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Abstract 
Similar to most state-of-the-art Boolean Satisfiability (SAT) 
solvers, all contemporary Quantified Boolean Formula 
(QBF) solvers require inputs to be in the Conjunctive 
Normal Form (CNF). Most of them also store the QBF in 
CNF internally for reasoning. In order to use these solvers, 
arbitrary Boolean formulas have to be transformed into 
equi-satisfiable formulas in Conjunctive Normal Form by 
introducing additional variables. In this paper, we point out 
an inherent limitation of this approach, namely the 
asymmetric treatment of satisfactions and conflicts. This 
deficiency leads to artificial increase of search space for 
QBF solving. To overcome the limitation, we propose to 
transform a Boolean formula into a combination of an equi-
satisfiable CNF formula and an equi-tautological DNF 
formula for QBF solving. QBF solvers based on this 
approach treat satisfactions and conflicts symmetrically, 
thus avoiding the exploration of unnecessary search space. 
A QBF solver called IQTest is implemented based on this 
idea. Experimental results show that it significantly 
outperforms existing QBF solvers.  

Introduction   

Given a Quantified Boolean formula (QBF) with no free 
variables, deciding whether the formula evaluates to true
or false is called the QBF Satisfiability problem, 
sometimes simply called the QBF problem. It is well 
known that the QBF problem is PSpace complete 
(Papadimitriou, 1993). Many interesting problems in AI, 
such as planning (Rintanen 1999) and adversarial games 
(Gent & Rowley 2003, Ansótegui et al. 2005), can be 
formulated as Quantified Boolean formulas and solved by 
QBF solvers. Recently the QBF problem has also attracted 
a lot of attention in the formal verification community 
(Scholl & Beck, 2001, Dershowitz et al. 2005) because 
many interesting formal verification tasks, such as model 
checking LTL formulas, are proven to be PSpace complete 
and can be naturally modeled as QBF problems.  
 Since the QBF problem seems to be a natural extension 
of the well known Boolean Satisfiability Problem (SAT), 
recent success of efficient SAT solvers such as Chaff 
(Moskewicz et al. 2001) has stimulated a lot of interests in 
the research community on QBF solving. Several classes 
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of QBF solvers have been proposed based on a number of 
different underlying principles such as Davis-Logemann-
Loveland (DLL) search (Cadoli et al., 1998, Giunchiglia et 
al. 2002a, Zhang & Malik, 2002, Letz, 2002), resolution 
and expansion (Biere 2004), Binary Decision Diagrams 
(Pan & Vardi, 2005) and symbolic Skolemization 
(Benedetti, 2004). Unfortunately, unlike the SAT solvers, 
which enjoy huge success in solving problems generated 
from real world applications, QBF solvers are still only 
able to tackle trivial problems and remain limited in their 
usefulness in practice.   
 Even though the current QBF solvers are based on many 
different reasoning principles, they all require the input 
QBF to be in Conjunctive Normal Form (CNF). A 
propositional Boolean formula is said to be in CNF if it is a 
conjunction of clauses, each of which is a disjunction of 
literals. A literal is a positive or a negative occurrence of a 
variable. A QBF is in CNF if it is a prenex formula and its 
propositional part is in CNF. There are three reasons for 
standardizing on CNF. First of all, most SAT solvers take 
CNF as inputs. Efficient reasoning on a CNF formula is 
well understood and can be easily adapted for QBF 
solving. Second, two of the earliest algorithms for 
practical QBF solving (Büning et al., 1995, Cadoli et al., 
1998) were proposed with CNF formulas in mind. The 
follow-up solvers need to work on CNF for comparison 
purposes. Last, the research community standardized QBF 
representation on a format called the QDIMACS format 
(http://www.qbflib.org/qbfeval/2005/qdimacs.html). The 
format, which is in CNF, was proposed as an augmentation 
to the DIMACS format used for SAT solving. Almost all 
publicly available QBF benchmarks are in QDIMACS 
format, thus forcing QBF solvers to work on CNF 
formulas.  
 In this paper, we argue that using CNF for QBF solving 
is inherently limiting. We propose to use another 
representation for QBF called Combined Conjunctive-
Disjunctive Normal Form (CCDNF) to represent the 
formula. We show in this paper how to construct CCDNF 
and why it is a preferred representation for QBF.  
 The paper is organized as follows. We first give as an 
example a QBF that is easy to determine the satisfiability, 
yet is very challenging for current state-of-the-art QBF 
solvers. Then, we present our solution for the problem and 
experimentally evaluate a DLL search based QBF solver 
using our proposed method. At the end of the paper we 
present related work in literature, draw our conclusion and 
discuss future work.  
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Motivational Example 

