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Abstract
Point-based algorithms and RTDP-Bel are approx-
imate methods for solving POMDPs that replace
the full updates of parallel value iteration by faster
and more effective updates at selected beliefs. An
important difference between the two methods is
that the former adopt Sondik’s representation of
the value function, while the latter uses a tabular
representation and a discretization function. The
algorithms, however, have not been compared up
to now, because they target different POMDPs:
discounted POMDPs on the one hand, and Goal
POMDPs on the other. In this paper, we bridge
this representational gap, showing how to trans-
form discounted POMDPs into Goal POMDPs,
and use the transformation to compare RTDP-Bel
with point-based algorithms over the existing dis-
counted benchmarks. The results appear to contra-
dict the conventional wisdom in the area showing
that RTDP-Bel is competitive, and sometimes su-
perior to point-based algorithms in both quality and
time.

1 Introduction
In recent years, a number of point-based algorithms have been
proposed for solving large POMDPs [Smith and Simmons,
2005; Spaan and Vlassis, 2005; Pineau et al., 2006; Shani et
al., 2007]. These algorithms adopt Sondik’s representation of
the value function but replace the complex full synchronous
updates by faster and more effective updates at selected be-
liefs. Some of the elements of point-based algorithms are
common to RTDP-Bel, an older and simpler approximate al-
gorithm based on RTDP [Barto et al., 1995], that also com-
bines simulation and point-based updates but represents the
value function in a straightforward manner by means of a ta-
ble and a discretization function [Bonet and Geffner, 1998b;
1998a; 2000]. While the two type of algorithms have not been
experimentally compared up to now, it is widely believed that
Sondik’s representation is crucial for speed and quality, and
thus, that algorithms such as RTDP-Bel cannot match them.
One of the reasons that this comparison has not been done
is that RTDP-Bel targets a class of shortest-path POMDPs
with positive action costs while point-based algorithms target

discounted POMDPs. In this paper, we bridge the representa-
tional gap among the different types of POMDPs, showing in
particular how to transform discounted POMDPs into equiv-
alent Goal POMDPs, and use this transformation to compare
point-based algorithms and RTDP-Bel over the existing dis-
counted benchmarks. The results appear to contradict the
conventional wisdom in the area showing that RTDP-Bel is
competitive, and indeed, often superior to point-based algo-
rithms. The transformations among POMDPs are also new,
and show that Goal POMDPs are actually more expressive
than discounted POMDPs, a result that generalizes one for
MDPs in [Bertsekas and Tsitsiklis, 1996, pp. 39–40].

The paper is organized as follows. We consider in order
Goal MDPs and RTDP (Sect. 2), Goal POMDPs and RTDP-
Bel (Sect. 3), discounted POMDPs and point-based algo-
rithms (Sect. 4), the equivalence-preserving transformations
among different types of POMDPs (Sect. 5), the experimen-
tal comparison between point-based algorithms and RTDP-
Bel (Sect. 6), and end with a brief discussion (Sect. 7).

2 Goal MDPs and RTDP
Shortest-path MDPs provide a generalization of the state
models traditionally used in heuristic search and planning,
accommodating stochastic actions and full state observabil-
ity [Bertsekas, 1995]. They are given by

SP1. a non-empty state space S,
SP2. a non-empty set of target states T ⊆ S,
SP3. a set of actions A,1

SP4. probabilities Pa(s′|s) for a ∈ A, s, s′ ∈ S, and
SP5. costs c(a, s) for a ∈ A and s ∈ S.

The target states t are assumed to be absorbing and cost-free;
meaning Pa(t|t) = 1 and c(a, t) = 0 for all a ∈ A. Goal
MDPs are shortest-path MDPs with a known initial state s0

and positive action costs c(a, s) for all a and non-terminal
states s. A Goal MDP has a solution, and hence, an opti-
mal solution, if a target (goal) state is reachable from every
state. A policy π is optimal if it minimizes the expected cost
to the goal V π(s) for all states s. This optimal expected cost,

1For simplicity, and without loss of generalization, we assume
that all actions in A are applicable in all states.



