations. For instance,
the 4−vortex problem is equivalent to r0 = s1 = r1−6 = r2 =
2r3 +5s2 = 0 where rk = ∑i Zi zk

i and sk = ∑i zk
i is the New-

ton sum.

2. As explained in section 4, the second step is to eliminate all
the variables but the zi. For that purpose, we require that the
algebraic system fulfils the parameterization assumption (see
definition 6). We derive a new system of equations involving
only the symmetric functions of a subset of the variables. For
instance, for the 4-vortex problem we obtain the symmetric
system e3(e2

2 +12e4)2 = e2(e4
2−16e2

2e4 +9e2e2
3 +48e2

4) = 0.

3. The last step consists simply in solving the symmetric equa-
tions using standard Gröbner bases techniques.

The first step can be viewed as generalisation of [6], we give
algorithms to obtain invariant equations under the action of SN on
several blocks of variables.

Applied to the vortex problem, our method has three advantages
over previous method:

1. In theory, it is possible to solve directly the original equa-
tions. However, when N = 5, it take several days to compute
the Gröbner basis and the number of solutions is 2060. By
contrast, applying the new algorithm to the same problem
give rise to a system of 17 solutions that can be solved in less
than 0.1 sec. The case N = 7 can be completely solved in
about 20 minutes.

2. We are sure to find all the solutions, so we give a certificate
for the previous numerical solutions. For N ≥ 5, it is com-
pletely new.

3. Two distinct solutions could be so close, that 300 digits are
needed to be sure that they are distinct, see [5] for example.
With exact computations, the solutions appear to be distinct
without further computations.

Since we are using only exact computations, our algorithms gives
computational proofs of the solutions of the vortex problem.

2. VORTEX PROBLEM

2.1 Physical equations and first steps
We start with the equations of motion for the N body problem:

∂ 2

∂ t2 ri = ∑
j 6=i

m jU ′(si j)(ri− r j) for i = 1, . . . ,N (1)

where mi and ri, are, respectively the mass and the position vec-
tor (relative to the center of mass) for the i-th particle and si j =
|ri − r j|2 is the square of the distance between particle i and j;
U(s) is the potential function such that U ′(s) = sa for some real
value. Without lost of generality we can assume that the center of
mass is at the origin. Usually the potential is one of the two well
known potential:

a potential
Newton −3/2 U(r) = r−

1
2

Vortex −1 U(r) = log(r)

In this paper we assume that: we are in the planar case, all the
masses (vortices) are equal (that is to say mi = 1) and that the po-
tential is the logarithmic one.

A central configuration is a configuration of bodies such that the
acceleration vector for each body is a common scalar multiple of
its position vector:

∂ 2

∂ t2 ri = λri where λ is real > 0 (2)

Central configurations are of interest for a variety of reasons: To
every central configuration is corresponding a homothetic solution
– a solution which retains its shape for all time, while expanding,
contracting and rotating about the center of mass.

We identify the real plane R2 with the complex plane C. As
we will see, in the planar case, it is easier to work with complex
positions zi = xi + ı yi = ri. Hence si, j = |ri− r j|2 = (zi− z j)(z̄i−
z̄ j) where z̄ is the complex conjugate of z. Combining (1) and (2)
we obtain:

λ zi = ∑
j 6=i

(zi− z j)
(zi− z j)(z̄i− z̄ j)

= ∑
j 6=i

1
z̄i− z̄ j

(3)

By summing over the i, we see that ∑zi = 0 (the center of mass is
at the origin), so e1, the first symmetric function of the zi, is equal
to zero. Moreover, since λ > 0, we observe that the conjugate of
equation (3) is equivalent to:

√
λ z̄i =

N

∑
j=1, j 6=i

1√
λ zi−

√
λ z j

Therefore, we can suppose λ = 1 and recover the original solutions
by multiplying the solutions of the case λ = 1 by

√
λ . Knowing zi,

it is easy to recover λ using the following property

Proposition 1 2λ ∑
N
i=1 |zi|2 = N (N−1)

PROOF. λ ∑
N
i=1 ziz̄i = ∑

N
i=1 ∑

N
j=1, j 6=i

zi
zi−z j

= ∑
N
i=1 ∑

N
j=1, j 6=i(1 +

z j
zi−z j

) and thus λ ∑
N
i=1 ziz̄i = N(N−1)−λ ∑

N
j=1 z j z̄ j

In summary, the central configuration problem is equivalent to:

z̄i =
N

∑
j=1, j 6=i

1
zi− z j

(Ei)

2.2 Symmetries of the solutions

2.2.1 Action of SN

The permutation group SN acts on the variables {z1, . . . ,zN}
with σ(zi) = zσ(i), and σ sends the equation (Ei) on the equation
Eσ(i). So, if (z1, . . . ,zN) is a solution of the problem, any of the N!
N-uples (zσ(1), . . . ,zσ(N)) is still a solution.

2.2.2 Action of O2(R)
The isometry group of R2 can be identified to a transforma-

tion group on C generated by the rotations z 7→ az with a a com-
plex of modulus one, and the symmetry z 7→ z̄. These transforma-
tions act on CN by (z1, . . . ,zN) 7→ (az1, . . . ,azN) and (z1, . . . ,zN) 7→
(z̄1, . . . , ¯zN). If we multiply (Ei) by ā or if we conjugate (Ei), we
see that the set of solutions is invariant under this action.

