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Fast algorithms can be created for many graph problems when instances are confined to classes
of graphs that are recursively constructed. This paper first describes some basic conceptual
notions regarding the design of such fast algorithms, and then the coverage proceeds through
several recursive graph classes. Specific classes include k-terminal graphs, trees, series-parallel
graphs, k-trees, partial k-trees, Halin graphs, bandwidth-k graphs, pathwidth-k graphs, treewidth-
k graphs, branchwidth-k graphs, cographs, cliquewidth-k graphs, k-NLC graphs, k-HB graphs, and
rankwidth-k graphs. The definition of each class is provided, after which some typical algorithms
are applied to solve problems on instances of each class.
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1. INTRODUCTION

Throughout, G = (V, E) denotes a finite graph where V and E are sets of vertices
and edges respectively. A recursively constructed graph class is defined by a set
(usually finite) of primitive or base graphs , in addition to one or more operations
(called composition rules) that compose larger graphs from smaller subgraphs. Each
operation involves fusing specific vertices from each subgraph or adding new edges
between specific vertices from each subgraph. Each graph in a recursive class has
a corresponding decomposition tree that reveals how to build it from base graphs.

An efficient algorithm for a problem restricted to a recursively constructed graph
class typically employs a dynamic programming approach as follows. Solve the
problem on the base graphs defined for the given class, and then combine the
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solutions for subgraphs into a solution for a larger graph that is formed by the
specific composition rules that govern construction of members in the class. A
linear-time algorithm is achieved by determining a finite number of equivalence
classes that correspond to each node in a member graph’s tree decomposition.
The number of such equivalence classes is constant with respect to the size of the
input graph, but may depend upon a parameter (k) associated with the class. A
polynomial-time algorithm can often be created if the number of equivalence classes
required for the problem grows only polynomially with input graph size. Also key
is that a graph’s tree decomposition be given as part of the instance or that it
can be produced efficiently. When the simplest version of a problem (cardinality
or existence) can be solved using this dynamic programming approach, then other
more complicated versions (involving vertex or edge weights, counting, bottleneck,
min-max, etc.) can generally be routinely solved.

Organizationally, the paper proceeds as follows. Each section is devoted to a
specific graph class, beginning with the general class of k-terminal graphs. In each,
the class is defined and some algorithms are formally stated or at least described
in sufficient detail. In addition, at least one explicit example is given, i.e., at least
one problem (independent set, vertex cover, minimum-maximal matching, etc.) is
identified and its solution is demonstrated on an instance from the respective graph
class. The only case not consistent with this template is the class of rankwidth-k
graphs (c.f. Section 15). In most of our examples, problem selection is confined to
cases where the specific problem is hard on arbitrary graphs, i.e., NP-hard/NP-
complete. One exception is the maximum matching problem, which can be solved
in polynomial time for arbitrary graphs, but which can be solved more efficiently
(i.e., in linear time) for many of our graph classes. Note also that there is some
unevenness in terms of the numbers of algorithms exhibited across the various graph
classes considered. Dictated by space requirements alone, this typically means that
a richer breadth of algorithms is possible for some of the “simpler” cases such as
trees and series-parallel graphs. More importantly, however, in such cases, we are
typically able to present a better variety of problems and in so doing demonstrate
more easily some of the nuance that accompanies various structural differences
insofar as algorithm design is concerned but where these designs carry forward to
more complicated classes.

Most sections are concluded with some general comments pertaining to the spe-
cific graph class. The detail in this coverage will vary broadly from section to sec-
tion. In some cases, comments will describe structural, graph-theoretic attributes
relevant to the graph class; sometimes, the comments will describe special com-
putational and algorithmic properties of the class; and in others, the discussion
simply serves to act as a transition that clarifies how a given graph class relates to
others that were dealt with earlier as well as ones covered in subsequent sections.
Readers may choose to skip such remarks since doing so does not adversely affect
the primary content of the tutorial.

In algorithmic descriptions, we shall generally employ notation where G.x denotes
an attribute x (corresponding to an equivalence class) of a given graph G. It is
crucial that within most algorithms, G.x carries only O(1) pieces of information,
rather than a complete description of the equivalence class. When we write, for
ACM Computing Surveys, Vol. V, No. N, 20YY.
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example, G.x = maximum-cardinality independent set , then G.x carries with it two
pieces of information: primarily, the size of a maximum cardinality independent set,
and secondarily, a pointer to a particular instance of such a set. This information
is carried forward in computations and assignments involving G.x. Moreover, our
pseudo-code will generally entail only the primary information, such as existence,
size, or weight, and suppress the secondary information, that is, the pointer to a
particular instance.

2. K-TERMINAL GRAPHS

It is natural to expect that many classes including ones rarely defined in recursive
terms (e.g., trees, Halin graphs) can nonetheless be described by more general and
unifying definitions that legitimize their identity as recursively constructed graphs.
This will be the case with many of the classes that follow. In this first section, we
facilitate this by introducing the notion of k-terminal graphs.

A k-terminal graph G=(V,T,E) has a vertex set V, an edge set E, and a set
of distinguished terminals T = {t1, t2, . . . , t|T |} ⊆ V , where |T | ≤ k. A k-terminal
recursively structured graph class C(B, R) is specified by base graphs B and a finite
rule set R = {f1, f2, . . . , fn} where each fi is a recursive composition operation.
Typically, for some k, B is the set of connected k-terminal graphs (V, T, E) with
V = T , i.e., all vertices are terminals.

The notion of composition typically permitted in the context of k-terminal graphs
can be described in a more formal way. For 1 ≤ i ≤ m, let Gi = (Vi, Ti, Ei), such
that V1, . . . , Vm are mutually disjoint vertex sets. Let G = (V, T, E) as well. Then
a valid vertex mapping is a function f : ∪1≤i≤mVi → V such that:

— vertices from the same Gi remain distinct: v1 ∈ Vi, v2 ∈ Vi, f(v1) = f(v2)
implies v1 = v2;

— only (not necessarily all) terminals map to terminals: v ∈ Vi, f(v) ∈ T implies
v ∈ Ti;

— only terminals can merge: v1 ∈ Vi1 , v2 ∈ Vi2 , i1 �= i2, f(v1) = f(v2) implies
v1 ∈ Ti1 , v2 ∈ Ti2 ; and

— edges are preserved: (∃i)({v1, v2} ∈ Ei) if and only if {f(v1), f(v2)} ∈ E.

If f is a valid vertex mapping, the corresponding m-ary composition operation
(denoted by f) is generally written f(G1, . . . , Gm) = G.

To illustrate, consider a case with k = 2; the base graphs are edges with both
vertices specified as terminals, i.e., B = {K2}. Let the composition rule set R
consist of three binary operations f1, f2, f3 relativized by {�s,�p,�j} and that
operate on 2-terminal graphs G1 = (V1, E1) and G2 = (V2, E2). Identifying the
terminal vertex sets for G1 and G2 as {t11, t12} and {t21, t22} respectively, we have:

— The series operation �s identifies t12 with t21, and constructs a new 2-
terminal graph (V1 ∪ V2, E1 ∪E2) with terminal set {t11, t22}.

— The parallel operation �p identifies t11 with t21, and also t12 with t22, and
constructs a new 2-terminal graph (V1 ∪ V2, E1 ∪ E2) with terminal set {t11, t12}
(equivalently, {t21, t22}).

— The jackknife operation �j identifies t12 with t21, and constructs a new 2-
terminal graph (V1∪V2, E1∪E2) with terminal set {t11, t12} (equivalently, {t11, t21}).
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� � � �� � � ��s

t11 t12 t21 t22 � � � �� � � ��p

t11 t12 t21 t22 � � � �� � � ��j

t11 t12 t21 t22

� � �� �t11 t12 t22 � �� �
��
��

t11 t12 � � �� �t11 t12 t22

Fig. 1. Series, parallel, and jackknife composition for 2-terminal graphs
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Fig. 2. A 2-terminal graph composition using series, parallel, and jackknife operations

Figure 1 illustrates the three composition rules. As will be the case throughout,
terminals are identified by circled vertices.

A specific example is demonstrated in Figure 2. Starting with base graphs (leaves
of the tree shown) G1, G2, G3, G4, and G5, the successive application of the com-
position rules �s,�p, and �j ultimately produce the graph G9 as indicated.

2.1 Algorithms

For a given k-terminal graph it is important to determine its decomposition tree;
that is, to understand how the graph is constructed by a legal application of a set
of composition rules applied to a fixed base graph set. When we are able to do this
for some recursive class, it will provide a way to recognize membership in the given
class. Naturally, it is important that this test be applied efficiently. For G = G9

in Figure 2, the tree depicted is a decomposition tree for G. For a graph in some
recursive class, a corresponding decomposition tree may not be unique.

Now, as indicated in the introduction, if we are given a decomposition tree for
some graph G, it is sufficient that we solve the problem of interest on G by succes-
sively merging solutions or potential solutions from the constituent subgraphs as
per the stated composition rules for the class, ultimately reaching a solution for G,
ACM Computing Surveys, Vol. V, No. N, 20YY.
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Series composition Parallel composition Jackknife composition
G← G1 �s G2 G← G1 �p G2 G← G1 �j G2

G.a← (G1.a ∧G2.a) ∨ (G1.b ∧G2.c) G.a← (G1.a ∧G2.a) G.a← (G1.a ∧G2.a) ∨ (G1.a ∧G2.b)
G.b← (G1.a ∧G2.b) ∨ (G1.b ∧G2.d) G.b← (G1.b ∧G2.b) G.b← (G1.b ∧G2.c) ∨ (G1.b ∧G2.d)
G.c← (G1.c ∧G2.a) ∨ (G1.d ∧G2.c) G.c← (G1.c ∧G2.c) G.c← (G1.c ∧G2.a) ∨ (G1.c ∧G2.b)
G.d← (G1.c ∧G2.b) ∨ (G1.d ∧G2.d) G.d← (G1.d ∧G2.d) G.d← (G1.d ∧G2.c) ∨ (G1.d ∧G2.d)

Fig. 3. Formulas for 2-colorability of a 2-terminal graph

represented by the tree’s root. Crucial is determining how these subgraph outcomes
are merged vis-a-vis the composition rules. We demonstrate the basic concept on
the graph in Figure 2 using an easy example from graph coloring.

2.1.1 Example. A proper vertex coloring for a graph G is an assignment of colors
c1, c2, . . . , ct to the vertices of G such that no pair of adjacent vertices is assigned
the same color. If at most k colors are needed to properly color the vertices in some
G, then we say that G is k-colorable. Now, for the graph G shown in Figure 2,
suppose we seek to decide whether or not it is 2-colorable. Of course, deciding
2-colorability or equivalently, whether or not a graph is bipartite, is not interesting
for any graph class since there is an obvious, fast algorithm for deciding the matter
(note that deciding 3-colorability is hard (c.f. [Karp 1972])). That said, we employ
this simple case for ease of exposition only; extending the notion for deciding k-
colorability with k ≥ 3 should be natural.

Denote the two colors by c1 and c2. Since all constituent subgraphs are 2-terminal
graphs, there are only four possible color states for any solution relative to the termi-
nal vertices of any such subgraph; these are given by the pairs {c1, c2}×{c1, c2}. The
equivalence classes for each subgraph G are given by a 4-tuple (G.a, G.b, G.c, G.d)
where each component represents the equivalence class corresponding to the pairs
(c1, c1), (c1, c2), (c2, c1), and (c2, c2) respectively. Thus, G.d represents the equiv-
alence class of all valid 2-colorings of G that assign color c2 to both terminals of
G.

Since k-coloring is a question of admissability, the primary piece of information
required for each G.x is whether the equivalence class is empty or nonempty, that
is, whether G admits a valid coloring of type x. Assign values of true for admissible
and false for inadmissible. For base graphs (edges) this 4-tuple is trivially fixed as
(false, true, true, false). Now, if two subgraphs are merged under any of the three
operations, �s,�p, or �j , the only admissible outcomes result from pairs where
the fused or common vertices are required to have the same color. This leads to
the explicit formulation shown in Figure 3. Due to symmetry, it is always true
that G.a ∼= G.d and G.b ∼= G.c, but we provide the complete formulas for clarity of
exposition.

Beginning with the base graph nodes of the decomposition tree from Figure 2 and
applying the computation successively, we can produce a correct set of 4-tuples, one
corresponding to each composed graph. If any of the values are true in the 4-tuple
corresponding to the original graph G (represented at the root of the tree), then G
is 2-colorable; otherwise it is not. Naturally, the full computation can be preempted
earlier if the 4-tuple for any subgraph consists only of values false. The complete
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G

Subgraph
G1 = (z, y)
G2 = (y, x)
G3 = (z, x)
G4 = (x, v)
G5 = (x, w)
G6 = G1 �s G2

G7 = G6 �p G3

G8 = G7 �j G4

G9 = G8 �j G5

[false, true, true, false]
[false, true, true, false]
[false, true, true, false]
[false, true, true, false]
[false, true, true, false]
[true, false, false, true]
[false, false, false, false]
[false, false, false, false]
[false, false, false, false]

Fig. 4. Deciding 2-colorability of a 2-terminal graph

computation for the graph of Figure 2 is summarized in Figure 4; obviously, the
stated graph G is not 2-colorable.

In the example above there is no need for the secondary information, that is, a
particular instance of a valid 2-coloring, because no such coloring exists. When the
secondary information is carried, some care must be taken to ensure the algorithm’s
linear runtime. A naive implementation would store an explicit valid 2-coloring, for
each subgraph G, and for each x ∈ a, b, c, d such that G.x = true. The resulting
runtime on a 2-colorable n-vertex graph would be Ω(n log n), and θ(n2) in the worst
case. Instead, store a particular coloring in O(1) time by using pointers to previ-
ously stored colorings of G’s constituent subgraphs, so that the entire algorithm
runs in O(n) time.

To illustrate how akin are algorithms for feasibility and counting, we state here
the changes in formalisms that would be required in order to determine the num-
ber of valid 2-colorings: change G.x from boolean to an integer that carries the
cardinality of the equivalence class; accordingly, change the base graph 4-tuple to
(0, 1, 1, 0); and replace the ∧ and ∨ operators by the × and + operators respectively.

2.1.2 Example. We count the number of valid 3-colorings of the graph in Fig-
ure 4. Denote the colors as 1,2,3. There are |{1,2,3}2| = 9 equivalence classes.
Colorings in a class are equivalent in their compatibility with colorings of other sub-
graphs. In lexicographic order, the classes are denoted 11,12,13,21,22,23,31,32,33.
For the base graphs, the 9-tuple of counting values is [0, 1, 1, 1, 0, 1, 1, 1, 0]. We ex-
press the composition formulas in the more compact form of multiplication tables,
as shown in Figure 5. Rows correspond to Gα and columns correspond to Gβ for
the composition Gα �Gβ . We do not take the space to show the parallel table, as
its only nonempty entries are the values 11,12,. . . ,33 along the main diagonal.

The entire computation is summarized in Figure 6. The detailed computation
at the final step of the composition is given in Figure 7. The smaller case digit in
each cell is the contribution of that cell towards the final 9-tuple.