1. Start with s = s0.
2. Evaluate each action a in s as:

Q(a, s) = c(a, s) +
∑
s′∈S

pa(s′|s)V (s′)

initializing V (s′) to h(s′) when s′ is not in hash
3. Select action a that minimizes Q(a, s).
4. Update V (s) to Q(a, s)
5. Sample next state s′ with probability Pa(s′|s)
6. Finish if s′ is target, else s := s′ and goto 2

Figure 1: Single Trial of RTDP

denoted as V ∗(s), is the unique solution of the Bellman equa-
tion

V ∗(s) = min
a∈A

{
c(a, s) +

∑
s′∈S

Pa(s′|s)V ∗(s′)
}

(1)

for all s ∈ S \ T , and V ∗(s) = 0 for s ∈ T . The
Bellman equation can be solved by the Value Iteration (VI)
method, where a value function V , initialized arbitrarily, ex-
cept V (t) = 0 for targets t, is updated iteratively until con-
vergence using the right-hand side of (1) as:

V (s) := min
a∈A

{
c(a, s) +

∑
s′∈S

Pa(s′|s)V (s′)
}

. (2)

This method for computing V ∗ is known as parallel value
iteration. In asynchronous value iteration, states are updated
according to (2) in any order. Asynchronous VI also delivers
the optimal value function V ∗ provided that all the states are
updated sufficiently often [Bertsekas, 1995]. With V = V ∗,
the greedy policy πV is an optimal policy, where πV is

πV (s) = argmin
a∈A

{
c(a, s) +

∑
s′∈S

Pa(s′|s)V (s′)
}

. (3)

Recent AI methods for solving MDPs are aimed at making
dynamic programming methods more selective by incorporat-
ing ideas developed in heuristic search. One of the first such
methods is Real-Time Dynamic Programming (RTDP), intro-
duced in [Barto et al., 1995], which is a generalization of the
LRTA* algorithm [Korf, 1990] that works for deterministic
models only.

RTDP is an asynchronous value iteration algorithm of a
special type: it can converge to the optimal value function
and policy over the relevant states without having to consider
all the states in the problem. For achieving this, and in con-
trast with standard value iteration algorithms, RTDP uses an
admissible heuristic function or lower bound h as the initial
value function. Provided with such a lower bound, RTDP se-
lects for update the states that are reachable from the initial
state s0 through the greedy policy πV in a way that interleaves
simulation and updates. The code for a a single trial of RTDP
is shown in Fig. 1.

The quality of the heuristic used to initialize the value func-
tion is crucial for RTDP and LRTA*. In both cases, better
heuristic values mean a more focused search, and a more fo-
cused search means more updates on the states that matter,
thus allowing the value function to boostrap more quickly.

For the implementation of RTDP, the estimates V (s) are
stored in a hash table that initially contains the heuristic value
of the initial state only. Then, when the value of a state s that
is not in the table is needed, a new entry for s with value
V (s) = h(s) is allocated. These entries are updated follow-
ing (2) when a move from s is performed.

The simple greedy search combined with updates in both
RTDP and LRTA* yields two key properties. First, a single
trial of these algorithms eventually terminates in a goal state.
Second, successive trials, using the same hash table, eventu-
ally deliver an optimal cost function V ∗, and thus an optimal
(partial) policy πV ∗ over the relevant states.These two proper-
ties hold for Goal MDPs only, under the assumption that the
goal is reachable from any state (with positive probability)
and that the initial value function is a lower bound [Barto et
al., 1995]. They do not hold in general for arbitrary shortest-
path MDPs nor for general discounted cost-based (or reward-
based) MDPs. Indeed, in such cases RTDP may easily enter
into a loop, as when some of the action costs are zero.