Consider the following Quantified Boolean formula:  

   F= ∀x1x2…xn ∃y ( y ∨ G(x1, x2, …xn) )     (1) 

In this formula, G represents a complicated function with x
variables as inputs. The circuit representation of the 
propositional part of the formula is shown in Figure 1. The 
formula is obviously satisfiable (i.e., evaluates to the 
constant true) because regardless of what the function G is, 
as long as y is true, the entire formula evaluates to true.  
 An arbitrary formula can be transformed into CNF by 
introducing auxiliary variables (Tseitin 1968). This is a 
standard practice in SAT and QBF solving. Such a 
transformation of this QBF results in a formula like the 
following: 

  ∀x1x2…xn ∃y ∃ f g v1 v2… vm  
    (f)∧(¬y ∨ f)∧( ¬g ∨ f )∧ (y ∨ g ∨ ¬f)∧CNFG

Here f and g are variables representing the f and g signals 
as represented in Figure 1. The first clause (f) is used to 
force f to be true because we are checking satisfiability. 
The next three clauses represent the or gate in Figure 1.  
CNFG represents the CNF transformation of the sub-
formula rooted at g, where the vi variables are intermediate 
variables introduced for this transformation.  
 This formula is fed into some of the state-of-the-art QBF 
solvers. For the function G, we use random 3-CNF 
formulas with clause variable ratio of 4.3. The QBF solvers 
tested include DLL search based solvers QuBE-REL 
(Giunchiglia et al. 2002a) and Quaffle (Zhang & Malik, 
2002), symbolic Skolemization based solver sKizzo1

(Benedetti, 2004), and resolution and expansion based 
solver Quantor (Biere 2004). Figure 2 shows the runtime of 
these solvers with respect to the number of x variables in 
the function G. Each data point is the average of 10 runs 
with different random 3-CNF for function G.  
 As shown in Figure 2, the run times for all tested solvers 
grow exponentially as the number of x variables increases. 
This is obviously discouraging considering that the 
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sKizzo employs a more powerful preprocessor that simplifies the 
formula to true. In order to defeat the preprocessor and reveal the true 
nature of the solver, without changing the property of the formula, we use 
an easily satisfiable function (a random 3-SAT with 30 variables and 90 
clauses) in place of the single y variable for sKizzo in the experiment. 

formulas tested are trivially satisfiable. Since these solvers 
are based on vastly different reasoning principles, 
something must be inherently wrong. Careful analysis 
reveals that all solvers blow up on our test cases because of 
the CNF transformation. To understand this, we review the 
transformation of a formula into CNF in more detail.  
 A Boolean propositional formula can be transformed 
into Conjunctive Normal Form (CNF) by introducing 
auxiliary variables. The resulting CNF formula is equi-
satisfiable to the original formula, i.e., the CNF formula is 
satisfiable if and only if the original formula is satisfiable. 
CNF formula is widely used in deciding the satisfiability of 
Boolean propositional formulas (SAT solving) because 
detecting conflicts in a CNF formula is easy. Conflicts 
represent the Boolean space that the propositional formula 
evaluates to false. Such space is called the off-set of the 
Boolean function the formula represents; while the rest of 
the Boolean space is called the on-set. Given a partial 
variable assignment, we can be sure that it is in the off-set 
of a Boolean function if the CNF formula representing this 
function contains a conflicting clause. In SAT solving, the 
main goal is to prune away the off-set of a Boolean 
function quickly in order to either find a satisfying 
assignment (a point in the on-set) or prove unsatisfiability 
(i.e. on-set is empty). CNF suit this task well.  
 For QBF solving, due to the universal and existential 
quantification, both on-set and off-set need to be pruned 
during search. Unfortunately, it is difficult to detect on-set 
of a function from its CNF representation. We can be sure 
that a partial variable assignment is in the on-set only if all 
clauses in the CNF are satisfied. This is undesirable in 
QBF solving because it prevents early detection of 
satisfiability.  In our example, the problem caused by CNF 
is due to the fact that after y is set to be true, there is no 
way to determine that given any assignment of xi variables, 
there is always an assignment to the g and the vi variables 
such that the formula CNFG is satisfied. The reason is 
simple: g is the output of a Boolean circuit. Given a set of 
inputs, it is obviously possible to find an output value 
together with all the internal signal values to make the 
circuit consistent. Unfortunately, all QBF solvers we 
examined have to try all combinations of xi variables to 
find out whether there is a g that satisfies CNFG. This 
argument not only applies for search based solvers, it 
applies for all other QBF solvers as well, because the 
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resulting equi-satisfiable CNF formula intrinsically loses 
information about the original circuit, which makes the 
detection of the on-set difficult. 
 To prove our point, let’s consider the formula  