2.2 More about k-terminal graphs

To facilitate a broader understanding, we generalize by considering a case k ≥ 2 for
some k-terminal class and where the composition is other than binary. Naturally,
some complication may be introduced with such generalization but often this is
more a matter of technical detail rather than structural. To illustrate, consider a
ACM Computing Surveys, Vol. V, No. N, 20YY.
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�s 11 12 13 21 22 23 31 32 33

11 11 12 13

12 11 12 13

13 11 12 13

21 21 22 23

22 21 22 23

23 21 22 23

31 31 32 33

32 31 32 33

33 31 32 33

�j 11 12 13 21 22 23 31 32 33

11 11 11 11

12 12 12 12

13 13 13 13

21 21 21 21

22 22 22 22

23 23 23 23

31 31 31 31

32 32 32 32

33 33 33 33

Fig. 5. 3-colorings of a 2-terminal graph
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G

Subgraph
G1 = (z, y)
G2 = (y, x)
G3 = (z, x)
G4 = (x, v)
G5 = (x, w)
G6 = G1 �s G2

G7 = G6 �p G3

G8 = G7 �j G4

G9 = G8 �j G5

[0, 1, 1, 1, 0, 1, 1, 1, 0]
[0, 1, 1, 1, 0, 1, 1, 1, 0]
[0, 1, 1, 1, 0, 1, 1, 1, 0]
[0, 1, 1, 1, 0, 1, 1, 1, 0]
[0, 1, 1, 1, 0, 1, 1, 1, 0]
[2, 1, 1, 1, 2, 1, 1, 1, 2]
[0, 1, 1, 1, 0, 1, 1, 1, 0]
[0, 2, 2, 2, 0, 2, 2, 2, 0]
[0, 4, 4, 4, 0, 4, 4, 4, 0]

Fig. 6. Counting the 3-colorings of a 2-terminal graph

G8 �j G5 G5 0 1 1 1 0 1 1 1 0
G8 �j 11 12 13 21 22 23 31 32 33

0 11 11 0 11 0 11 0

2 12 12 2 12 0 12 2

2 13 13 2 13 2 13 0

2 21 21 0 21 2 21 2

0 22 22 0 22 0 22 0

2 23 23 2 23 2 23 0

2 31 31 0 31 2 31 2

2 32 32 2 32 0 32 2

0 33 33 0 33 0 33 0

Fig. 7. Detailed computation at final step during 3-coloring

3-terminal class with composition f shown in Figure 8. We will not take space to
state an explicit algorithm nor provide a full solution to a problem; however, the
partial illustration shown in the next example should suffice to convey the basic
scheme in a more general context.
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G1 G3

G2

v1

v4

v5 v6

v8

v1 v3

v2

v8

v3

v7
v8

v6

G

v1 v3

v7v8v4

v2

v6

v5

Fig. 8. A 3-terminal graph composition

2.2.1 Example. A vertex cover in a graph G = (V, E) is a subset of vertices
S ⊆ V with the property that every edge in E has at least one of its member vertices
in S. A minimum vertex cover for G is a smallest S with this property. Now, since
a vertex is either in a cover or it is not, and since any composed subgraph has,
in this case, at most k = 3 terminal vertices, it is sufficient that the computation
record optimal values for 2k attributes. Denoting the terminal vertices generically
by t1, t2, and t3, we can define these attributes as follows:

G.∅ = smallest vertex cover containing no terminals.
G.t1 = smallest vertex cover containing t1 but not t2 or t3.
G.t2 = smallest vertex cover containing t2 but not t1 or t3.
G.t3 = smallest vertex cover containing t3 but not t1 or t2.
G.t1t2 = smallest vertex cover containing t1 and t2 but not t3.
G.t1t3 = smallest vertex cover containing t1 and t3 but not t2.
G.t2t3 = smallest vertex cover containing t2 and t3 but not t1.
G.t1t2t3 = smallest vertex cover containing t1 and t2 and t3.

A minimum vertex cover for a composed graph derives from the smallest of these
eight values; specifically, the cardinality of a smallest cover is the minimum value
in the 8-tuple, while the vertices in the actual cover with this size may be found by
a routine backtrack through prior computation.

Now, the explicit computation for the ternary composition shown in Figure 8 can
be formulated as shown in Figure 9. Observe that the constants that are subtracted
throughout simply adjust for multiple counting when terminal vertices are merged.

Assuming the correct 8-tuples are known for G1, G2, and G3. Upon applying the
specified composition formulas, the respective values for the 8-tuple identified with
G can be computed. The computation is summarized in Figure 10. For example,
the minimum cover in G has size 4 corresponding to the value of G.v3v6; the relevant
cover is given by the set of vertices {v2, v3, v5, v6}. Similarly, the value G.v6 = ∞
correctly signifies that no admissible cover that excludes vertices v1 and v3 can exist
in G.
ACM Computing Surveys, Vol. V, No. N, 20YY.
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G.∅ ← min{G1.∅+ G2.∅+ G3.∅, G1.v8 + G2.v8 + G3.v8 − 2}
G.v1 ← min{G1.v1 + G2.v1 + G3.∅ − 1, G1.v1v8 + G2.v1v8 + G3.v8 − 3}
G.v3 ← min{G1.∅+ G2.v3 + G3.v3 − 1, G1.v8 + G2.v3v8 + G3.v3v8 − 3}
G.v6 ← min{G1.v6 + G2.∅+ G3.v6 − 1, G1.v6v8 + G2.v8 + G3.v6v8 − 3}
G.v1v3 ← min{G1.v1 + G2.v1v3 + G3.v3 − 2, G1.v1v8 + G2.v1v3v8 + G3.v3v8 − 4}
G.v1v6 ← min{G1.v1v6 + G2.v1 + G3.v6 − 2, G1.v1v6v8 + G2.v1v8 + G3.v6v8 − 4}
G.v3v6 ← min{G1.v6 + G2.v3 + G3.v3v6 − 2, G1.v6v8 + G2.v3v8 + G3.v3v6v8 − 4}
G.v1v3v6 ←min{G1.v1v6+G2.v1v3+G3.v3v6−3, G1.v1v6v8+G2.v1v3v8+G3.v3v6v8−5}

Fig. 9. Formulas for minimum vertex cover in a 3-terminal graph

(∞, 5, 5,∞, 5, 6, 4, 5)
G

(1,2,2,2,3,3,3,4)

G1

(∞, 2, 2,∞, 3, 3, 3, 3)

G2

(∞,∞,∞, 2, 2, 3, 3, 3)

G3

�����
�����

Fig. 10. A 3-terminal computation for vertex cover

2.3 Remarks

It is important to be reminded that simply referring to a structure as a k-terminal
graph is too general; in some sense, all graphs are k-terminal graphs for some
particular set of k-terminal operations. However, the class is not well-defined until
valid composition operations are specified. Still, by initiating this tutorial with
general notions derived within the broad context of k-terminal graphs, our intention
is to create an easy, conceptual backdrop for what now follows with specific graph
classes popularly identified by other names. Although only scant reference will
be made to these classes in terms of their membership or association with some
k-terminal family, the basic tenets of how problems are solved on these popular
classes are often generally traceable to the protocol described in this section.

3. TREES

A tree is a connected, acyclic graph. Trees can also be defined as 2-terminal graphs
in which the only operation is jackknife. Important for our purposes here, however,
is a simple recursive definition: A graph with a single vertex r (and no edges) is a
tree with root r (the sole base graph). Now, let (G, r) denote a tree with root r.
Then (G1, r1)⊕ (G2, r2) is a tree formed by taking the disjoint union of G1 and G2

and adding an edge (r1, r2). The root of this new tree is r = r1. In the spirit of
k-terminal nomenclature, trees could be regarded as 1-terminal graphs. Figure 11
illustrates the construction. We have abused terminology slightly in that the pairs
(G, r) actually denote rooted trees . However, the identification of distinguished
vertices r1 and r2 (and hence r) is relevant here solely as a device in the recursive
construction.

Following, several algorithms for problems on trees are stated. For the first
algorithm, we provide some elementary exposition to underscore the basic concepts.
For subsequent cases, we will simply state the specific algorithms.
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Fig. 11. Recursive construction of a tree

⊕ a b
a a
b b b

Fig. 12. Multiplication table for independent set in a tree

3.1 Algorithm for maximum cardinality independent set in a tree

For some G = (V, E), a subset S ⊆ V is an independent set (or stable set) if
no two vertices in S are adjacent in G. Now, given any tree (or subtree), with
a designated root vertex which we now denote by root [G], it must be that any
admissible independent set of vertices either includes root [G] or does not. Whether
or not independent sets of two trees G1, G2 can be combined into an independent
set of the tree G1⊕G2 depends only on these inclusions. Hence, let the equivalence
classes be:

G.a = max cardinality independent set that includes root [G]
G.b = max cardinality independent set that excludes root [G]
G.c = max cardinality independent set

It is convenient to describe the computation by a multiplication table as shown in
Figure 12, i.e., all possible outcomes from the composition G1⊕G2 are thus enumer-
able. Observe that in the table, we have suppressed notation slightly, i.e., rather
than listing G.a and G.b we simply specify a and b. The row by column product
assumes the convention where subgraphs (i.e., subtrees) G1 and G2 correspond to
the row and column respectively.

The values for the equivalence classes G.a, G.b, G.c are known trivially for the
base graph, i.e., a single-vertex tree (which is its own root). For composed graphs,
the values may be computed via O(1) sums and comparisons across the outcomes
in the table. There is only one product that produces a possible member of G.a
while G.b may be produced from a pair of possible products; the maximum of
these yields the desired G.b. The final step computes G.c, which at the root of the
decomposition tree yields the solution. Formally, we have the algorithm shown in
Figure 13.

A decomposition tree for trees is easy to determine and accordingly, can be as-
sumed to be part of the instance. Also, it is clear that the successive computation of
attributes G.a, G.b and finally, G.c actually carry forward two pieces of information:
first the size of a member, and second one particular member, of the equivalence
class.
ACM Computing Surveys, Vol. V, No. N, 20YY.
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if |V |=1 then
G.a← 1
G.b← 0

else if G = G1 ⊕G2 then
G.a← G1.a + G2.b
G.b← max {G1.b + G2.a, G1.b + G2.b}

G.c← max {G.a, G.b}

Fig. 13. Algorithm for maximum cardinality independent set in a tree

if |V |=1 then
G.d← weight(root [G])
G.e← 0

else if G = G1 ⊕G2 then
G.d← G1.d + G2.e
G.e← G1.e + G2.f

G.f ← max {G.d, G.e}

Fig. 14. Algorithm for maximum weighted independent set in a tree

3.2 Algorithm for maximum weighted independent set in a tree

Following the approach used to find the maximum cardinality independent set,
switching to a weighted version of the independent set problem is straightforward.
Let:

G.d = max weight independent set that includes root [G]
G.e = max weight independent set that excludes root [G]
G.f = max weight independent set

The algorithm is shown in Figure 14. The stated expression for G.e results from
this simplification:

max{G1.e + G2.d, G1.e + G2.e} = G1.e + max{G2.d, G2.e} = G1.e + G2.f.

3.2.1 Example. Consider the tree denoted by T in Figure 15. Vertices are la-
belled t, u, . . . , z and next to each label is a vertex weight. The algorithms of
Figures 13 and 14 are applied, and the computations are summarized by the listing
on the right. The 6-tuples aligned with each composed subgraph, Gk, correspond
to values [G.a, G.b, G.c, G.d, G.e, G.f ]. The maximum cardinality and maximum
weight of any independent set is G.c = 5 and G.f = 16 respectively; these are read
from the computation for G13. Standard backtracking can be applied to determine
that the explicit solutions are sets {t, v, w, y, z} and {u, y, z} respectively.

3.3 Algorithm for minimum cardinality maximum weight independent set in a tree

Among all maximum weight independent sets, suppose we wish to determine the
minimum possible cardinality. Define:

G.g = min cardinality set that yields G.d

ACM Computing Surveys, Vol. V, No. N, 20YY.
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T

v, 3

w, 2

u, 7 t, 1 x, 6
y, 5

z, 4

Subgraph
G1 = {t} [1, 0, 1, 1, 0, 1]
G2 = {u} [1, 0, 1, 7, 0, 7]
G3 = {v} [1, 0, 1, 3, 0, 3]
G4 = {w} [1, 0, 1, 2, 0, 2]
G5 = {x} [1, 0, 1, 6, 0, 6]
G6 = {y} [1, 0, 1, 5, 0, 5]
G7 = {z} [1, 0, 1, 4, 0, 4]
G8 = G2 ⊕ G3 [1, 1, 1, 7, 3, 7]
G9 = G5 ⊕ G6 [1, 1, 1, 6, 5, 6]
G10 = G8 ⊕ G4 [1, 2, 2, 7, 5, 7]
G11 = G9 ⊕ G7 [1, 2, 2, 6, 9, 9]
G12 = G1 ⊕ G10 [3, 2, 3, 6, 7, 7]
G13 = G12 ⊕ G11 [5, 4, 5, 15, 16, 16]

Fig. 15. Maximum cardinality and maximum weight independent sets in a tree

if |V |=1 then
G.g ← 1
G.h← 0

else if G = G1 ⊕G2 then
G.g ← G1.g + G2.h
G.h← G1.h + G2.i

G.i← if G.d > G.e then G.g
else if G.d < G.e then G.h
else min{G.g, G.h}

Fig. 16. Algorithm for minimum cardinality maximum weight independent set in a tree

G.h = min cardinality set that yields G.e
G.i = min cardinality max weight independent set

The algorithm is shown in Figure 16.

3.4 Algorithm for bottleneck independent set in a tree

Consider a bottleneck version of the previous weighted independent set problem.
That is, among all maximum weight independent sets, find the minimum possible
maximum weight of any vertex in such a set. Define:

G.j = min possible max weight vertex in a set that yields G.d
G.k = min possible max weight vertex in a set that yields G.e
G.l = min possible max weight vertex in a max weight independent set

ACM Computing Surveys, Vol. V, No. N, 20YY.
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if |V |=1 then
G.j ← weight(root [G])
G.k ←∞

else if G = G1 ⊕G2 then
G.j ← max{G1.j, G2.k}
G.k ← max{G1.k, G2.l}

G.l ← if G.d > G.e then G.j
else if G.d < G.e then G.k
else min{G.j, G.k}

Fig. 17. Algorithm for bottleneck independent set in a tree

if |V |=1 then
G.m← 1
G.n← 1

else if G = G1 ⊕G2 then
G.m← G1.m×G2.n
G.n← G1.n×G2.p

G.p← if G.d > G.e then G.m
else if G.d < G.e then G.n
else G.m + G.n

Fig. 18. Counting the maximum weighted independent sets in a tree

The algorithm is shown in Figure 17.

3.5 Algorithm for counting the maximum weighted independent sets in a tree

Next we consider a counting version of the previous weighted independent set prob-
lem. Define:

G.m = the number of sets that yield G.d
G.n = the number of sets that yield G.e
G.p = the number of independent sets with maximum weight

The algorithm is shown in Figure 18.

3.6 Algorithm for minimum cardinality dominating set in a tree

For G = (V, E), a subset of vertices S ⊆ V is a dominating set if every vertex in
V − S is adjacent to some vertex in S. Let:

G.t = min cardinality dominating set that includes root [G]
G.u = min cardinality dominating set that excludes root [G]
G.v = min cardinality almost-dominating set (only root [G] undominated)
G.w = min cardinality dominating set

Interesting here is that, unlike the case of independent set, solutions in each sub-
graph to be composed need not be admissible, i.e., need not be dominating sets.
However, when a subgraph solution is inadmissible, the only violating member is
the root vertex which can ultimately become dominated by the root vertex of the
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⊕ t u v
t t t t
u u u
v u v

Fig. 19. Multiplication table for dominating set in a tree

if |V |=1 then
G.t← 1
G.u←∞
G.v ← 0

else if G = G1 ⊕G2 then
G.t← G1.t + min {G2.v, G2.w}
G.u← min {G1.u + G2.w, G1.v + G2.t}
G.v ← G1.v + G2.u

G.w ← min {G.t, G.u}

Fig. 20. Algorithm for minimum cardinality dominating set in a tree

⊕ x y ∅
x y x
y y
∅ x y ∅

Fig. 21. Multiplication table for longest path in a tree

subgraph with which it is composed under the respective ⊕. This is captured by
attribute G.v. The multiplication table for the dominating set problem on trees is
given in Figure 19. Specifically then we have the algorithm shown in Figure 20.

3.7 Algorithm for longest cardinality path in a tree

Let:

G.x = max length of path from leaf to root
G.y = max length of path from leaf to leaf
G.z = max length of any path

We will also employ ∅ to signify a state that preserves consistency in the composition
calculations in order to permit the case where a longest path in a composed graph
is also the longest path in one of the constituent subgraphs. That is, ∅ signifies a
path with no edges (hence, always has value 0). A multiplication table is shown in
Figure 21. Then, we can write the algorithm as shown in Figure 22.

