Solving QBF with Counterexample Guided Refinement

Mikoláš Janota¹ William Klieber² Joao Marques-Silva^{1,3} Edmund Clarke²

 $^{1}\,\text{INESC-ID/IST},\,\text{Lisbon},\,\text{Portugal}$ $^{2}\,\text{Carnegie}$ Mellon University, Pittsburgh, PA, USA $^{3}\,\text{CASL/CSI},\,\text{University}$ College Dublin, Ireland

QBF

- an extension of SAT with quantifiers
- PSPACE-complete
- formal verification
- planning

QBF

- an extension of SAT with quantifiers
- PSPACE-complete
- formal verification
- planning

Example

$$\forall y_1y_2\exists x_1x_2.\ (y_1\leftrightarrow x_1)\land (y_2\leftrightarrow x_2)$$

QBF

- an extension of SAT with quantifiers
- PSPACE-complete
- formal verification
- planning

Example

$$\forall y_1y_2\exists x_1x_2. (y_1\leftrightarrow x_1)\land (y_2\leftrightarrow x_2)$$

• we consider prenex form with maximal blocks of variables

$$QX_1 \ ar{Q} Y_1 \ QX_2 \ ar{Q} Y_2 \dots \ \phi$$

where $Q \in \{\exists, \forall\}$
 $ar{\exists} = \forall . ar{\forall} = \exists$

A QBF as a Game

- it is useful to think about a QBF as a game between the universal and existential player
- · universal player wins when the matrix becomes false
- existential player wins when the matrix becomes true

Janota et al.

A QBF as a Game

- it is useful to think about a QBF as a game between the universal and existential player
- universal player wins when the matrix becomes false
- existential player wins when the matrix becomes true
- a QBF is true if and only if the "exist player can always win"

Janota et al.

A QBF as a Game

- it is useful to think about a QBF as a game between the universal and existential player
- universal player wins when the matrix becomes false
- existential player wins when the matrix becomes true
- a QBF is true if and only if the "exist player can always win"

Example

$$\forall y_1y_2\exists x_1x_2. (y_1\leftrightarrow x_1)\land (y_2\leftrightarrow x_2)$$

• \exists always wins by playing $x_1 = y_1$, $x_2 = y_2$

Semantics with Winning Move

winning move, base case $QX.\phi$, for ϕ propositional

- for $Q = \exists$, an assignment that makes ϕ true (model of ϕ)
- for $Q = \forall$, an assignment that makes ϕ false

Semantics with Winning Move

winning move, base case $QX.\phi$, for ϕ propositional

- for $Q = \exists$, an assignment that makes ϕ true (model of ϕ)
- for $Q = \forall$, an assignment that makes ϕ false

winning move, general case QX. Φ , for Φ QBF

• an assignment au s.t. there is no winning move for $ar{Q}$ for $\Phi[au]$

Semantics with Winning Move

winning move, base case $QX.\phi$, for ϕ propositional

- for $Q = \exists$, an assignment that makes ϕ true (model of ϕ)
- for $Q = \forall$, an assignment that makes ϕ false

winning move, general case QX. Φ , for Φ QBF

• an assignment au s.t. there is no winning move for $ar{Q}$ for $\Phi[au]$

countermove, for QX. Φ , for Φ QBF

• an assignment μ is a countermove to the assignment τ if μ is a winning move for \bar{Q} for $\Phi[\tau]$

Winning Move Semantics

QBF semantics

- $\exists X.\Phi$ is true if and only if there is a winning move for \exists
- $\forall X.\Phi$ is false if and only if there is a winning move for \forall

Winning Move Semantics

QBF semantics

- $\exists X.\Phi$ is true if and only if there is a winning move for \exists
- $\forall X.\Phi$ is false if and only if there is a winning move for \forall

Example

$$\forall y \exists x. \ x \land (y \lor \bar{x})$$

- $\{\bar{y}\}$ is a winning move for \forall , formula is false
- $\{y\}$ is not a winning move and $\{x\}$ is a countermove

Computing a Winning Move—Base Case

```
Solve (\exists X. \phi), where \phi is a propositional
              : a winning move for ∃ if there is one; NULL
output
               otherwise
return SAT(\phi)
```

Janota et al.

