
Solving QBF with Combined Conjunctive and Disjunctive Normal Form

Lintao Zhang
Microsoft Research Silicon Valley Lab

1065 La Avenida, Mountain View, CA 94043, USA
lintaoz@microsoft.com

Abstract
Similar to most state-of-the-art Boolean Satisfiability (SAT)
solvers, all contemporary Quantified Boolean Formula
(QBF) solvers require inputs to be in the Conjunctive
Normal Form (CNF). Most of them also store the QBF in
CNF internally for reasoning. In order to use these solvers,
arbitrary Boolean formulas have to be transformed into
equi-satisfiable formulas in Conjunctive Normal Form by
introducing additional variables. In this paper, we point out
an inherent limitation of this approach, namely the
asymmetric treatment of satisfactions and conflicts. This
deficiency leads to artificial increase of search space for
QBF solving. To overcome the limitation, we propose to
transform a Boolean formula into a combination of an equi-
satisfiable CNF formula and an equi-tautological DNF
formula for QBF solving. QBF solvers based on this
approach treat satisfactions and conflicts symmetrically,
thus avoiding the exploration of unnecessary search space.
A QBF solver called IQTest is implemented based on this
idea. Experimental results show that it significantly
outperforms existing QBF solvers.

Introduction

Given a Quantified Boolean formula (QBF) with no free
variables, deciding whether the formula evaluates to true
or false is called the QBF Satisfiability problem,
sometimes simply called the QBF problem. It is well
known that the QBF problem is PSpace complete
(Papadimitriou, 1993). Many interesting problems in AI,
such as planning (Rintanen 1999) and adversarial games
(Gent & Rowley 2003, Ansótegui et al. 2005), can be
formulated as Quantified Boolean formulas and solved by
QBF solvers. Recently the QBF problem has also attracted
a lot of attention in the formal verification community
(Scholl & Beck, 2001, Dershowitz et al. 2005) because
many interesting formal verification tasks, such as model
checking LTL formulas, are proven to be PSpace complete
and can be naturally modeled as QBF problems.
 Since the QBF problem seems to be a natural extension
of the well known Boolean Satisfiability Problem (SAT),
recent success of efficient SAT solvers such as Chaff
(Moskewicz et al. 2001) has stimulated a lot of interests in
the research community on QBF solving. Several classes

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

of QBF solvers have been proposed based on a number of
different underlying principles such as Davis-Logemann-
Loveland (DLL) search (Cadoli et al., 1998, Giunchiglia et
al. 2002a, Zhang & Malik, 2002, Letz, 2002), resolution
and expansion (Biere 2004), Binary Decision Diagrams
(Pan & Vardi, 2005) and symbolic Skolemization
(Benedetti, 2004). Unfortunately, unlike the SAT solvers,
which enjoy huge success in solving problems generated
from real world applications, QBF solvers are still only
able to tackle trivial problems and remain limited in their
usefulness in practice.
 Even though the current QBF solvers are based on many
different reasoning principles, they all require the input
QBF to be in Conjunctive Normal Form (CNF). A
propositional Boolean formula is said to be in CNF if it is a
conjunction of clauses, each of which is a disjunction of
literals. A literal is a positive or a negative occurrence of a
variable. A QBF is in CNF if it is a prenex formula and its
propositional part is in CNF. There are three reasons for
standardizing on CNF. First of all, most SAT solvers take
CNF as inputs. Efficient reasoning on a CNF formula is
well understood and can be easily adapted for QBF
solving. Second, two of the earliest algorithms for
practical QBF solving (Büning et al., 1995, Cadoli et al.,
1998) were proposed with CNF formulas in mind. The
follow-up solvers need to work on CNF for comparison
purposes. Last, the research community standardized QBF
representation on a format called the QDIMACS format
(http://www.qbflib.org/qbfeval/2005/qdimacs.html). The
format, which is in CNF, was proposed as an augmentation
to the DIMACS format used for SAT solving. Almost all
publicly available QBF benchmarks are in QDIMACS
format, thus forcing QBF solvers to work on CNF
formulas.
 In this paper, we argue that using CNF for QBF solving
is inherently limiting. We propose to use another
representation for QBF called Combined Conjunctive-
Disjunctive Normal Form (CCDNF) to represent the
formula. We show in this paper how to construct CCDNF
and why it is a preferred representation for QBF.
 The paper is organized as follows. We first give as an
example a QBF that is easy to determine the satisfiability,
yet is very challenging for current state-of-the-art QBF
solvers. Then, we present our solution for the problem and
experimentally evaluate a DLL search based QBF solver
using our proposed method. At the end of the paper we
present related work in literature, draw our conclusion and
discuss future work.