3.8 Algorithm for maximum weight matching in a tree

A matching in a graph G = (V, E) is a subset of edges M ⊆ E with the property
that no two edges in the subset are incident to a common vertex. We have:
ACM Computing Surveys, Vol. V, No. N, 20YY.
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if |V |=1 then
G.x← 0
G.y ← −∞

else if G = G1 ⊕G2 then
G.x← max {G1.x, G2.x + 1}
G.y ← max {G1.y, G2.y, G1.x + G2.x + 1}

G.z ← max {G.x, G.y}

Fig. 22. Algorithm for longest cardinality path in a tree

⊕ A B
A A A
B B A,B

Fig. 23. Multiplication table for maximum weight matching in a tree

if |V |=1 then
G.A← −∞
G.B ← 0

else if G = G1 ⊕G2 then
G.A← max {G1.A + G2.C, G1.B + G2.B+ weight(root [G1], root [G2])}
G.B ← G1.B + G2.C

G.C ← max {G.A, G.B}

Fig. 24. Algorithm for maximum weight matching in a tree

G.A = max weight matching with root [G] saturated
G.B = max weight matching with root [G] free
G.C = max weight matching

The associated table is shown in Figure 23. Observe that one location has a multiple
entry because the outcome depends upon whether or not the edge (root [G1], root
[G2]) is placed in the matching. The corresponding algorithm is shown in Figure 24.

3.9 Algorithm for minimum cardinality maximal matching in a tree

A matching M ⊆ E is maximal if there exists no proper superset N ⊃ M that is
also a matching. We now have:

G.J = min maximal matching with root [G] saturated
G.K = min maximal matching with root [G] free
G.L = min almost-maximal matching where root [G] needs an edge
G.M = min maximal matching

The associated table is shown in Figure 25. Again, some locations have multiple
entries depending upon whether or not the edge (root [G1], root [G2]) is placed in
the matching.
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⊕ J K L
J J J
K K J,L J
L L J,L J

Fig. 25. Multiplication table for min-max matching in a tree

if |V |=1 then
G.J ←∞
G.K ← 0
G.L←∞

else if G = G1 ⊕G2 then
G.J ← min {G1.J + G2.M, G1.N + G2.N + 1}
G.K ← G1.K + G2.J
G.L← min {G1.K + G2.K, G1.L + G2.M}

G.M ← min {G.J, G.K}
G.N ← min {G.K, G.L}

Fig. 26. Algorithm for min-max matching in a tree

Next we add an extra parameter G.N merely to express the formulas more con-
cisely:

G.N = min almost-maximal matching or maximal matching with root [G] free

The algorithm is shown in Figure 26.

3.10 Remarks

The definition and number of equivalence classes that are required to solve a given
problem depend on both the graph class and the problem to be solved. Of course,
the effect of graph class is demonstrated throughout in subsequent sections. For an
example of dependence on the problem, consider the following generalization of the
independent set problem. Let the distance in connected graph G = (V, E) between
U ⊂ V and W ⊂ V be the shortest (edge) length of a path from any u ∈ U to any
w ∈ W , and let a κ-independent set be a subset of V containing no two distinct
vertices at distance κ or less. Finding a maximum cardinality κ-independent set
requires κ + 2 equivalence classes G.c and G.i (for 0 ≤ i ≤ κ), where: G.c is the
maximum cardinality κ-independent set; G.κ denotes the maximum cardinality κ-
independent set with distance at least κ to the root; and G.i (for 0 ≤ i < κ) denotes
the maximum cardinality κ-independent set at distance i to the root. Finally, the
multiplication table entry for G1.i, G2.j is min{i, j + 1} if i + j ≥ κ and null
otherwise. The resulting algorithm may be superlinear if κ is not O(1).

We end this section by noting that many other problems could well have been
selected to represent the basic recursive method on trees. Of course, many problems
are trivial on trees (e.g., maximum clique, chromatic number, etc.) and even more
interesting problems such as matching, vertex covering, and the like are well-known
to be solved by fast, direct algorithms. Indeed, the coverage in this subsection is
ACM Computing Surveys, Vol. V, No. N, 20YY.
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certainly not intended to promote recursive methods for solving problems on trees
per se but rather to simply demonstrate, with little overhead, the basic algorithmic
process and importantly, one that carries over to more interesting and complex
graph classes. It is worth noting, however, that while many problems are or can
be solved on trees using recursive techniques, some are resistent. For example, the
minimum bandwidth problem remains hard on trees [Garey et al. 1978].

4. SERIES-PARALLEL GRAPHS

A graph is series-parallel if it has no subgraph homeomorphic to K4 [Duffin 1965].
Series-parallel graphs are also members of a 2-terminal class defined by base graphs
that are single edges and binary composition operators that were described earlier
in Section 2. Defined recursively, the graph consisting of a single edge (v1, v2)
is a series-parallel graph with distinguished terminals l = v1 and r = v2. Now,
let (G, l, r) denote a series-parallel graph G with terminal vertices l and r. A
series operation (G1, l1, r1)�s(G2, l2, r2) forms a series-parallel graph by identifying
r1 with l2; the terminals of the new graph are l1 and r2. A parallel operation
(G1, l1, r1)�p (G2, l2, r2) forms a series-parallel graph by identifying l1 with l2 and
r1 with r2; the terminals of the new graph are l1 and r1. Last, a jackknife operation
(G1, l1, r1) �j (G2, l2, r2) forms a series-parallel graph by identifying r1 with l2;
the new terminals are l1 and r1 (or l1 and l2). Series-parallel graphs are easily
recognizable and their decomposition trees can be constructed in linear time (c.f.,
[Valdes et al. 1982]).

The algorithms stated below will deal only with cardinality examples; weighted
or counting versions are straightforward and follow as previously illustrated by the
algorithms of Figures 14 and 18 for trees. When designing algorithms for trees,
only a single point of composition involving constituent subtrees was relevant, but
series-parallel graphs have two such points: the terminal vertices. Here, we have
relativized these as left and right. For brevity we have omitted the multiplication
table for the jackknife operation in some of the following cases, as well as explicit
computational statements from some tables altogether. The intent, however, is that
when such refinements are adopted, there should be no diminution of clarity.

4.1 Algorithm for minimum cardinality vertex cover in a series-parallel graph

The vertex cover problem was defined earlier. From the 2-terminal recursive struc-
ture of series-parallel graphs and upon observing that a vertex must be either
included in or expressly excluded from any admissible cover, we can immediately
state the following equivalence classes; the similarity with the constructions for the
independent set problem should be obvious:

G.a = min cardinality vertex cover containing both left [G] and right [G]
G.b = min cardinality vertex cover containing left [G] but not right [G]
G.c = min cardinality vertex cover containing right [G] but not left [G]
G.d = min cardinality vertex cover containing neither left [G] nor right [G]
G.e = min cardinality vertex cover

There are three multiplication tables corresponding to series, parallel, and jackknife
operations, as shown in Figure 27. The explicit algorithm is shown in Figure 28.
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�s a b c d
a a b
b a b
c c d
d c d

�p a b c d
a a
b b
c c
d d

�j a b c d
a a a
b b b
c c c
d d d

Fig. 27. Multiplication tables for vertex cover in a series-parallel graph

if |E|=1 then
[G.a, G.b, G.c, G.d] ← [2, 1, 1,∞]

else if G = G1 �s G2 then
G.a← min {G1.a + G2.a− 1, G1.b + G2.c}
G.b← min {G1.a + G2.b− 1, G1.b + G2.d}
G.c← min {G1.c + G2.a− 1, G1.d + G2.c}
G.d← min {G1.c + G2.b− 1, G1.d + G2.d}

else if G = G1 �p G2 then
G.a← G1.a + G2.a− 2
G.b← G1.b + G2.b− 1
G.c← G1.c + G2.c− 1
G.d← G1.d + G2.d

else if G = G1 �j G2 then
G.a← G1.a + min {G2.a, G2.b} − 1
G.b← G1.b + min {G2.c, G2.d}
G.c← G1.c + min {G2.a, G2.b} − 1
G.d← G1.d + min {G2.c, G2.d}

G.e← min {G.a, G.b, G.c, G.d}

Fig. 28. Algorithm for minimum cardinality vertex cover in a series-parallel graph

Recall that subtraction of values 1 and 2 in the respective computational statements
avoids multiple counting when terminal vertices are merged.

4.1.1 Example. The algorithm of Figure 28 is demonstrated using the series-
parallel graph G shown in Figure 29. Vertices are labelled in G as indicated, and to
the right the explicit computation is summarized according to the decomposition
tree previously shown in Figure 2. The 4-tuples exhibit values for G.a, G.b, G.c,
and G.d. From the last computation, it follows that either G.a or G.c produces an
optimum. In the first case, the cover consists of {x, z} while in the second, we have
{x, y}. As a check for consistency, note that the value G.c = 4 correctly indicates
that if vertex x is assumed excluded from any cover, then the only admissible
outcome is {v, w, y, z}. Similarly, if neither x nor z can be included in any cover
than there is no admissible solution at all which is revealed by G.d =∞.

4.2 Algorithm for minimum cardinality dominating set in a series-parallel graph

The dominating set problem was introduced previously. Here we specify appropriate
classes that are suitable for solving the problem on series-parallel graphs. The
ACM Computing Surveys, Vol. V, No. N, 20YY.
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G
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Subgraph
G1 = (z, y)
G2 = (y, x)
G3 = (z, x)
G4 = (x, v)
G5 = (x, w)
G6 = G1 �s G2

G7 = G6 �p G3

G8 = G7 �j G4

G9 = G8 �j G5

[2, 1, 1,∞]
[2, 1, 1,∞]
[2, 1, 1,∞]
[2, 1, 1,∞]
[2, 1, 1,∞]
[2, 2, 2, 1]
[2, 2, 2,∞]
[2, 3, 2,∞]
[2, 4, 2,∞]

Fig. 29. Minimum cardinality vertex cover in a series-parallel graph

�s i j k l m n o p q
i i j m
j i j i m j m
k k l o
l k l k o l o
m i j m
n n p q
o k l o
p n p n q p q
q n p q

�p i j k l m n o p q
i i
j j j
k k k
l l l l l
m j m
n k n
o l o l o
p l l p p
q l o p q

Fig. 30. Multiplication tables for dominating set in a series-parallel graph

corresponding multiplication tables are shown in Figure 30.

G.i = min dominating set with both left [G] and right [G]
G.j = min dominating set with left [G] but not right [G]
G.k = min dominating set with right [G] but not left [G]
G.l = min dominating set with neither left [G] nor right [G]
G.m = min almost-dominating set with left [G] (only right [G] undominated)
G.n = min almost-dominating set with right [G] (only left [G] undominated)
G.o = min almost-dominating set without left [G] (only right [G] undominated)
G.p = min almost-dominating set without right [G] (only left [G] undominated)
G.q = min almost-dominating set (only left [G] and right [G] undominated)
G.r = min dominating set

We have not taken space to produce the jackknife table; its construction is left to
the reader. Explicit computations related to the operations �s,�p, and �j follow
from the entries in the tables in the fashion demonstrated thus far; initialization
when |E| = 1 requires that

[G.i, G.j, G.k, G.l, G.m, G.n, G.o, G.p, G.q]← [2, 1, 1,∞,∞,∞,∞,∞, 0].

Upon completing the computation, a minimum cardinality dominating set is deter-
mined by G.r ← min{G.i, G.j, G.k, G.l}.
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x
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y

z

G

�
�

Subgraph
G1 = (w, x)
G2 = (x, y)
G3 = (w, y)
G4 = (w, z)
G5 = (z, y)
G6 = G1 �s G2

G7 = G6 �p G3

G8 = G4 �s G5

G9 = G7 �p G8

[2, 1, 1,∞,∞,∞,∞,∞, 0]
[2, 1, 1,∞,∞,∞,∞,∞, 0]
[2, 1, 1,∞,∞,∞,∞,∞, 0]
[2, 1, 1,∞,∞,∞,∞,∞, 0]
[2, 1, 1,∞,∞,∞,∞,∞, 0]
[2, 2, 2, 1, 1, 1,∞,∞,∞]

[2, 1, 1, 1,∞,∞,∞,∞,∞]
[2, 2, 2, 1, 1, 1,∞,∞,∞]

[2, 1, 1, 2,∞,∞,∞,∞,∞]

Fig. 31. Minimum cardinality dominating set in a series-parallel graph

�s s t u v
s s t
t s t s t
u u v
v u v u v

�p s t u v
s s
t s t
u s u
v s t u v

�j s t u v
s s s
t s s t t
u u u
v u u v v

Fig. 32. Multiplication tables for maximum weight matching in a series-parallel graph

4.2.1 Example. The algorithm implied by the tables in Figure 30 is applied to
the graph G shown in Figure 31. As before, the constituent subgraphs are indicated
where G9 = G; the computation is summarized by the 9-tuples on the extreme right.
Interpreting the solution is easy. A smallest dominating set for the graph shown
has size 1, following values from G9.j and G9.k, and accordingly yields either {w}
or {y} as the outcome.

4.3 Algorithm for maximum cardinality matching in a series-parallel graph

The weighted version of this problem was previously solved on trees in Figure 24.
For series-parallel graphs we have the following classes:

G.s = max cardinality matching with both left [G] and right [G] saturated
G.t = max cardinality matching with left [G] saturated and right [G] free
G.u = max cardinality matching with right [G] saturated and left [G] free
G.v = max cardinality matching with both left [G] and right [G] free
G.w = max cardinality matching

The corresponding multiplication tables are shown in Figure 32. Initialization
when |E| = 1 requires that [G.s, G.t, G.u, G.v] ← [1,−∞,−∞, 0]. Upon com-
pleting the computation, a maximum cardinality matching is obtained by G.w ←
max{G.s, G.t, G.u, G.v}.
4.4 Algorithm for minimum cardinality maximal matching in a series-parallel graph

This problem was previously solved on trees in Figure 26. For series-parallel graphs
we have the following classes:

G.A = min maximal matching with both left [G] and right [G] saturated
G.B = min maximal matching with left [G] saturated and right [G] free
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�s A B C D E F H I J K
A A B A E B E B
B A B A B E E E
C C D C H D H D
D C D C D H H H
E A B E
F F I F J I J I
H C D H
I F I F I J J J
J F I J
K C D F I H J J

�p A B C D E F H I J K
A A A A A A
B A B A E B E B
C A C A C F F C
D A B C D E F H I J K
E A E A E E E E
F A F A F F F F
H A E C H E F H J J H
I A B F I E F J I J I
J A E F J E F J J J J
K A B C K E F H I J K

Fig. 33. Multiplication tables for min-max matching in a series-parallel graph

G.C = min maximal matching with right [G] saturated and left [G] free
G.D = min maximal matching with both left [G] and right [G] free
G.E = min almost-maximal matching where left [G] saturated and right [G] needs edge
G.F = min almost-maximal matching where right [G] saturated and left [G] needs edge
G.H = min almost-maximal matching where left [G] free and right [G] needs edge
G.I = min almost-maximal matching where right [G] free and left [G] needs edge
G.J = min almost-maximal matching where both left [G] and right [G] need edges
G.K = min almost-maximal matching where either left [G] or right [G] needs edge
G.L = min maximal matching

The corresponding multiplication tables are shown in Figure 33. The construction
of the jackknife table is left to the reader. Initialization when |E| = 1 requires that

[G.A, G.B, G.C, G.D, G.E, G.F, G.H, G.I, G.J, G.K]
← [1,∞,∞,∞,∞,∞,∞,∞,∞, 0].

Upon completing the computation, a minimum cardinality maximal matching is
obtained by G.L← min{G.A, G.B, G.C, G.D}.