   F= ∃x1x2…xn ∀y ( y ∧ G(x1, x2, …xn) )     (2) 

It is easy to see that the formula is trivially false. Perform 
the same CNF transformation, we get: 

∃x1x2…xn ∀y ∃ f g v1 v2… vm  
    (f)∧( y ∨ ¬f)∧( g ∨ ¬f )∧ (¬y ∨ ¬g ∨ f)∧CNFG

Feed the resulting formula into the QBF solvers; all of 
them immediately give the correct unsatisfiable answer 
regardless of how many x variables are in G (again, for the 
test G is chosen to be a 3-CNF with clause variable ratio 
4.3). Notice that formula (1) and (2) should have exactly 
the same search space since one is the negation of the other 
if we ignore the negation of function G (which is irrelevant 
to the discussion). 
 Due to the above argument, we suggest that using CNF 
for QBF solving is inherently limiting. SAT solvers use 
CNF because it is a convenient universal representation, 
and it does not hinder a SAT solver’s operations. By 
forcing a QBF solver to operate on CNF, the solving 
process is greatly impeded. This is an unacceptable price to 
pay for convenience, especially considering that encoding 
into CNF is an extra step in real world applications that use 
QBF solvers. 

Transforming a Formula into the Combined 
Conjunctive and Disjunctive Normal Form  

In the previous section, we argued that using CNF for QBF 
solving is undesirable. In this section, we propose our 
solution. We observe that the main problem of CNF is its 
asymmetry with regard to on-set and off-set. CNF is easy 
for off-set detection but is difficult for on-set detection. On 
the other hand, we know that a Boolean formula can also 
be represented in the Disjunctive Normal Form (DNF). A 
Boolean formula is in DNF if it is a disjunction of cubes, 
each of which is a conjunction of literals. Since DNF is the 
dual of CNF, it is immediately clear that a formula in DNF 
would be easy for on-set detection but difficult for off-set 
detection. A DNF formula is satisfied as long as one of its 
cubes is satisfied; it is conflicting if all of its cubes 
evaluate to false. Since CNF and DNF complement each 
other, one natural intuition is to combine CNF and DNF so 
that the resulting formula is easy for both on-set and off-set 
detection. Indeed, this is the approach we propose for QBF 
solving.  
 Without loss of generality, in this section, we 
concentrate our attention on QBF in prenex form. Any 
QBF can be put into prenex form by certain 
transformations and variable renaming. We will discuss 
further improvements on non-prenex formulas in later 
sections of this paper.  

 Formally, we are given a Quantified Boolean formula in 
the form of : 

   Q1X1…QmXm φ              (3) 

Here, φ is a Boolean propositional formula involving 
variables xi (i=1…n). Qjs (j=1…m) are alternating 
quantifiers ∃ and ∀. Xjs are mutually disjoint sets of the xi

variables. Each variable xi in the formula φ must belong to 
one of these sets. We want to transform formula (3) so that 
the resulting formula is in a form that combines CNF and 
DNF while preserving the satisfiability of the original 
QBF.  
 It is well known that by introducing auxiliary variables, 
one can transform an arbitrary propositional formula into 
an equi-satisfiable formula in CNF (this is also known as
clausification). We apply clausification on φ: 

   φ = ∃Y  φ (X, Y)             (4) 

