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SOLVING QUADRATIC EQUATIONS
USING REDUCED UNIMODULAR QUADRATIC FORMS

DENIS SIMON

Abstract. Let Q be an n × n symmetric matrix with integral entries and
with det Q �= 0, but not necesarily positive definite. We describe a generalized
LLL algorithm to reduce this quadratic form. This algorithm either reduces
the quadratic form or stops with some isotropic vector. It is proved to run
in polynomial time. We also describe an algorithm for the minimization of a
ternary quadratic form: when a quadratic equation q(x, y, z) = 0 is solvable
over Q, a solution can be deduced from another quadratic equation of determi-
nant ±1. The combination of these algorithms allows us to solve efficiently any
general ternary quadratic equation over Q, and this gives a polynomial time
algorithm (as soon as the factorization of the determinant of Q is known).

There are various methods in the literature for solving homogeneous quadratic
equations q(x, y, z) = 0 over Q. Mathematicians seem to be unanimous in saying
that the first step consists of reducing to the diagonal case, that is, to Legendre
equations of the type ax2 + by2 + cz2 = 0. As we will see in Section 4.2, this is a
good idea in theory, but disastrous in practice: the determinant of the new equation
(which has to be factored) can become extremely large, even if the original one has
only a couple of digits. After this classical reduction, the ways differ according to
the authors.

The most often described method to solve the Legendre equations is probably the
method of Lagrange, which consists of a Fermat descent: we can deduce a solution
for this equation from the solution of a similar equation, but with smaller coefficients
(see for example [6, Ch. IV, §3] or [9, Ch. IV, §3.3]): the main drawback of this
method is the need to factor many large numbers. Although it seems a theoretical
necessity to factor the determinant, no other factorization is justified. Cochrane
and Mitchell in [2] and Cremona and Rusin in [4] give ways to avoid all unnecessary
factorizations. The corresponding algorithms are efficient, but can not be used for
solving general quadratic equations without doing the disastrous reduction to the
diagonal case.

According to [2], the solutions of ax2 + by2 + cz2 = 0 lie in a lattice of covolume
2|abc| (defined by congruences modulo a, b and c), and a smallest vector of this
lattice will give a solution. If we use an efficient algorithm for finding small vectors in
a 3-dimensional lattice (for example LLL as described in [3, §2.6] or the algorithm
of Vallée, [10]), it will give us a solution. However, the authors of [2] consider
small vectors for a definite quadratic form, which is not the initial quadratic form.
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Although it is easy to define (consider only the absolute value of the coefficients!),
it is not naturally attached to the problem. I do not see how to generalize it to the
nondiagonal case.

The method of [2] is not that far from the one developed by Gauss in [5, sections
272, 274, 294], except that Gauss reduces directly the indefinite quadratic form for
the same lattice. As is noted in [1, p. 98], the method of Gauss consists of two
steps:

(1) Compute square roots modulo a, b and c, and build another quadratic form
with determinant −1.

(2) Reduce and solve this new quadratic form.

However, Cassels ([1, p. 98]) says about it that “Gauss’s proof of the existence of
h(x) is explicit but not very transparent, which perhaps explains why it is not often
reproduced in the literature”, where the notation h(x) refers to the quadratic form
with determinant −1. Another comment about it is given in [4]: “Without a fast
method of carrying out such a reduction, Gauss’s methods of solving Legendre’s
equation are much slower than the method we presented above.”

The goal of this paper is to present a fast method for reducing unimodular qua-
dratic forms, which is a generalization of the LLL–algorithm to indefinite quadratic
forms, so step 2 of the algorithm of Gauss is now fast. We also give a process of
minimization for a solvable quadratic form, which is a generalization of step 1 to
a general ternary quadratic form. We prove that the complete algorithm runs in
polynomial time (except for the step of factorization of the initial determinant).
We give at the end some numerical examples and the corresponding timings.

Notation

Mn(Z) = set of n × n matrices with entries in the ring Z.
GLn(Z) = subset of Mn(Z) defined by det(Q) = ±1.
Id(n) = n × n identity matrix.
Fp = finite field with p elements.
x̄ = projection of x ∈ Z to Z/NZ, N depending on the context.
vp(x) = p-adic valuation of x.
�x� = nearest integer to x, so that − 1

2 � x − �x� < 1
2 .