143

Motivational Example

Consider the following Quantified Boolean formula:

 F= ∀x1x2…xn ∃y (y ∨ G(x1, x2, …xn)) (1)

In this formula, G represents a complicated function with x
variables as inputs. The circuit representation of the
propositional part of the formula is shown in Figure 1. The
formula is obviously satisfiable (i.e., evaluates to the
constant true) because regardless of what the function G is,
as long as y is true, the entire formula evaluates to true.
 An arbitrary formula can be transformed into CNF by
introducing auxiliary variables (Tseitin 1968). This is a
standard practice in SAT and QBF solving. Such a
transformation of this QBF results in a formula like the
following:

 ∀x1x2…xn ∃y ∃ f g v1 v2… vm
 (f)∧(¬y ∨ f)∧(¬g ∨ f)∧ (y ∨ g ∨ ¬f)∧CNFG

Here f and g are variables representing the f and g signals
as represented in Figure 1. The first clause (f) is used to
force f to be true because we are checking satisfiability.
The next three clauses represent the or gate in Figure 1.
CNFG represents the CNF transformation of the sub-
formula rooted at g, where the vi variables are intermediate
variables introduced for this transformation.
 This formula is fed into some of the state-of-the-art QBF
solvers. For the function G, we use random 3-CNF
formulas with clause variable ratio of 4.3. The QBF solvers
tested include DLL search based solvers QuBE-REL
(Giunchiglia et al. 2002a) and Quaffle (Zhang & Malik,
2002), symbolic Skolemization based solver sKizzo1

(Benedetti, 2004), and resolution and expansion based
solver Quantor (Biere 2004). Figure 2 shows the runtime of
these solvers with respect to the number of x variables in
the function G. Each data point is the average of 10 runs
with different random 3-CNF for function G.
 As shown in Figure 2, the run times for all tested solvers
grow exponentially as the number of x variables increases.
This is obviously discouraging considering that the

1

sKizzo employs a more powerful preprocessor that simplifies the
formula to true. In order to defeat the preprocessor and reveal the true
nature of the solver, without changing the property of the formula, we use
an easily satisfiable function (a random 3-SAT with 30 variables and 90
clauses) in place of the single y variable for sKizzo in the experiment.

formulas tested are trivially satisfiable. Since these solvers
are based on vastly different reasoning principles,
something must be inherently wrong. Careful analysis
reveals that all solvers blow up on our test cases because of
the CNF transformation. To understand this, we review the
transformation of a formula into CNF in more detail.
 A Boolean propositional formula can be transformed
into Conjunctive Normal Form (CNF) by introducing
auxiliary variables. The resulting CNF formula is equi-
satisfiable to the original formula, i.e., the CNF formula is
satisfiable if and only if the original formula is satisfiable.
CNF formula is widely used in deciding the satisfiability of
Boolean propositional formulas (SAT solving) because
detecting conflicts in a CNF formula is easy. Conflicts
represent the Boolean space that the propositional formula
evaluates to false. Such space is called the off-set of the
Boolean function the formula represents; while the rest of
the Boolean space is called the on-set. Given a partial
variable assignment, we can be sure that it is in the off-set
of a Boolean function if the CNF formula representing this
function contains a conflicting clause. In SAT solving, the
main goal is to prune away the off-set of a Boolean
function quickly in order to either find a satisfying
assignment (a point in the on-set) or prove unsatisfiability
(i.e. on-set is empty). CNF suit this task well.
 For QBF solving, due to the universal and existential
quantification, both on-set and off-set need to be pruned
during search. Unfortunately, it is difficult to detect on-set
of a function from its CNF representation. We can be sure
that a partial variable assignment is in the on-set only if all
clauses in the CNF are satisfied. This is undesirable in
QBF solving because it prevents early detection of
satisfiability. In our example, the problem caused by CNF
is due to the fact that after y is set to be true, there is no
way to determine that given any assignment of xi variables,
there is always an assignment to the g and the vi variables
such that the formula CNFG is satisfied. The reason is
simple: g is the output of a Boolean circuit. Given a set of
inputs, it is obviously possible to find an output value
together with all the internal signal values to make the
circuit consistent. Unfortunately, all QBF solvers we
examined have to try all combinations of xi variables to
find out whether there is a g that satisfies CNFG. This
argument not only applies for search based solvers, it
applies for all other QBF solvers as well, because the