Consequently, the set of solutions is invariant under the action
of SN ×O2(R). We will first focus on the action of SN to obtain
invariant equations, and finally use the action of O2(R) to speed up
the Gröbner Basis computation (see section 5).

2.3 Algebraic reformulation
Algebraically, it is impossible to separate ı and −ı, and therefore

z and z̄. Thus, we introduce N new variables Z1, . . . ,ZN that repre-
sent z̄1, . . . , z̄N . The algebraic relations between these 2N variables
are :



Zi = ∑
j 6=i

1
zi− z j

and zi = ∑
j 6=i

1
Zi−Z j

(Ei, Ēi)

To obtain polynomials, we multiply the equation Ei by Di =
∏ j 6=i(zi− z j) to obtain the polynomial equation Ui = 0 where

Ui = Zi ∏
j 6=i

(zi− z j)−∑
j 6=i

∏
k 6=i, j

(zi− zk) ∈Q[z1, . . . ,zN ,Z1, . . . ,ZN ]

Remark 1 Observe that permuting zi and Zi for all i transforms
the equation (Ei) in (Ēi), because of complex conjugation. Thus,
for every relation in the ideal generated by the 2N equations (Ei, Ēi)
in Q[z1, . . . ,zN ,Z1, . . . ,Zn], there is another one obtained by per-
muting zi and Zi.

The following lemma is useful to express the equations (Ei, Ēi)
in a very compact way.

Lemma 1 All the solutions of the vortex problem satisfy the fol-
lowing rational equations:

Zi =
1
2

Q′′(zi)
Q′(zi)

(4)

where Q(z) = ∏
N
i=1(z− zi) = zN +e2 zN−2 + · · ·+(−1)NeN (recall

that e1 = 0), where ei is the i-th elementary symmetric function of
the zi.

PROOF. Let Qi(z)=
Q(z)
z−zi

= ∏ j 6=i(z−z j), then Q′i(z)
Qi(z)

= ∑ j 6=i
1

z−z j
,

so that Q′i(zi)
Qi(zi)

= Zi according to equation (Ei). But we can write
Q(z) = (z− zi)Qi(z), and with two derivations, we obtain Q′(z) =
Qi(z)+ (z− zi)Q′i(z) and Q′′(z) = 2Q′i(z)+ (z− zi)Q′′i (z). Setting
z = zi, we have Qi(zi) = Q′(zi) and Q′′(zi) = 2Q′i(zi) so that we get
the proof of the lemma.

SN acts on {1, . . . ,N}, and therefore on {z1, . . . ,zN ,Z1, . . . ,ZN}.
The next step is to obtain equations depending only of the ei, the

symmetric functions of the zi. In the next section we will see how to
obtain equations of lower degree individually invariant under SN .

3. FROM INVARIANT SYSTEM TO
INVARIANT EQUATIONS

In this section, we will generalize the previous situation with
more than two blocks of variables. More precisely we assume that
we have to solve the following polynomial system:

Ui = 0 for i = 1, . . . ,N

where each equation Ui is a polynomial in A[Z ,V ] where A is an
integral domain (for instance, a polynomial ring with coefficients
in K), Z is the set {z1, . . . ,zN} and V is another set of variables.
We assume that SN acts on Z ∪V .

3.1 Invariant system under SN

We suppose that |V | is a multiple of N, and that SN acts on
each block of N variables like it acts on Z such that σ(zi) = zσ(i).
In fact, the product SN × ·· · ×SN acts on the variables Z ∪V .
Let {(Ui)} be a system of N equations, which is globally invariant
under the subgroup of SN ×·· ·×SN of which elements are of the
form σ ×·· ·×σ : that means that for every σ̃ = σ ×·· ·×σ and
every i, it exists j such that σ̃ .Ui = U j.

Remark 2 We could introduce the ring of invariants of this sub-
group, but its Hironaka Decomposition [17] is not simple enough
to allow easy computations.

We want to obtain from the original set of equations {Ui} a new
set of equations {Vi} which are individually invariant under the ac-
tion of SN , which means that for all i and σ̃ , σ̃ .Vi = Vi. To this
end, we will use divided differences.

3.2 Divided differences on one block
Here, we first assume that we only have one block of variables

Z = {z1, . . . ,zN}, V = /0 and N equations Ui ∈ A[z1, . . . ,zN ] such
that σ(Ui) = Uσ(i) for all σ in SN .

Definition 1 Given U1, . . . ,UN we define recursively the divided
differences by:

[Ui] = Ui for i = 1, . . . ,N

[Ui1 , · · · ,Uik ] =
[Ui1 ,··· ,Uik−1 ]−[Ui1 ,··· ,Uik−2 ,Uik ]

zik−1−zik

for any given distinct integers {i1, . . . , ik} in {1, . . . ,N}.

Theorem 1 The divided difference [Ui1 , · · · ,Uik ] is a polynomial in
Z and depends only on the set {i1, . . . , ik}, so for any subset P =
{i1, . . . , ik}, we set [U ]P = [Ui1 , . . . ,Uik ]. Moreover, for any subset
P of {1, . . . ,N}, and for any σ in SN , σ([U ]P ) = [U ]σ(P).