4.4.1 Example. In Figure 34 we reuse the same graph from the previous example
to demonstrate the application of the algorithm implied by the tables of Figure 33.
The final 10-tuple shown in Figure 34 indicates that a smallest maximal matching
consists of a single edge, i.e., {w, y}.
4.5 Algorithm for Hamiltonian cycle and Hamiltonian path in a series-parallel graph

A Hamiltonian cycle is a cycle that visits every vertex exactly once, and a Hamil-
tonian path is a path that visits every vertex exactly once. Define the following
classes, each of which corresponds to a boolean value:

G.Q = Hamiltonian cycle exists
G.R = Hamiltonian path with endpoints at both left [G] and right [G]
G.S = Hamiltonian path with endpoint at left [G] but not right [G]
G.T = Hamiltonian path with endpoint at right [G] but not left [G]
G.U = Hamiltonian path with endpoint at neither left [G] nor right [G]
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Subgraph
G1 = (w, x)
G2 = (x, y)
G3 = (w, y)
G4 = (w, z)
G5 = (z, y)
G6 = G1 �s G2

G7 = G6 �p G3

G8 = G4 �s G5

G9 = G7 �p G8

[1,∞,∞,∞,∞,∞,∞,∞,∞, 0]
[1,∞,∞,∞,∞,∞,∞,∞,∞, 0]
[1,∞,∞,∞,∞,∞,∞,∞,∞, 0]
[1,∞,∞,∞,∞,∞,∞,∞,∞, 0]
[1,∞,∞,∞,∞,∞,∞,∞,∞, 0]
[∞,1, 1,∞,∞,∞,∞,∞, 0,∞]
[1, 1, 1,∞,∞,∞,∞,∞, 0,∞]
[∞,1, 1,∞,∞,∞,∞,∞, 0,∞]
[1,∞,∞,∞,∞,∞,∞,∞, 0,∞]

Fig. 34. Minimum cardinality maximal matching in a series-parallel graph

�s Q R S T U V W X Y
Q
R R S V X X V
S X V
T T U
U
V X X
W W
X X
Y W W

�p Q R S T U V W X Y
Q Q
R Q T S U R
S U S
T U T
U U
V T U X V
W S U X W
X U X
Y Q R S T U V W X Y

Fig. 35. Multiplication tables for Hamiltonian cycle and path in a series-parallel graph

G.V = almost-Hamiltonian path with endpoint at left [G] (lacks right [G])
G.W = almost-Hamiltonian path with endpoint at right [G] (lacks left [G])
G.X = two disjoint paths, one ending at left [G] and one at right [G]
G.Y = the graph only contains terminal vertices
G.Z = Hamiltonian path exists

The corresponding multiplication tables are shown in Figure 35. Again, the con-
struction of the jackknife table is left to the reader. Initialization when |E| = 1
requires that

[G.Q, G.R, G.S, G.T, G.U, G.V, G.W, G.X, G.Y ]←
[false, true, false, false, false, false, false, false, true].

Upon completing the computation, the existence of a Hamiltonian path can be
determined by computing G.Z ← G.R ∨G.S ∨G.T ∨G.U .

Use of the jackknife operation always produces a non-biconnected graph, and no
such graph can have a Hamiltonian cycle. Accordingly, if the aim is deciding the
existence of a Hamiltonian cycle, then it is safe to neglect the jackknife operation.
On the other hand, if the aim is deciding the existence of a Hamiltonian path, then
the jackknife operation is relevant.
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Fig. 36. Some Halin graphs

4.6 Remarks

There is a rich literature pertaining to the solution of problems on series-parallel
graphs (c.f. [Hare et al. 1987], [Richey 1985], [Wimer 1987], [Wimer and Hedetniemi
1988], [Wimer et al. 1985]). By any measure, the class is well-studied in general
and includes a host of interesting special outcomes. For example, a series-parallel
graph has at most one Hamiltonian cycle (c.f., [Syslo 1983]) which implies that
solving the travelling salesman problem on series-parallel graphs reduces to deciding
hamiltonicity. Also, a series-parallel graph has chromatic number 3 if it is not
bipartite; otherwise it has chromatic number 2 (because it has at least one edge).
Hence, the chromatic number for a series-parallel graph can be determined in linear
time by using depth-first search to simply test for the existence of an odd cycle.
There also exist problems that are easy on trees but hard on series-parallel graphs.
Notable is a multiple Steiner subgraph problem [Richey 1985] that is trivial on trees
but NP-complete on series-parallel graphs. Another is tree subgraph isomorphism
[Rardin and Parker 1986].

5. HALIN GRAPHS

A Halin graph is a planar graph having the property that its edge set E can be
partitioned as E = 〈T, C〉 where T is a tree with no vertex of degree 2 and C is a
cycle including only and all leaves (i.e., degree-1 vertices) of T . A selection of Halin
graphs is shown in Figure 36. The drawings in all cases are such that the cycle
component of the respective partitions lies on the outer face. Removal of these
edges should leave a tree with the correct vertex degrees.

Halin graphs are edge minimal, planar, 3-connected graphs and are easily recog-
nizable by ad hoc means: first, check if planar graph G is 3-connected, then embed
it in the plane and seek a face in the embedded graph such that the edges defin-
ing the face, if removed, leave a tree without degree-2 vertices. More important,
we can easily show constructively that these graphs can always be decomposed as
3-terminal graphs. Consider the middle Halin graph in Figure 36 and fix an em-
bedding of the graph as shown in Figure 37. The terminals are circled and labelled
by t1, t2, and t3 as indicated. It is important that t1 is a non-leaf vertex of the
identifying tree subgraph, that t2 is the leftmost leaf, and that t3 is the rightmost
leaf. After the edge {t2, t3} is removed, the right descendant subgraph results as
shown. Now, to correctly decompose this graph further, simply identify the leaf
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Fig. 37. Halin graph decomposition

vertex that is closest to t3 and that can be reached by a path from t2 that passes
neither through other leaf vertices nor through t1. In this simple example, this
corresponds to vertex d and we are led to the next pair of descendent subgraphs
as indicated. Then it should be clear how decomposition proceeds from this point
culminating in base graphs with all vertices terminal. Though described using an
example, the process demonstrated is sufficient to yield a template that is valid for
the 3-terminal decomposition of any Halin graph.

Each Halin graph G = (V, E) is a 3-terminal graph with terminals X ⊆ V where
|X | ≤ 3.

5.1 Algorithm for maximum cardinality independent set in a Halin graph

Define:

G[S] = max cardinality independent set that contains S ⊆ X but not X − S
G.max = max cardinality independent set

The algorithm is shown in Figure 38. It is illustrated in Figure 39 for the non-
base graphs of the Halin graph decomposition shown in Figure 37. The maximum
independent sets have size 2; they are {b, e}, {a, d}, {c, e}, {b, f}, {d, f}, and {a, c}.
5.2 Algorithm for minimum cardinality dominating set in a Halin graph

Define:

G[S, T ] = min cardinality dominating or almost-dominating set that contains
S ⊆ X but not X − S, and that dominates T ⊆ X but not X − T

G.min = min cardinality dominating set

The algorithm is shown in Figure 40. Note that NG(S) denotes the set of neighbors
of vertices S in graph G.
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if X = V then
∀S⊆X G[S] ← if ∃y,z∈S (y,z)∈E then −∞ else |S|

else if (G, X) is composed from (G1, X1) and (G2, X2) then
∀S⊆X G[S] ← max {G1[S1] + G2[S2] − |S1 ∩ S2| :

S1 ⊆ X1, S2 ⊆ X2, S1 ∩X2 = S2 ∩X1, S = X ∩ (S1 ∪ S2)}
G.max← max {G[S] : S ⊆ X}

Fig. 38. Algorithm for maximum cardinality independent set in a Halin graph

G1[∅] = 1 G2[∅] = 1 G3[∅] = 2 G4[∅] = 2
G1[{a}] = 1 G2[{a}] = 1 G3[{a}] = 2 G4[{a}] = 2
G1[{c}] = 1 G2[{d}] = 1 G3[{c}] = 2 G4[{c}] = 2
G1[{d}] = 1 G2[{f}] = 1 G3[{f}] = 2 G4[{f}] = 2
G1[{a, c}] = 2 G2[{a, d}] = 2 G3[{a, c}] = 2 G4[{a, c}] = 2
G1[{a, d}] = 2 G2[{a, f}] = −∞ G3[{a, f}] = −∞ G4[{a, f}] = −∞
G1[{c, d}] = −∞ G2[{d, f}] = 2 G3[{c, f}] = 2 G4[{c, f}] = −∞
G1[{a, c, d}] = −∞ G2[{a, d, f}] = −∞ G3[{a, c, f}] = −∞ G4[{a, c, f}] = −∞

Fig. 39. Maximum cardinality independent set in a Halin graph

if X = V then
∀S,T⊆X G[S,T ] ← if T = S ∪NG(S) then |S| else ∞

else if (G, X) is composed from (G1, X1) and (G2, X2) then
∀S,T⊆X G[S,T ] ← min {G1[S1,T1] + G2[S2,T2] − |S1 ∩ S2| :

S1 ⊆ X1, S2 ⊆ X2, S1 ∩X2 = S2 ∩X1, S = X ∩ (S1 ∪ S2),
T1 ⊆ X1, T2 ⊆ X2, T = X ∩ (T1 ∪ T2)}

G.min← min {G[S,V ] : S ⊆ X}

Fig. 40. Algorithm for minimum cardinality dominating set in a Halin graph

5.3 Remarks

There are also a number of interesting properties distinctly associated with Halin
graphs. From the thematic perspective of this tutorial, their membership in an
efficiently recognizable 3-terminal graph class is important to note. In addition, all
Halin graphs are partial 3-trees where the latter recursive class is defined in the
next section. But it is also the interesting to observe some purely graph-theoretic
properties of Halin graphs. For example, all Halin graphs are hamiltonian but no
Halin graphs are bipartite. Halin graphs are 1-hamiltonian in that if any vertex is
removed the resulting graph remains hamiltonian. All Halin graphs of even order
are bicritical in that if any two vertices are deleted, the resulting graph possesses
a 1-factor. Halin graphs are also so-called class-1 graphs in that their chromatic
index is always the same as the maximum vertex degree. And finally, if a Halin
graph possesses more than one correct bipartiton, say 〈Ti, Ci〉 and 〈Tj , Cj〉, then Ti

and Tj are isomorphic. More detailed descriptions of these and other properties of
Halin graphs can be found in [Horton et al. 1992].
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Fig. 41. Construction of a 4-jackknife graph

6. K-JACKKNIFE GRAPHS, K-TREES AND PARTIAL K-TREES

The k-jackknife class of k-terminal graphs has been described previously in vari-
ous sources (c.f. [Wimer 1987]). The base graphs in this class are graphs where
all vertices are terminals; that is {(V, T, E) : |V | ≤ k and T = V }. Then,
for the generalized k-jackknife composition operation select two k-terminal graphs,
(V1, T1, E1) and (V2, T2, E2) where in each, Ti =< ti1, . . . , ti|Ti| >. Now, given
ordered sets X1 ⊆ {1, . . . , k} and X2 ⊆ {1, . . . , k} such that |X1| = |X2| = a
and each Xi =< xi1, . . . , xia >, the generalized k-jackknife operation merges pairs
t1x1j and t2x2j so that these terminals are the only points at which the graphs
(V1, T1, E1) and (V2, T2, E2) meet. We signify the composition using the notation
f<t1x11 ,...,t1x1a >,<t2x21 ,...,t2x2a >, and the resulting graph is given by (V1∪V2, T1, E1∪
E2). The construction of a 4-jackknife graph is demonstrated in Figure 41.

We could legitimately have incorporated coverage of the k-jackknife class in Sec-
tion 2. However, it is purposely reserved for this section since it plays an instructive,
connecting role with other, more popularly identifiable graph classes, namely k-trees
and partial k-trees the definitions of which follow.

First, Kk is a k-tree. Then a k-tree with n+1 vertices (n ≥ k) is constructed from
a k-tree on n vertices by adding a vertex adjacent to all vertices of one of its Kk

subgraphs, and only to those vertices. Note that 1-trees are just ordinary unrooted
trees. Now, a partial k-tree is a subgraph of a k-tree. In a given construction of
a k-tree, the original Kk subgraph is referred to as its basis . A 3-tree is depicted
in Figure 42; the basis graph is the complete graph on {a, b, c}. Then, below the
graph the actual construction is described by specifying the added vertex and those
(forming a K3) to which it is adjacent in the prior graph. Any subgraph of the
structure shown is a partial 3-tree.

Note that the 3-tree in Figure 42 is isomorphic to the 4-jackknife graph G formed
in Figure 41. In fact, this outcome is not coincidental, since there exists a general
relationship between k-jackknife graphs and k-trees/partial k-trees. Specifically, a
graph (V, E) is a partial k-tree if and only if there is a subset T ⊆ V such that
ACM Computing Surveys, Vol. V, No. N, 20YY.
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Basis includes a, b, and c
d adjacent to a, b, and c
e adjacent to a, b, and d
f adjacent to a, c, and d
g adjacent to c, d, and f

Fig. 42. A 3-tree

initialize S ← ∅
for each vertex w in reverse order of how added when the k-tree was built do

if w is not adjacent to any vertex belonging to S then
S ← S ∪ {w}

return |S|

Fig. 43. Greedy algorithm for maximum cardinality independent set in a k-tree

(V, T, E) is a (k +1)-jackknife graph. Furthermore, a 2-terminal graph (V, W, E) is
series-parallel if and only if there is a superset T ⊇ W for which (V, T, E) is a 3-
jackknife graph, so the series-parallel graphs and the partial 2-trees form equivalent
classes.

6.1 Algorithm for maximum cardinality independent set in a k-tree

We first consider only the solution of the independent set problem on k-trees; we
treat cardinality and weighted versions separately. That we do so follows since
the cardinality case is solved by a simple greedy procedure while the weighted
case requires the dynamic programming approach. The greedy algorithm for the
cardinality case is shown in Figure 43.

The 3-tree shown in Figure 42 has several maximum cardinality independent sets
of size 2, but the algorithm of Figure 43 constructs only the set S = {g, e}. To
see this, first consider vertex g and add it to set S. Next, we consider vertex f for
inclusion but the choice is rejected since f is adjacent to g. Continuing, vertex e
can be added to S but this is the last admissible inclusion since d, c, b, and a are
adjacent to g and/or e.

6.2 Algorithm for maximum weighted independent set in a k-tree

Now, in stating and demonstrating the dynamic programming algorithm for the
weighted case, we shall refer to the (k + 1)-jackknife representation of a k-tree,
which always exists as indicated earlier. Let X denote the set of terminals, where

ACM Computing Surveys, Vol. V, No. N, 20YY.



28 · Richard B. Borie et al.

if X = V then
G[∅] ← 0
∀t∈X G[t] ← weight(t)

else if (G, X) is composed from (G1, X) and (G2, X ′) then
G[∅] ← G1[∅] + max {G2[∅]} ∪ {G2[u] : u ∈ X ′ −X}
∀t∈X−X′ G[t] ← G1[t] + max {G2[∅]} ∪ {G2[u] : u ∈ X ′ −X}
∀t∈X∩X′ G[t] ← G1[t] + G2[t] − weight(t)

G.max← max {G[∅]} ∪ {G[t] : t ∈ X}

Fig. 44. Algorithm for maximum weighted independent set in a k-tree

G1[∅] = 0 G2[∅] = 0 G3[∅] = 0 G4[∅] = 0 G5[∅] = 5 G6[∅] = 2 G[∅] = 8
G1[a] = 6 G2[a] = 6 G3[a] = 6 G4[c] = 4 G5[a] = 6 G6[a] = 8 G[a] = 8
G1[b] = 7 G2[b] = 7 G3[c] = 4 G4[d] = 9 G5[b] = 7 G6[c] = 4 G[b] = 10
G1[c] = 4 G2[d] = 9 G3[d] = 9 G4[f ] = 3 G5[c] = 9 G6[d] = 9 G[c] = 9
G1[d] = 9 G2[e] = 5 G3[f ] = 3 G4[g] = 2 G5[d] = 9 G6[f ] = 3 G[d] = 9

Fig. 45. Maximum weight independent set in a 3-tree

|X | = k + 1. Because the graph is a k-tree, the vertices in X form a clique, and so
at most one terminal can belong to any independent set. Define:

G[∅] = max weight independent set that contains no terminal vertex
G[t] = max weight independent set that contains the terminal t
G.max = max weight independent set

The algorithm is shown in Figure 44. Trivially, this algorithm is also applicable to
the cardinality case by setting all vertex weights to 1.

6.2.1 Example. Figure 45 illustrates the algorithm of Figure 44 for the 3-tree
shown in Figure 42, and whose 4-jackknife decomposition is given in Figure 41.
Weights are indicated next to each vertex label in Figure 42. The maximum weight
independent set is {b, f} which has total weight 10.