0

50

100

150

200

250

0 10 20 30 40 50 60

Figure 2. Runtime vs. number of x variables

R
un

ti
m

e
(s

) Quantor

sKizzo

QuBE

Quaffle

144

resulting equi-satisfiable CNF formula intrinsically loses
information about the original circuit, which makes the
detection of the on-set difficult.
 To prove our point, let’s consider the formula

 F= ∃x1x2…xn ∀y (y ∧ G(x1, x2, …xn)) (2)

It is easy to see that the formula is trivially false. Perform
the same CNF transformation, we get:

∃x1x2…xn ∀y ∃ f g v1 v2… vm
 (f)∧(y ∨ ¬f)∧(g ∨ ¬f)∧ (¬y ∨ ¬g ∨ f)∧CNFG

Feed the resulting formula into the QBF solvers; all of
them immediately give the correct unsatisfiable answer
regardless of how many x variables are in G (again, for the
test G is chosen to be a 3-CNF with clause variable ratio
4.3). Notice that formula (1) and (2) should have exactly
the same search space since one is the negation of the other
if we ignore the negation of function G (which is irrelevant
to the discussion).
 Due to the above argument, we suggest that using CNF
for QBF solving is inherently limiting. SAT solvers use
CNF because it is a convenient universal representation,
and it does not hinder a SAT solver’s operations. By
forcing a QBF solver to operate on CNF, the solving
process is greatly impeded. This is an unacceptable price to
pay for convenience, especially considering that encoding
into CNF is an extra step in real world applications that use
QBF solvers.

Transforming a Formula into the Combined
Conjunctive and Disjunctive Normal Form

In the previous section, we argued that using CNF for QBF
solving is undesirable. In this section, we propose our
solution. We observe that the main problem of CNF is its
asymmetry with regard to on-set and off-set. CNF is easy
for off-set detection but is difficult for on-set detection. On
the other hand, we know that a Boolean formula can also
be represented in the Disjunctive Normal Form (DNF). A
Boolean formula is in DNF if it is a disjunction of cubes,
each of which is a conjunction of literals. Since DNF is the
dual of CNF, it is immediately clear that a formula in DNF
would be easy for on-set detection but difficult for off-set
detection. A DNF formula is satisfied as long as one of its
cubes is satisfied; it is conflicting if all of its cubes
evaluate to false. Since CNF and DNF complement each
other, one natural intuition is to combine CNF and DNF so
that the resulting formula is easy for both on-set and off-set
detection. Indeed, this is the approach we propose for QBF
solving.
 Without loss of generality, in this section, we
concentrate our attention on QBF in prenex form. Any
QBF can be put into prenex form by certain
transformations and variable renaming. We will discuss
further improvements on non-prenex formulas in later
sections of this paper.

 Formally, we are given a Quantified Boolean formula in
the form of :

 Q1X1…QmXm φ (3)

Here, φ is a Boolean propositional formula involving
variables xi (i=1…n). Qjs (j=1…m) are alternating
quantifiers ∃ and ∀. Xjs are mutually disjoint sets of the xi

variables. Each variable xi in the formula φ must belong to
one of these sets. We want to transform formula (3) so that
the resulting formula is in a form that combines CNF and
DNF while preserving the satisfiability of the original
QBF.
 It is well known that by introducing auxiliary variables,
one can transform an arbitrary propositional formula into
an equi-satisfiable formula in CNF (this is also known as
clausification). We apply clausification on φ:

 φ = ∃Y φ (X, Y) (4)

Here, φ(X, Y) is a CNF formula (i.e. a conjunction of
clauses), which contains both the original variables X (X is
the union of all xi variables) and a set of auxiliary variables
Y. Formulas φ and φ are equi-satisfiable because if φ is
satisfiable with assignments to X and Y, then φ is also
satisfiable with the same assignments to X; if φ is
satisfiable with assignments to X variables, then φ can be
satisfied by extending the same assignments.
 To get the DNF part, we need to perform the same
transformation on ¬ φ because if ¬ φ is in CNF, then ¬ ¬ φ
is in DNF. Apply clausification on ¬ φ:

