
Solving QBF with
Counterexample Guided Refinement

Mikoláš Janota1 William Klieber2

Joao Marques-Silva1,3 Edmund Clarke2

1 INESC-ID/IST, Lisbon, Portugal
2 Carnegie Mellon University, Pittsburgh, PA, USA

3 CASL/CSI, University College Dublin, Ireland

Janota et al. Solving QBF with Counterexample Guided Refinement 1 / 16

QBF

• an extension of SAT with quantifiers

• PSPACE-complete

• formal verification

• planning

Example

∀y1y2∃x1x2. (y1 ↔ x1) ∧ (y2 ↔ x2)

• we consider prenex form with maximal blocks of variables

QX1 Q̄Y1 QX2 Q̄Y2 φ

where Q ∈ {∃,∀}
∃̄ = ∀,∀̄ = ∃

Janota et al. Solving QBF with Counterexample Guided Refinement 2 / 16

QBF

• an extension of SAT with quantifiers

• PSPACE-complete

• formal verification

• planning

Example

∀y1y2∃x1x2. (y1 ↔ x1) ∧ (y2 ↔ x2)

• we consider prenex form with maximal blocks of variables

QX1 Q̄Y1 QX2 Q̄Y2 φ

where Q ∈ {∃,∀}
∃̄ = ∀,∀̄ = ∃

Janota et al. Solving QBF with Counterexample Guided Refinement 2 / 16

QBF

• an extension of SAT with quantifiers

• PSPACE-complete

• formal verification

• planning

Example

∀y1y2∃x1x2. (y1 ↔ x1) ∧ (y2 ↔ x2)

• we consider prenex form with maximal blocks of variables

QX1 Q̄Y1 QX2 Q̄Y2 φ

where Q ∈ {∃,∀}
∃̄ = ∀,∀̄ = ∃

Janota et al. Solving QBF with Counterexample Guided Refinement 2 / 16

A QBF as a Game

• it is useful to think about a QBF as a game between the
universal and existential player

• universal player wins when the matrix becomes false

• existential player wins when the matrix becomes true

• a QBF is true if and only if the “exist player can always win”

Example

∀y1y2∃x1x2. (y1 ↔ x1) ∧ (y2 ↔ x2)

• ∃ always wins by playing x1 = y1, x2 = y2

Janota et al. Solving QBF with Counterexample Guided Refinement 3 / 16

A QBF as a Game

• it is useful to think about a QBF as a game between the
universal and existential player

• universal player wins when the matrix becomes false

• existential player wins when the matrix becomes true

• a QBF is true if and only if the “exist player can always win”

Example

∀y1y2∃x1x2. (y1 ↔ x1) ∧ (y2 ↔ x2)

• ∃ always wins by playing x1 = y1, x2 = y2

Janota et al. Solving QBF with Counterexample Guided Refinement 3 / 16

A QBF as a Game

• it is useful to think about a QBF as a game between the
universal and existential player

• universal player wins when the matrix becomes false

• existential player wins when the matrix becomes true

• a QBF is true if and only if the “exist player can always win”

Example

∀y1y2∃x1x2. (y1 ↔ x1) ∧ (y2 ↔ x2)

• ∃ always wins by playing x1 = y1, x2 = y2

Janota et al. Solving QBF with Counterexample Guided Refinement 3 / 16

Semantics with Winning Move

winning move, base case QX .φ, for φ propositional

• for Q = ∃, an assignment that makes φ true (model of φ)

• for Q = ∀, an assignment that makes φ false

winning move, general case QX . Φ, for Φ QBF

• an assignment τ s.t. there is no winning move for Q̄ for Φ[τ]

countermove, for QX . Φ, for Φ QBF

• an assignment µ is a countermove to the assignment τ if µ is
a winning move for Q̄ for Φ[τ]

Janota et al. Solving QBF with Counterexample Guided Refinement 4 / 16

Semantics with Winning Move

winning move, base case QX .φ, for φ propositional

• for Q = ∃, an assignment that makes φ true (model of φ)