1. Reduction of unimodular quadratic forms of small dimension

1.1. Reduction of positive definite quadratic forms. Consider a positive def-
inite quadratic form q over Zn. We write x ·y for the underlying scalar product and
x2 for x · x. Let Q = (bi · bj) ∈ Mn(R) be its symmetric Gram matrix according
to a basis b1, . . . ,bn. We have det(Q) �= 0 and q(x) = XtQX , where X contains
the coefficients of x ∈ Zn in the basis b1, . . . ,bn.

For a basis b1, . . . ,bn of Zn and a positive definite quadratic form q, the following
algorithms are classical (see Algorithms 2.5.4 and 2.6.3 in [3]).

Algorithm 1.1 (Gram-Schmidt). Starting with a basis b1, . . . ,bn of Rn, this al-
gorithm computes an orthogonal basis b∗

1, . . . ,b
∗
n where b∗

i = bi −
∑i−1

j=1 µi,jb∗
j .

For i = 1, . . . , n do
-- set b∗

i = bi.
-- for j = 1, . . . , i − 1, set µi,j = bi · b∗

j/b
∗
j · b∗

j and b∗
i = b∗

i − µi,jb∗
j.
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Note that we have
∏n

i=1(b
∗
i )

2 = det(Q). If we exchange bk−1 and bk, the vector
b∗

k−1 also changes and we have

b∗ new
k−1 = b∗ old

k + µold
k,k−1b

∗ old
k−1

and (
b∗ new

k−1

)2 =
(
b∗ old

k

)2
+

(
µold

k,k−1

)2 (
b∗ old

k−1

)2
.

Algorithm 1.2 (LLL). Let 1
4 < c < 1. Starting with a basis b1, . . . ,bn of Zn, do

the following transformations:
1- Set k = 2.
2- Compute the b∗

i and the µi,j using Algorithm 1.1.
3- For i = n, . . . , 1, for j = 1, . . . , i − 1 set q = �µi,j�, bi = bi − qbj and

µi,j = µi,j − q.

4- If (b∗
k)2+µ2

k,k−1

(
b∗

k−1

)2
< c

(
b∗

k−1

)2
, exchange bk and bk−1, and set

k = max(k − 1, 2). Otherwise, set k = k + 1.
5- If k � n, go to step 2; otherwise, return the basis (bi).

This version of the algorithm is absolutely not optimized, but it makes the proofs
easier. It is also possible to work directly on the Gram matrix Q and not on the
vectors.

Let γ = 1
c− 1

4
> 4

3 . It is known (see [3, section 2.6]) that the result of Algorithm
1.2 terminates in polynomial time and has the following properties:

(b∗
k−1)

2 < γ(b∗
k)2 for 1 < k � n

and
(b2

1)
n � γn(n−1)/2 det(Q) .

1.2. Reduction of indefinite quadratic forms. We consider here a situation
close to the situation of Section 1.1. We now allow q to be indefinite, but we
restrict to Q ∈ Mn(Z). With the same notation, note that x2 may be nonpositive
for x �= 0.

What happens if we apply Algorithm 1.2 for this quadratic form? As it stands, it
is not clear that it finishes. However, we can replace the test in step 4 by the same
one with absolute values (this is natural since the quantities involved do not need
to be positive any more, and we want to make (b∗

k−1)
2 decrease only in absolute

value):

Algorithm 1.3 (LLL for indefinite quadratic forms). Let 1
4 < c < 1. Starting with

a basis b1, . . . ,bn of Zn, do the following transformations:
1- Set k = 2.
2- Compute the b∗

i and the µi,j using Algorithm 1.1 (if this algo-
rithm finds some (b∗

i )
2 = 0, then return b∗

i ).
3- For i = n, . . . , 1, for j = 1, . . . , i − 1 set q = �µi,j�, bi = bi − qbj and

µi,j = µi,j − q.

4- If | (b∗
k)2 + µ2

k,k−1

(
b∗

k−1

)2 | < c| (b∗
k−1

)2 |, exchange bk and bk−1 and
set k = max(k − 1, 2). Otherwise, set k = k + 1.

5- If k � n, go to step 2; otherwise, return the basis (bi).