Here, φ(X, Y) is a CNF formula (i.e. a conjunction of 
clauses), which contains both the original variables X (X is 
the union of all xi variables) and a set of auxiliary variables 
Y. Formulas φ and φ are equi-satisfiable because if φ is 
satisfiable with assignments to X and Y, then φ is also 
satisfiable with the same assignments to X; if φ is 
satisfiable with assignments to X variables, then φ can be 
satisfied by extending the same assignments.  
 To get the DNF part, we need to perform the same 
transformation on ¬ φ because if ¬ φ is in CNF, then ¬ ¬ φ
is in DNF. Apply clausification on ¬ φ:  

   ¬ φ = ∃Z ω (X, Z)            (5) 

Here, ω is a CNF formula, and Z is the set of auxiliary 
variables introduced in clausification. Since φ is equivalent 
to φ ∨ (¬ ¬ φ), we combine (4) and (5) to obtain:  

  φ = (∃Y φ (X, Y)) ∨ ( ¬ (∃Z ω (X, Z)))      (6) 

Because ¬∃x f(x) = ∀x ¬f(x), (6) can be rewritten as: 

  φ = (∃Y φ (X, Y)) ∨ (∀Z ¬ω (X, Z))      (7) 

Since φ does not contain Z variables and ω  does not 
contain Y variables, the scope of quantifiers for Z and Y 
can be broadened: 

  φ = ∃Y ∀Z (φ (X, Y) ∨ ¬ω (X, Z))       (8) 

Thus, using formula (8), formula (3) can be rewritten as: 

  Q1X1…QmXm ∃Y ∀Z  (φ (X, Y) ∨ ¬ω (X, Z))    (9) 

As discussed, ω(X, Z) is in Conjunctive Normal Form (i.e., 
a logical and of clauses, each of which is a logical or of 
literals). By De Morgan’s law, ¬ω(X, Z) is in Disjunctive 
Normal Form (i.e., a logical or of cubes, each of which is a 
logical and of literals).  Thus, the final form of the QBF 
being analyzed can be written as: 

  Q1X1…QmXm ∃ Y ∀Z   
    ((C1 ∧ C2 ∧ … ∧ Ck) ∨ (S1 ∨ S2 ∨…∨ Sℓ))  (10) 

Here, C1… Ck are clauses and S1 … Sℓ are cubes. The 
conjunction of Ci equals φ, which is equi-satisfiable to φ. 
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The disjunction of Si equals ¬ω, which is equi-tautological 
to φ. Two formulas are equi-tautological if one of the 
formulas is a tautology (i.e., the constant true) if and only 
if the other is also a tautology. The orders of the two 
innermost levels of quantification can be changed or even 
intermixed. Thus, Y variables can be quantified first (∃Y 
∀Z) or Z variables first (∀Z ∃ Y). Since φ also equals φ ∧
¬ ¬φ, the two parts of the formula can also be logically 
and-ed instead of or-ed;  i.e., the propositional part of the 
final formula can also look like: 

    (C1 ∧ C2 ∧ … ∧ Ck) ∧ (S1 ∨ S2 ∨…∨ Sℓ)   

 After taking into account the extra levels of 
quantification, the CNF part (the Ci conjunction) and the 
DNF part (the Si disjunction) are both logically equivalent 
to the original formula φ. Given a variable assignment, if 
one of the clauses in Ci is a conflicting clause, then the 
original formula evaluates to false; if one of the cubes in Si

is a satisfying cube, then the original formula evaluates to 
true.  In the rest of the paper, we will call such 
combination of an equi-satisfiable CNF and an equi-
tautological DNF of a formula the Combined Conjunctive-
Disjunctive Normal Form (CCDNF) of the formula. 
 In Zhang & Malik, 2002 (as well as similar works of 
Giunchiglia et al. 2002a and Letz 2002) the authors 
proposed to use Augmented Conjunctive Normal Form 
(ACNF) to represent QBFs internally. ACNF augment the 
original CNF formula with a set of cubes derived from 
satisfaction learning. The differences between CCDNF and 
ACNF are fundamental. In ACNF, the cubes are derived 
from the clauses and are redundant. They are implied by 
the clauses and contain the same set of variables. Due to 
this limitation, the cubes in ACNF usually contain many 
literals in order to cover the clauses. In CCDNF, the set of 
cubes is a complete description of the original 
propositional formula. They contain different set of 
variables (the Z variables) from the clauses. CCDNF 
representation is much more powerful than the ACNF as 
demonstrated in the next section.  