 ¬ φ = ∃Z ω (X, Z) (5)

Here, ω is a CNF formula, and Z is the set of auxiliary
variables introduced in clausification. Since φ is equivalent
to φ ∨ (¬ ¬ φ), we combine (4) and (5) to obtain:

 φ = (∃Y φ (X, Y)) ∨ (¬ (∃Z ω (X, Z))) (6)

Because ¬∃x f(x) = ∀x ¬f(x), (6) can be rewritten as:

 φ = (∃Y φ (X, Y)) ∨ (∀Z ¬ω (X, Z)) (7)

Since φ does not contain Z variables and ω does not
contain Y variables, the scope of quantifiers for Z and Y
can be broadened:

 φ = ∃Y ∀Z (φ (X, Y) ∨ ¬ω (X, Z)) (8)

Thus, using formula (8), formula (3) can be rewritten as:

 Q1X1…QmXm ∃Y ∀Z (φ (X, Y) ∨ ¬ω (X, Z)) (9)

As discussed, ω(X, Z) is in Conjunctive Normal Form (i.e.,
a logical and of clauses, each of which is a logical or of
literals). By De Morgan’s law, ¬ω(X, Z) is in Disjunctive
Normal Form (i.e., a logical or of cubes, each of which is a
logical and of literals). Thus, the final form of the QBF
being analyzed can be written as:

 Q1X1…QmXm ∃ Y ∀Z
 ((C1 ∧ C2 ∧ … ∧ Ck) ∨ (S1 ∨ S2 ∨…∨ Sℓ)) (10)

Here, C1… Ck are clauses and S1 … Sℓ are cubes. The
conjunction of Ci equals φ, which is equi-satisfiable to φ.

145

The disjunction of Si equals ¬ω, which is equi-tautological
to φ. Two formulas are equi-tautological if one of the
formulas is a tautology (i.e., the constant true) if and only
if the other is also a tautology. The orders of the two
innermost levels of quantification can be changed or even
intermixed. Thus, Y variables can be quantified first (∃Y
∀Z) or Z variables first (∀Z ∃ Y). Since φ also equals φ ∧
¬ ¬φ, the two parts of the formula can also be logically
and-ed instead of or-ed; i.e., the propositional part of the
final formula can also look like:

 (C1 ∧ C2 ∧ … ∧ Ck) ∧ (S1 ∨ S2 ∨…∨ Sℓ)

 After taking into account the extra levels of
quantification, the CNF part (the Ci conjunction) and the
DNF part (the Si disjunction) are both logically equivalent
to the original formula φ. Given a variable assignment, if
one of the clauses in Ci is a conflicting clause, then the
original formula evaluates to false; if one of the cubes in Si

is a satisfying cube, then the original formula evaluates to
true. In the rest of the paper, we will call such
combination of an equi-satisfiable CNF and an equi-
tautological DNF of a formula the Combined Conjunctive-
Disjunctive Normal Form (CCDNF) of the formula.
 In Zhang & Malik, 2002 (as well as similar works of
Giunchiglia et al. 2002a and Letz 2002) the authors
proposed to use Augmented Conjunctive Normal Form
(ACNF) to represent QBFs internally. ACNF augment the
original CNF formula with a set of cubes derived from
satisfaction learning. The differences between CCDNF and
ACNF are fundamental. In ACNF, the cubes are derived
from the clauses and are redundant. They are implied by
the clauses and contain the same set of variables. Due to
this limitation, the cubes in ACNF usually contain many
literals in order to cover the clauses. In CCDNF, the set of
cubes is a complete description of the original
propositional formula. They contain different set of
variables (the Z variables) from the clauses. CCDNF
representation is much more powerful than the ACNF as
demonstrated in the next section.