Two situations may occur: either one of the b∗
i satisfies (b∗

i )
2 = 0 at step 2

(during the execution of Algorithm 1.1) and the algorithm stops with a solution of
q(x) = 0, or this never happens and the algorithm finishes with a reduced basis.
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Theorem 1.4. Let q be a quadratic form over Zn defined by q(x) = xtQx with
a symmetric matrix Q ∈ Mn(Z) such that det(Q) �= 0. Apply Algorithm 1.3 with
1
4 < c < 1 to a basis b1, . . . ,bn of Zn. Then

– either it finds some x ∈ Zn such that q(x) = 0,
– or it finishes (after a polynomial number of steps) with a reduced basis b1, . . . ,bn

such that
|(b∗

k−1)
2| � γ|(b∗

k)2| for 1 < k � n

and
1 � |(b1)2|n � γn(n−1)/2| det(Q)| ,

where γ =
(
c − 1

4

)−1
> 4

3 .
If furthermore q is indefinite, we have

1 � |(b1)2|n � 3
4
γn(n−1)/2| det(Q)| .

Proof. We only have to consider the case where it never finds a solution of q(x) = 0,
so that all the steps of the algorithm are well defined. We shall first show why this
algorithm finishes after a polynomial number of steps. The reason is exactly the
same as for the usual LLL, and we reproduce the proofs given in [3, §2.6]. Set
Bi = |(b∗

i )
2|. We observe that dk =

∏k
i=1 Bi is the determinant (up to sign) of

the minor of Q defined by its k first rows and columns; hence dk is an integer.
Each time we make an exchange at step 4, dk−1 strictly diminishes by a factor at
least c−1 > 1, whereas the other dj do not change. This proves that the algorithm
terminates polynomially.

It is clear that at the end, we have | (b∗
k)2 + µ2

k,k−1

(
b∗

k−1

)2 | � c| (b∗
k−1

)2 |
for all 1 < k � n. Assume first that (b∗

k)2 and
(
b∗

k−1

)2 have the same sign.
We have in this case | (b∗

k)2 | � (c − µ2
k,k−1)|

(
b∗

k−1

)2 |, but |µk,k−1| � 1
2 ; hence

Bk−1 � γBk. Assume now that (b∗
k)2 and

(
b∗

k−1

)2 have opposite signs. In this case
(b∗

k)2 + µ2
k,k−1

(
b∗

k−1

)2 must have the same sign as (b∗
k)2, and we have | (b∗

k)2 | �
(c + µ2

k,k−1)|
(
b∗

k−1

)2 | � c| (b∗
k−1

)2 |. Hence Bk−1 � c−1Bk � γBk.
It remains to prove the last inequality. Since we have assumed that the algorithm

does not find any solution of q(x) = 0, the integer |(b1)2| must be at least 1. We
have |(b1)2| = B1 � γB2 � · · · � γn−1Bn. The product of these inequalities gives
|(b1)2|n � γ1+2+···+(n−1)dn. Recall that dn = | det(Q)|, and we get the result for a
general q.

Consider now the particular case of q indefinite. Since the quadratic form is
indefinite, the sequence (b∗

1)
2,(b∗

2)
2,...,(b∗

n)2 contains a sign change. Assume for
example (b∗

k−1)
2(b∗

k)2 < 0, with 1 < k � n. As we have seen earlier, we have
Bk−1 � c−1Bk and Bi−1 � γBi for i �= k. From this slightly better inequality, we
get |(b1)2|n � γ1+2+···+(n−1)−(n+1−k)c−(n+1−k)dn. The difference with the general
case is therefore the factor (γc)−(n+1−k). We have n + 1 − k � 1, and the upper
bound c < 1 gives (γc)−(n+1−k) � (γc)−1 < 3

4 : we have the conclusion. �

Remark 1.5. From this result, we see that the quality of the reduction is better
when the quadratic form is indefinite. In fact, the bound for |(b1)2| can be even
smaller if the sign change occurs between (b∗

k−1)
2 and (b∗

k)2 for a small k (the worst
case being k = n) or if there are several such sign changes.
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Table 1.

n lower bound

3 3
4 = 0.750 < c

4 1
4 + 2−2/3 < 0.880 < c

5 1
4 + 2−1/2 < 0.958 < c

1.3. Solving unimodular quadratic equations of small dimension.

Theorem 1.6. Let n � 5 and let q be a unimodular quadratic form over Zn defined
by q(x) = xtQx with a symmetric matrix Q ∈ Mn(Z) such that det(Q) = ±1.
Apply Algorithm 1.3 with 1

4 + 2−2/(n−1) < c < 1, and assume it does not find a
solution of q(x) = 0. Then the Gram matrix of the reduced basis is diagonal with
only ±1 coefficients on the diagonal.