6.3 Remarks

Arguably, the most celebrated class among the three identified in this section is
the class of partial k-trees. There is a reason why we chose to demonstrate with
algorithms using the other classes however. Importantly, partial k-trees can be
recognized and their decomposition trees produced in polynomial time (for fixed k).
This attribute follows since partial k-trees are equivalent to the class of treewidth-
k graphs which are discussed in a following section. Indeed, an algorithm for
a problem on treewidth-k graphs is applicable for the associated class of partial
k-trees. Moreover, the corresponding polynomial recognition/decomposition tree
result, for arbitrary k, is a generalized outcome requiring O(nk+2) effort. That
said, when k ≤ 4, linear-time recognition procedures are known ([Matousek and
Thomas 1991] for k = 3; [Sanders 1996] when k = 4). Note finally that if k is not
fixed but rather, is allowed to be part of the problem instance, then recognition of
partial k-trees (and the aforementioned equivalent classes) is NP-complete.
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Fig. 46. A bandwidth-2 graph

7. BANDWIDTH-K GRAPHS

A graph G = (V, E) is a bandwidth-k graph if there exists a labelling of its vertices
h : V → {1, 2, . . . |V |} such that {u, v} ∈ E ⇒ |h(u) − h(v)| ≤ k. A bandwidth-2
graph is shown in Figure 46. In general, bandwidth-k graphs are contained in a
(k + 1)-terminal recursive class that is obtained by letting B be the set of (k + 1)-
terminal graphs with no nonterminal vertices, and R = {bk} where bk is defined
as follows: For 1 ≤ i ≤ 2 let Gi = (Vi, Ti, Ei) where Ti =< ti,1, . . . , ti,k+1 >.
Then bk(G1, G2) merges t1,j+1 with t2,j for 1 ≤ j ≤ k and creates a new graph
(V1 ∪ V2, T1, E1 ∪ E2).

7.1 Algorithms

Algorithms for problems on bandwidth-k graphs typically first solve the problem
on the subgraph induced by the first k + 1 vertices, and then add one vertex at
a time, maintaining just enough information to solve the larger problem at each
step. For example, consider the independent set problem on a graph G = (V, E).
For subsets X, Y ⊆ V define G[X, Y ] to be the largest size of any independent
set of G that includes all the vertices of X but no vertices from Y . The key to
computational efficiency is that for bandwidth-k graphs, the algorithm only needs
to consider cases where X ∪ Y consists of the k highest numbered vertices, since
these are the only vertices that can interact with the remainder of the graph.

7.1.1 Example. Figure 47 illustrates the independent set algorithm computa-
tions on the bandwidth-2 graph from Figure 46. The optimum solution has size 2,
given by any of the sets {4, 1}, {5, 2} or {5, 1}.

7.2 Remarks

Repeating the theme that was articulated in the case of partial k-trees, bandwidth-k
graphs are related to important classes that will be taken up shortly, i.e. pathwidth-
k and treewidth-k graphs. Hence, relevant attributes of the latter, whether related
to recognizability or to problem-solving, are similarly applicable to the class of
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G3[{4, 5}, ∅] = −∞

Fig. 47. Maximum cardinality independent set in a bandwidth-2 graph

bandwidth-k structures; indeed, every problem that can be solved on pathwidth-k
graphs or treewidth-k graphs can also be solved on bandwidth-k graphs.

8. PATHWIDTH-K GRAPHS

The graph classes in this and the following two sections have their origins in the sem-
inal works of Robertson and Seymour ([Robertson and Seymour 1983],[Robertson
and Seymour 1986a]). Most notable among these is the class of so-called treewidth-
k graphs which is taken up in Section 9. Here, we begin with a special case known
as pathwidth-k graphs.

A path-decomposition of a graph G = (V, E) is defined by a path or sequence
denoted by P = (X1, X2, . . . , Xt) such that:

— each Xi ⊆ V ;

—
⋃

1≤i≤t Xi = V ;

— for each edge (x, y) ∈ E there exists some i, 1 ≤ i ≤ t, such that x, y ∈ Xi;
and

— whenever 1 ≤ i ≤ j ≤ k ≤ t , we have that Xi

⋂
Xk ⊆ Xj .

Figure 48 provides an illustration. Now, the width of a path-decomposition is
max1≤i≤t{|Xi| − 1} and the pathwidth of a graph G is the smallest width taken
over all path-decompositions of the stated G. A graph G is said to be a pathwidth-k
graph if it has pathwidth at most k. The graph in Figure 48 has pathwidth 3.

8.1 Algorithms

Algorithms for problems on pathwidth-k graphs begin by first solving the problem
on the subgraph induced by X1. Next they advance to X1∪X2, then to X1∪X2∪X3,
and so on. For the subgraph induced by X1 ∪ . . .∪Xj , only the vertices in Xj can
be adjacent to vertices outside this subgraph, and there are at most k + 1 such
vertices.
ACM Computing Surveys, Vol. V, No. N, 20YY.



Solving Problems on Recursively Constructed Graphs · 31

� � �
� � �
� � �

G

1
2

3

4 5 6

7
8

9

� � � � � �P X1 X2 X3 X4 X5 X6

���
� ���

� ���
� ���

� ���
� ���

�1

2

3

4 5

4

3

2 6

5

4

3 7

6

5

4 8

7

6

5 9

8

7

6

Fig. 48. A path-decomposition

G1.∅ = 0 G2.∅ = 1 G3.∅ = 1 G4.∅ = 2 G5.∅ = 2 G6.∅ = 3
G1.{1} = 1 G2.{2} = 1 G3.{3} = 2 G4.{4} = 2 G5.{5} = 3 G6.{6} = 3
G1.{2} = 1 G2.{3} = 2 G3.{4} = 2 G4.{5} = 3 G5.{6} = 3 G6.{7} = 4
G1.{3} = 1 G2.{4} = 1 G3.{5} = 2 G4.{6} = 2 G5.{7} = 3 G6.{8} = 3
G1.{4} = 1 G2.{5} = 2 G3.{6} = 2 G4.{7} = 3 G5.{8} = 3 G6.{9} = 4
G1.{1, 2} = −∞ G2.{2, 3} = −∞ G3.{3, 4} = 2 G4.{4, 5} = −∞ G5.{5, 6} = −∞ G6.{6, 7} = 3
G1.{1, 3} = 2 G2.{2, 4} = 2 G3.{3, 5} = 3 G4.{4, 6} = 3 G5.{5, 7} = 4 G6.{6, 8} = 4
G1.{1, 4} = −∞ G2.{2, 5} = −∞ G3.{3, 6} = −∞ G4.{4, 7} = −∞ G5.{5, 8} = −∞ G6.{6, 9} = −∞
G1.{2, 3} = −∞ G2.{3, 4} = 2 G3.{4, 5} = −∞ G4.{5, 6} = −∞ G5.{6, 7} = 3 G6.{7, 8} = −∞
G1.{2, 4} = 2 G2.{3, 5} = 3 G3.{4, 6} = 3 G4.{5, 7} = 4 G5.{6, 8} = 4 G6.{7, 9} = 5
G1.{3, 4} = 2 G2.{4, 5} = −∞ G3.{5, 6} = −∞ G4.{6, 7} = 3 G5.{7, 8} = −∞ G6.{8, 9} = −∞

Fig. 49. Independent set in a pathwidth-3 graph

8.1.1 Example. Define Gj to be the subgraph of G induced by vertices X1∪. . .∪
Xj . For each subset Z ⊆ Xj let Gj .Z denote the size of the largest independent
set of Gj that includes all the vertices of Z but none from Xj − Z.

Figure 49 shows the independent set algorithm computations for the pathwidth-3
graph from Figure 48. Observe that all subsets of size 3 or 4 yield the value −∞,
so these entries are not shown. The optimum solution is an independent set of size
5, exhibited by {1, 3, 5, 7, 9}.
8.2 Remarks

Pathwidth has a nice interpretation as a search by cops on the vertices of G for
an invisible robber who can move at arbitrarily high speed from vertex to adjacent
vertex. Each cop is initially placed at a vertex, and may in unit time be transported
to any other vertex. The robber may not occupy or traverse a vertex that is occupied
by a cop. Thus the robber is caught when a cop is placed at its present vertex,
if each adjacent vertex is already occupied by a cop. The pathwidth of G is one
less than the minimum number of police needed to ensure capture. If the robber
is visible, the minimum number of police required is one more than the treewidth
[Seymour and Thomas 1993].

As indicated above, Section 9 will describe the important notion of a tree-
decomposition, which generalizes the concept of a path-decomposition. Specifically,
every pathwidth-k graph is also a treewidth-k graph, and hence every problem that
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Fig. 50. Example of a tree-decomposition

can be solved on treewidth-k graphs can also be solved on pathwidth-k graphs.
Accordingly, the coverage of algorithms on the treewidth-k class is given more ex-
tensive coverage as the following section reveals.

9. TREEWIDTH-K GRAPHS

The work on treewidth reported by Robertson and Seymour in ([Robertson and
Seymour 1983],[Robertson and Seymour 1986a]) is fundamental in its own right.
But it has also played a key role in motivating, indeed establishing important
results in related areas in graph theory. Arguably most notable is the role played
by treewidth in their work on graph minors culminating in the proof of Wagner’s
conjecture (c.f., [Robertson and Seymour 2004]).

A tree-decomposition of a graph G = (V, E) is defined by a pair ({Xi|i ∈ I}, T )
where {Xi|i ∈ I} is a family of subsets of V , and T is a tree with vertex set I such
that:

—
⋃

i∈I Xi = V ;
— for each edge (x, y) ∈ E there is an element i ∈ I with x, y ∈ Xi; and
— for all triples i, j, k ∈ I, if j is on the path from i to k in T , then we have that

Xi

⋂
Xk ⊆ Xj.

Figure 50 demonstrates with an example.
Trivially, every graph G has a tree-decomposition that is defined by a single

vertex, i.e., representing G itself. On the other hand, we are interested in tree-
decompositions and hence, their graphs in which the stated Xi are small. Accord-
ingly, the width of a given tree-decomposition is measured as maxi∈I{|Xi|−1}. Then
the treewidth of a graph G is the minimum width taken over all tree-decompositions
of G, and a graph G is said to be a treewidth-k graph if it has treewidth at most k.
The graph in Figure 50 has treewidth 2.

Important algorithmically, it has been shown that every treewidth-k graph has a
tree-decomposition T where T is a rooted binary tree [Scheffler 1989]. Recursively,
we may write (G, X) = (G1, X1) ⊗ (G2, X2) where X ⊆ V is the set of vertices
ACM Computing Surveys, Vol. V, No. N, 20YY.
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if X = V then
∀S⊆X G[S] ← if ∃y,z∈S (y,z)∈E then −∞ else |S|

else if (G, X) = (G1, X1) ⊗ (G2, X2) then
∀S⊆X G[S] ← if ∃y,z∈S (y,z)∈E then −∞

else max {G1[S1] + G2[S2]−|S1 ∩ S| − |S2 ∩ S|+ |S| :
S1 ⊆ X1, S2 ⊆ X2, S1 ∩X = S ∩X1, S2 ∩X = S ∩X2}

G.max← max {G[S] : S ⊆ X}

Fig. 51. Algorithm for maximum cardinality independent set in a treewidth-k graph
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(G1, X1 = {a, b, f})

(G2, X2 = {b, c, d})

(G3, X3 = {d, e, f})

(G4, X4 = {b, d, f}) = G2 ⊗ G3

(G5, X5 = {b, f, g}) = G1 ⊗ G4

[∅ → 0, {a} → 1, {b} → 1, {f} → 1, {b, f} → 2]

[∅ → 0, {b} → 1, {c} → 1, {d} → 1]

[∅ → 0, {d} → 1, {e} → 1, {f} → 1]

[∅ → 2, {b} → 2, {d} → 1, {f} → 2, {b, f} → 2]

[∅ → 3, {b} → 2, {f} → 2, {g} → 4, {b, f} → 2]

Fig. 52. Maximum cardinality independent set in a treewidth-2 graph

of G associated with root [T ], and graphs G1 and G2 have tree-decompositions
given by the left and right subtrees of T . This is sufficient to produce linear-time
dynamic programming algorithms for many problems on treewidth-k graphs, since
each |X | ≤ k + 1.

9.1 Algorithm for maximum cardinality independent set in a treewidth-k graph

Define:

G[S] = max cardinality independent set that contains S ⊆ X but not X − S
G.max = max cardinality independent set

The algorithm is shown in Figure 51. It is demonstrated on the treewidth-2 graph
G shown in Figure 52. T is the stated binary rooted tree-decomposition of G, where
for ease, each node in T specifies the respective Xi; each 8-tuple exhibits values for
G[S] for each S ⊆ X . However, only values larger than −∞ within each 8-tuple
are shown as the computation progresses. The maximum independent set has size
4, and the explicit solution is {a, c, e, g}.
9.2 Algorithm for minimum cardinality dominating set in a treewidth-k graph

Define:
ACM Computing Surveys, Vol. V, No. N, 20YY.
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if X = V then
∀S,T⊆X G[S,T ] ← if T = S ∪NG(S) then |S| else ∞

else if (G, X) = (G1, X1) ⊗ (G2, X2) then
∀S,T⊆X G[S,T ] ← min {G1[S1,T1] + G2[S2,T2] −|S1 ∩S| − |S2 ∩ S| + |S| :

S1 ⊆ X1, S2 ⊆ X2, S1 ∩X = S ∩X1, S2 ∩X = S ∩X2,
T1 ⊆ X1, T2 ⊆ X2, T = X ∩ (T1 ∪ T2 ∪ S ∪NG(S))}

G.min← min {G[S,V ] : S ⊆ X}

Fig. 53. Algorithm for minimum cardinality dominating set in a treewidth-k graph

if X = V then
compute G.D by brute force // for example, G.D = {(1, 0, 0, 0)} when k=2

else if (G, X) = (G1, X1) ⊗ (G2, X2) then
G.D ← closure(G1.D, G2.D)

G.index ← min {ΣS⊆X cS : C ∈ G.D}

Fig. 54. Algorithm for chromatic index in a treewidth-k graph

G[S, T ] = min cardinality dominating or almost-dominating set that contains
S ⊆ X but not X − S, and that dominates T ⊆ X but not X − T

G.min = min cardinality dominating set

The algorithm is shown in Figure 53. Recall that NG(S) denotes the set of neighbors
of vertices S in graph G.

9.3 Algorithm for chromatic index in a treewidth-k graph

For a given graph G a proper edge-coloring is an assignment of colors to the edges
of G such that no pair of adjacent edges have the same color. The smallest number
of colors which produces a proper edge coloring is called the chromatic index of G.
Define:

cS = number of colors that are incident upon S ⊆ X but not X − S
C = (cX , . . . , cS , . . . , c∅) is a valid 2k-tuple with compatible cS values
G.D = {C} is the set of all valid 2k-tuples
G.index = chromatic index

The algorithm is shown in Figure 54; it invokes the closure function which is given
in Figure 55. Its running time is polynomial because the sum of the entries in each
2k-tuple is at most |E|, and therefore each graph has a polynomial number of valid
2k-tuples. However, the running time is not linear.

9.4 Monadic second-order logic (MSOL)

Though differing structurally (and in some cases, substantially so), the graph classes
described thus far and importantly, the algorithms defined, expose a consistent
theme. But this is, in some natural sense, an essential expectation with recursive
graph classes; the phenomenon will persist in subsequent classes presented in this
paper. Moreover, this consistency translates directly to the problem solving realm.
Most of the problems solved thus far (e.g., variations of independent set, dominating
ACM Computing Surveys, Vol. V, No. N, 20YY.
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closure(D′, D′′) {
Z ← D′ × D′′ × {(0, . . . , 0)}; // each element of Z is a 3-tuple of 2k-tuples
while (more tuples can be added to Z) do {

choose any tuple (C′, C′′, C) ∈ Z;
choose any S′ ⊆ X1 and S′′ ⊆ X2 such that S′ ∩ S′′ = ∅ and c′S′ + c′′S′′ > 0;
if c′S′ = 0 then S′ ← ∅;
else if c′′S′′ = 0 then S′′ ← ∅;
choose any S ⊆ X such that S′ ∩ X = S ∩ X1 and S′′ ∩ X = S ∩ X2;
c′S′ ← max {0, c′S′ − 1};
c′′S′′ ← max {0, c′′S′′ − 1};
cS ← cS + 1;
add tuple (C′, C′′, C) to Z;

}
D ← {C : ((0, . . . , 0), (0, . . . , 0), C) ∈ Z};
return D;

}

Fig. 55. Closure function for chromatic index algorithm

P → Q ⇔ ¬P ∨ Q
P ↔ Q ⇔ (P → Q) ∧ (Q → P)
ei = ej ⇔ (∀v1) (Incident(v1, ei) ↔ Incident(v1, ej))
Adjacent(vi, vj) ⇔ ¬(vi = vj) ∧ (∃e1) (Incident(vi, e1) ∧ Incident(vj , e1))

Fig. 56. Some useful MSOL predicates

set, clique, m-vertex coloring (for arbitrary, fixed m), matching, and Hamiltonian
cycle/path problems) and many others can be solved by linear-time algorithms on
recursive classes. This, in turn, provokes an obvious question: Is there a formalism
that describes this outcome; a formalism under which the existence of linear-time
algorithms is anticipated?