IQTest: A QBF Solver using CCDNF

In this section, we describe a new QBF solver called
IQTest (Intelligent QBF satisfiability Tester), which is a
search-based QBF solver that uses CCDNF to represent
QBF.
 The pseudo code for QBF solving using Davis-
Logemann-Loveland search, as first proposed in Cadoli et
al., 1998 and subsequently implemented by many QBF
solvers such as Quaffle and QuBE, is shown in Figure 3. In
all search based QBF solvers, the quantification order has
to be observed when choosing variables for branching. In
these solvers, a free variable can only be branched upon (at
line 2 of Figure 3) if all variables quantified outside of it
are already assigned.
 In the solver by Cadoli et al., 1998, the QBF under
investigation is represented as a CNF formula. CNF is
asymmetric for on-set and off-set detection. In Figure 3, a

conflict leaf in the search tree is detected at line 5 if a
clause is conflicting; a satisfying leaf is detected at line 11
when all clauses in the CNF are satisfied. As mentioned
earlier, Quaffle (and many other solvers such as QuBE)
improved on this by performing reasoning on an ACNF
formula, which augments the original CNF formula with a
set of cubes derived from satisfaction learning. In these
solvers, at the beginning of the search, the formula is in
CNF. During the search, whenever all the clauses are
satisfied, a cube (called a satisfaction induced cube) is
learned and added to the database. These cubes can be used
in future reasoning in an analogous way to the clauses.
Cubes generate implications just like clauses, and may
generate satisfactions (in contrast to conflicts for clauses),
which can be detected at line 11 in Figure 3. In these
solvers, because the cubes are derived one by one during
search, they are not a complete representation of the
original formula. Therefore, there exists some asymmetry
between reasoning on clauses and reasoning on cubes. In
particular a satisfaction leaf may be detected in line 11
when all the clauses are satisfied even if none of the cubes
are satisfied: in this case a satisfaction induced cube is
derived.
 Our QBF solver IQTest is based on the same DLL
search algorithm as shown in Figure 3. Except for utilizing
the CCDNF representation, IQTest is similar to most
search based QBF solvers with learning and non-
chronological backtracking. It incorporates the same
learning and backtracking mechanisms as in Zhang &
Malik 2002. The decision heuristic is based on VSIDS
(Moskewicz et al. 2001) with quantification orders
respected. Literal watching scheme for Boolean Constraint
Propagation (BCP) is implemented as in Gent et al. 2003,
except that IQTest does not keep record of whether a
clause is satisfied or not because it relies on the DNF part
to detect satisfaction.
 Unlike all the other QBF solvers, IQTest takes the
original prenex QBF and transforms it into CCDNF for
internal representation. The main difference of IQTest with

1: Loop {
2: Choose a variable to branch;
3: Loop {
4: result = Deduce();
5: if (result is CONFLICT) {
6: blevel = analyze_conflict();
7: if (blevel < 0)
8: return UNSATISFIABLE;
9: else backtrack(blevel);
10: }
11: else if (result is SAT) {
12: blevel = analyze_satisfaction();
13: if (blevel < 0)
14: return SATISFIABLE;
15: else backtrack(blevel);
16: }
17: else break out of inner loop;
18: }
19:}

 Figure 3. DLL algorithm for QBF evaluation.

146

other search based QBF solvers is that the CNF part and
the DNF part both completely represent the original
propositional formula. Therefore, the reasoning is
completely symmetric in clauses and cubes. There are no
satisfaction induced cubes or conflict induced clauses.
During the search, whenever a clause is conflicting, the
solver knows that the formula is unsatisfiable under current
assignment, so it analyzes the conflict to perform clause
learning and backtracking. Whenever a cube is satisfied,
the solver knows that the formula is satisfied, so it analyzes
the satisfaction to perform cube learning and backtracking.
Unlike all the other solvers, IQTest do not need to track
whether all clauses are satisfied or not.
 We empirically evaluate IQTest on some benchmarks to
see the effectiveness of CCDNF. The first test we perform
is on the motivational examples discussed in the second
section. Regardless of the number of x variables in the
function G, IQTest is able to solve all test cases without
any branching (and only a few branches if the y variable is
replaced with a more complicated function, as noted in
Footnote 1). This is clear evidence that by using CCDNF,
QBF solver can avoid searching the unnecessary search
space introduced by simple clausification. In fact, because
of the symmetry of CCDNF, IQTest takes similar amount
of time to decide the satisfiability of any given QBF and its
negation.