Proof. The lower bound given for c gives us exactly γn(n−1)/2 < 2n. Using Theorem
1.4, we see that when the algorithm does not find a solution, it finishes with a
reduced basis such that 1 � |(b1)2| < 2. Since (b1)2 ∈ Z, we have (b1)2 = ±1.
Now, for 1 < i � n, we have µi,1 = bi.b∗

1/b
∗
1.b

∗
1, but b1 = b∗

1 and b∗
1.b

∗
1 = ±1;

hence µi,1 = ±bi.b1 ∈ Z. At the end of the algorithm, we have |µi,1| � 1
2 , which

implies that µi,1 = 0 and that bi.b1 = 0. By an easy induction we obtain the result
for the other coefficients of the Gram matrix. �

Remark 1.7. Table 1 shows the computations for the numerical values given in this
theorem for the lower bound for c.

Theorem 1.8. Let n � 6 and let q be a unimodular indefinite quadratic form
over Zn defined by q(x) = xtQx with a symmetric matrix Q ∈ Mn(Z) such that

det(Q) = ±1. Apply Algorithm 1.3 with 1
4 + 2−2/(n−1)

(
3
4

)2/(n2−n)
< c < 1, and

assume it does not find a solution of q(x) = 0. Then the Gram matrix of the reduced
basis is diagonal with only ±1 coefficients on the diagonal.

Proof. The proof is similar to the proof of Theorem 1.6, using the inequality given
in Theorem 1.4 for q indefinite. �

Remark 1.9. The improved lower bounds for c are given numerically in Table 2.

Remark 1.10. We can really see Algorithm 1.3 as an equation solver for unimodular
indefinite quadratic equations of dimension n � 6. Since even it does not directly
return a solution, we can certainly find such a solution among the bi + bj .

Table 2.

n lower bound
3 0.705 < c
4 0.851 < c
5 0.938 < c
6 0.994 < c
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2. Minimization of solvable ternary quadratic forms

Let q(X, Y, Z) be a quadratic form, defined by a 3 × 3 symmetric matrix Q
with integral entries. We assume in this section that the determinant of Q is
not 0. Our goal is to find a nontrivial integral solution (or rational, but this is
clearly equivalent) for q(X, Y, Z) = 0. The existence of such a solution is classically
equivalent to the existence of a solution in each p-adic field Qp and in R (see for
example [6]). It is also well known that for an odd prime p not dividing detQ, a
solution always exists. This existence is given by several Hilbert symbols which are
easy to compute if we know the factorization of det Q. Hence, we shall assume in
this section that this factorization is known and that a nontrivial p-adic solution
always exists. This last assumption is not very important, since it can be deduced
from our algorithm; however, it is not an efficient way to prove (or disprove) it.

The aim of this section is to minimize the solvable ternary quadratic form q.
This means that we will build another quadratic form q′, equivalent to q, but with
determinant ±1, such that a solution of q can be deduced from a solution of q′.
The strategy is to work with one prime divisor p of det Q at a time and to divide
successively the determinant by p, until it is ±1.

We shall prove

Theorem 2.1. Let Q ∈ M3(Z) be a symmetric matrix with detQ �= 0 and such
that the quadratic equation xtQx = 0 has a nontrivial local solution in Qp for all
primes p dividing det(Q). Then, there is a matrix V ∈ M3(Z) with the following
properties:

det(V ) = | det(Q)|,
Q′ =

1
det(Q)

V tQV ∈ M3(Z),

det(Q′) = ±1 .

As soon as the factorization of det(Q) is known, there is an algorithm for finding
V in at most O(ln4(| det(Q)|)) operations. There is a constant κ > 0 such that the
coefficients of V are O(| det(Q)|κ).

We will repeatedly use the over–line to denote the reduction mod p.

2.1. Computing the kernel mod p. In this section, we want to find the kernel
of a matrix mod p and lift the corresponding base change (given by a matrix in
GLn(Fp)) to GLn(Z). This is done in a single algorithm.