PROOF. We prove the first part by induction on k ∈ {1 . . . ,N}.
For k = 1 it is obvious. Suppose the theorem is true for k−1, and
let {i1, . . . , ik} be like in the statement.
Let Ã = A[z1, . . . ,zik−1−1,zik−1+1, . . . ,zN ]. Since zik−1 − zik is monic
as polynomial in Ã[zik−1 ], we can perform the division of[
Ui1 , · · · ,Uik−1

]−[Ui1 , · · · ,Uik−2 ,Uik
]

by zik−1 − zik , and by sending
zik−1 on zik , we see that the rest is equal to 0, so

[
Ui1 , · · · ,Uik−2 ,Uik

]
belongs to A[Z ]. Moreover, by acting on the equality
[Ui1 , · · · ,Uik ] (zik−1 − zik ) =

[
Ui1 , · · · ,Uik−1

]−[Ui1 , · · · ,Uik−2 ,Uik
]

with any permutation σ , we deduce the second part again by induc-
tion on N.

It is usual to introduce a special notation in the case of univariate
polynomials:

Definition 2 Let K be a field, and F(z) an univariate polynomial
in K[z]. We define F(z1, . . . ,zN) =[F(z1), . . . ,F(zN)].

The two following lemmas will be useful later.

Lemma 2 For an univariate polynomial F(z) ∈K[z] we have
F(z1, . . . ,zN) = ∑

N
i=1

F(zi)
Q′(zi)

where Q(z) = ∏
N
i=1(z− zi).

PROOF. We prove this by induction on N. For N = 1,Q(z) =
(z− z1) so the assertion is obvious. Suppose that we have proved
this lemma for N−1. Let U(z) = ∏

N−1
i=1 (z−zi) and V (z) = ∏

N−2
i=1 (z

− zi)× (z− zN). Hence, Q(z) = U(z)(z− zN) = V (z)(z− zN−1)
which implies that Q′(z) =U(z)+U ′(z)(z−zN) =V (z)+V ′(z)(z−
zN−1). Consequently,

F(z1, . . . ,zN) =
F(z1)

U ′(z1) +
F(zN )
V ′(zN ) +∑

N−1
i=2

F(zi)
U ′(zi)

+ F(zi)
V ′(zi)

zN−1−zN
= ∑

N
k=1

F(zk)
Q′(zk)

, and the
lemma is proved.

Definition 3 For Z = {z1, . . . ,zN}, we define hk the k-th symmet-
ric complete function as the sum of all monomials of degree k on
the variables in Z . By extension, hk = 0 when k < 0 and h0 = 1.

Lemma 3 For any k, if F(z) = zk, then F(z1, . . . ,zN) = hk−N+1.

PROOF. We prove this by induction on N as well. If N = 1,
F(z1) = zk

1 is the complete symmetric function of degree k on one

variable z1. For N ≥ 2, F(z1, . . . ,zN) = F(z1,...,zN−1)−F(z1,...,zN−2,zN)
zN−1−zN



By induction, F(z1, . . . ,zN−1)−F(z1, . . . ,zN−2,zN) = ∑(zk−N+2−u
N−1

− zk−N+2−u
N )×m, where the sum is all over the monomials m in

z1, . . . ,zN−2 of degree u ∈ {0, . . . ,k−N +2}. Writing zk−N+2−u
N−1 −

zk−N+2−u
N = (zN−1− zN)∑m′, where the sum is all over the mono-

mials m′ in zN−1,zN of degree k−N +1−u, we obtain exactly the
complete symmetric function in z1, . . . ,zN of degree k−N +1.

3.3 Invariant equations
We explain here how to obtain invariant equations from divided

differences in case of one block of variables.

Theorem 2 Let Vi be ∑
P⊂{1,...,N},|P|=i

[U ]P for all i ∈ {1, . . . ,N}.

We obtain N equations invariant under SN , and the varieties as-
sociated respectively to {Vi} and {Ui} are the same, except maybe
for points with two equal components.

PROOF. Any σ in SN realizes a permutation of the subsets of
{1, . . . ,N} with same cardinality, and also a permutation of the
[U ]P . Therefore, σ(Vi) = Vi for all i in {1, . . . ,N}. Suppose that
α = (α1, . . . ,αN) is a common zero of the Ui, without equal com-
ponents. Then, we deduce easily that all the [U ]P (α) are equal
to zero, and also the Vi(α). Conversely, if VN(α) = 0 then all the
[U ]P (α) with P of cardinality N− 1 are equal, because VN can
be written as [U ]P−[U ]Q

zk−z`
where P and Q are two distinct subsets

of cardinality N − 1, zk = P\Q and z` = Q\P . But their sum
VN−1(α) is equal to zero, so they are equal to zero. We can repeat
it for N−2,N−3, . . . ,1 to deduce that Ui(α) = 0 for all i.

Definition 4 We define the Reynolds operator [4] on SN by

R : A[z1, . . . ,zN ] −→ A[z1, . . . ,zN ]
P 7→ 1

N! ∑σ σ(P)

Remark 3 We just have to compute all the [U1, . . . ,Uk] for k in
{1, . . . ,N} to obtain the Vi, because Vi =

( i
N
)
R([U1, . . . ,Ui]). We

deduce from this fact a simple algorithm to compute the set {Vi}.

Let τi, j be the transposition permuting i and j.

ComputeInvariantSystem
Input: Variables {z1, . . . ,zN} and the polynomials Ui.
Output: The polynomials V1, . . . ,VN .
1. for k = 2 to N do

[U1, . . . ,Uk] :=Quo([U1, . . . ,Uk−1]− τk−1,k([U1, . . . ,Uk−1]),zk−1− zk);
end for.

2. return{(k
N

)
R([U1, . . . ,Uk]),k = 1 . . .N} where R is the Reynolds op-

erator.