3 Goal POMDPs and RTDP-Bel
Partially Observable MDPs generalize MDPs by modeling
agents that have incomplete state information [Sondik, 1978;
Monahan, 1983; Kaelbling et al., 1999] in the form of a prior
belief b0 that expresses a probability distribution over S, and
a sensor model made up of a set of observation tokens O and
probabilities Qa(o|s) of observing o ∈ O upon entering state
s after doing a. Formally, a Goal POMDP is a tuple given by:
PO1. a non-empty state space S,
PO2. an initial belief state b0,
PO3. a non-empty set of target (or goal) states T ⊆ S,
PO4. a set of actions A,
PO5. probabilities Pa(s′|s) for a ∈ A, s, s′ ∈ S,
PO6. positive costs c(a, s) for non-target states s ∈ S,
PO7. a set of observations O, and
PO8. probabilities Qa(o|s) for a ∈ A, o ∈ O, s ∈ S.
It is assumed that target states t are cost-free, absorbing, and
fully observable; i.e., c(a, t) = 0, Pa(t|t) = 1, and t ∈ O, so
that Qa(t|s) is 1 if s = t and 0 otherwise. The target beliefs
or goals are the beliefs b such that b(s) = 0 for s ∈ S \ T .

The most common way to solve POMDPs is by formu-
lating them as completely observable MDPs over the belief
states of the agent [Astrom, 1965; Sondik, 1978]. Indeed,
while the effects of actions on states cannot be predicted, the
effects of actions on belief states can. More precisely, the be-
lief ba that results from doing action a in the belief b, and the
belief bo

a that results from observing o after doing a in b, are:

ba(s) =
∑
s′∈S

Pa(s|s′)b(s′) , (4)

ba(o) =
∑
s∈S

Qa(o|s)ba(s) , (5)

bo
a(s) = Qa(o|s)ba(s)/ba(o) if ba(o) 6= 0. (6)

As a result, the partially observable problem of going from an
initial state to a goal state is transformed into the completely
observable problem of going from one initial belief state into



a target belief state. The Bellman equation for the resulting
belief MDP is

V ∗(b) = min
a∈A

{
c(a, b) +

∑
o∈O

ba(o)V ∗(bo
a)

}
(7)

for non-target beliefs b and V ∗(bt) = 0 otherwise, where
c(a, b) is the expected cost

∑
s∈S c(a, s)b(s).

The RTDP-Bel algorithm, depicted in Fig. 2 is a straight-
forward adaptation of RTDP to Goal POMDPs where states
are replaced by belief states updated according to (7). There
is just one difference between RTDP-Bel and RTDP: in order
to bound the size of the hash table and make the updates more
effective, each time that the hash table is accessed for read-
ing or writing the value V (b), the belief b is discretized. The
discretization function d is extremely simple and maps each
entry b(s) into the entry:

d(b(s)) = ceil(D ∗ b(s)) (8)

where D is a positive integer (the discretization parameter),
and ceil(x) is the least integer ≥ x. For example, if D = 10
and b is the vector (0.22, 0.44, 0.34) over the states s ∈ S,
d(b) is the vector (3, 5, 4).

Notice that the discretized belief d(b) is not a belief and
does not have to represent one. It just represents the unique
cell in the hash table that stores the value function for b
and of all other beliefs b′ such that d(b′) = d(b). The dis-
cretization is used only in the operations for accessing the
hash table and it does not affect the beliefs that are gen-
erated during a trial. Using a terminology that is com-
mon in Reinforcement Learning, the discretization is a sim-
ple function approximation device [Sutton and Barto, 1998;
Bertsekas and Tsitsiklis, 1996], where a single parameter, the
value stored at cell d(b) in the hash table is used to represent
the value of all beliefs b′ that discretize into d(b′) = d(b).
This approximation relies on the assumption that the value of
beliefs that are close, should be close as well. Moreover, the
discretization preserves supports (the states s with b(s) > 0)
and thus never collapses the value of two beliefs if there is a
state that is excluded by one but not by the other.2

The theoretical consequences of the discretization are sev-
eral. First, convergence is not guaranteed and actually the
value in a cell may oscillate. Second, the value function ap-
proximated in this way does not remain necessarily a lower
bound.3 These problems are common to most of the (non-
linear) function approximations schemes used in practice, and
the simple discretization scheme used in RTDP-Bel is no ex-
ception. The question, however, is how well this function
approximation scheme works in practice.