• for Q = ∀, an assignment that makes φ false

winning move, general case QX . Φ, for Φ QBF

• an assignment τ s.t. there is no winning move for Q̄ for Φ[τ]

countermove, for QX . Φ, for Φ QBF

• an assignment µ is a countermove to the assignment τ if µ is
a winning move for Q̄ for Φ[τ]

Janota et al. Solving QBF with Counterexample Guided Refinement 4 / 16

Semantics with Winning Move

winning move, base case QX .φ, for φ propositional

• for Q = ∃, an assignment that makes φ true (model of φ)

• for Q = ∀, an assignment that makes φ false

winning move, general case QX . Φ, for Φ QBF

• an assignment τ s.t. there is no winning move for Q̄ for Φ[τ]

countermove, for QX . Φ, for Φ QBF

• an assignment µ is a countermove to the assignment τ if µ is
a winning move for Q̄ for Φ[τ]

Janota et al. Solving QBF with Counterexample Guided Refinement 4 / 16

Winning Move Semantics

QBF semantics

• ∃X .Φ is true if and only if there is a winning move for ∃
• ∀X .Φ is false if and only if there is a winning move for ∀

Example

∀y∃x . x ∧ (y ∨ x̄)

• {ȳ} is a winning move for ∀, formula is false

• {y} is not a winning move and {x} is a countermove

Janota et al. Solving QBF with Counterexample Guided Refinement 5 / 16

Winning Move Semantics

QBF semantics

• ∃X .Φ is true if and only if there is a winning move for ∃
• ∀X .Φ is false if and only if there is a winning move for ∀

Example

∀y∃x . x ∧ (y ∨ x̄)

• {ȳ} is a winning move for ∀, formula is false

• {y} is not a winning move and {x} is a countermove

Janota et al. Solving QBF with Counterexample Guided Refinement 5 / 16

Computing a Winning Move—Base Case

Solve (∃X . φ), where φ is a propositional
output : a winning move for ∃ if there is one; NULL

otherwise
return SAT(φ)

Solve (∀X . φ), where φ is a propositional
output : a winning move for ∀ if there is one; NULL

otherwise
return SAT(¬φ)

Janota et al. Solving QBF with Counterexample Guided Refinement 6 / 16

Computing a Winning Move—Base Case

Solve (∃X . φ), where φ is a propositional
output : a winning move for ∃ if there is one; NULL

otherwise
return SAT(φ)

Solve (∀X . φ), where φ is a propositional
output : a winning move for ∀ if there is one; NULL

otherwise
return SAT(¬φ)

Janota et al. Solving QBF with Counterexample Guided Refinement 6 / 16

Naive Algorithm for a Winning Move

1 Function Solve (QX .Φ)

2 Λ← {true, false}X // consider all assignments

3 while true do
4 if Λ = ∅ then
5 return NULL // all assignments used up

6 τ ← pick(Λ) // pick a candidate solution

7 µ← Solve(Φ[τ]) // find a countermove

8 if µ = NULL then
9 return τ // winning move

10 Λ← Λ r {τ} // remove bad candidate

11 end

Janota et al. Solving QBF with Counterexample Guided Refinement 7 / 16

Removing More Than One Candidate at a Time

Observation

• The naive algorithm does not avail of the countermove

How?

• represent the set of considered candidates as the set of
winning moves of a (simpler) QBF (abstraction)

• each time a countermove is found, strengthen the abstraction
so that the same countermove cannot be used in the future
(refinement)

Janota et al. Solving QBF with Counterexample Guided Refinement 8 / 16

Removing More Than One Candidate at a Time

Observation

• The naive algorithm does not avail of the countermove

How?

• represent the set of considered candidates as the set of
winning moves of a (simpler) QBF (abstraction)

• each time a countermove is found, strengthen the abstraction
so that the same countermove cannot be used in the future
(refinement)

Janota et al. Solving QBF with Counterexample Guided Refinement 8 / 16

CounterExample Guided Abstraction Refinement (CEGAR)

Winning Moves

α0, all moves

Janota et al. Solving QBF with Counterexample Guided Refinement 9 / 16

CounterExample Guided Abstraction Refinement (CEGAR)

Winning Moves

α0, all moves

τ1

Janota et al. Solving QBF with Counterexample Guided Refinement 9 / 16

CounterExample Guided Abstraction Refinement (CEGAR)