Since K[z1, . . . ,zN ]SN = K[e1, . . . ,eN ], we can reformulate the
equations Vi in terms of the symmetric functions of the zi. The
goal is now to generalize this fact in the case of several blocks of
variables.

3.4 Generalization to several blocks
Assume that the equations Ui involve the set Z = {z1, . . . ,zN}

and another set of variables V and that SN acts on Z ∪V . Assume
that the Ui are equal to Di Pi + Qi, where Di = ∏ j 6=i(zi− z j), Qi
are polynomials in Z , and for all σ , σ(Pi) = Pσ(i) and σ(Qi) =
Qσ(i). The previous section corresponds to the case Pi = 0, but
when Pi 6= 0 we can still apply divided differences in the same way,
and construct [Ui1 , . . . ,Uik ] for given distinct integers; we obtain a
similar theorem :

Theorem 3 (i) [Ui1 , . . . ,Uik ] is a polynomial in Z and V which
depends only on the set {i1, . . . , ik}. Moreover for any σ and
any P , σ([U ]P ) = [U ]σ(P).

(ii) Vi = ∑|P|=i[U ]P is invariant under the action of SN and the
varieties associated to respectively Vi and Ui are the same,
except maybe for points with two equal Z -components.

Remark 4 We can use the algorithm ComputeInvariantSystem to
compute the Vi.

3.5 Application to the vortex problem
We obtained this equation from the vortex problem :

Ui = Zi ∏
j 6=i

(zi− z j)−∑
j 6=i

∏
k 6=i, j

(zi− zk)

which can be written as Ui = DiPi + Qi, with Pi = Zi and Qi =
−∑ j 6=i ∏k 6=i, j(zi−zk). These polynomials verify σ(Pi) = Pσ(i) and
σ(Qi) = Qσ(i).

Example 1 For N = 3, it is easy to compute the invariant polyno-
mials V1,V2,V3, and we obtain

V1 = ∑i Ziz2
i −∑ j 6=i Ziziz j +∑{i, j,k}={1,2,3}Ziz jzk

V2 = 2∑i zizi−∑i 6= j Ziz j−9 V3 = ∑i Zi

Using the equations V3 = 0 and V̄3 = z1 + z2 + z3 = 0 in V1 and
V2, we can rewrite the system as

V1 = 4∑
i

Ziz2
i V2 = 3∑

i
Zizi−9 V3 = 0

Definition 5 We introduce new invariants which will be very useful
to reformulate the vortex problem in a very simple way:

rk = ∑
i

Zizk
i and Rk = ∑

i
Zk

i zi

It is also useful to define the Newton sums:

sk = ∑
i

zk
i and Sk = ∑

i
Zk

i

Example 2 For N = 4, after reformulation, we obtain:

r0 = s1 = r1−6 = r2 = 2r3 +5s2 = 0

and the conjugate equations:

R0 = S1 = R1−6 = R2 = 2R3 +5S2 = 0

It turns out that, surprisingly, we can obtain a general and very
simple expression of these equations for any N.

Theorem 4 (Invariant Equations) For any N and k, the solution
of the vortex problem satisfies the following invariant equations:

2rk =
k−1

∑
i=0

si sk−1−i− k sk−1 with s0 = N. (5)

To prove the theorem 4 we will first give a lemma.

Lemma 4 For N ∈ N? and k ∈ N, let ek, hk and sk be respectively
the symmetric functions, the complete symmetric functions, and the
Newton sum of degree k in the variables z1, . . . ,zN . (With the con-
vention that e0 = h0 = 1, s0 = N and all these terms are zero when
k < 0 and ek is zero for k > N). Then

N

∑
j=0

(−1) je j(N− j)(N− j−1)hk− j−1 =
k−1

∑
i=0

si sk−1−i− k sk−1



PROOF. We introduce the series E(t) = ∑ektk = ∏
N
i=1(1+ t zi),

H(t) = ∑hktk = ∏
N
i=1

1
1−t zi

and S(t) = ∑sktk = ∑
N
i=1

1
1−t zi

. Let
βk−1 and γk−1 be the left and right terms of the equality we want
to prove. We introduce β (t) and γ(t) the associated power se-
ries. Observe that (N − j)(N − j− 1) = N2 −N − 2(N − 1) j +
j( j−1), so β (t) = (N2−N)E(−t)H(t)+2(N−1)tE ′(−t)H(t)+
t2E ′′(−t)H(t) and γ(t) = S2(t)−S(t)−tS′(t). But H(t)E(−t) = 1,
and with two derivations, we have−E ′(−t)H(t)+E(−t)H ′(t) = 0
and E ′′(−t)H(t)−2E ′(−t)H ′(t)+E(−t)H ′′(t) = 0, so we can ex-
press β with H and its derivatives : β (t) = (N2 − N) + 2(N −
1) tH ′(t)

H(t) + 2 t2H ′2(t)
H2(t) −

t2H ′′(t)
H(t) . Since t H ′(t) = H(t)(−N + S(t)), γ

can be expressed with H and its derivatives too, and we find the
same expression, that proves that β (t) = γ(t) and therefore βk−1 =
γk−1.

PROOF. We give now the proof of theorem 4. By lemma 1, rk =

∑
N
i=1 zk

i Zi = ∑
zk

i Q′′(zi)
2Q′(zi)

= ∑
F(zi)
Q′(zi)

where F(z) = zkQ′′(z)
2 . Writing

Q(z) = zN −e1 zN−1 +e2 zN−2 + · · ·+(−1)N eN , we obtain F(z) =
1
2 ∑

N
j=0(−1) j(N− j)(N− j− 1)e j zN− j+k−2. Using linearity and

lemma 2, we have exactly 2rk = ∑
N
j=0(−1) je j(N − j)(N − j −

1)hk− j−1. Using lemma 4, we obtain the theorem 4.