Consider the following algorithm:
In this algorithm, we write x mod p for the integer x′ ∈ Z such that p | (x−x′)

and |x′| � p
2 (for p = 2, we choose x′ to be 0 or 1). We also write Mk for the kth

column of M .

Algorithm 2.2. Let p be a prime number and M ∈ Mn(Z). This algorithm
computes a matrix U ∈ GLn(Z) and d � 0 :

1- Set i = n, d = 0 and U = Id(n).
2- Set j = i+d. While j > 0 and p | Mi,j, do j = j−1. If j = 0, set

d = d + 1 and go to 6.
3- If j < i + d, exchange Mj and Mi+d and exchange Uj and Ui+d.
4- Let u ∈ Z such that uMi,i+d ≡ 1 mod p.
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5- For all 1 � k � j − 1 set α = uMi,k mod p, Mk = Mk − αMi+d and
Uk = Uk − αUi+d. Reduce M mod p.

6- Set i = i − 1. If i > 0, go to 2.
7- Return U and d.

Proposition 2.3. The result of Algorithm 2.2 is such that the kernel of M̄ (mod
p) is the span of the first d columns of Ū . The coefficients of Un−k are bounded by(
1 + p

2

)k and by
(
1 + p

2

)n−d. If the coefficients of M are bounded by p
2 , then the

algorithm runs in O(n3 ln2(p)) bit operations.

Proof. It is standard that this algorithm gives the kernel of M mod p (see Algo-
rithm 2.3.1 in [3]). The inequalities are easy since |α| � p

2 in step 5. Step 4 requires
O(ln2(p)) bit operations, and step 5 requires O(n2 ln2(p)) bit operations, so that
the full algorithm runs in O(n3 ln2(p)) bit operations. �
2.2. Minimization.

Lemma 2.4. Let Q ∈ Mn(Z) and let p be a prime number. Let d = dimFp(ker Q̄).
We have pd divides det Q.

Proof. This is a corollary of Proposition 2.3. �
Now Q will be a symmetric matrix in M3(Z), such that the quadratic form xtQx

is solvable over Qp.

Proposition 2.5. Let p be a prime such that vp(det(Q)) = 1 and such that the
quadratic equation xtQx has a nontrivial solution in Qp. There is a matrix V ∈
M3(Z) such that det(V ) = p and V tQV = pQ′ where Q′ ∈ M3(Z) is symmetric
with det(Q′) = p−1 det(Q).

Proof. From Lemma 2.4, we have dimFp(ker Q̄) = 1. Let U be given by Algorithm
2.2 and Q′′ = U tQU . Let x1,x2,x3 be the canonical basis of Zn. We know that
Q′′x1 is divisible by p and in particular Q′′

1,1 = xt
1Q

′′x1 is divisible by p. But this
last quantity cannot be divisible by p2 since vp(det(Q′′)) = 1. Let x = α1x1+α2x2+
α3x3 be a nontrivial p-adic solution of xtQ′′x = 0. After rescaling, we can assume
that mini=1,2,3(vp(αi)) = 0. We have mini=2,3(vp(αi)) = 0. Indeed, if we had
p � α1, p | α2 and p | α3, then we would have 0 = α2

1x
t
1Q

′′x1 +2α1(rtQ′′x1)+rtQ′′r
(we have set r = α2x2 + α3x3) with vp(α2

1x
t
1Q

′′x1) = 1, vp(2α1(rtQ′′x1)) � 2
and vp(rtQ′′r) � 2. But this is impossible, so we have mini=2,3(vp(αi)) = 0. By
symmetry, we can assume that vp(α2) = 0. Let x ∈ Z with x ≡ α3α

−1
2 mod p. Let

N =




1 0 0
0 p x
0 0 1


. Set V = UN . We have V ∈ M3(Z) with det(V ) = p, and V tQV

is divisible by p by construction, so we have the conclusion. �
This proposition corresponds to the following algorithm:

Algorithm 2.6. Assume a symmetric matrix Q ∈ M3(Z) and a prime number
p satisfying the conditions of Proposition 2.5. This algorithm returns the matrix
V ∈ M3(Z) described in this proposition.

1- Let U be given by Algorithm 2.2. Set Q′′ = U tQU.

2- If p | Q′′
2,2, set N =




1 0 0
0 1 0
0 0 p


 and go to 6.
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3- Let u ∈ Z such that uQ′′
2,2 ≡ 1 mod p.

