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SOLVING POLYNOMIALS BY RADICALS
WITH ROOTS OF UNITY IN MINIMUM DEPTH

GWOBOA HORNG AND MING-DEH HUANG

Abstract. Let k be an algebraic number field. Let α be a root of a polynomial
f ∈ k[x] which is solvable by radicals. Let L be the splitting field of α over
k. Let n be a natural number divisible by the discriminant of the maximal
abelian subextension of L, as well as the exponent of G(L/k), the Galois group
of L over k. We show that an optimal nested radical with roots of unity for
α can be effectively constructed from the derived series of the solvable Galois
group of L(ζn) over k(ζn).

1. Introduction

It was shown in [8] that whether a polynomial with rational coefficients is solvable
by radicals can be decided in polynomial time. Given that a polynomial is solvable
by radicals, it is also of interest to construct a nested radical of minimum possible
depth for the polynomial. Partial results for this problem can be found in [2, 6, 7,
11]. More recently, a general solution to the problem has been reported in [5].

An interesting relaxation for the problem is to allow roots of unity, in addition to
elements of the ground field, to be used as primitives in the construction of nested
radicals. No restriction is placed on the roots of unity that can be used for the
construction. The goal of this paper is to determine a root of unity for constructing
a nested radical of minimum depth for a root of a polynomial which is solvable by
radicals.

Throughout this paper, k denotes an algebraic number field, k̄ the algebraic
closure of k, µ∞ the set of all roots of unity, and ζn = e2πi/n.

Let α be a root of a polynomial f ∈ k[x] that is solvable by radicals. Let L be
the splitting field of α over k. Let L∞ be the splitting field of α over k(µ∞). A
near-optimal construction of a nested radical with roots of unity for α is given in
[7]. It is also shown in [7] that the minimum depth of a nested radical with roots of
unity for α is determined by the length of the derived series of the solvable Galois
group of L∞ over k(µ∞). To effectively construct an optimal nested radical for α,
it is desirable to have a similar characterization in terms of a specific root of unity.
Let n be a natural number divisible by the discriminant of the maximal abelian
subextension of L, as well as the exponent of G(L/k), the Galois group of L over
k. We show that the minimum depth of a nested radical with roots of unity for α
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is determined by the length of the derived series of G(L(ζn)/k(ζn)), and that an
optimal nested radical with roots of unity for α can be effectively constructed from
the tower of extensions corresponding to the derived series.

1.1. Definitions and main result. Nested radicals are expressions that can de
defined recursively as follows. An element a of k(µ∞) is considered a nested rad-
ical of depth 0. Inductively, if A and B are nested radicals of depth d(A) and
d(B), respectively, and ∗ ∈ {+,−,×,÷}, then A ∗ B is a nested radical of depth
max(d(A), d(B)); and for n > 1, n

√
A is a nested radical of depth d(A)+1. The two

expressions
√

2 × √
3 and

√
6, for example, are considered distinct nested radicals

of depth 1. Similarly
√√

2 +
√

2
√

3 and
√√

2(1 +
√

3) are distinct nested radicals
of depth 2.

A simple nested radical is either an element of k(µ∞) or a nested radical of the
form n

√
A where A is a nested radical and n > 1. Let E be a nested radical. Then

S(E) denotes the set of simple nested radicals that appear in E. To be precise,
if E = a for some a ∈ k(µ∞), then S(E) = {a}; inductively if E = B ∗ C for
nested radicals B and C, then S(E) = S(B) ∪ S(C); if E = n

√
B, then S(E) =

S(B) ∪ { n
√

B}. For example,

E =

√
5
√

3
√

2 + 1 + 3
√

2 + 3
√

2

has depth 3 and S(E) consists of
√

5
√

3
√

2 + 1 + 3
√

2, 5
√

3
√

2 + 1, and 3
√

2.
A field extension K over k is a root extension if K = k(α1, . . . , αm) where, for

all 1 ≤ i ≤ m, αni

i = ai ∈ k for some integer ni > 1. α1, . . . , αm form a set of
generating roots for K/k, and αi is called a generating root of degree ni if ni is the
least positive integer such that αni

i ∈ k. A root tower over k is a tower of extensions
k = k0 ⊂ k1 ⊂ · · · ⊂ kn such that ki/ki−1 is a root extension for 1 ≤ i ≤ n. If α
is a generating root of degree m for ki/ki−1, then it is called a generating root of
degree m for the tower at level i.

An element of k̄ represented by a nested radical E is called a root of E. If
E = a ∈ k(µ∞), then it has a unique root a. If E has depth d > 0, then a root of
E can be determined after a consistent assignment of roots is made for the simple
nested radicals associated with E. To be precise, suppose inductively a root r(A)
has been determined for every simple nested radical A ∈ S(E) of depth less than
d. Then a root has also been determined for every arithmetic expression in these
simple nested radicals. Let B ∈ S(E) be of depth d. Then B = n

√
A where n > 1

and A is an arithmetic expression in the simple nested radicals in S(E) of depth
less than d. Since a root r(A) ∈ k̄ is already determined for A, an r(B) ∈ k̄ can be
assigned as a root for B if r(B)n = r(A). When a root is assigned for each simple
nested radical associated with E, then a root γ is also assigned for E. Let k = k0

and inductively for i > 0, let ki be the field over ki−1 generated by the roots assigned
to the simple nested radicals of depth i in S(E). Then k = k0 ⊂ k1 ⊂ · · · ⊂ kd

is called a root tower determined by E and γ is said to be a root of E determined
from the root tower.