4. FROM TWO BLOCKS TO SYMMETRIC
FUNCTIONS IN ONE BLOCK

4.1 General case under the rational parame-
terization assumption

We return now to the general case where each Ui is an equation
in A[Z ,Z̄ ] where Z = {z1, . . . ,zN} and Z̄ = {Z1, . . . ,ZN}; in
addition, we require that the algebraic system fulfils the following
parameterization assumption:

Definition 6 We say that the system Ui = 0 is under parameteriza-
tion assumption if for all i, Zi = R(zi) where R(z) = N(z)

M(z) ∈ A(z)
with A = Q(e1,e2, . . . ,eN ) an univariate rational function whose
coefficients depend on the symmetric functions of the zi.

This hypothesis is well adapted to algebraic problems in the
plane and more specifically to the vortex problem since lemma 1
can be reformulated:

Proposition 1 The vortex problem satisfies the rational assump-
tion since Zi = 1

2
Q′′(zi)
Q′(zi)

with Q(z) = ∏
N
i=1(z− zi) = zN + e2 zN−2 +

· · ·+(−1)NeN .

For now, we assume that the system is under this assumption. We
now describe an algorithm to obtain invariant equations under the
action of Sn. First, we apply the algorithm ComputeInvariantSys-
tem to compute the invariant equations Vi. Denote again by Q(z)
the polynomial ∏i(z− zi) = zN − e1zN−1 + · · ·+(−1)NeN . There
exist two polynomials B and C in K[e1, . . . ,eN ][z] such that BQ +
C M = RM , where RM is the resultant of Q and M with respect to the
variable z. Then, RM Zi = RM

N(zi)
M(zi)

= N(zi)C(zi) since Q(zi) = 0.

More generally, Rk
MZk

i = (Nk×Ck)(zi) = (Nk×Ck mod Q)(zi) for
all k ≥ 0.

For each W ∈ {Vi,V̄i}, we substitute 1
Rk

M
(Nk×Ck mod Q)(zi) to

Zk
i in each monomial of W . Up to a multiplication by an appropriate

power of Rk
M to obtain polynomials, we obtain equations involving

only the variables z1, . . . ,zN . These polynomials are invariant un-
der SN , and can be expressed as equations in the ei.

These ideas give the following algorithm, we denote by ∂Z P
the total degree of P as polynomial of A[Z1, . . . ,ZN ] with A =
K[z1, . . . ,zN ]. For all polynomial P in K[z1, . . . ,zN ]SN , let Σ(P)
be the expression of P as polynomial of K[e1, . . . ,eN ].

ComputeSymmetricFunctionsSystem
Input: The invariant equations Vi,V̄i of variables Z = {z1, . . . ,zN} and
Z̄ = {Z1, . . . ,ZN}
Output: A system of 2N equations of variables ei, the symmetric functions
of the zi.
1. m := Max{∂Z W, ,W ∈ {Vi,V̄i}}; LNC := [(NC)i mod Q, i ∈ 1..m];
2. for W in {Vi,V̄i, i = 1..N} do

dW := ∂Z (W );
for U monomial of W do

dU := ∂Z (U);
Zk

i ← LNC[k](zi) in U .
end for.

U ← RdW−dU
M U in W .

end for.
3. return {Σ(W )}

Example 3 For the vortex problem, according to (4), the denomi-
nator M is equal to Q′, and the relation that we have is BQ+CQ′ =
D, where D is the discriminant of Q(z) with respect to the vari-
able z. Let PZ(z) be the polynomial of K[e2, . . . ,eN ][z] equal to
1
2 Q′′C mod Q. Then, PZ sends zi on DZi, and we can apply the
previous algorithm to compute symmetric equations. From Vk =
2rk−∑

k−1
i=0 sisk−1−i + ksk−1 = 0, we obtain always 0, but not from

V̄k. In this specific case, instead of using previous algorithm, there
is a faster way to compute the equations, explained in the subsec-
tion hereafter.

4.2 Invariant system of equations for the vor-
tices problem

We introduce the two K[e2 . . . ,eN ]-modules morphisms :

S : K[e2, . . . ,eN ][z] −→ K[e2, . . . ,eN ]
P(z) = ∑ak zk 7−→ S(P) = ∑ak sk

H : K[e2, . . . ,eN ][z] −→ K[e2, . . . ,eN ]
P(z) = ∑ak zk 7−→ ∑ak hk−N+1

Proposition 2 For any polynomial P in K[e2, . . . ,eN ][z] we have
S (P) = S (P mod Q) and H (P) = H (P mod Q). Moreover

S (P) = ∑
N
i=1 P(zi) and H (P) = ∑

N
i=1

P(zi)
Q′(zi)

If deg(P) < N then H (P) = aN−1.