4- Set ∆ = (Q′′
3,2)

2 −Q′′
2,2Q

′′
3,3. Using Algorithm 1.5.1 of [3], compute

a square root δ of ∆ mod p.

5- Set x = u(−Q′′
2,3 + δ) mod p and N =




1 0 0
0 p x
0 0 1


.

6- Return V = UN.

Remark 2.7. During the proof, we have used the local solubility to build a nontrivial
solution mod p of the quadratic equation xtQ′′x = 0 for x of the form x = ax2+bx3.
This algorithm can be used as a test for the local solubility of Q. Indeed, one can
prove that the square root involved in step 4 exists if and only if Q has a nontrivial
solution in Qp.

Remark 2.8. At step 4, we have ∆ �= 0 mod p. For p = 2, this implies that ∆ is a
square and that the algorithm still works, even if we do not assume the existence
of a nontrivial solution in Q2. I thank John Cremona who pointed out this fact.

Remark 2.9. Since computing that a square root mod p is achieved in O(ln4(p)) bit
operations, this algorithm runs in O(ln4(p)) bit operations. During step 5, if x is
chosen in the interval [− p

2 , p
2 ], we deduce from Proposition 2.3 that the coefficients

of V are O(p3).

Proposition 2.10. Let p be a prime such that vp(det(Q)) � 2. Assume further
that dimFp(ker Q̄) = 1. There is a matrix V ∈ M3(Z) such that det(V ) = p2 and
V tQV = p2Q′ where Q′ ∈ M3(Z) is a symmetric matrix with det(Q′) = p−2 det(Q).

Proof. Let U be given by Algorithm 2.2 and let Q′′ = U tQU . We know that Q′′
1,1 is

divisible by p. It is not difficult to prove that in this situation it is in fact divisible

by p2. Let N =




1 0 0
0 p 0
0 0 p


. The matrix V = UN has the required property. �

This proposition corresponds to the following very simple algorithm:

Algorithm 2.11. Assume a symmetric matrix Q ∈ M3(Z) and a prime number
p satisfying the conditions of Proposition 2.10. This algorithm returns the matrix
V ∈ M3(Z) described in this proposition.

1- Let U be given by Algorithm 2.2. Set Q′′ = U tQU.

2- Set N =




1 0 0
0 p 0
0 0 p


.

3- Return V = UN.

Remark 2.12. This algorithm clearly runs in O(ln2(p)) bit operations. We deduce
from Proposition 2.3 that the coefficients of V are O(p3).

Proposition 2.13. Let p be a prime such that vp(det(Q)) � 2. Assume further
that dimFp(ker Q̄) � 2. There is a matrix V ∈ M3(Z) such that det(V ) = p and
V tQV = pQ′ where Q′ ∈ M3(Z) is a symmetric matrix with det(Q′) = p−1 det(Q).
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Proof. Let U be given by Algorithm 2.2 and let Q′′ = U tQU . The first two columns

and rows of Q′′ are divisible by p. Let N =




1 0 0
0 1 0
0 0 p


. The matrix V = UN has

the required property. �

This proposition corresponds to the following very simple algorithm:

Algorithm 2.14. Assume a symmetric matrix Q ∈ M3(Z) and a prime number
p satisfying the conditions of Proposition 2.13. This algorithm returns the matrix
V ∈ M3(Z) described in this proposition.

1- Let U be given by Algorithm 2.2. Set Q′′ = U tQU.

2- Set N =




1 0 0
0 1 0
0 0 p


.

3- Return V = UN.

Remark 2.15. This algorithm clearly runs in O(ln2(p)) bit operations. We deduce
from Proposition 2.3 that the coefficients of V are O(p2).

Now we get the proof of Theorem 2.1, just by putting together all the previous
results and applying these algorithms to each prime p dividing detQ and by noting
(again !) that the factorization of detQ must be given because we do not know
how to compute it nearly so quickly. This algorithm is part of Algorithm 3.1 given
subsequently.

Remark 2.16. The constant κ involved in the bound for V is not explicit. In order to
get an explicit bound, we should do a careful analysis of the bounds in Algorithms
2.6, 2.11 and 2.14 and be able to derive an explicit bound when we multiply all
the different V together. However, this bound for V should not be too far from
O(| det Q|3) which gives the bound O(M | detQ|5) for Q′ where M is a bound for
the coefficients of Q. In any case, we have detQ = O(M3), so that the algorithm
for finding V is polynomial time, and Q′ is always bounded by a power of M .