Monadic second-order logic (MSOL) for a graph G = (V, E) is a predicate calculus
language in which predicates are constructed recursively as follows. Let variables
vi denote a vertex with domain V, ei denote an edge with domain E, Vi denote
a vertex set with domain 2V , and Ei denote an edge set with domain 2E . MSOL
contains primitive predicates such as vi = vj , Incident(vi, ej), vi ∈ Vj , and ei ∈
Ej. If P and Q are MSOL predicates then each of (¬ P), (P ∧ Q), and (P ∨ Q) is
also a MSOL predicate. Finally, if P is a MSOL predicate and x is any variable,
then (∃x)(P) and (∀x)(P) are also MSOL predicates.

Several useful MSOL predicates are shown in Figure 56. Of particular interest
is the creation of legal expressions that formalize the full expression of important
graph problems, such as those listed in Figure 57. This is a very short list and
interested readers are directed to the literature for a more expansive compilation
(c.f., [Borie 1988]).

Important is the following result, established independently and reported in var-
ious sources. Specifically, it has been shown that every MSOL-expressible problem
can be solved in linear time on treewidth-k graphs [Borie 1988], [Arnborg et al.

ACM Computing Surveys, Vol. V, No. N, 20YY.



36 · Richard B. Borie et al.

IndependentSet(V1) ⇔ (∀v2) (∀v3) ((v2 ∈ V1 ∧ v3 ∈ V1) → ¬ Adjacent(v2, v3))
Clique(V1) ⇔ (∀v2) (∀v3) ((v2 ∈ V1 ∧ v3 ∈ V1) → Adjacent(v2, v3))
DominatingSet(V1) ⇔ (∀v2) (v2 ∈ V1 ∨ (∃v3) (v3 ∈ V1 ∧ Adjacent(v2, v3))
VertexColorablem(V1, . . . , Vm) ⇔ (∀v0) (v0 ∈ V1 ∨ . . .∨ v0 ∈ Vm)

∧IndependentSet(V1) ∧ . . .∧ IndependentSet(Vm)
Matching(E1) ⇔ (∀e2) (∀e3) ((e2 ∈ E1 ∧ e3 ∈ E1 ∧ ¬ (e2 = e3)) →

¬(∃v4) (Incident(v4, e2) ∧ Incident(v4, e3)))
Connected(E1) ⇔ (∀V2) (∀V3) (¬ (∃v4) (v4 ∈ V2) ∨ ¬ (∃v5) (v5 ∈ V3) ∨

(∃v6) (¬ (v6 ∈ V2) ∧ ¬ (v6 ∈ V3)) ∨
(∃e7) (∃v8) (∃v9) (e7 ∈ E1 ∧ v8 ∈ V2 ∧ v9 ∈ V3 ∧
Incident(v8, e7) ∧ Incident(v9, e7)))

HamCycle(E1) ⇔ Connected(E1) ∧ (∀v2) (∃e3) (∃e4) (e3 ∈ E1 ∧ e4 ∈ E1 ∧
¬(e3 = e4) ∧ Incident(v2, e3) ∧ Incident(v2, e4) ∧
(∀e5) ((e5 ∈ E1 ∧ Incident(v2, e5)) → (e5 = e3 ∨ e5 = e4)))

HamPath(E1) ⇔ Connected(E1) ∧ (∀v2) (∃e3) (∃e4) (e3 ∈ E1 ∧ e4 ∈ E1 ∧
Incident(v2, e3) ∧ Incident(v2, e4) ∧
(∀e5) ((e5 ∈ E1 ∧ Incident(v2, e5)) → (e5 = e3 ∨ e5 = e4)) ∧
(∃v6) (∃e7) (∀e8) ((e8 ∈ E1 ∧ Incident(v6, e8)) → e8 = e7))

Fig. 57. Graph problems expressed in MSOL

1991], [Borie et al. 1992], [Courcelle 1990]. This statement also holds for many varia-
tions of each MSOL problem including existence, minimum or maximum cardinality,
minimum or maximum total weight, minimum-maximal or maximum-minimal sets,
bottleneck weight, and counting. But since treewidth relates, in a parameterized
sense, to virtually all the classes covered in Sections 2 through 10 of this paper, the
statement’s true power becomes most evident; if a problem is MSOL-expressible,
then it would be solvable in linear time on any of a broad variety of recursive graph
classes.

9.5 Examples

Asking if a given vertex subset V1 forms an admissible vertex cover in a graph G =
(V, E) is easy to state in the predicate calculus. Denoting this by VertexCover(V1),
we can write:

VertexCover(V1) ⇔ (∀e1)(∃v1 ∈ V1)(Incident(v1, e1))

For a more interesting illustration, let us consider the problem of deciding if a graph
G = (V, E) is m-vertex colorable. First, we examine the primitives of ∪ and ∩ as
follows:

V3 = V1 ∪ V2 ⇔ (∀v1)((v1 ∈ V1 ∨ v1 ∈ V2)↔ v1 ∈ V3)

and

V3 = V1 ∩ V2 ⇔ (∀v1)((v1 ∈ V1 ∧ v1 ∈ V2)↔ v1 ∈ V3).

Now, letting Part(V, V1, . . . , Vm) denote an m-partition of the vertex set V , we have

Part(V, V1, . . . , Vm)⇔ (V1 ∪ . . . ∪ Vm = V ) ∧ (Vi ∩ Vj = ∅)(1 ≤ i < j ≤ m).
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Finally,

Color(V1, . . . , Vm)⇔Part(V, V1, . . . , Vm)∧IndependentSet(Vi)(1 ≤ i ≤ m),

which establishes that deciding m-colorability on treewidth-k graphs (and the im-
plied, related graph classes) is linear-time solvable.

9.6 Remarks

Once a problem is expressed in MSOL, a linear-time dynamic programming algo-
rithm can be created mechanically [Borie et al. 1992]. Though interesting, this is
an existential outcome and the algorithms generated accordingly do not produce
practical procedures directly. That is, these automatically generated algorithms
will run in linear time with respect to the graph size, but the hidden constants may
be superexponential in parameter k.

For any fixed k, there exists a linear-time algorithm that determines whether a
given input graph has treewidth at most k, and if so then produces a treewidth-k
decomposition. Somewhat surprisingly, this result is obtained in part due to the
existence of an MSOL expression for stating that a graph has treewidth at most k
[Bodlaender 1996].

For some problems, an MSOL expression cannot be written and a linear-time
algorithm cannot be found. In these cases it may still be possible to develop
a linear-time algorithm via an extension to MSOL [Borie et al. 1992], or to de-
velop a polynomial-time algorithm. Polynomiality is achieved by constructing a
polynomial-size data structure that corresponds to each node in the tree decompo-
sition [Borie 1995]. This is relevant in the case of chromatic index where Vizing’s
theorem [Vizing 1964] holds that the chromatic index of any graph is either ∆ or
∆+1, where ∆ is the maximum vertex degree. Thus the chromatic index is at
most |V |. Hence cS in the chromatic index algorithm of Figure 54 is bounded as
0 ≤ cS ≤ |V | for all S ⊆ X , and the size of each set Z in the closure function of
Figure 55 is O(V j) where j = 3×2k. Therefore the chromatic index algorithm runs
in polynomial time with appropriate data structures.

10. BRANCHWIDTH-K GRAPHS

The concept of branchwidth was introduced in [Robertson and Seymour 1991],
[Robertson and Seymour 1995]. A branch-decomposition of a graph G = (V, E) is a
pair (T, f), where T is an unrooted ternary tree (vertices have degree either 1 or 3)
and f is a bijection from the leaves of T to E. If instead the degree of every non-leaf
vertex in T is at least 3, the pair (T, f) is called a partial branch-decomposition.

Now, the order of an edge e of T in a branch decomposition is the number of
vertices v in V such that there exist leaves l1 and l2 of T residing in different
components of T − e, where f(l1) and f(l2) are both incident to v. That is, the
order of e is the number of vertices v in G that have incident edges corresponding to
leaves in both components of T−e. The width of (T, f) is the maximum order of the
edges of T and the branchwidth of G is the minimum width taken over all branch-
decompositions of G. A graph G is a branchwidth-k graph if it has branchwidth at
most k. Figure 58 shows a branchwidth-2 graph as well as its branch decomposition;
as an example, the order of edge (g, j) is 2 due to vertices 1 and 5.
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Fig. 58. A branchwidth-2 graph and its branch-decomposition

2-terminal operation Nodes of subtree Edges of subgraph Terminals 4-tuple of values
base graph {a} {a} t1 = 1, t2 = 2 (0, 1, 1,∞)
base graph {b} {b} t1 = 2, t2 = 5 (0, 1, 1,∞)
base graph {c} {c} t1 = 1, t2 = 3 (0, 1, 1,∞)
base graph {d} {d} t1 = 3, t2 = 5 (0, 1, 1,∞)
base graph {e} {e} t1 = 1, t2 = 4 (0, 1, 1,∞)
base graph {f} {f} t1 = 4, t2 = 5 (0, 1, 1,∞)
add node g {a, b, g} {a, b} t1 = 1, t2 = 5 (1, 1, 1, 2)
add node h {c, d, h} {c, d} t1 = 1, t2 = 5 (1, 1, 1, 2)
add node i {e, f, i} {e, f} t1 = 1, t2 = 5 (1, 1, 1, 2)
add node j {a, b, c, d, e, f, g, h, i, j} {a, b, c, d, e, f} t1 = 1, t2 = 5 (3, 1, 1, 2)

Fig. 59. Independent set in a branchwidth-2 graph

10.1 Algorithms

Every branchwidth-k graph can be regarded as a k-terminal graph. Specifically, to
build a branchwidth-k graph G using k-terminal operations, start from the base
graphs which are the individual (2-terminal) edges, and which correspond to the
isolated leaves of the tree T . As each new interior node is added to the tree T ,
along with its (at most 3) incident edges, the corresponding (at most 3) k-terminal
graphs are joined using a k-terminal operation. Once all nodes and edges are added
to T , the entire graph G is constructed.

10.1.1 Example. Figure 59 shows a 2-terminal construction of the branchwidth-
2 graph from Figure 58, and traces the maximum cardinality independent set algo-
rithm on this graph. This algorithm is the usual 2-terminal algorithm for maximum
independent set. It maintains a 4-tuple of values (G[∅], G[{t1}], G[{t2}], G[{t1, t2}])
for each 2-terminal subgraph that is built. The 4 entries in each tuple correspond
to each possible subset of terminals that can belong to the independent set. The
maximum independent set of G is {2, 3, 4} with size 3.

10.2 Remarks

The class of branchwidth-2 graphs is identical to the class of treewidth-2 graphs,
but this same relationship is not known to hold for any k �= 2. Every treewidth-
k graph is a branchwidth-(k + 1) graph. For k < 2 every branchwidth-k graph
is a treewidth-1 graph, and for k ≥ 2 every branchwidth-k graph is a treewidth-
ACM Computing Surveys, Vol. V, No. N, 20YY.
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Fig. 60. Cograph construction

if |V | = 1 then
G.i ← 1

else if G = G1 ∪ G2 then
G.i ← G1.i + G2.i

else if G = G1 × G2 then
G.i ← max {G1.i, G2.i}

Fig. 61. Algorithm for maximum cardinality independent set in a cograph

(� 3k
2 � − 1) graph.

11. COGRAPHS

Properties of cographs , also known as complement reducible graphs , were largely
developed in [Corneil et al. 1981], [Corneil et al. 1984], and [Corneil et al. 1985].
A graph with a single vertex is a cograph. Now, suppose G1 and G2 are cographs.
Then the disjoint union G1 ∪G2 is a cograph. Also, the cross-product G1 ×G2 is
a cograph, which is formed by taking the union of G1 and G2 and adding all edges
(v1, v2) where v1 is in G1 and v2 is in G2. Figure 60 demonstrates the construction.

Importantly, every cograph can be composed from single vertices using only the
operations G = G1 ∪ G2 and G = G1 × G2. This is sufficient to produce linear-
time dynamic programming algorithms for many problems restricted to cographs.
A sample of algorithms follow.

11.1 Algorithm for maximum cardinality independent set in a cograph

The algorithm is shown in Figure 61.

11.2 Algorithm for maximum cardinality clique and chromatic number in a cograph

The maximum clique size is always identical to the chromatic number for any
cograph, so both these parameters can be computed via the same procedure. The
algorithm is shown in Figure 62.

11.3 Algorithm for minimum cardinality dominating set in a cograph

The algorithm is shown in Figure 63.
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if |V | = 1 then
G.c ← 1

else if G = G1 ∪ G2 then
G.c ← max {G1.c, G2.c}

else if G = G1 × G2 then
G.c ← G1.c + G2.c

Fig. 62. Algorithm for maximum cardinality clique and chromatic number in a cograph

if |V | = 1 then
G.d ← 1

else if G = G1 ∪ G2 then
G.d ← G1.d + G2.d

else if G = G1 × G2 then
G.d ← min {G1.d, G2.d, 2}

Fig. 63. Algorithm for minimum cardinality dominating set in a cograph

if |V | = 1 then
G.m ← 0

else if G = G1 ∪ G2 then
G.m ← G1.m + G2.m

else if G = G1 × G2 then
G.m ← min {G1.m + |V2|, G2.m + |V1|, �(|V1| + |V2|)/2�}

Fig. 64. Algorithm for maximum cardinality matching in a cograph

11.4 Algorithm for maximum cardinality matching in a cograph

The algorithm is shown in Figure 64. The last formula in this algorithm is obtained
by simplifying the following more straightforward but less efficient expression:

max {k + min {G1.m, � |V1| − k

2
�}+ min {G2.m, � |V2| − k

2
�} :

0 ≤ k ≤ min {|V1|, |V2|}},
where k denotes the number of matching edges with one endpoint in each of the
subgraphs G1 and G2.

11.4.1 Example. The algorithms of Figures 61 through 64 are demonstrated on
the cograph G shown in Figure 65. T denotes the tree decomposition of G, and
each 4-tuple exhibits values for G.i, G.c, G.d, and G.m. The maximum independent
set has size 3, for example {a, b, c}. The maximum clique has size 5, given by
{c, d, e, g, h}. The minimum dominating set has size 2, for example {a, f}. Lastly,
the maximum matching has size 4, for example {(a, f), (b, g), (c, h), (d, e)}.
11.5 Algorithm for Hamiltonian path and Hamiltonian cycle in a cograph

Define:
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G2 = {b}
G3 = {c}
G4 = {d}
G5 = {e}
G6 = {f}
G7 = {g}
G8 = {h}
G9 = G1 ∪ G2

G10 = G3 × G4

G11 = G7 × G8

G12 = G10 × G5

G13 = G6 ∪ G11

G14 = G9 ∪ G12

G15 = G13 × G14

[1, 1, 1, 0]
[1, 1, 1, 0]
[1, 1, 1, 0]
[1, 1, 1, 0]
[1, 1, 1, 0]
[1, 1, 1, 0]
[1, 1, 1, 0]
[1, 1, 1, 0]
[2, 1, 2, 0]
[1, 2, 1, 1]
[1, 2, 1, 1]
[1, 3, 1, 1]
[2, 2, 2, 1]
[3, 3, 3, 1]
[3, 5, 2, 4]

Fig. 65. Maximum cardinality independent set, clique, dominating set, and matching in a cograph

if |V | = 1 then
[G.dp, G.hp, G.hc] ← [1, true, false]

else if G = G1 ∪ G2 then
[G.dp, G.hp, G.hc] ← [G1.dp + G2.dp, false, false]

else if G = G1 × G2 then
G.dp ← max {1, G1.dp − |V2|, G2.dp − |V1|}
G.hp ← (G.dp = 1)
G.hc ← (|V | ≥ 3) and (G1.dp ≤ |V2|) and (G2.dp ≤ |V1|)

Fig. 66. Algorithm for Hamiltonian path and Hamiltonian cycle in a cograph

G.dp = minimum number of disjoint paths that cover all the vertices
G.hp = Hamiltonian path exists
G.hc = Hamiltonian cycle exists

The algorithm is shown in Figure 66.