From theorem 4, we know that 2rk = ∑
k−1
i=0 si sk−1−i − k sk−1,

therefore we have the conjugate equation:

2Rk =
k−1

∑
i=0

Si Sk−1−i− k Sk−1 (6)

One way to obtain directly symmetric equations is to compute:

Sk = ∑
N
i=1 Zk

i = 1
Dk ∑

N
i=1 Pk

Z(zi) = 1
Dk S (Pk

Z(z) mod Q)
Rk = ∑

N
i=1 ziZk

i = 1
Dk ∑

N
i=1 zi Pk

Z(zi) = 1
Dk S (zPk

Z(z) mod Q)

Substituting these expressions in (6) we obtain:

Proposition 3 Given the Bézout relation B(z)Q(z)+C(z)Q′(z) =
D, for any N and k, the solution of the vortex problem satisfies the
following symmetric equations:

2
1
D

S (zPk
Z) =

k−1

∑
i=0

S (Pi
Z)S (Pk−1−i

Z )− kS (Pk−1
Z )



where S (1) = N and PZ = 1
2 Q′′C.

The drawback of the method is that high powers of the discrim-
inant occur in the resultant equations. Instead of using the poly-
nomial PZ to obtain equations with the ei’s, as explained in the
previous section we will give a more efficient method using the H
morphism.

Using the following lemma it is possible to compute Rk and Sk
with powers of the discriminant divided by two:

Lemma 5 Given the Bézout relation B(z)Q(z) +C(z)Q′(z) = D,
we have

D
Q′′

Q′2
(zk) = A(zk)

where A(z) is the polynomial −(B(z)+C′(z)).

PROOF. By derivating the relation B(z)Q(z)+C(z)Q′(z) = D,
we obtain B′(z)Q(z)+(B′(z)+C(z))Q′(z)+C(z)Q′′(z) = 0. Mod-
ulo Q(z), we have −(B +C′)Q′ = CQ′′, so that −(B +C′)Q′C =
−(B+C′)D = CQ′′ where A(z) =−(B(z)+C′(z)). Modulo Q, we
deduce that A = Q′′C2

D = DQ′′
Q′2 .

Hence, with one power of A, there are two powers of Q′ in the
denominator, and only one power of D in the numerator. If we
use the morphism H when k is odd, we obtain Rk and Sk. More
exactly:

Proposition 4 The expressions of Si and Ri in terms of the symmet-
ric functions of the zi’s are :

DkS2k = 1
22k S (Q′′kAk) DkR2k = 1

22k S (zQ′′kAk)
DkS2k+1 = 1

22k+1 H (Q′′k+1Ak) DkR2k+1 = 1
22k+1 H (zQ′′k+1Ak)

and all polynomials could be taken modulo Q.

Substituting these expressions in (6) we obtain:

Theorem 5 (Symmetric Equations) Given the Bézout relation
B(z)Q(z) +C(z)Q′(z) = D, for any N and k, the solution of the
vortex problem satisfies the following symmetric equations:

1
2D S2k+1 = ∑

k−1
i=0 S2i H2(k−i−1)−2k H2k−2

H2k+1 = ∑
k
i=0 S2i S2(k−i) +D∑

k−1
i=0 H2i H2(k−i−1)− (2k +1)S2k

where S2i+δ = S (zδ Q′′i Ai), H2i+δ = H (zδ Q′′i+1 Ai) for δ = 0,1
and A(z) is the polynomial −B(z)−C′(z).

PROOF. We substitute the expression of R2k, R2k+1, S2k, S2k+1
given by proposition 4 into the equations:

2R2k = 2∑
k−1
i=0 S2 i S2k−1−2 i−2k S2k−1

2R2k+1 = ∑
k
i=0 S2i S2k−2i +∑

k−1
i=0 S2i+1 S2k−2i−1− (2k +1)S2k

This theorem gives a very efficient algorithm to compute a sys-
tem involving only the ei, which solutions include all symmetric
functions of the vortex problem. To simplify the description of the
algorithm we introduce the following notation αi,k and βk, which
depend only on the parity of i and k:

βk =
{

0 if k is odd
1 if k is even αi,k =

{
0 if i is even and k odd
1 otherwise

ComputeSymmetricFunctionsVorticesSystem
Input: N, the polynomials Q, D and A =−B−C′, where B and C appear
in the Bézout relation BQ+C Q′ = D, and the two functions S and H
Output: Symmetric polynomials in the ei’s.
1. LR := [ N(N−1)

2 ]; LS := [0]; P := 1;
2. for k = 2 to N−1 do

if IsOdd(k) then
LS := LS ∪ [H ( 1

2 PQ′′ mod Q)];
LR := LR ∪ [H ( z

2 PQ′′ mod Q)];
else

P := PAQ′′
4 mod Q;

LS := LS ∪ [S (P)];
LR := LR ∪ [S (zP mod Q)];

end if
end for

3. return {2LR[k]−∑
k−2
i=1 Dαi,k LS[i]LS[k−1− i]− (2N− k)Dβk LS[k−

1], k = 2 . . .N−1}

Remark 5 The equation 2R1 = N(N−1) gives always 0 = 0. We
explain this fact in the next section.