Take E = 5
√

3
√

2 + 1 + 3
√

2 as an example. Let u be the unique real root of
x3 = 2 and v be a real root of y5 = u + 1. Then v + u is a root of E. However,
it would be inconsistent to assign v to 5

√
3
√

2 + 1 and a root u′ different from u to
3
√

2. Consequently v +u′ is not a root of E. The root tower of v +u determined by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



POLYNOMIALS SOLVABLE BY RADICALS 883

E is Q ⊂ Q(u) ⊂ Q(u, v). For another example let A = 2
√

6 and B =
√

2
√

3+
√

6.
We note that every root of A is a root of B but not vice versa. Indeed B has the
additional root 0 as a result of assigning the positive real root to

√
2 and

√
6 and

the negative real root to
√

3.
On the other hand, let T : k = k0 ⊂ k1 ⊂ · · · ⊂ kn be a root tower. Then

there is a natural way to associate an element in ki to a nested radical of depth
no greater than i. Fix a set of generating roots for each ki/ki−1 for i = 1 to n.
Let γ be an element of kd in the root tower. Let α be a generating root at level
1 of degree m such that αm = a ∈ k0. Then m

√
a is a nested radical of depth 1

associated with α and has α as a root. Inductively suppose a nested radical Bi

of depth less than d is determined for every generating root βi at level less than
d so that βi is a root of Bi. Suppose β is a generating root at level d of degree
e, with βe = g(β1, . . . , βl), where βi are the generating roots at level < d and
g ∈ k(x1, . . . , xl). Then e

√
g(B1, . . . , Bl) is a nested radical of depth no greater

than d associated with β and has β as a root. Once a nested radical is determined
for every generating root at level 1 to d, a nested radical with γ as a root is also
determined for γ. We call it a nested radical for γ determined by the root tower T .

Let G be a group and let x, y ∈ G. The commutator of x and y is the element
x−1y−1xy. The commutator subgroup of G is the subgroup generated by all the
commutators of G. We shall use G(1) to denote the commutator subgroup of G
and use G(i) to denote the commutator subgroup of G(i−1) for i > 1. We also let
G(0) = G. When G is solvable, the chain of groups G = G(0) ⊃ G(1) ⊃ G(2) ⊃ · · ·
is called the derived series of G. The length of the derived series, denoted l(G), is
the smallest positive integer n such that G(n) = {1}.

Let G be a group and let H be a normal subgroup of G. Then (G/H)(i) ∼=
G(i)H/H for all i ≥ 0, and l(G/H) ≤ l(G). Moreover if G/H is abelian then
G(1) ⊆ H .

We are ready to state the main theorem.

Theorem 1.1. Let k be a number field. Let α be a root of an irreducible polyno-
mial in k[x] that is solvable by radicals. Let L be the splitting field of the polynomial
over k. Let Lab be the maximal abelian subextension of L over Q. Let n be a nat-
ural number that is divisible by the discriminant of Lab over Q and the exponent
of G(L/k), the Galois group of L over k. Then the tower of field extensions cor-
responding to the derived series of G(L(ζn)/k(ζn)) is a root tower, and a nested
radical for α determined by this root tower is a nested radical for α of minimum
depth with roots of unity.

2. Proof of the main theorem

Lemma 2.1. Let k be a number field. Let k0 ⊂ k1 ⊂ · · · ⊂ kd be a root tower
with k ⊂ k0. Let Ki be the composite of kσ

i for all σ ∈ G(k̄/k). Then Ki/k,
Ki(µ∞)/K0(µ∞) are Galois for i = 0, ..., d, K0(µ∞) ⊂ K1(µ∞) ⊂ · · · ⊂ Kd(µ∞) is
a root tower, and l(G(Kd(µ∞)/K0(µ∞))) ≤ d.

Proof. For all σ ∈ G(k̄/k), kσ
0 ⊂ kσ

1 ⊂ · · · ⊂ kσ
d is again a root tower. Since each ki

has finitely many conjugates over k, it follows that K0 ⊂ K1 ⊂ · · · ⊂ Kd is a root
tower. Hence, writing K ′

i = Ki(µ∞), K ′
i/K ′

i−1 is abelian, and K ′
0 ⊂ K ′

1 ⊂ · · · ⊂ K ′
d

is a root tower of abelian extensions. In particular G(K ′
d/K ′

0) is solvable of length
at most d.
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Finally, for all i, since Ki is the composite of kσ
i for all σ ∈ G(k̄/k), Ki/k is

Galois, and it follows that Ki/K0 and K ′
i/K ′

0 are Galois as well.

Proposition 2.2. Let K be an abelian extension over Q. Let n ∈ N be divisible
by the discriminant of K over Q. Then K ⊂ Q(ζn).