11.6 Remarks

From the graph-theoretic perspective, there are numerous interesting properties of
cographs. For example, the complement of any cograph is also a cograph, and
all cographs are perfect. Algorithmically, weighted versions of the independent
set, clique, and dominating set problems are solvable in linear time on cographs
by extending the preceding algorithms in fairly natural ways. However, weighted
versions of problems like matching and Hamiltonian path/cycle do not appear to
be solvable in linear time on cographs (although they are solvable in polynomial
time) because, intuitively, the cross product operation adds too many edges, where
each edge potentially has a different weight.
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Fig. 67. A cliquewidth-3 graph construction

12. CLIQUEWIDTH-K GRAPHS

The graph parameter cliquewidth was introduced in [Courcelle et al. 1993] and
formed a seminal concept in linking research in graph theory and logic. Let [k]
denote the set of integers {1, 2, . . . , k}. Then any graph with only one vertex v
having label, l(v) ∈ [k] is a cliquewidth-k graph. Now let G1 and G2 be cliquewidth-
k graphs and let i, j ∈ [k], i �= j. Then the disjoint union G1∪G2 is a cliquewidth-k
graph. Also, the graph (G1)i×j is a cliquewidth-k graph, which is formed from
G1 by adding all edges (v1, v2) where l(v1) = i and l(v2) = j. Finally, the graph
(G1)i→j is a cliquewidth-k graph, which is formed from G1 by switching all vertices
with label i to label j.

Recursively, every cliquewidth-k graph can be composed from single vertices with
labels in [k] = {1, . . . , k} using only the operations G = G1 ∪G2, G = (G1)i×j , and
G = (G1)i→j . The cliquewidth of a graph G is the smallest value of k such that G
is a cliquewidth-k graph.

A cliquewidth-decomposition for a graph is a rooted tree such that the root cor-
responds to G, each leaf corresponds to a labelled, single-vertex graph, and each
non-leaf node of the tree is obtained by applying one of the operations ∪, i× j, or
i → j to its child or children. A cliquewidth-3 decomposition is demonstrated in
Figure 67.

12.1 Algorithm for maximum cardinality independent set in a cliquewidth-k graph

Define:

G[S] = max cardinality independent set that contains only labels from S ⊆ [k]
G.max = max cardinality independent set

The algorithm is shown in Figure 68.

12.1.1 Example. We demonstrate the algorithm of Figure 68 on the cliquewidth-
3 graph G shown in Figure 69. T denotes the tree decomposition of G. Each 8-
tuple consists of G[∅], G[{1}], G[{2}], G[{3}], G[{1, 2}], G[{1, 3}], G[{2, 3}], and
G[{1, 2, 3}]. The maximum independent set has size 3, given by either {a, c, e} or
{b, d, f}.
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if |V | = 1 then
let v ∈ V
∀S⊆[k] G[S] ← if label(v) ∈ S then 1 else 0

else if G = G1 ∪ G2 then
∀S⊆[k] G[S] ← G1[S] + G2[S]

else if G = (G1)i×j then
∀S⊆[k] G[S] ← max {G1[S−{i}], G1[S−{j}]}

else if G = (G1)i→j then
∀S⊆[k] G[S] ← if j ∈ S then G1[S∪{i}] else G1[S−{i}]

G.max ← max {G[S] : S ⊆ [k]}

Fig. 68. Algorithm for maximum cardinality independent set in a cliquewidth-k graph
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G1 = {a}
G2 = {b}
G3 = {c}
G4 = {d}
G5 = {e}
G6 = {f}
G7 = G1 ∪ G2

G8 = G4 ∪ G5

G9 = G3 ∪ G7

G10 = G6 ∪ G8

G11 = (G9)1×2

G12 = (G10)1×3

G13 = G11 ∪ G12

G14 = (G13)2×3

[0, 0, 1, 0, 1, 0, 1, 1]
[0, 1, 0, 0, 1, 1, 0, 1]
[0, 0, 1, 0, 1, 0, 1, 1]
[0, 0, 0, 1, 0, 1, 1, 1]
[0, 1, 0, 0, 1, 1, 0, 1]
[0, 0, 0, 1, 0, 1, 1, 1]
[0, 1, 1, 0, 2, 1, 1, 2]
[0, 1, 0, 1, 1, 2, 1, 2]
[0, 1, 2, 0, 3, 1, 2, 3]
[0, 1, 0, 2, 1, 3, 2, 3]
[0, 1, 2, 0, 2, 1, 2, 2]
[0, 1, 0, 2, 1, 2, 2, 2]
[0, 2, 2, 2, 3, 3, 4, 4]
[0, 2, 2, 2, 3, 3, 2, 3]

Fig. 69. Maximum cardinality independent set in a cliquewidth-3 graph

12.2 Algorithm for minimum cardinality dominating set in a cliquewidth-k graph

Define:

G[S, T ] = min cardinality dominating or almost-dominating set that contains
exactly the labels in S ⊆ [k], and that dominates all vertices with
labels in T ⊆ [k]

G.min = min cardinality dominating set

The algorithm is shown in Figure 70.

12.3 More about cliquewidth

It is sometimes interesting to understand the nomenclature associated with graph
classes, and this is the case for cliquewidth-k graphs. As every tree is a treewidth-1
graph, we can view treewidth as a measure of how much a graph varies from a tree.
Similarly, every clique is a cliquewidth-2 graph, so cliquewidth is a measure of how
much a graph varies from a clique, hence the basis for coining the term cliquewidth
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if |V | = 1 then
let v ∈ V
∀S,T⊆[k] G[S, T ] ← if S={label(v)} and T = [k] then 1

else if S=∅ and T=[k]−{label(v)} then 0
else ∞

else if G = G1 ∪ G2 then
∀S,T⊆[k] G[S, T ] ← min {G1[S1,T1] + G2[S2,T2] : S = S1 ∪ S2, T = T1 ∩ T2}

else if G = (G1)i×j then
∀S,T⊆[k] G[S, T ] ← min {G1[S,T1] : T = T1 ∪ {i : j ∈ S} ∪ { j : i ∈ S}}

else if G = (G1)i→j then
∀S,T⊆[k] G[S, T ] ← min {G1[S1,T1] : S = S1 − {i} ∪ {j : i ∈ S1},

T = T1 ∪ {i} − {j : i /∈ T1}}
G.min ← min {G[S, [k]] : S ⊆ [k]}

Fig. 70. Algorithm for minimum cardinality dominating set in a cliquewidth-k graph

(c.f., [Courcelle and Olariu 2000]).
Many problems including variations of independent set, dominating set, clique,

and m-vertex colorability (for fixed m) can be solved in linear time on cliquewidth-
k graphs, provided that a decomposition tree is known. These problems are all
expressible in a particular language that we will call MSOL′.

MSOL′ for a graph G = (V, E) denotes a subset of MSOL restricted to variables
vi with domain V, ei with domain E, and Vi with domain 2V . The language
contains primitive predicates such as vi = vj , Incident(vi, ej), and vi ∈ Vj . MSOL′

also permits the logical operators (¬, ∧, ∨) and quantifiers (∃, ∀). In other words,
MSOL′ is the same as MSOL without edge set variables Ei and primitive predicates
such as ei ∈ Ej that refer to edge set variables.

Every MSOL′-expressible problem can be solved in linear time on any class of
cliquewidth-k graphs [Courcelle et al. 2000], provided that either there exists a linear
time decomposition algorithm for the class (as for cographs) or a decomposition tree
is provided as part of the input. This statement holds for variations of each MSOL′

problem that involve existence, optimum cardinality or total weight, counting the
number of solutions, etc. Once a problem is expressed in MSOL′, a linear-time
dynamic programming algorithm can also be created mechanically.

Note that our MSOL expressions for such problems as IndependentSet(V1),
Clique(V1), DominatingSet(V1), and VertexColorablem(V1, . . . , Vm) given pre-
viously in Figure 57 are also MSOL′ expressions. On the other hand, our MSOL
expressions for Matching(E1), Connected(E1), HamCycle(E1), and HamPath(E1)
in Figure 57 are not in MSOL′.

Some problems such as variations of matching and Hamiltonicity do not appear
to be expressible in MSOL′, and it is not known whether these problems can be
solved in linear time on cliquewidth-k graphs. However, such problems can often
be solved in polynomial time, given the decomposition tree. Polynomial time is
achieved by constructing a polynomial-size data structure corresponding to each
node in the tree decomposition, as illustrated in the following algorithm.
ACM Computing Surveys, Vol. V, No. N, 20YY.
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if |V | = 1 then
let v ∈ V
G.Q ← {P : if i = label(v) and j = label(v) then pij = 1 else pij = 0}

else if G = G1 ∪ G2 then
G.Q ← {P : there exists P ′ ∈ G1.Q and P ′′ ∈ G2.Q such that

pij = p′ij + p′′ij for each i and j}
else if G = (G1)i×j then

G.Q ← closure(G1.Q, i, j)
else if G = (G1)i→j then

G.Q ← {P : there exists P ′ ∈ G1.Q such that
phi = 0 for all h, phj = p′hi + p′hj for all h �= i,
and phl = p′hl for all h and l such that {h, l} ∩ {i, j} = ∅}

G.hp ← ∨ {1 = Σ1≤i≤j≤k pij : P ∈ G.Q}

Fig. 71. Algorithm for Hamiltonian path in a cliquewidth-k graph

closure(Q′, i, j) {
Q ← Q′;
while (more tuples can be added to Q) do {

choose any tuple P ′ ∈ Q and labels h, l such that p′hi > 0 and p′jl > 0;
P ← P ′;
phi ← phi − 1;
pjl ← pjl − 1;
phl ← phl + 1;
add tuple P to Q;

}
return Q;

}

Fig. 72. Closure function for Hamiltonian path algorithm

12.4 Algorithm for Hamiltonian path in a cliquewidth-k graph

Define:

pij = pji = count of the number of disjoint paths whose endpoints have labels i and j

P = (p11, . . . , pij , . . . , pkk) is a valid k(k+1)
2 -tuple with compatible pij for 1 ≤ i ≤ j ≤ k

G.Q = {P} is the set of all valid k(k+1)
2 -tuples

G.hp = Hamiltonian path exists

The algorithm is shown in Figure 71; it invokes the closure function which is given
in Figure 72. Note that 0 ≤ pij ≤ |V | for all labels i and j, and indeed 1 ≤ Σi,j pij

≤ |V | for every valid tuple. Hence the size of each set Q is O(V k(k+1)/2). Therefore
the algorithm runs in polynomial time with appropriate data structures.

12.5 Remarks

The class of cliquewidth-2 graphs is identical to the class of cographs and every
treewidth-k graph is a cliquewidth-3 · 2k−1 graph [Corneil and Rotics 2005]. Also,
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Fig. 73. A 2-NLC graph construction

for all k, there exist cliquewidth-k graphs with arbitrarily large treewidth. For
example, the complete graph Kn has cliquewidth 2 and treewidth n − 1. Finally,
every cliquewidth-k graph that does not contain a complete bipartite subgraph Kt,t

is a treewidth-(3kt− 3k − 1) graph [Gurski and Wanke 2000].

13. K-NLC GRAPHS

The underlying feature distinguishing graphs in this class is their construction from
isolated vertices by employing a bipartite join and certain vertex relabelling oper-
ations. Again, let [k] denote the set of integers {1, 2, . . . , k}. Any graph with a
single vertex v such that l(v) ∈ [k] is a k-NLC (node label controlled) graph. Now,
let G1 and G2 be k-NLC graphs and let i, j ∈ [k]. Let B denote a bipartite graph
on [k] × [k] having edge set EB . The join G1 ×B G2 is a k-NLC graph, which is
formed from G1 ∪ G2 by adding all edges (v1, v2) such that v1 is in V1, l(v1) = i,
v2 is in V2, l(v2) = j, and (i, j) is an edge in EB . Finally, the graph (G1)i→j is
a k-NLC graph, which is formed from G1 by switching all vertices with label i to
label j [Wanke 1994].

Recursively, every k-NLC graph can be composed from single vertices with labels
in [k] = {1, . . . , k} using only the operations G = G1 ×B G2 and G = (G1)i→j . A
2-NLC construction is demonstrated in Figure 73.

Algorithms on k-NLC graphs are similar to those for cliquewidth-k graphs.

13.1 Algorithm for maximum cardinality independent set in a k-NLC graph

Define:

G[S] = max cardinality independent set that contains only labels from S ⊆ [k]
G.max = max cardinality independent set

The algorithm is shown in Figure 74. It is demonstrated on the 2-NLC graph G
shown in Figure 75. T denotes the tree decomposition of G. Each 4-tuple consists
of G[∅], G[{1}], G[{2}], and G[{1, 2}]. The optimal solution has cardinality 3.

13.2 Algorithm for minimum cardinality dominating set in a k-NLC graph

Define:

G[S, T ] = min cardinality dominating or almost-dominating set that contains
exactly the labels in S ⊆ [k], and that dominates all vertices with
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if |V | = 1 then
let v ∈ V
∀S⊆[k] G[S] ← if label(v) ∈ S then 1 else 0

else if G = G1 ×B G2 then
∀S⊆[k] G[S] ← max {G1[S1] + G2[S2] : S = S1 ∪ S2, (S1 × S2) ∩ EB = ∅}

else if G = (G1)i→j then
∀S⊆[k] G[S] ← if j ∈ S then G1[S∪{i}] else G1[S−{i}]

G.max ← max {G[S] : S ⊆ [k]}

Fig. 74. Algorithm for maximum cardinality independent set in a k-NLC graph
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G1 = {a}
G2 = {c}
G3 = {b}
G4 = {d}
G5 = {f}
G6 = {e}
G7 = G1 ×∅ G2

G8 = G4 ×∅ G5

G9 = G7 ×(2,1) G3

G10 = G8 ×(2,1) G6

G11 = G9 ×(2,2) G10

[0, 0, 1, 1]
[0, 0, 1, 1]
[0, 1, 0, 1]
[0, 0, 1, 1]
[0, 0, 1, 1]
[0, 1, 0, 1]
[0, 0, 2, 2]
[0, 0, 2, 2]
[0, 1, 2, 2]
[0, 1, 2, 2]
[0, 2, 2, 3]

Fig. 75. Maximum cardinality independent set in a 2-NLC graph

labels in T ⊆ [k]
G.min = min cardinality dominating set

The algorithm is shown in Figure 76.

13.3 Remarks

The class of 1-NLC graphs is identical to the class of cographs, and every treewidth-
k graph is a (2k+1 − 1)-NLC graph. In addition, every cliquewidth-k graph is a
k-NLC graph. Finally, every k-NLC graph is a cliquewidth-2k graph.