Winning Moves

α0, all moves

τ1 α1

Janota et al. Solving QBF with Counterexample Guided Refinement 9 / 16

CounterExample Guided Abstraction Refinement (CEGAR)

Winning Moves

α0, all moves

τ1 α1

τ2

Janota et al. Solving QBF with Counterexample Guided Refinement 9 / 16

CounterExample Guided Abstraction Refinement (CEGAR)

Winning Moves

α0, all moves

τ1 α1

τ2
αn

Janota et al. Solving QBF with Counterexample Guided Refinement 9 / 16

CounterExample Guided Abstraction Refinement (CEGAR)

Winning Moves

α0, all moves

τ1 α1

τ2
αn

τn

Janota et al. Solving QBF with Counterexample Guided Refinement 9 / 16

Refinement

for a bad candidate τ

• Q̄ wins by µ, i.e. QXQ̄Y . Φ[τ][µ] is losing for Q

for next candidates....

• make sure that next candidate τ is a winning move for
QX . Φ[µ]

• for such τ , µ cannot be a countermove

for a set of countermoves ω = {µ1, . . . , µn}

•
∧
µ∈ω Φ[µ], Q = ∃

•
∨
µ∈ω Φ[µ], Q = ∀

Janota et al. Solving QBF with Counterexample Guided Refinement 10 / 16

Refinement

for a bad candidate τ

• Q̄ wins by µ, i.e. QXQ̄Y . Φ[τ][µ] is losing for Q

for next candidates....

• make sure that next candidate τ is a winning move for
QX . Φ[µ]

• for such τ , µ cannot be a countermove

for a set of countermoves ω = {µ1, . . . , µn}

•
∧
µ∈ω Φ[µ], Q = ∃

•
∨
µ∈ω Φ[µ], Q = ∀

Janota et al. Solving QBF with Counterexample Guided Refinement 10 / 16

Refinement

for a bad candidate τ

• Q̄ wins by µ, i.e. QXQ̄Y . Φ[τ][µ] is losing for Q

for next candidates....

• make sure that next candidate τ is a winning move for
QX . Φ[µ]

• for such τ , µ cannot be a countermove

for a set of countermoves ω = {µ1, . . . , µn}

•
∧
µ∈ω Φ[µ], Q = ∃

•
∨
µ∈ω Φ[µ], Q = ∀

Janota et al. Solving QBF with Counterexample Guided Refinement 10 / 16

Refinement—Example

• ∀y∃x . x ∧ (y ∨ x̄)

• candidate: {y}, countermove: {x}
• abstraction: ∀y . y

(with the single winning move {ȳ})

• ∀y1y2∃x . (y1 ∨ x̄) ∧ (y2 ∨ x)

• candidate: {y1, ȳ2}, countermove: {x} (Φ[x] = y1)

• candidate: {ȳ1, y2}, countermove: {x̄} (Φ[x̄] = y2)

• abstraction: ∀y1y2. y1 ∨ y2

(with the single winning move {ȳ1, ȳ2})

Janota et al. Solving QBF with Counterexample Guided Refinement 11 / 16

Refinement—Example

• ∀y∃x . x ∧ (y ∨ x̄)

• candidate: {y}, countermove: {x}
• abstraction: ∀y . y

(with the single winning move {ȳ})

• ∀y1y2∃x . (y1 ∨ x̄) ∧ (y2 ∨ x)

• candidate: {y1, ȳ2}, countermove: {x} (Φ[x] = y1)

• candidate: {ȳ1, y2}, countermove: {x̄} (Φ[x̄] = y2)

• abstraction: ∀y1y2. y1 ∨ y2

(with the single winning move {ȳ1, ȳ2})

Janota et al. Solving QBF with Counterexample Guided Refinement 11 / 16

Refinement—Example

• ∀y∃x . x ∧ (y ∨ x̄)

• candidate: {y}, countermove: {x}
• abstraction: ∀y . y

(with the single winning move {ȳ})

• ∀y1y2∃x . (y1 ∨ x̄) ∧ (y2 ∨ x)