Example 4 For N = 4, Q(z) = z4 + e2 z2− e3 z + e4 and it is easy
to compute successively A(z) = (−8e2

3 + 32e4 e2.− 36e32)z2 −
8e3(12e4 + e2

2)z− 54e3
2e2 + 80e4 e2

2 − 192e4
2 − 8e2

4. From
theorem 5 the first equation is R2 = 0 = S (zA(z)Q′′(z)). Hence
we compute P=zAQ′′ mod Q = (640e4 e2

2− 16e2
4− 2304e4

2−
288e3

2e2)z3 − 16e3 (27e3
2 − 84e4 e2 + e2

3)z2 + (−204e3
2e2

2 +
256e4 e2

3−768e4
2e2−16e2

5−720e4 e3
2)z+96e4e3(12e4 +e2

2).
The next step is to replace z3 by s3 = 3e3, z2 by s2 = −2e2 and z
by p1 = 0 so that 0 = S (zAQ′′) = −16e3 (12e4 + e2

2)2. In the
same way, we compute the second equation H (zQ′′2A)− (2N−
3)S (AQ′′) = 0. We obtain the system of two equations:{

e3(e2
2 +12e4)2 = 0

e2(e4
2−16e2

2e4 +9e2e2
3 +48e2

4) = 0
(7)

5. SOLVING THE EQUATIONS WITH THE
SYMMETRIC FUNCTIONS

The goal of this section is to solve explicitly the symmetric equa-
tions by exact methods. To achieve this we use Gröbner bases com-
putation.

5.1 The case N = 4
Interestingly enough, we can solve the vortex problem by hand

when N = 4. Hence, we give the complete resolution of the case
N = 4 without Gröbner Basis computation: The symmetric equa-
tions are given by (7) and, in addition, we assume that the discrimi-
nant D = 16e4

2e4−4e3
2e2

3−128e2
2e2

4 +144e2e2
3e4−27e4

3 +256e3
4 6=

0, to ensures that the zi’s are distinct.

Lemma 6 In equations (7), if e2 6= 0, then e3 = 0.

PROOF. We prove it by reduction to the absurd. If e2 6= 0 and
e3 6= 0, the first equation gives e4 =− 1

12 e2
2, and the second equation

becomes 8e3
2 + 27e2

3 = 0, but (8e3
2 + 27e2

3)
2 is the discriminant of

Q, up to a constant factor, which is a contradiction.

Then, if e2 6= 0, e3 = 0, and the second equation becomes (e2
2−

12e4)(e2
2−4e4) = 0, but D becomes 16e4(e2

2−4e4)2 6= 0, so e4 =
1

12 e2
2. If e2 = 0 then e3 = 0 or e4 = 0. We can conclude that:

Proposition 5 When N = 4, there are three solutions to the vortex
problem :

Q(z) = z4 + e2z2 +
1

12
e2

2 Q(x) = z4− e3z Q(x) = z4 + e4

The indetermination on e2,e3 or e4 will be explained and solved
in the next section as shown in the figures 1,2 and 3.



5.2 Homogeneity of the equations

Proposition 2 The equation we obtained in the previous section
are homogeneous for the degree d = ∑k k× ∂ek , where ∂ek is the
degree in ek. More exactly, the k-th equation has degree d = N(N−
1)b k

2c+1− k.

PROOF. We started from 2Rk = ∑SiSk−1−i− kSk−1. With Zi =
∑k 6=i

1
zi−zk

, we see that this equation is homogeneous in the zi of
degree 1− k. The discriminant D = ∏i 6= j(zi− z j) is homogeneous
of degree 2

(N
2
)
. So, the previous equation is homogeneous in the zi

with degree 2b k
2 c
(N

2
)
+1− k. The symmetric function ek is homo-

geneous in the zi of degree k, that’s why we took the degree d.

Recall that we have lost the equation 2r1 = 2R1 = N(N − 1),
but there is no surprise : we have seen that the set of solutions (the
zi’s) is invariant under multiplication by a complex of modulus one.
This implies that the algebraic variety with variables (e2, . . . ,eN)
is invariant under the operation (e2, . . . ,eN) 7→ (γ2e2, . . . ,γ

NeN),
with |γ| = 1. But an ideal associated to such a variety is homo-
geneous for the previous degree d : let P a polynomial in this
ideal, and write P = ∑u Pu, with Pu the homogenous part of de-
gree u for the degree d, then if (e2, . . . ,eN) is a zero of P; we
have ∑u γuPu(e2, . . . ,eN) = 0 for all γ of modulus 1. A non-zero
univariate polynomial have only a finite number of roots, so this
polynomial (in γ) is null and Pu(e2, . . . ,eN) = 0 for all u. Another
argument is that for k = 1, the degree of R1 (in zi) is zero, so we
have to obtained from 2R1 = N(N− 1) an homogeneous equation
of degree d equal to 0. There are solutions for all N to the vortex
problem (see [2]), so this equation is 0.

5.3 Strategy to obtain a Gröbner Basis
Because of the homogeneity, we can suppose that any of the sym-

metric functions ei is equal to 1 or 0. If it is 0, we have again an
homogeneous system, so we can suppose that another symmetric
function e j is equal to 1 or 0, and so on. We have to add a new
equation for being sure that all the zi are distinct : h×D = 1. (We
can’t solve it and remove the spurious solutions easily : for ex-
ample, for N = 5, the system with e2 = 1 without h×D = 1 is
1-dimensional.)

According to the benchmark, it seems that the fastest way to
compute a Gröbner Basis is to separate the system into two parts,
e2 = 1 or e2 = 0 and compute a Gröbner Basis with DRL order
with h > eN > · · · > e3, and then perform a change of ordering
from DRL to the lexicographic order with FGLM (see [9, 7]). For
the component with e2 = 0, we separate e3 = 1 or e3 = 0, and so
on.

Then, we perform a Triangular Decomposition (see [15]) of each
component.

Remark 6 To compute a Gröbner Basis, we supposed that ek = 1
for some k. But with this assumption, the solutions (z1, . . . ,zN) that
we obtain are not solutions of the equations (Ei) z̄i = ∑ j 6=i

1
zi−z j

but of λ z̄i = ∑ j 6=i
1

zi−z j
for some λ > 0. Denote by (az1, . . . ,azN)

the solutions of (Ei), where a can be supposed to be a positive real.