14. K-HB GRAPHS

k-HB (homogeneous balanced) graphs are graphs such that a particular O(nk+2)-
time top-down decomposition algorithm constructs a pseudo-cliquewidth-(k + 2k)
balanced decomposition. Every k-HB graph can be composed from single vertices
using only the operation G = G1 ×B,h G2. Here G1 and G2 denote child subgraphs,
each |Vi| ≤ 2|V |

3 , B = (VB ,EB) is a bipartite graph with VB = Z1 ∪ Z2 and EB ⊆
Z1 × Z2, |Z1| ≤ k, |Z2| ≤ 2k, h: V → VB is a mapping with each h(Vi) ⊆ Zi, and
(x, y) ∈ E iff (h(x), h(y)) ∈ EB for each x ∈ V1 and y ∈ V2.
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if |V | = 1 then
let v ∈ V
∀S,T⊆[k] G[S, T ] ← if S={label(v)} and T = [k] then 1

else if S=∅ and T=[k]−{label(v)} then 0
else ∞

else if G = G1 ×B G2 then
∀S,T⊆[k] G[S, T ] ← min {G1[S1,T1] + G2[S2,T2] : S = S1 ∪ S2,

T = (T1 ∪ {i : (i, j) ∈ EB , j ∈ S2}) ∩ (T2 ∪ {j : (i, j) ∈ EB, i ∈ S1}) }
else if G = (G1)i→j then

∀S,T⊆[k] G[S, T ] ← min {G1[S1,T1] : S = S1 − {i} ∪ {j : i ∈ S1},
T = T1 ∪ {i} − {j : i /∈ T1}}

G.min ← min {G[S, [k]] : S ⊆ [k]}

Fig. 76. Algorithm for minimum cardinality dominating set in a k-NLC graphe

if |V | = 1 then
G[S] ← |S|

else if G = G1 ×B,h G2 then
G[S] ← max {G1[T ] + G2[U ] : X ⊆ h(V1), Y ⊆ h(V2),

(X × Y ) ∩ EB = ∅, T = S ∩ h−1(X), U = S ∩ h−1(Y )}
G.indep = G[V ]

Fig. 77. Algorithm for maximum cardinality independent set in a k-HB graph

This k-HB decomposition leads to polynomial-time algorithms for many problems
on k-HB graphs, using recursion (top-down) rather than dynamic programming
(bottom-up). Each algorithm’s running time is polynomial because at each node
of the decomposition it evaluates O(1) parameters, each of which produces O(1)
recursive calls on smaller subproblems. Also, the decomposition has O(lg |V |)
height, hence |V |O(1) nodes [Johnson 2003], [Borie et al. 2002].

14.1 Algorithm for maximum cardinality independent set in a k-HB graph

Define:

G[S] = max cardinality independent set that contains only vertices in S ⊆ V
G.indep = max cardinality independent set

The algorithm is shown in Figure 77. We demonstrate this algorithm on the 2-HB
graph G as shown in Figure 78. Note that G = G1 ×B,h G2 where G1, G2, B,
and h are as shown. The top level computations are summarized on the right. The
maximum independent set has size 4, and the explicit solution is {r, t, w, y}.
14.2 Algorithm for maximum cardinality clique in a k-HB graph

Define:

G[S] = max cardinality clique that contains only vertices in S ⊆ V
G.clique = max cardinality clique

The algorithm is shown in Figure 79.
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h(r) = h(t) = a
h(q) = h(s) = h(u) = b
h(v) = h(x) = h(z) = c
h(w) = h(y) = d

h

Recursive calls

X = ∅ ⇒ T = ∅ ⇒ G1[T ] = 0
X = {a} ⇒ T = {r, t} ⇒ G1[T ] = 2
X = {b} ⇒ T = {q, s, u} ⇒ G1[T ] = 3
X = {a, b} ⇒ T = {q, r, s, t, u} ⇒ G1[T ] = 3

Y = ∅ ⇒ U = ∅ ⇒ G2[U ] = 0
Y = {c} ⇒ U = {v, x, z} ⇒ G2[U ] = 3
Y = {d} ⇒ U = {w, y} ⇒ G2[U ] = 2
Y = {c, d} ⇒ U = {v, w, x, y, z} ⇒ G2[U ] = 3

Compatible subsets

X = ∅, Y = ∅ ⇒ G1[T ] + G2[U ] = 0 + 0 = 0
X = ∅, Y = {c} ⇒ G1[T ] + G2[U ] = 0 + 3 = 3
X = ∅, Y = {d} ⇒ G1[T ] + G2[U ] = 0 + 2 = 2
X = ∅, Y = {c, d} ⇒ G1[T ] + G2[U ] = 0 + 3 = 3
X = {a}, Y = ∅ ⇒ G1[T ] + G2[U ] = 2 + 0 = 2
X = {a}, Y = {d} ⇒ G1[T ] + G2[U ] = 2 + 2 = 4
X = {b}, Y = ∅ ⇒ G1[T ] + G2[U ] = 3 + 0 = 3
X = {a, b}, Y = ∅ ⇒ G1[T ] + G2[U ] = 3 + 0 = 3

Fig. 78. Maximum cardinality independent set in a 2-HB graph

if |V | = 1 then
G[S] ← |S|

else if G = G1 ×B,h G2 then
G[S] ← max {G1[T ] + G2[U ] : X ⊆ h(V1), Y ⊆ h(V2),

(X × Y ) ⊆ EB, T = S ∩ h−1(X), U = S ∩ h−1(Y )}
G.clique = G[V ]

Fig. 79. Algorithm for maximum cardinality clique in a k-HB graph

14.3 Algorithm for m-vertex colorability in a k-HB graph

Define:

G[S1, . . . , Sm] = an m-coloring exists where only vertices in Sj can use color j
G.colorable = an m-coloring exists

The algorithm is shown in Figure 80.

14.4 Remarks

Top-down decomposition refers to a recognition algorithm that places a candidate
graph at the root of a tree, and then decomposes this graph into smaller subgraphs
that become its children in the tree, and so on recursively until reaching the leaves of
the tree. A pseudo-cliquewidth decomposition is similar to a k-NLC decomposition,
except that the vertex labels used at one node in the tree are not enforced at other
nodes. A balanced decomposition of an n-vertex graph is a decomposition tree that
has height O(lg n). The requirement that the decomposition must be balanced
is more restrictive, while simultaneously the pseudo-cliquewidth condition is less
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if |V | = 1 then
G[S1, . . . , Sm] ← (S1 ∪ . . .∪ Sm = V )

else if G = G1 ×B,h G2 then
G[S1, . . . , Sm] ← ∨ {G1[T1, . . . , Tm] ∧ G2[U1, . . . , Um] :

Xj ⊆ h(V1), Yj ⊆ h(V2), (Xj × Yj) ∩ EB = ∅,
Tj = Sj ∩ h−1(Xj), Uj = Sj ∩ h−1(Yj), for 1 ≤ j ≤ m}

G.colorable = G[V, . . . , V ]

Fig. 80. Algorithm for m-vertex colorability in a k-HB graph

(∃V1) . . . (∃Vm) ((∀v1) F0(v1∈V1, . . . , v1∈Vm)
∧(∀v2) (∀v3) (Adjacent(v2, v3) → ∧1≤i≤j≤m Fij(v2∈Vi, v3∈Vj))
∧(∀v4) (∀v5) (¬Adjacent(v4, v5) → ∧1≤i≤j≤m F′

ij(v4∈Vi, v5∈Vj)))

Fig. 81. Format of MSOL′′ predicates

restrictive. This trade-off yields the class of k-HB graphs. For more details see
[Johnson 2003] or [Borie et al. 2002] .

Note that k-HB graphs are an ambiguously defined class due to the nondetermin-
istic nature of this decomposition algorithm. On the other hand, the decomposition
is guaranteed to succeed for every cliquewidth-k graph despite this nondeterminism,
so every cliquewidth-k graph is a k-HB graph.

The chromatic number, dominating set, and Hamiltonian problems are not known
to be solvable in polynomial time on k-HB graphs. Maximum matching is of course
solvable in polynomial time on k-HB graphs, but it is not known whether this can
be done more efficiently than for arbitrary graphs. Most problems that are known
to be solvable in polynomial time for k-HB graphs are expressible in a particular
language that we will call MSOL′′.

MSOL′′ for a graph G = (V, E) denotes a subset of MSOL′ restricted to vari-
ables vi with domain V, and variables Vi with domain 2V , and contains primitive
predicates such as Adjacent(vi, vj) and vi ∈ Vj . MSOL′′ also permits the logical
operators (¬, ∧, ∨) and quantifiers (∃, ∀). However, these primitives and connectors
cannot be combined in any arbitrary way; rather every MSOL′′ expression must
possess the format shown in Figure 81.

Here each F0, each Fij , and each F′
ij is an arbitrary formula that combines the

indicated primitive predicates using operators ¬, ∧, and ∨. If any of these formulas
is identically true, it may be omitted. An illustration follows.

As an example, the previous MSOL expressions for IndependentSet, Clique, and
VertexColorablem given in Figure 57 can be rewritten as equivalent MSOL′′ expres-
sions as shown in Figure 82. However, other MSOL expressions such as Dominat-
ingSet from Figure 57 do not appear to be expressible in MSOL′′.

Every MSOL′′-expressible problem can be solved in polynomial time when the
input graph is restricted to any class of k-HB graphs [Johnson 2003], [Borie et al.
2002]. This includes every cliquewidth-k graph, even if its decomposition tree is
not provided as part of the input. Once a problem is expressed in MSOL′′, the
polynomial-time recursive algorithm can be created mechanically.
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IndependentSet ⇔ (∃V1) (∀v2) (∀v3) (Adjacent(v2, v3) → ¬ (v2 ∈ V1 ∧ v3 ∈ V1))
Clique ⇔ (∃V1) (∀v4) (∀v5) (¬ Adjacent(v4, v5) → ¬ (v4 ∈ V1 ∧ v5 ∈ V1))
VertexColorablem ⇔ (∃V1) . . . (∃Vm) ((∀v1) (v1 ∈ V1 ∨ . . .∨ v1 ∈ Vm)

∧(∀v2) (∀v3) (Adjacent(v2, v3) → ∧1≤i≤m ¬ (v2 ∈ Vi ∧ v3 ∈ Vi)))

Fig. 82. Some MSOL′′ predicates
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Fig. 83. A rankwidth-1 graph

15. RANKWIDTH-K GRAPHS

Rankwidth is a relatively new graph parameter that is defined and studied in [Oum
and Seymour 2006], [Oum 2005a], and [Oum 2005b]. It is similar to the concept
of branchwidth that was introduced in Section 10, and it also closely relates to the
concept of cliquewidth covered in Section 12.

Let G = (V, E) be a graph and consider disjoint vertex subsets X, Y ⊆ V . Let
MX,Y (G) be a submatrix of the adjacency matrix of G, where rows correspond to X
and columns to Y . Define cutrankG(X, Y ) to be the rank of the matrix MX,Y (G),
that is, the dimension of the subspace spanned by its vectors. As a special case,
define cutrankG(X) = cutrankG(X, V −X).

Let T denote an unrooted ternary tree having |V | leaves, and let f denote a
bijection from the leaves of T to V . Then (T, f) is called a rank-decomposition
of G, which can be regarded as a kind of branch-decomposition as follows. For
each edge e of T , the connected components of T − e induce a partition (X, Y )
on the leaves of T . The order of edge e is cutrankG(f(X)), and the width of rank-
decomposition (T, f) is the maximum order over all edges of T . The rankwidth of G
is the minimum width over all possible rank-decompositions, and graph G is called
a rankwidth-k graph if it has rankwidth at most k.

An example is shown in Figure 83. Graph G has rankwidth 1 as exhibited by
tree T1. Edge e1 has order 1 because the matrix M1 = M{a,c},{b,d}(G) has rank 1.
Each other edge in tree T1 obviously has order 1. However, not every decomposition
produces the minimum width. For example, consider tree T2 which yields width 2.
Edge e2 has order 2 because the matrix M2 = M{a,b},{c,d}(G) has rank 2.

It is shown in [Oum and Seymour 2006] that every cliquewidth-k graph is a
rankwidth-k graph, and that every rankwidth-k graph is a cliquewidth-(2k+1 − 1)
graph. Polynomial-time O(V 9lgV ) algorithms are also described that can find
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a (3k + 1) rank-decomposition for any rankwidth-k graph, and a (23k+2 − 1)
cliquewidth-decomposition for any cliquewidth-k graph. If such decompositions
cannot be found for a given graph, then the algorithms correctly determine that
the graph is not rankwidth-k or cliquewidth-k, respectively.

In [Oum 2005a] new algorithms are presented that improve the running time
from O(V 9lgV ) to O(V 4). Also, faster O(V 3) algorithms are presented, but there
is a tradeoff: the rankwidth is increased to 24k and the cliquewidth is increased to
(224k+1 − 1).

So although the status of the recognition problem for cliquewidth-k graphs re-
mains open, the results on rankwidth-k graphs imply significant practical progress.
That is, all MSOL′ problems are now solvable in polynomial-time on cliquewidth-k
graphs (and also rankwidth-k graphs), even if the decompositions are not explicitly
given along with the input.

Finally note that we do not take space to contrive an example algorithm on a
rankwidth-k graph. Rather, one could proceed by exploiting the especially close
relationship the structures have with cliquewidth-k graphs, i.e., a cliquewidth-k′

algorithm could be applied to a rankwidth-k instance where k′ depends on k.

16. SUMMARY AND CONCLUDING REMARKS

In Figure 84, we present a schematic depicting key relationships involving all of
the graph classes covered in this tutorial. In the schematic, an arrow directed from
a node depicting graph class x to another one depicting class y and labelled by
k′ is meant to denote that a well-defined relationship exists between the pair such
that a class x graph with generic parameter k is a class y graph with parameter
k′, e.g., every treewidth-k graph is a branchwidth-(k + 1) graph; co-graphs are
cliquewidth-2 graphs, etc. A single, double-headed arrow indicates an equivalence
between particular classes (e.g., partial k-trees and treewidth-k graphs) and a label
of ∞ on an arc from class x to class y indicates that for a member in x, there
exists a member in y with arbitrarily large parameter (e.g., for any k, there exist
cliquewidth-k graphs having arbitrarily large treewidth.)

It should be evident that the schematic in Figure 84 is not, strictly speaking,
complete in that a number of relationships are not explicitly exhibited; most of
these are obvious however. For example, a directed arc, labeled k = 1, from trees
to k-trees or one from series-parallel graphs to partial k-trees with label k = 2
is not shown; though valid, these are trivial or at least well-known relationships.
Similarly, we could easily have directed an arc from trees (and various other classes)
to bandwidth-k graphs carrying label∞. Finally, though it should be clear, it may
be instructive to remark why there are no arcs directed from the node identified with
k-terminal graphs. As indicated in Section 1, this follows since k-terminal graphs
are not well-defined until composition operations are precisely specified; that is,
every graph is essentially a k-terminal graph for some set of k-terminal operations.
For example, any Kp with p ≥ 4 can be correctly viewed as a 2-terminal graph
where an operation is defined that splits Kp into p(p−1)

2 K2 subgraphs. However,
such Kp are neither 2-jackknife nor branchwidth-2 graphs.

In concluding, it is important to reiterate our intent that this tutorial should
at least serve to corroborate the explosive growth in the literature pertaining to
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Fig. 84. Relationships between recursive graph classes

recursively constructible graph classes, especially over the last two decades. But
this growth has also been uneven and arguably, it has been somewhat disparate as
well. While many results have proven interesting and important in their own right,
others have been particularly profound, facilitating the discovery of elegant results
in other, more general areas in graph theory. Much of this work has derived from
a variety of underlying themes, motivations, and impetuses. From an algorithmic
perspective, however, it is the case that the literature has lagged and has not been
nearly so rich in exposing how graph problems are actually solved on many of these
classes. Further, the extent to which such work has been produced reveals that the
preponderance of literature has favored results associated with algorithms on more
primitive classes such as series-parallel graphs. Thus the main point of this tutorial
is to rectify this condition somewhat by not only providing some consolidation of the
myriad results that have been produced in the last 20 to 25 years, but to explicitly
demonstrate how algorithms are created to solve problems on a greater expanse of
these interesting classes.

Chief among any flaws in this coverage would probably be an unevenness relative
to the choice and breadth of illustrations employed across the numerous graph
classes included. However, there was a warning at the outset that this option would
be taken. Most certainly, it would have been desirable to include as many sample
algorithms for say the classes of treewidth-k graphs, partial k-trees, cliquewidth-
k graphs, and others, as say for trees or series-parallel graphs; however, what is
already a lengthy document would have swelled substantially. In short, we opted
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to err on the side of the “simpler” classes where algorithms were somewhat less
detailed but where the fundamental structure of algorithm creation was meaningful
insofar as their extension to more sophisticated classes was concerned.

So, in any extended version of this tutorial, it is natural then to imagine a
work displaying an even greater variety of algorithms and explicit illustrations.
In addition, the notion of looking more critically at various formalisms that have
been structured for problems on these recursive graph classes would also seem to
be worthwhile. Our coverage here in this regard (c.f., Sections 9.4-9.5) was very
brief and only marginally demonstrated the richness of what are some interesting
results involving formal models. A deeper exposition of some of these results would
have merit as well.
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