Computing a Winning Move—Base Case

```
Solve (\exists X. \phi), where \phi is a propositional output : a winning move for \exists if there is one; NULL otherwise return SAT(\phi)
```

```
Solve (\forall X. \phi), where \phi is a propositional output : a winning move for \forall if there is one; NULL otherwise return SAT(\neg \phi)
```

Naive Algorithm for a Winning Move

```
1 Function Solve (QX.\Phi)
 2 \Lambda \leftarrow \{\text{true}, \text{false}\}^X
                                             // consider all assignments
 3 while true do
        if \Lambda = \emptyset then
            return NULL
                                              // all assignments used up
 5
        \tau \leftarrow \mathrm{pick}(\Lambda)
 6
                                           // pick a candidate solution
       \mu \leftarrow \text{Solve}(\Phi[\tau])
                                                      // find a countermove
       if \mu = NULL then
            return 	au
 9
                                                               // winning move
        \Lambda \leftarrow \Lambda \setminus \{\tau\}
                                                   // remove bad candidate
10
11 end
```

Janota et al.

Removing More Than One Candidate at a Time

Observation

• The naive algorithm does not avail of the countermove

Removing More Than One Candidate at a Time

Observation

• The naive algorithm does not avail of the countermove

How?

- represent the set of considered candidates as the set of winning moves of a (simpler) QBF (abstraction)
- each time a countermove is found, strengthen the abstraction so that the same countermove cannot be used in the future (refinement)

Refinement

for a bad candidate au

• \bar{Q} wins by μ , i.e. $QX\bar{Q}Y$. $\Phi[\tau][\mu]$ is losing for Q

Refinement

for a bad candidate au

• \bar{Q} wins by μ , i.e. $QX\bar{Q}Y$. $\Phi[\tau][\mu]$ is losing for Q

for next candidates....

- make sure that next candidate τ is a winning move for QX. $\Phi[\mu]$
- for such τ , μ cannot be a countermove

Refinement

for a bad candidate au

• \bar{Q} wins by μ , i.e. $QX\bar{Q}Y$. $\Phi[\tau][\mu]$ is losing for Q

for next candidates....

- make sure that next candidate τ is a winning move for QX. $\Phi[\mu]$
- for such τ , μ cannot be a countermove

for a set of countermoves $\omega = \{\mu_1, \dots, \mu_n\}$

- $\bigwedge_{\mu \in \omega} \Phi[\mu]$, $Q = \exists$
- $\bigvee_{\mu \in \omega} \Phi[\mu], \ Q = \forall$

- $\forall y \exists x. \ x \land (y \lor \bar{x})$
- candidate: $\{y\}$, countermove: $\{x\}$
- abstraction: $\forall y. \ y$ (with the single winning move $\{\bar{y}\}$)

- $\forall y \exists x. \ x \land (y \lor \bar{x})$
- candidate: $\{y\}$, countermove: $\{x\}$
- abstraction: ∀y. y
 (with the single winning move {\(\bar{y}\)})
- $\forall y_1 y_2 \exists x. (y_1 \lor \bar{x}) \land (y_2 \lor x)$

- $\forall y \exists x. \ x \land (y \lor \bar{x})$
- candidate: $\{y\}$, countermove: $\{x\}$
- abstraction: ∀y. y
 (with the single winning move {ȳ})
- $\forall y_1 y_2 \exists x. (y_1 \lor \bar{x}) \land (y_2 \lor x)$
- candidate: $\{y_1, \bar{y}_2\}$, countermove: $\{x\}$ $(\Phi[x] = y_1)$

- $\forall y \exists x. \ x \land (y \lor \bar{x})$
- candidate: $\{y\}$, countermove: $\{x\}$
- abstraction: ∀y. y
 (with the single winning move {ȳ})
- $\forall y_1y_2\exists x. (y_1\vee \bar{x})\wedge (y_2\vee x)$
- candidate: $\{y_1, \bar{y}_2\}$, countermove: $\{x\}$ $(\Phi[x] = y_1)$
- candidate: $\{\bar{y}_1, y_2\}$, countermove: $\{\bar{x}\}$ $(\Phi[\bar{x}] = y_2)$