 Few non-CNF QBF benchmarks currently exist in public
domain. Almost all of the QBF instances available are in
the QDIMACS format, which is unsuitable for testing our
solver2. We are grateful that the authors of Scholl &
Becker 2001 kindly re-encoded (or more precisely, skipped
the last step of encoding into CNF) their benchmark in the
required format for this test. The benchmarks are derived
from equivalence checking of partially specified circuits.
Although the benchmarks are limited, one can argue that
they are representative of benchmarks that may be
encountered in practice as these instances are generated
from real circuits in real verification applications.
 In Figure 4, 4 state-of-the-art QBF solvers are compared
with our QBF solver IQTest. These solvers include the
most up-to-date publicly available versions of QuBE-REL
(Giunchiglia et al. 2002a), Quaffle (Zhang & Malik, 2002),
sKizzo (Benedetti, 2004) and Quantor (Biere 2004). The
tests are run on a 3.2 Ghz Pentium 4 machine with memory

2

We could start with the QDIMACS CNF formula as the original QBF
input and perform our translation to CCDNF. However, doing this is
harmful because it artificially increases the search space since the
increased search space introduce during the first round of clausification
cannot be reduced. This is similar to the SAT case: treating a formula in
CNF as a two level and-or circuit and re-transforming it into another CNF
greatly decreases SAT solver’s performance.

0.01

0.1

1

10

100

1000

10000

0.01 1 100 10000

sK
iz

zo
 R

u
n

ti
m

e
(s

)

0.01

0.1

1

10

100

1000

10000

0.01 1 100 10000

Q
u

an
to

r
R

u
n

ti
m

e
(s

)

0.01

0.1

1

10

100

1000

10000

0.01 1 100 10000

Q
u

af
fl

e
R

u
n

ti
m

e
(s

)

0.01

0.1

1

10

100

1000

10000

0.01 1 100 10000

Q
u

B
E

 R
u

n
ti

m
e

(s
)

Figure 4. Performance of IQTest on Circuit Benchmarks. X-axes are IQTest

147

limit of 800Meg and timeout limit of 1800s. The original
formulas in the benchmarks are prenex QBFs represented
as circuits. The formulas are given to IQTest directly. For
other solvers, CNFs are generated from the circuits by
performing equi-satisfiable CNF transformation (Tseitin
1968). Notice that this is the standard way to use current
QBF solvers. We want to point out that more sophisticated
clausification schemes do exist and simplification
techniques can be applied post clausification to simplify
the resulting formula. Such optimizations can be applied
similarly in both CNF and CCDNF transformations. Even
though we haven’t implemented these optimizations, we
have no reason to suspect that they will not equally benefit
IQTest as they benefit CNF based QBF solvers.
 Out of the 63 instances in the test suite, IQTest can solve
46 of them within the resource limit. In comparison,
Quantor solves 35 instances, Quaffle 35, sKizzo 34 and
QuBE 21. In particular, IQTest dominates both Quaffle and
QuBE in all test cases. Since all three solvers are based on
DLL search, this result essentially demonstrates that using
CCDNF is better for QBF solving, at least for search based
solvers.
 Still, we observe from Figure 4 that there are a couple of
instances that Quantor and sKizzo can solve but IQTest
cannot. Of course, since Quantor and sKizzo are based on
different principles than DLL search, for certain classes of
QBF instances, they may simply outperform any search
based QBF solvers. However, we seldom observe such
cases in SAT instances from real-world problems. Instead,
we suspect that this is due to the variable branch order
limitation that is forced upon IQTest (and other search
based solvers like Quaffle and QuBE). IQTest has to
branch according to quantification order. Since the original
formulas are prenex formulas, the search based solvers
have to branch on the independent variables (i.e. the
primary inputs of the circuits) first. It is well known that
branching on independent variables only is undesirable for
SAT solving (Giunchiglia et al. 2002b); the same reason
also makes IQTest perform badly. Quantor and sKizzo can
avoid this because they are not search based and they can
perform resolutions from inside out. Therefore, for some
benchmarks these two solvers perform better than IQTest.
 However, it should be pointed out that the prenex form
for QBF is not a prerequisite for the CCDNF formulation
to work as described. In fact, our transformation works
with non-prenex QBF just as well. It is known that QBF
can be solved in non-prenex form (Benedetti 2005,
Giunchiglia et al. 2006). Even if the original formula is in
prenex form, the quantifiers can still be moved around to
limit their scope (Benedetti 2005). If the QBF is not in
prenex form, then for search based QBF solvers, the
variable branching restrictions can be relaxed to achieve
better performances. We have not implemented this in
IQTest yet; it will be our future work.
 Moreover, we also want to point out that CCDNF need
not be limited to search based QBF solvers. A formula in
CCDNF captures both the on-set and the off-set of the
Boolean function symmetrically, while a formula in CNF