2This property becomes more important in problems involving
action preconditions [Bonet, 2002].

3Some of the theoretical shortcomings of RTDP-Bel can be ad-
dressed by storing in the hash table the values of a set of selected
belief points, and then using suitable interpolation methods for ap-
proximating the value of beliefs points that are not in the table. This
is what grid-based methods do [Hauskrecht, 2000]. These interpola-
tions, however, involve a large computational overhead, and do not
appear to be cost-effective.

1. Start with b = b0.
2. Sample state s with probability b(s).
3. Evaluate each action a in b as:

Q(a, b) = c(a, b) +
∑
o∈O

ba(o)V (bo
a)

initializing V (bo
a) to h(bo

a) if bo
a is not in the hash.

4. Select action a that minimizes Q(a, b).
5. Update V (b) to Q(a, b).
6. Sample next state s′ with probability Pa(s′|s).
7. Sample observation o with probability Qa(o|s′).
8. Compute bo

a using (6).
9. Finish if bo

a is target belief, else b := bo
a and s := s′

and goto 3.

Figure 2: RTDP-Bel is RTDP over the belief MDP with an
additional provision: for reading or writing the value V (b) in
the hash table, b is replaced by d(b) where d is the discretiza-
tion function.

4 Discount and Point-based Algorithms

Discounted cost-based POMDPs differ from Goal POMDPs
in two ways: target states are not required and a discount
factor γ ∈ (0, 1) is used instead. The Bellman equation for
discounted models becomes:

V ∗(b) = min
a∈A

{
c(a, b) + γ

∑
o∈O

ba(o)V ∗(bo
a)

}
. (9)

The expected cost V π(b) for policy π is always well-defined
and bounded by C/(1−γ) where C is the largest cost c(a, s)
in the problem.

Discounted reward-based POMDPs are similar except that
rewards r(a, s) are used instead of costs c(a, s), and a max
operator is used in the Bellman equation instead of min. A
discounted reward-based POMDP can be easily translated
into an equivalent discounted cost-based POMDP by simply
multiplying all rewards by −1.

Point-based algorithms target discounted POMDPs. They
use a finite representation of the (exact) value function for
POMDPs due to Sondik [1971] that enables the computation
of exact solutions. In Sondik’s representation, a value func-
tion V is represented as a finite set Γ of |S|-dimensional real
vectors such that

V (b) = max
α∈Γ

∑
s∈S

α(s)b(s) = max
α∈Γ

α · b . (10)

Point-based algorithms, however, replace the updates of full
synchronous value iteration with faster and more effective
updates at selected beliefs. The update at a single belief b
of a function V , represented by a set Γ of vectors α, re-
sults in the addition of a single vector to Γ, called backup(b),
whose computation in vector notation is [Pineau et al., 2006;



Shani et al., 2007]:

backup(b) = argmax
gb

a,a∈A

gb
a · b , (11)

gb
a = r(a, ·) + γ

∑
o∈O

argmax
gα

a,o,α∈Γ

{
gα

a,o · b
}

, (12)

gα
a,o(s) =

∑
s′∈S

α(s′)Qa(o|s′)Pa(s′|s) . (13)

This computation can be executed efficiently in time
O(|A||O||S||Γ|) and forms the basis of all point-based
POMDP algorithms that differ mainly in the selection of the
belief points to update and the order of the updates.

5 Transformation of POMDPs
For transforming discounted POMDPs into equivalent Goal
POMDPs, we need to make precise the notion of equivalence.
Let us say that the sign of a POMDP is positive if it is a cost-
based POMDP, and negative if it is a reward-based POMDP.
Also, let V π

M (b) denote the expected cost (resp. reward) from
b in a positive (resp. negative) POMDP M . Then, if the tar-
get states are absorbing, cost-free, and observable, an equiv-
alence relation among two POMDPs of any types can be ex-
pressed as follows:

Definition 1. Two POMDPs R and M are equivalent if they
have the same set of non-target states, and there are two con-
stants α and β such that for every policy π and non-target
belief b, V π

R (b) = αV π
M (b) + β with α > 0 if R and M are

POMDPs of the same sign, and α < 0 otherwise.