- ∀y∃x. x ∧ (y ∨ x̄)
 candidate: {y}, countermove: {x}
 abstraction: ∀y. y (with the single winning move {ȳ})
- $\forall y_1 y_2 \exists x. (y_1 \lor \bar{x}) \land (y_2 \lor x)$
- candidate: $\{y_1, \bar{y}_2\}$, countermove: $\{x\}$ $(\Phi[x] = y_1)$
- candidate: $\{\bar{y}_1, y_2\}$, countermove: $\{\bar{x}\}$ $(\Phi[\bar{x}] = y_2)$
- abstraction: $\forall y_1y_2. \ y_1 \lor y_2$ (with the single winning move $\{\bar{y}_1, \bar{y}_2\}$)

Abstraction-Based Algorithm for a Winning Move

1 Function Solve $(QX.\Phi)$ 2 begin if Φ has no quant then 3 **return** $(Q = \exists)$? SAT (ϕ) : SAT $(\neg \phi)$ 4 $\omega \leftarrow \emptyset$ 5 while true do 6 $\alpha \leftarrow (Q = \exists)$? $\bigwedge_{\mu \in \omega} \Phi[\mu]$: $\bigvee_{\mu \in \omega} \Phi[\mu]$ // abstraction $\tau' \leftarrow \text{Solve}(\text{Prenex}(QX. \alpha))$ // find a candidate 8 if $\tau' = NULL$ then return NULL // no winning move 9 $\tau \leftarrow \{I \mid I \in \tau' \land \text{var}(I) \in X\}$ // filter a move for X 10 $\mu \leftarrow \text{Solve}(\Phi[\tau])$ // find a countermove 11 if $\mu = NULL$ then return τ // winning move 12 $\omega \leftarrow \omega \cup \{\mu\}$ 13 // refine 14 end 15 end

• RAReQS implementation of the above using minisat2.2

- RAReQS implementation of the above using minisat2.2
- GhostQ-CEGAR integration into an existing DPLL solver

- RAReQS implementation of the above using minisat2.2
- GhostQ-CEGAR integration into an existing DPLL solver

Results for planning and Formal Verification families

• a novel CEGAR-based technique for QBF solving RAReQS

- a novel CEGAR-based technique for QBF solving RAReQS
- in some sense RAReQS is close to expansion-based solvers (e.g. Quantor, Nenofex) but the expansion is driven by counterexamples

- a novel CEGAR-based technique for QBF solving RAReQS
- in some sense RAReQS is close to expansion-based solvers (e.g. Quantor, Nenofex) but the expansion is driven by counterexamples
- step-by-step expansion enables RAReQS to avoid inherent memory blowup of expansion solvers

- a novel CEGAR-based technique for QBF solving RAReQS
- in some sense RAReQS is close to expansion-based solvers (e.g. Quantor, Nenofex) but the expansion is driven by counterexamples
- step-by-step expansion enables RAReQS to avoid inherent memory blowup of expansion solvers
- enables solving a large number of practical instances not solved by state-of-the-art solvers
 (220 instances that only RAReQS solved)

- a novel CEGAR-based technique for QBF solving RAReQS
- in some sense RAReQS is close to expansion-based solvers (e.g. Quantor, Nenofex) but the expansion is driven by counterexamples
- step-by-step expansion enables RAReQS to avoid inherent memory blowup of expansion solvers
- enables solving a large number of practical instances not solved by state-of-the-art solvers
 (220 instances that only RAReQS solved)
- in the future we plan to further develop the integration between DPLL and CEGAR

- a novel CEGAR-based technique for QBF solving RAReQS
- in some sense RAReQS is close to expansion-based solvers (e.g. Quantor, Nenofex) but the expansion is driven by counterexamples
- step-by-step expansion enables RAReQS to avoid inherent memory blowup of expansion solvers
- enables solving a large number of practical instances not solved by state-of-the-art solvers
 (220 instances that only RAReQS solved)
- in the future we plan to further develop the integration between DPLL and CEGAR
- in RAReQS we plan to investigate how to integrate techniques used in other solvers (e.g. dependency detection)

Questions?

Total instances solved (out of 4669):

			`	,	
RAReQS	GhostQ	GhostQ-C	Qube	Quantor	Nenofex
3868	2449	2801	2916	1462	1317