is unable to. As shown by the motivational example, all
CNF based QBF solvers suffer from this deficiency
regardless of the reasoning mechanisms employed.
Therefore, QBF solvers based on other principles may
potentially also benefit from the CCDNF formulation.
 Intuitively, the search spaces for proving unsatisfiability
of a SAT instance and solving a QBF are the same (they
both need to explore the entire Boolean space of size 2n).
The CCDNF formulation makes a search based QBF solver
quite similar to a search based SAT solver, modulo the
decision order limitations. QBF solvers have to observe
quantification orders while SAT solvers do not. Otherwise
these two procedures look very similar in the algorithmic
point of view. Because satisfaction driven learning (cube
learning) can be regarded as conflict driven learning
(clause learning) in the dual space, solving a QBF in
CCDNF is similar to solving the conjunction of two CNF
SAT instances. Therefore, we suspect QBF solvers based
on CCDNF representation may scale quite well (e.g.
similar to CNF SAT solvers); provided that the real
quantification order dependencies are not too restrictive.

Related Work

Recently it has been recognized that CNF representation
may not be good for QBF solvers to operate on. We have
already discussed the Augmented Conjunctive Normal
Form (ACNF) proposed for search based QBF solvers in
the previous sections. In this section, some additional
related work is discussed.
 In Otwell et al. 2004, the authors discussed a
formulation of QBF called Q-ALL SAT for certain classes
of planning problems. The formula is constructed such that
the different views of two adversarial opponents are both
captured in the QBF. Though their starting point is very
different from ours and their approach only works with two
alternations of quantifiers, the resulting formula of our
approach bears some similarities to their approach.
 In the inspiring work of Ansótegui et al. 2005, the
authors discussed the search space increase in CNF QBF
solvers in the context of adversarial games. They proposed
two solutions to overcome this. One solution is to
introduce additional constraints and variables based on the
semantics of the problem to “shortcut” the CNF clauses.
The other solution is to introduce special conditional
variables to flag the solver for early abortion of certain
search space. Unfortunately, their solution is ad-hoc in the
sense that it is application specific. It is unclear if their
approach can be applied without the knowledge of the
functional roles of the variables in the underlying
application. Both of their proposed solutions only work
with search based QBF solvers. Their first approach does
not interact well with learning and for the second approach
the QBF solvers need to be modified in order to treat the
special variables differently from regular variables.
 In Benedetti 2005 and Giunchiglia et al. 2006, the
authors observed that prenex-CNF is too restrictive for
branching in search based QBF solvers. They propose

148

ways to relax the branching order by working on non-
prenex CNFs. These works are orthogonal and
complementary to our work.

Conclusions and Future Work

In this paper, we propose to combine conjunctive normal
form and disjunctive normal form in QBF solving. The
propositional part of a QBF is transformed into an equi-
satisfiable CNF formula and an equi-tautological DNF
formula. These two formulas are combined together in the
reasoning process. Based on this idea, a search-based QBF
solver called IQTest is implemented and evaluated. In the
experiments, IQTest significantly outperforms existing
CNF based QBF solvers. We suspect that the proposed
CCDNF transformation may benefit QBF solvers based on
other reasoning techniques as well.
 In this paper, we compare our solver IQTest with
Quaffle and QuBE, which are classical search-based QBF
solvers with comparable feature sets to IQTest. Many
heuristics and algorithms have since been proposed to
further improve search-based CNF QBF solvers (e.g.
Samulowitz and Bacchus 2005). Many of the heuristics
and algorithms can be applied on a QBF solver that
operates on CCDNF as well. We plan to implement some
of the heuristics in IQTest and expect to see similar
performance improvements.
 For future work, we plan to remove artificial restrictions
on branching order for search based QBF solvers and
evaluate IQTest on a broader set of benchmarks.