• candidate: {y1, ȳ2}, countermove: {x} (Φ[x] = y1)

• candidate: {ȳ1, y2}, countermove: {x̄} (Φ[x̄] = y2)

• abstraction: ∀y1y2. y1 ∨ y2

(with the single winning move {ȳ1, ȳ2})

Janota et al. Solving QBF with Counterexample Guided Refinement 11 / 16

Refinement—Example

• ∀y∃x . x ∧ (y ∨ x̄)

• candidate: {y}, countermove: {x}
• abstraction: ∀y . y

(with the single winning move {ȳ})

• ∀y1y2∃x . (y1 ∨ x̄) ∧ (y2 ∨ x)

• candidate: {y1, ȳ2}, countermove: {x} (Φ[x] = y1)

• candidate: {ȳ1, y2}, countermove: {x̄} (Φ[x̄] = y2)

• abstraction: ∀y1y2. y1 ∨ y2

(with the single winning move {ȳ1, ȳ2})

Janota et al. Solving QBF with Counterexample Guided Refinement 11 / 16

Refinement—Example

• ∀y∃x . x ∧ (y ∨ x̄)

• candidate: {y}, countermove: {x}
• abstraction: ∀y . y

(with the single winning move {ȳ})

• ∀y1y2∃x . (y1 ∨ x̄) ∧ (y2 ∨ x)

• candidate: {y1, ȳ2}, countermove: {x} (Φ[x] = y1)

• candidate: {ȳ1, y2}, countermove: {x̄} (Φ[x̄] = y2)

• abstraction: ∀y1y2. y1 ∨ y2

(with the single winning move {ȳ1, ȳ2})

Janota et al. Solving QBF with Counterexample Guided Refinement 11 / 16

Abstraction-Based Algorithm for a Winning Move
1 Function Solve (QX .Φ)

2 begin
3 if Φ has no quant then
4 return (Q = ∃) ? SAT(φ) : SAT(¬φ)
5 ω ← ∅
6 while true do
7 α← (Q = ∃) ?

∧
µ∈ω Φ[µ] :

∨
µ∈ω Φ[µ] // abstraction

8 τ ′ ← Solve(Prenex(QX . α)) // find a candidate

9 if τ ′ = NULL then return NULL // no winning move

10 τ ← {l | l ∈ τ ′ ∧ var(l) ∈ X} // filter a move for X
11 µ← Solve(Φ[τ]) // find a countermove

12 if µ = NULL then return τ // winning move

13 ω ← ω ∪ {µ} // refine

14 end

15 end

Janota et al. Solving QBF with Counterexample Guided Refinement 12 / 16

Results

• RAReQS implementation of the above using minisat2.2

• GhostQ-CEGAR integration into an existing DPLL solver

Janota et al. Solving QBF with Counterexample Guided Refinement 13 / 16

Results

• RAReQS implementation of the above using minisat2.2

• GhostQ-CEGAR integration into an existing DPLL solver

Janota et al. Solving QBF with Counterexample Guided Refinement 13 / 16

Results

• RAReQS implementation of the above using minisat2.2

• GhostQ-CEGAR integration into an existing DPLL solver

Results for planning and Formal Verification families

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000

C
P

U
 ti

m
e

(s
)

instances

N
en

of
ex

Q
ua

nt
or

G
ho

st
Q

G
ho

st
Q

-C
E

G
A

R

Q
uB

E
7.

2

R
A

R
eQ

S

RAReQS
GhostQ

GhostQ-CEGAR
QuBE7.2
Quantor
Nenofex

Janota et al. Solving QBF with Counterexample Guided Refinement 13 / 16

Conclusions and Future Work

• a novel CEGAR-based technique for QBF solving RAReQS

• in some sense RAReQS is close to expansion-based solvers
(e.g. Quantor, Nenofex) but the expansion is driven by
counterexamples

• step-by-step expansion enables RAReQS to avoid inherent
memory blowup of expansion solvers

• enables solving a large number of practical instances not
solved by state-of-the-art solvers
(220 instances that only RAReQS solved)

• in the future we plan to further develop the integration
between DPLL and CEGAR

• in RAReQS we plan to investigate how to integrate
techniques used in other solvers (e.g. dependency detection)