IQTest: A QBF Solver using CCDNF 

In this section, we describe a new QBF solver called 
IQTest (Intelligent QBF satisfiability Tester), which is a 
search-based QBF solver that uses CCDNF to represent 
QBF.  
 The pseudo code for QBF solving using Davis-
Logemann-Loveland search, as first proposed in Cadoli et 
al., 1998 and subsequently implemented by many QBF 
solvers such as Quaffle and QuBE, is shown in Figure 3. In 
all search based QBF solvers, the quantification order has 
to be observed when choosing variables for branching. In 
these solvers, a free variable can only be branched upon (at 
line 2 of Figure 3) if all variables quantified outside of it 
are already assigned.   
 In the solver by Cadoli et al., 1998, the QBF under 
investigation is represented as a CNF formula. CNF is 
asymmetric for on-set and off-set detection. In Figure 3, a 

conflict leaf in the search tree is detected at line 5 if a 
clause is conflicting; a satisfying leaf is detected at line 11 
when all clauses in the CNF are satisfied. As mentioned 
earlier, Quaffle (and many other solvers such as QuBE) 
improved on this by performing reasoning on an ACNF 
formula, which augments the original CNF formula with a 
set of cubes derived from satisfaction learning. In these 
solvers, at the beginning of the search, the formula is in 
CNF. During the search, whenever all the clauses are 
satisfied, a cube (called a satisfaction induced cube) is 
learned and added to the database. These cubes can be used 
in future reasoning in an analogous way to the clauses. 
Cubes generate implications just like clauses, and may 
generate satisfactions (in contrast to conflicts for clauses), 
which can be detected at line 11 in Figure 3. In these 
solvers, because the cubes are derived one by one during 
search, they are not a complete representation of the 
original formula. Therefore, there exists some asymmetry 
between reasoning on clauses and reasoning on cubes. In 
particular a satisfaction leaf may be detected in line 11 
when all the clauses are satisfied even if none of the cubes 
are satisfied: in this case a satisfaction induced cube is 
derived.  
 Our QBF solver IQTest is based on the same DLL 
search algorithm as shown in Figure 3. Except for utilizing 
the CCDNF representation, IQTest is similar to most 
search based QBF solvers with learning and non-
chronological backtracking. It incorporates the same 
learning and backtracking mechanisms as in Zhang & 
Malik 2002. The decision heuristic is based on VSIDS 
(Moskewicz et al. 2001) with quantification orders 
respected. Literal watching scheme for Boolean Constraint 
Propagation (BCP) is implemented as in Gent et al. 2003, 
except that IQTest does not keep record of whether a 
clause is satisfied or not because it relies on the DNF part 
to detect satisfaction.  
 Unlike all the other QBF solvers, IQTest takes the 
original prenex QBF and transforms it into CCDNF for 
internal representation. The main difference of IQTest with 

1: Loop { 
2:   Choose a variable to branch;   
3:   Loop { 
4:     result = Deduce();   
5:     if (result is CONFLICT) {   
6:       blevel = analyze_conflict(); 
7:       if (blevel < 0)   
8:         return UNSATISFIABLE; 
9:       else backtrack(blevel); 
10:    }  
11:    else if (result is SAT) {   
12:      blevel = analyze_satisfaction();
13:      if (blevel < 0)   
14:        return SATISFIABLE; 
15:      else backtrack(blevel);  
16:    } 
17:    else break out of inner loop;  
18:  } 
19:} 

              Figure 3. DLL algorithm for QBF evaluation. 
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other search based QBF solvers is that the CNF part and 
the DNF part both completely represent the original 
propositional formula. Therefore, the reasoning is 
completely symmetric in clauses and cubes. There are no 
satisfaction induced cubes or conflict induced clauses. 
During the search, whenever a clause is conflicting, the 
solver knows that the formula is unsatisfiable under current 
assignment, so it analyzes the conflict to perform clause 
learning and backtracking. Whenever a cube is satisfied, 
the solver knows that the formula is satisfied, so it analyzes 
the satisfaction to perform cube learning and backtracking. 
Unlike all the other solvers, IQTest do not need to track 
whether all clauses are satisfied or not.   
 We empirically evaluate IQTest on some benchmarks to 
see the effectiveness of CCDNF. The first test we perform 
is on the motivational examples discussed in the second 
section. Regardless of the number of x variables in the 
function G, IQTest is able to solve all test cases without 
any branching (and only a few branches if the y variable is 
replaced with a more complicated function, as noted in 
Footnote 1). This is clear evidence that by using CCDNF, 
QBF solver can avoid searching the unnecessary search 
space introduced by simple clausification. In fact, because 
of the symmetry of CCDNF, IQTest takes similar amount 
of time to decide the satisfiability of any given QBF and its 
negation.  