That is, two POMDPs R and M are equivalent if their value
functions are related by a simple linear transformation over
the same set of non-target beliefs. It follows that if R and M
are equivalent, they have the same optimal policies and the
same ‘preference order’ among policies. Thus, if R is a dis-
counted reward-based POMDP and M is an equivalent Goal
POMDP, we can obtain optimal and/or suboptimal policies
for R by running an optimal and/or approximate algorithm
over M .

We say that a transformation that maps a POMDP M into
M ′ is equivalence-preserving if M and M ′ are equivalent.
In this work, we consider three transformations, all of which
leave certain parameters of the POMDP unaffected. In the
following transformations, we only mention the parameters
that change:

T1. R 7→ R + C is about the addition of a constant C (pos-
itive or negative) to all rewards/costs. It maps a dis-
counted POMDP R into the discounted POMDP R +
C by replacing the rewards (resp. costs) r(a, s) (resp.
c(a, s)) by r(a, s) + C (resp. c(a, s) + C).

T2. R 7→ kR is about the multiplication by a constant k 6= 0
(positive or negative) of all rewards/costs. It maps a dis-
counted POMDP R into the discounted POMDP kR by
replacing the rewards (resp. costs) r(a, s) (resp. c(a, s))
by kr(a, s) (resp. kc(a, s)). If k is negative, R and kR
have opposite signs.

T3. R 7→ R eliminates the discount factor. It maps a
discounted cost-based POMDP R into a shortest-path

POMDP R by adding a fully observable target state
t so that Pa(t|s) = 1 − γ, Pa(s′|s) = γPR

a (s′|s),
Oa(t|t) = 1 and Oa(s|t) = 0 where γ is the discount
factor in R and PR

a (s′|s) refers to the transition proba-
bilities in model R.

Theorem 2. The transformations R 7→ R+C, R 7→ kR and
R 7→ R are all equivalence-preserving.

Proof (sketch): One shows that if V π
R (b) is the value function

for the policy π in R over the non-target beliefs b, and hence
the (unique) solution of the Bellman equation for π in R:

V π
R (b) = r(b, a) + γ

∑
o∈O

ba(o)V π
R (bo

a) , (14)

then V π
R (b) + C/(1− γ) is the solution of the Bellman equa-

tion for the same policy π in the model R + C, kV π
R (b)

is the solution of the Bellman equation for π in kR, and
V π

R (b) itself is the solution of Bellman equation for π in
R. This all involves the manipulation of the Bellman equa-
tion for π in the various models. In particular, for proving
V π

R+C(b) = V π
R (b) + C/(1 − γ), for example, we add the

expression C ′ = C/(1− γ) to both sides of (14), to obtain:

V π
R (b) + C ′ =

[
C + r(b, a)

]
+ γ

∑
o∈O

ba(o)
[
V π

R (bo
a) + C ′]

as C ′ = C + γC ′, and thus V π
R (b) + C ′ is the solution of the

Bellman equation for π in R + C.

Theorem 3. Let R be a discounted reward-based POMDP,
and C a constant that bounds all rewards in R from above;
i.e. C > maxa,s r(a, s). Then, M = −R + C is a Goal
POMDP equivalent to R. Indeed,

V π
R (b) = −V π

M (b) + C/(1− γ) (15)

for all non-target beliefs b and policies π.

Proof (sketch): For such C, −R is a discounted cost-based
POMDP, −R + C is a discounted cost-based POMDP with
positive costs, and M = −R + C is a Goal POMDP. A
straightforward calculation shows that V π

R (b) = −V π
M (b) +

C/(1 − γ) for all non-target beliefs b, and hence V π
R (b) =

αV π
M (b) + β with a negative α = −1, in agreement with the

signs of R and M .

As an illustration, the transformation of the discounted
reward-based POMDP Tiger with 2 states into a Goal
POMDP with 3 states is shown in Fig. 3, where the third state
is a target (absorbing, costs-free, and observable). Although
not shown, the rewards are transformed into positive costs by
multiplying them by −1 and adding them the constant 11, as
the maximal reward for the original problem is 10.