Janota et al. Solving QBF with Counterexample Guided Refinement 14 / 16

Conclusions and Future Work

• a novel CEGAR-based technique for QBF solving RAReQS

• in some sense RAReQS is close to expansion-based solvers
(e.g. Quantor, Nenofex) but the expansion is driven by
counterexamples

• step-by-step expansion enables RAReQS to avoid inherent
memory blowup of expansion solvers

• enables solving a large number of practical instances not
solved by state-of-the-art solvers
(220 instances that only RAReQS solved)

• in the future we plan to further develop the integration
between DPLL and CEGAR

• in RAReQS we plan to investigate how to integrate
techniques used in other solvers (e.g. dependency detection)

Janota et al. Solving QBF with Counterexample Guided Refinement 14 / 16

Conclusions and Future Work

• a novel CEGAR-based technique for QBF solving RAReQS

• in some sense RAReQS is close to expansion-based solvers
(e.g. Quantor, Nenofex) but the expansion is driven by
counterexamples

• step-by-step expansion enables RAReQS to avoid inherent
memory blowup of expansion solvers

• enables solving a large number of practical instances not
solved by state-of-the-art solvers
(220 instances that only RAReQS solved)

• in the future we plan to further develop the integration
between DPLL and CEGAR

• in RAReQS we plan to investigate how to integrate
techniques used in other solvers (e.g. dependency detection)

Janota et al. Solving QBF with Counterexample Guided Refinement 14 / 16

Conclusions and Future Work

• a novel CEGAR-based technique for QBF solving RAReQS

• in some sense RAReQS is close to expansion-based solvers
(e.g. Quantor, Nenofex) but the expansion is driven by
counterexamples

• step-by-step expansion enables RAReQS to avoid inherent
memory blowup of expansion solvers

• enables solving a large number of practical instances not
solved by state-of-the-art solvers
(220 instances that only RAReQS solved)

• in the future we plan to further develop the integration
between DPLL and CEGAR

• in RAReQS we plan to investigate how to integrate
techniques used in other solvers (e.g. dependency detection)

Janota et al. Solving QBF with Counterexample Guided Refinement 14 / 16

Conclusions and Future Work

• a novel CEGAR-based technique for QBF solving RAReQS

• in some sense RAReQS is close to expansion-based solvers
(e.g. Quantor, Nenofex) but the expansion is driven by
counterexamples

• step-by-step expansion enables RAReQS to avoid inherent
memory blowup of expansion solvers

• enables solving a large number of practical instances not
solved by state-of-the-art solvers
(220 instances that only RAReQS solved)

• in the future we plan to further develop the integration
between DPLL and CEGAR

• in RAReQS we plan to investigate how to integrate
techniques used in other solvers (e.g. dependency detection)

Janota et al. Solving QBF with Counterexample Guided Refinement 14 / 16

Conclusions and Future Work

• a novel CEGAR-based technique for QBF solving RAReQS

• in some sense RAReQS is close to expansion-based solvers
(e.g. Quantor, Nenofex) but the expansion is driven by
counterexamples

• step-by-step expansion enables RAReQS to avoid inherent
memory blowup of expansion solvers

• enables solving a large number of practical instances not
solved by state-of-the-art solvers
(220 instances that only RAReQS solved)

• in the future we plan to further develop the integration
between DPLL and CEGAR

• in RAReQS we plan to investigate how to integrate
techniques used in other solvers (e.g. dependency detection)

Janota et al. Solving QBF with Counterexample Guided Refinement 14 / 16

Questions?

Janota et al. Solving QBF with Counterexample Guided Refinement 15 / 16

Results

Total instances solved (out of 4669):

RAReQS GhostQ GhostQ-C Qube Quantor Nenofex

3868 2449 2801 2916 1462 1317

1661

Both

RAReQS vs GhostQ

Both Both

RAReQS vs Qube

2870

RAReQS vs Quantor

2436

1432

3046

RAReQSRAReQS RAReQS

Only GhostQ Only Qube Only Quantor

998

242

Only Only Only

2207

Janota et al. Solving QBF with Counterexample Guided Refinement 16 / 16