Then 2r1 = 2R1 = 2a2
∑i |zi|2 = N(N−1), and a =

√
N(N−1)
2∑ |zi|2 . The

true value of ek is ∑azi1 ×·· ·×azik = ak.

Example 5 With e2, e3 or e4 equal to 1, the solutions (z1, . . . ,z4)
for N = 4 are drawn below :

In the case of the four aligned points, ∑i |zi|2 is equal to 2, so we
have to perform a multiplication by

√
3 to obtain the solutions of
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Figure 1: Q(z) = z4 + z2 + 1
12

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

Figure 2: Q(z) = z4− z
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Figure 3: Q(z) = z4 +1

(Ei). In the case of the centered equilateral triangle, ∑i |zi|2 = 3,

so a =
√

2 and in the case of the square, ∑i |zi|2 = 4, so a =
√

3
2 .

5.4 Removing spurious solutions
We can solve the system to obtain approximations of the ei and

then approximations of the zi, but there are spurious solutions: we
have to check that PZ(zi) = Dz̄i for each i to be sure that we have
computed a true solution. Another way to perform it is to intro-
duce two news variables x and z and add to the system the equa-
tions PZ(z) + Dz = x and zN + e2zN−2 + · · ·+ (−1)NeN , with PZ
the polynomial computed previously, which maps zi to DZi. The
next step is to perform a Gröbner elimination with lexicographical
order z > eN > · · ·> ek > x to obtain an univariate polynomial Pℜ

in x. Then we isolate the real roots of this polynomial Pℜ using
certificated methods.

5.5 Other symmetries
Suppose that we are in the component e2 = 1, we have said that

if e2, . . . ,eN is a solution, then λ 2e2, . . . ,λ
NeN too, for all λ of

modulus 1. If λ =−1 (geometrically, we do a symmetry of center
O), e2 stays at 1, but e3 is changed to −e3, so we can keep only
half of the possible e3. (e2, . . . ,eN)→ (ē2, . . . , ēN) gives an other
solution, so if e3 is not real, we can suppose e3 of imaginary part
non negative. If e3 is real and e4 not, we can keep only the e4 with
imaginary part non negative, and so on.

5.6 Naive Approach
It is possible to solve directly the original system of 2N equa-

tions (Ei, Ēi) in zi and Zi. Because of invariance by multiplication
by a scalar of modulus 1, we can suppose that z1 is real, so we add
the equation z1 = Z1. This trick will give an ideal of dimension 0,
if we suppose that z1 6= 0. We will split the ideal into two parts :
in the first one, we add the equation z1×α = 1, and in the second
one, we add z1 = 0, and we can add z2 = Z2. In each case, the ideal
is zero dimensional, if we add the last equation ∏i< j(zi−z j)β = 1,
for being sure that all the zi are distinct. We report in table 1 the fol-
lowing timings in Magma to compute the corresponding Gröbner
basis (∞ means that we stopped the computation after five days):

It is possible to introduce the invariant ring of the subgroup of



3 4 5
Q 0.02s 176.8s ∞

F65521 0.01s 0.2s ∞

Table 1: Direct approach: Gröbner bases of the non symmetric
systems with Magma.

SN ×SN , the elements of which are (σ ,σ). We report in table 2
the number of secondary invariants in the Hironaka decomposition
or the number of fundamental invariants over Q, and the timings to
compute them in Magma.

3 4 5 6 7
Secondary Invariants 6 24 120 ? ?

Timings 0.0s 0.1s 225s ∞ ∞

Fundamental Invariants 9 14 20 27 ?
Timings 0.0s 0.1s 3.0s 400s ∞

Table 2: Invariant Ring : Hironaka Decomposition and Funda-
mental Invariants with Magma.

5.7 Generating and solving the symmetric
system

We have implemented the algorithm ComputeSymmetricFunc-
tionsVorticesSystem in Maple and Magma to generate the sym-
metric system. We report in table 3 the timings to compute the
systems depending only on the symmetric functions ei using Com-
puteSymmetricFunctionsVorticesSystem algorithm with Magma
(Intel Xeon 2.93 GHz with 128GB Ram).

4 5 6 7 8
Magma 0.0s 0.0s 0.06s 70.6s 7649.6s
Maple 0.0s 0.2s 0.9s 41.9s 2407.3s

Table 3: Time to generate the symmetric systems with Maple
or Magma.

On the same computer, the times to compute a Gröbner Basis
using Magma of the symmetric system and perform a triangular
decomposition of each component (mostly for the component with
e2 = 1) are presented in table 4.

When N = 7 we use FGb [13] to compute the corresponding
Gröbner bases: it takes 144 sec to compute the system over F65521
and about 20 minutes to compute a Gröbner basis and a triangu-
lar decomposition over Q. We postpone to section 7 the complete
prime decomposition of the ideal corresponding to N = 7; using
all the symmetries the problem admits 12 solutions; among them,
2 solutions are expressed as algebraic numbers of degree 82. For
N = 8 the computation is still running but the most difficult part
is already done (it takes 12 days to compute the first Gröbner ba-
sis). A web page was created to collect all the data: http://www-
salsa.lip6.fr/~jcf/vortices/
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7. APPENDIX: SOLUTIONS FOR N=7

N=7
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Figure 4: All the solutions of the vortex problem when N = 7