6 RTDP-Bel vs. Point-based Algorithms
For comparing RTDP-Bel with point-based algorithms over
discounted benchmarks R, we run RTDP-Bel over the equiv-
alent Goal POMDPs M and evaluate the resulting policies
back in the original model R in the standard way. In the ex-
periments, we use the discretization parameter D = 15. We
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Figure 3: Transformation of the discounted reward-based
POMDP problem Tiger with two states (top) and γ = 0.95
into a Goal POMDP problem (bottom) with an extra target
state.

have also found it useful to avoid transitions in the simula-
tion to the dummy target state t created in the transformation
which makes long trials unlikely. Notice that target beliefs bt

do not need to be explored or visited as V ∗(bt) = h(bt) = 0.
The point-based algorithms considered are HSVI2 [Smith

and Simmons, 2005], PBVI [Pineau et al., 2006], Perseus
[Spaan and Vlassis, 2005] and FSVI [Shani et al., 2007]. As
usual, we also include the QMDP policy.

Table 1 displays the average discounted reward (ADR) of
the policies obtained by each of the algorithms, the time
in seconds for obtaining such policies, and some algorithm-
specific information: for HSVI2 the number of planes in the
final policy, for Perseus and PBVI+GER the number of be-
liefs points in the belief set, for FSVI the size of the final
value function, and for RTDP-Bel the final number of entries
in the hash table and the number of trials.

Except when indicated, the data has been collected by run-
ning the algorithms on our machine (a Xeon at 2.0Ghz), from
code made available by the authors. For FSVI, the experi-
ments on Tag and LifeSurvey1 did not finish, with the algo-
rithm apparently cycling with a poor policy.

The ADR is measured over 1,000 simulation trials of 250
steps each, except in three problems: Hallway, Hallway2, and
Tag. These problems include designated ‘goal states’ that are
not absorbing. In these cases, simulation trials are terminated
when such states are reached.

As it can be seen from the table, RTDP-Bel does particu-
larly well in the 6 largest problems (Tag, RockSample, and
LifeSurvey1): in 4 of these problems RTDP-Bel returns the
best policies (highest ADR) and in the other two, it returns
policies that are within the confidence interval of the best
algorithm. In addition, in 4 of these problems (the largest
4), RTDP-Bel is also the fastest. On the other hand, RTDP-
Bel does not perform as well in the 3 smallest problems, and
in particular in the two Hallway problems where it produces
weaker policies in more time than all the other algorithms.

We also studied the effect of using different discretizations.
Fig. 4 shows the quality of the policies resulting from up to
300,000 trials, for the Tag problem using D = 5, 15, 25. The

-20
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Figure 4: Performance of RTDP-Bel over Tag for three dis-
cretization parameters: D = 5, D = 15 and D = 25.

cases for D = 5 and D = 15 are similar in this problem
except that in the first case RTDP-Bel takes 290 seconds and
uses 250k hash entries, and in the second, 493 seconds and
2.5m hash entries. The case of D = 25 is different as RTDP-
Bel needs then more than 300,000 trials to reach the target
ADR. In this case, RTDP-Bel takes 935 seconds and uses
7.7m hash entries. In this problem D = 5 works best, but
in other problems finer discretizations are needed. All the
results in Table 1 are with D = 15.