Proof. From the conductor-discriminant formula (see [3] p. 160), it follows that the
conductor of K over Q divides the discriminant of K over Q. Hence n∞ is divisible
by the conductor of K/Q, and it follows from the Kronecker-Weber Theorem (see
[4] p. 175) that K ⊂ Q(ζn).

Proof of the main theorem. Let F = k ∩Q(µ∞). Then there is a canonical isomor-
phism φ from the abelian group G(k(µ∞)/k) onto G(Q(µ∞)/F ).

Let K = L ∩ k(µ∞). Since Lab = L ∩Q(µ∞) = K ∩ Q(µ∞), G(k(µ∞)/K) ∼=
G(Q(µ∞)/Lab) under φ. Consequently G(K/k) and G(Lab/F ) are isomorphic. It
follows that K = kLab.

Since n is divisible by the discriminant of Lab over Q, it follows from Proposi-
tion 2.2 that Lab ⊂ Q(ζn). Hence K = kLab ⊂ k(ζn). It follows that K = L∩k(ζn).

Since L(µ∞) is the composite of L and k(µ∞), G(L/K) ∼= G(L(µ∞)/k(µ∞)). On
the other hand since L(ζn) is the composite of L and k(ζn), and since K = L∩k(ζn),
G(L/K) ∼= G(L(ζn)/k(ζn)). Hence G(L(ζn)/k(ζn)) ∼= G(L(µ∞)/k(µ∞)), and so
l(G(L(ζn)/k(ζn))) = l(G(L(µ∞)/k(µ∞))).

Since n is divisible by the exponent of G(L/k), the tower of subfields of L(ζn)
corresponding to the derived series of G(L(ζn)/k(ζn)) is a root tower T by Kummer
theory. Let B be a nested radical for α determined by T . Then depth(B) ≤
l(G(L(ζn)/k(ζn))) = l(G(L(µ∞)/k(µ∞))).

Let d be the depth of a nested radical B′ for α of minimum depth with roots of
unity. Let m be such that all the roots of unity used in B′ are powers of ζm. Let
k0 = k(ζm) ⊂ k1 ⊂ · · · ⊂ kd be the root tower for α determined by B′. Let Ki, 0 ≤
i ≤ d, be the composite of kσ

i for all σ ∈ G(k̄/k). Then by Lemma 2.1, Ki/k and
Ki(µ∞)/K0(µ∞) are Galois for i = 0, ..., d, K0(µ∞) ⊂ K1(µ∞) ⊂ · · · ⊂ Kd(µ∞) is
a root tower and l(G(Kd(µ∞)/K0(µ∞))) ≤ d. Note that K0 = k0 as k0/k is Galois.
Hence K0(µ∞) = k0(µ∞) = k(µ∞), and so l(G(Kd(µ∞)/k(µ∞))) ≤ d.

Since Kd is Galois over k and α ∈ Kd, we have L ⊆ Kd. Let

G = G(Kd(µ∞)/k(µ∞)) and H = G(Kd(µ∞)/L(µ∞)).

Since L(µ∞)/k(µ∞) is Galois, H is a normal subgroup of G, so l(G(L(µ∞)/k(µ∞)))
= l(G/H) ≤ l(G) ≤ d. Therefore, depth(B) ≤ l(G(L(µ∞)/k(µ∞))) ≤ d. This
implies depth(B) = d; hence B is a nested radical of minimum depth for α with
roots of unity. This completes the proof of the main theorem.

Finally we describe an algorithm for the construction of an optimal nested radical
with roots of unity for a solvable irreducible polynomial h.

Let h be the irreducible polynomial of α. An irreducible polynomial g and the
Galois group for the splitting field L of α over k can be computed by an algorithm
in [7]. The time complexity as well as the length of g are polynomial in the length
of h and the degree of L over k. From the Galois group the exponent l of the group
can be computed in time polynomial in the size of the group.

Let G be the norm of g over Q. Let H = G/(G, G′). Then H is an irreducible
polynomial for L over Q. We can convert H into an monic integral irreducible
polynomial by a standard technique as follows. Without loss of generality assume
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H =
∑N

i=0 aix
i, where ai ∈ Z. Let α be a root of H . Then aNα is a root of the

monic integral polynomial H1 = xN +
∑N−1

i=0 aN−1−i
N aix

i. Hence H1 is a monic
integral irreducible polynomial for L over Q. It follows that the discriminant of
H1, D(H1), is divisible by D(L/Q), hence by D(Lab/Q). So by Theorem 1.1, the
root of unity can be taken to be ζn where n = |D(H1)|l. We remark that the length
of n is polynomial in the length of the irreducible polynomial for specifying k, the
length of h, and [L : k]. Hence n may be doubly exponential in the degree of h, as
[L : k] may be exponential in the degree of h.

Once n is computed, we can compute a nested radical corresponding to the
derived series of G(L(ζn)/k(ζn)) by applying the procedures developed in [7]. The
running time is polynomial in n, [L : k], and the length of the irreducible polynomial
for α, hence it is, in the worst case, doubly exponential in the input size.
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