 Few non-CNF QBF benchmarks currently exist in public 
domain. Almost all of the QBF instances available are in 
the QDIMACS format, which is unsuitable for testing our 
solver2. We are grateful that the authors of Scholl & 
Becker 2001 kindly re-encoded (or more precisely, skipped 
the last step of encoding into CNF) their benchmark in the 
required format for this test. The benchmarks are derived
from equivalence checking of partially specified circuits. 
Although the benchmarks are limited, one can argue that 
they are representative of benchmarks that may be 
encountered in practice as these instances are generated 
from real circuits in real verification applications.  
 In Figure 4, 4 state-of-the-art QBF solvers are compared 
with our QBF solver IQTest. These solvers include the 
most up-to-date publicly available versions of QuBE-REL 
(Giunchiglia et al. 2002a), Quaffle (Zhang & Malik, 2002), 
sKizzo (Benedetti, 2004) and Quantor (Biere 2004). The 
tests are run on a 3.2 Ghz Pentium 4 machine with memory 
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We could start with the QDIMACS CNF formula as the original QBF 
input and perform our translation to CCDNF. However, doing this is 
harmful because it artificially increases the search space since the 
increased search space introduce during the first round of clausification 
cannot be reduced. This is similar to the SAT case: treating a formula in 
CNF as a two level and-or circuit and re-transforming it into another CNF 
greatly decreases SAT solver’s performance.   
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limit of 800Meg and timeout limit of 1800s. The original 
formulas in the benchmarks are prenex QBFs represented 
as circuits. The formulas are given to IQTest directly. For 
other solvers, CNFs are generated from the circuits by 
performing equi-satisfiable CNF transformation (Tseitin 
1968). Notice that this is the standard way to use current 
QBF solvers. We want to point out that more sophisticated 
clausification schemes do exist and simplification 
techniques can be applied post clausification to simplify 
the resulting formula. Such optimizations can be applied 
similarly in both CNF and CCDNF transformations. Even 
though we haven’t implemented these optimizations, we 
have no reason to suspect that they will not equally benefit 
IQTest as they benefit CNF based QBF solvers.  
 Out of the 63 instances in the test suite, IQTest can solve 
46 of them within the resource limit. In comparison, 
Quantor solves 35 instances, Quaffle 35, sKizzo 34 and 
QuBE 21. In particular, IQTest dominates both Quaffle and 
QuBE in all test cases. Since all three solvers are based on 
DLL search, this result essentially demonstrates that using 
CCDNF is better for QBF solving, at least for search based 
solvers.  
 Still, we observe from Figure 4 that there are a couple of 
instances that Quantor and sKizzo can solve but IQTest 
cannot. Of course, since Quantor and sKizzo are based on 
different principles than DLL search, for certain classes of 
QBF instances, they may simply outperform any search 
based QBF solvers. However, we seldom observe such 
cases in SAT instances from real-world problems. Instead, 
we suspect that this is due to the variable branch order 
limitation that is forced upon IQTest (and other search 
based solvers like Quaffle and QuBE). IQTest has to 
branch according to quantification order. Since the original 
formulas are prenex formulas, the search based solvers 
have to branch on the independent variables (i.e. the 
primary inputs of the circuits) first. It is well known that 
branching on independent variables only is undesirable for 
SAT solving (Giunchiglia et al. 2002b); the same reason 
also makes IQTest perform badly. Quantor and sKizzo can 
avoid this because they are not search based and they can 
perform resolutions from inside out. Therefore, for some 
benchmarks these two solvers perform better than IQTest.  
 However, it should be pointed out that the prenex form 
for QBF is not a prerequisite for the CCDNF formulation 
to work as described. In fact, our transformation works 
with non-prenex QBF just as well. It is known that QBF 
can be solved in non-prenex form (Benedetti 2005, 
Giunchiglia et al. 2006). Even if the original formula is in 
prenex form, the quantifiers can still be moved around to 
limit their scope (Benedetti 2005). If the QBF is not in 
prenex form, then for search based QBF solvers, the 
variable branching restrictions can be relaxed to achieve 
better performances. We have not implemented this in 
IQTest yet; it will be our future work.  
 Moreover, we also want to point out that CCDNF need 
not be limited to search based QBF solvers. A formula in 
CCDNF captures both the on-set and the off-set of the 
Boolean function symmetrically, while a formula in CNF 