7 Discussion
RTDP-Bel is a simple adaptation of the RTDP algorithm to
goal POMDPs that precedes the recent generation of point-
based algorithms and some of its ideas. The experiments
show, however, that RTDP-Bel can be competitive, and even
superior to point-based algorithms in both time and quality.
This raises two questions. First, why RTDP-Bel has been
neglected up to now, and second, why RTDP-Bel does as
well? We do not know the answer to the first question but
suspect that the reason is that RTDP-Bel has been used over
discounted benchmarks where it doesn’t work. RTDP-Bel,
is for Goal POMDPs, in the same way that RTDP is for
Goal MDPs. In this work, we have shown how discounted
POMDPs can be translated into equivalent Goal POMDPs for
RTDP-Bel to be used. About the second question, the reasons
that RTDP-Bel does well on goal POMDPs appear to be sim-
ilar to the reasons that RTDP does well on goal MDPs: re-
stricting the updates to the states generated by the stochastic
simulation of the greedy policy appears to be quite effective,
ensuring convergence without getting trapped into loops. The
discretization in POMDPs, if suitable, doesn’t appear to hurt
this. On the other hand, this property does not result from
value functions represented in Sondik’s form that encode up-
per bounds rather than lower bounds (in the cost setting). The
two type of methods, however, are not incompatible and it
may be possible to combine the strengths of both.
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algorithm reward time data / trials
Tiger-Grid (36s, 5a, 17o)
Perseus∗ 2.34 104 10k
HSVI2 2.31± 0.35 22 735
RTDP-Bel 2.31± 0.10 379 409k / 12k
FSVI 2.30± 0.13 872 2,654
PBVI+GER 2.28± 0.06 1,770 1,024
QMDP 0.24± 0.06 n/a n/a
Hallway (60s, 5a, 21o)
HSVI2† 0.52 2.4 147
FSVI 0.52± 0.02 57 341
PBVI+GER 0.51± 0.02 9 64
Perseus∗ 0.51 35 10k
RTDP-Bel 0.49± 0.02 50 57k / 12k
QMDP 0.23± 0.02 n/a n/a
Hallway2 (92s, 5a, 17o)
HSVI2† 0.35 1.5 114
Perseus∗ 0.35 10 10k
FSVI 0.35± 0.03 60 458
PBVI+GER 0.33± 0.02 8 32
RTDP-Bel 0.25± 0.02 627 711k / 28k
QMDP 0.10± 0.01 n/a n/a
Tag (870s, 5a, 30o)
RTDP-Bel −6.16± 0.53 493 2.5m / 300k
Perseus∗ -6.17 1,670 10k
HSVI2† -6.36 24 415
PBVI+GER −6.75± 0.50 9,659 512
QMDP −16.57± 0.65 n/a n/a
FSVI — — —
RockSample[4,4] (257s, 9a, 2o)
PBVI+GER 18.34± 0.49 17 256
FSVI 18.21± 0.82 104 353
RTDP-Bel 18.12± 0.52 16 26k / 20k
HSVI2 18.00± 0.14 0.7 268
QMDP 3.97± 0.35 n/a n/a
RockSample[5,5] (801s, 10a, 2o)
RTDP-Bel 19.59± 0.55 21 28k / 20k
PBVI+GER 19.56± 0.55 1,495 256
HSVI2 19.21± 0.25 41 2,417
FSVI 19.07± 1.01 31 413
QMD 4.16± 0.49 n/a n/a
RockSample[5,7] (3,201s, 12a, 2o)
RTDP-Bel 23.75± 0.60 35 8,232 / 20k
FSVI 23.67± 0.90 297 1,049
HSVI2 23.64± 0.32 126 2,431
PBVI+GER 14.59± 0.79 4,265 512
QMDP 6.35± 0.53 n/a n/a
RockSample[7,8] (12,545s, 13a, 2o)
FSVI 21.03± 0.84 916 1,578
RTDP-Bel 20.70± 0.57 62 16k / 16k
HSVI2 20.66± 0.39 224 1,748
PBVI+GER 14.70± 0.54 7,940 256
QMDP 7.50± 0.46 n/a n/a
LifeSurvey1 (7,001s, 7a, 28o)
RTDP-Bel 95.94± 3.13 170 82k / 58k
PBVI+GER 92.63± 2.75 11,859 256
HSVI2 92.29± 0.65 731 971
QMDP 90.25± 3.48 n/a n/a
FSVI — — —

∗From [Spaan and Vlassis, 2005]: Pentium IV 2.4GHz.
†From [Smith and Simmons, 2005]: Pentium IV 3.4GHz.

Table 1: RTDP-Bel vs. Point-based algorithms. Figures show
ADR, time in seconds, and data for each algorithm. Algo-
rithms ordered by ADR and experiments conducted in a Xeon
2.0GHz except where indicated.