References

Ansótegui, C.; Gomes, C. P.; and Selman, B. 2005. The
Achilles' Heel of QBF. In Proc. of the Nat. (US) Conf. on
Artificial Intelligence (AAAI’05).

Benedetti, M. 2004. Evaluating QBFs via symbolic
Skolemization. In Int. Conf. on Logic for Programming
Artificial Intelligence and Reasoning (LPAR’04).

Benedetti, M. 2005. Quantifier Trees for QBFs. In Proc. of
the Eighth International Conference on Theory and
Applications of Satisfiability Testing (SAT’05).
Biere, A. 2004. Resolve and expand. In Proc. of the
Seventh International Conference on Theory and
Applications of Satisfiability Testing (SAT’04).
Büning, K.; Karpinski, M.; and Flogel, A. 1995.
Resolution for QBF. In Information and Computation.
117(1):12–18.
Cadoli, M.; Giovanardi, A.; Schaerf, M. 1998. An
Algorithm to Evaluate Quantified Boolean Formulae. In
Proc. of the Nat. (US) Conf. on Artificial Intelligence
(AAAI’98).

Dershowitz, N.; Hanna Z.; and Katz, J. 2005. Bounded
Model Checking with QBF, In Proc. of the Eighth
International Conference on Theory and Applications of
Satisfiability Testing (SAT’05).

Gent, I.; Giunchiglia, E.; Narizzano, M.; Rowley, A.; and
Tacchella, A. 2003. Watched data structures for QBF. In
Proc. of the Sixth International Conference on Theory and
Applications of Satisfiability Testing (SAT’03).
Gent, I.; and Rowley, A. 2003. Encoding connect-4 using
Quantified Boolean Formulae. In Modelling and
Reformulating CSP, 78–93.
Giunchiglia, E.; Narizzano, M.; and Tacchella, A. 2002a.
Learning for Quantified Boolean Logic Satisfiability. In
Proc. of the Nat. (US) Conf. on Artificial Intelligence
(AAAI’02).

Giunchiglia, E.; Maratea M.; and Tacchella A. 2002b.
Dependent and Independent Variables for Propositional
Satisfiability. In Proc. of the 8th European Conference on
Logics in Artificial Intelligence (JELIA’02).

Giunchiglia, E.; Narizzano, M.; and Tacchella, A. 2006,
Quantifier Structure in Search based procedures for QBFs,
in Design, Automation and Testing in Europe (DATE’06).

Letz, R. 2002. Lemma and model caching in decision
procedures for QBF. In Proc. TABLEAUX’02.

Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Engineering an efficient SAT Solver, In
Proc. of the Design Automation Conference (DAC’01).

Pan, G.; and Vardi, M. Y. 2004. Symbolic decision
procedures for QBF. In The seventh Int. Conf. on Theory
and Applications of Satisfiability Testing (SAT’04).

Papadimitriou, C. 1993. Computational Complexity.
Addison Wesley

Rintanen, J. 1999. Constructing conditional plans by a
theorem-prover. In JAIR’99 10:323–352.
Scholl, C.; and Becker, B. 2001. Checking equivalence for
partial implementations. In Proc. of the Design Automation
Conference (DAC’01).
Otwell, C.; Remshagen, A.; and Truemper K. 2004. An
Effective QBF Solver for Planning Problems. In Proc. of
the International Conference on Algorithmic Mathematics
and Computer Science, pp. 311-316
Samulowitz H.; and Bacchus, F. 2005. Using SAT in QBF,
In Proc. of Principles and Practice of Constraint
Programming (CP’05).

Tseitin, G. 1968. On the complexity of derivation in
propositional calculus. In Studies in Constructive
Mathematics and Mathematical Logic, part 2 (1968), pp.
115-125. Reprinted in J. Siekmann and G. Wrightson
(editors), Automation of reasoning vol. 2, pp. 466-483.,
Springer Verlag Berlin, 1983.
Zhang, L.; and Malik, S. 2002. Towards a symmetric
treatment of satisfaction and conflicts in QBF. In Proc. of
Principles and Practice of Constraint Programming
(CP’02).

Zhang, L.; and Malik, S. 2002. Conflict driven learning in
a Quantified Boolean Satisfiability solver. In Proc. of
International Conference on Computer Aided Design
(ICCAD’02).

149