is unable to. As shown by the motivational example, all 
CNF based QBF solvers suffer from this deficiency 
regardless of the reasoning mechanisms employed.  
Therefore, QBF solvers based on other principles may 
potentially also benefit from the CCDNF formulation.  
 Intuitively, the search spaces for proving unsatisfiability 
of a SAT instance and solving a QBF are the same (they 
both need to explore the entire Boolean space of size 2n). 
The CCDNF formulation makes a search based QBF solver 
quite similar to a search based SAT solver, modulo the 
decision order limitations. QBF solvers have to observe 
quantification orders while SAT solvers do not. Otherwise 
these two procedures look very similar in the algorithmic 
point of view. Because satisfaction driven learning (cube 
learning) can be regarded as conflict driven learning 
(clause learning) in the dual space, solving a QBF in 
CCDNF is similar to solving the conjunction of two CNF 
SAT instances. Therefore, we suspect QBF solvers based 
on CCDNF representation may scale quite well (e.g. 
similar to CNF SAT solvers); provided that the real 
quantification order dependencies are not too restrictive.   

Related Work 

Recently it has been recognized that CNF representation 
may not be good for QBF solvers to operate on. We have 
already discussed the Augmented Conjunctive Normal 
Form (ACNF) proposed for search based QBF solvers in 
the previous sections. In this section, some additional 
related work is discussed. 
 In Otwell et al. 2004, the authors discussed a 
formulation of QBF called Q-ALL SAT for certain classes 
of planning problems. The formula is constructed such that 
the different views of two adversarial opponents are both 
captured in the QBF. Though their starting point is very 
different from ours and their approach only works with two 
alternations of quantifiers, the resulting formula of our 
approach bears some similarities to their approach.  
 In the inspiring work of Ansótegui et al. 2005, the 
authors discussed the search space increase in CNF QBF 
solvers in the context of adversarial games. They proposed 
two solutions to overcome this. One solution is to 
introduce additional constraints and variables based on the 
semantics of the problem to “shortcut” the CNF clauses. 
The other solution is to introduce special conditional 
variables to flag the solver for early abortion of certain 
search space. Unfortunately, their solution is ad-hoc in the 
sense that it is application specific. It is unclear if their 
approach can be applied without the knowledge of the 
functional roles of the variables in the underlying 
application. Both of their proposed solutions only work 
with search based QBF solvers. Their first approach does 
not interact well with learning and for the second approach 
the QBF solvers need to be modified in order to treat the 
special variables differently from regular variables.  
 In Benedetti 2005 and Giunchiglia et al. 2006, the 
authors observed that prenex-CNF is too restrictive for 
branching in search based QBF solvers. They propose 
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ways to relax the branching order by working on non-
prenex CNFs. These works are orthogonal and 
complementary to our work. 

Conclusions and Future Work 

In this paper, we propose to combine conjunctive normal 
form and disjunctive normal form in QBF solving. The 
propositional part of a QBF is transformed into an equi-
satisfiable CNF formula and an equi-tautological DNF 
formula. These two formulas are combined together in the 
reasoning process. Based on this idea, a search-based QBF 
solver called IQTest is implemented and evaluated. In the 
experiments, IQTest significantly outperforms existing 
CNF based QBF solvers. We suspect that the proposed 
CCDNF transformation may benefit QBF solvers based on 
other reasoning techniques as well.  
 In this paper, we compare our solver IQTest with 
Quaffle and QuBE, which are classical search-based QBF 
solvers with comparable feature sets to IQTest. Many 
heuristics and algorithms have since been proposed to 
further improve search-based CNF QBF solvers (e.g. 
Samulowitz and Bacchus 2005). Many of the heuristics 
and algorithms can be applied on a QBF solver that 
operates on CCDNF as well. We plan to implement some 
of the heuristics in IQTest and expect to see similar 
performance improvements.  
 For future work, we plan to remove artificial restrictions 
on branching order for search based QBF solvers and 
evaluate IQTest on a broader set of benchmarks.  
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