3. The complete solution of ternary quadratic equations

3.1. The general case. Putting together Theorem 1.8 and Theorem 2.1 and the
corresponding algorithms, we get the following algorithm for solving general ternary
quadratic equations:

Algorithm 3.1. Assume a symmetric matrix Q with detQ �= 0, such that a non-
trivial rational solution of xtQx exists. This algorithm returns one such solution.

1- Factor detQ. Set W = Id(3).
2- If detQ = ±1, go to 6.
3- Let p | detQ. Let U and d be given by Algorithm 2.2 applied

with M = Q.
4- If vp(det Q)=1, compute V by Algorithm 2.6. Otherwise, compute

V by Algorithm 2.11 if d = 1 or by Algorithm 2.14 if d > 1.
5- Set W = WV and Q = 1

detV V tQV . Go to 2.
6- Apply Algorithm 1.3 to Q (and to the canonical basis of Zn)

with c = 3
4. If the answer is a solution of xtQx = 0, return Wx.
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Otherwise let B be the matrix of the reduced basis, and let Q′=BtQB
(this matrix is diagonal with coefficients ±1). Find a solution of
xtQ′x = 0 and return WBx.

As we have seen, if the coefficients of Q are bounded by M , the size of the
minimized matrix 1

detQW tQW is bounded by a polynomial in M . The analysis of
Algorithm 1.3 shows therefore that the complete algorithm runs in polynomial time
as soon as the factorization of the determinant is known.

3.2. An important special case: Legendre equations. We specialize in this
section to the case where the symmetric matrix Q ∈ M3(Z) is diagonal. The
quadratic form is now q(x, y, z) = ax2 + by2 + cz2. The equation q = 0 is known
as a Legendre equation. We can assume that a, b, and c are integral and pairwise
coprime, and, if we know their factorizations, that they are squarefree. Assume
q = 0 has a local solution in Qp for all primes p and in R. It is known that this
condition is equivalent to the existence of a solution in Q. In this situation, it is
possible to do all the minimization steps described in Section 2.2 for all primes in
a single step. The only remaining thing to do for solving q = 0 is to use Algorithm
1.3.

Theorem 3.2. Let a, b and c be pairwise coprime integers. Assume that the
quadratic equation ax2 + by2 + cz2 = 0 has a local solution in Qp for all primes p

dividing abc. Let Q =




a 0 0
0 b 0
0 0 c


. Then, there is a matrix U ∈ M3(Z) with the

following properties:

det(U) = abc,

Q′ =
1

abc
U tQU ∈ M3(Z),

det(Q′) = ±1.

Proof. This theorem is essentially a reformulation of [5, p. 294]. It is also a special
case of Theorem 2.1. �

Remark 3.3. As we have seen for Proposition 2.5, the 2-adic solubility is not nec-
essary in this theorem.

The full algorithm for solving the Legendre equation aX2 + bY 2 + cZ2 = 0
corresponds to the following:

Algorithm 3.4. Given a, b and c, three squarefree and pairwise coprime inte-
gers, this algorithm assumes that the Legendre equation has a rational solution and
returns one such solution.

1- For all prime divisors p of a, compute a square root of
−c/b modulo p (using the algorithm of Shanks ([3, Alg.1.5.1]),
and use the Chinese Remainder Theorem to deduce a square root Xa

of −c/b modulo a.
2- Compute also a square root Xb of −c/a modulo b and a square

root Xc of −b/a modulo c.
3- Using the Extended Euclid Algorithm, compute two integers u and

v such that bu + cv = 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SOLVING QUADRATIC EQUATIONS 1541

4- Let U =




bc abuXc XabuXc + Xbcv
0 a Xa

0 0 1


 and Q′ = 1

abcU t




a 0 0
0 b 0
0 0 c


U.

5- Apply Algorithm 1.3 to Q′ with c = 3
4. If the answer is a solu-

tion of xtQ′x = 0, return Ux. Otherwise let B be the matrix of the
reduced basis, and let Q′′ = BtQ′B (this matrix is diagonal with
coefficients ±1). Find a solution of xtQ′′x = 0 and return UBx.

4. Numerical examples

4.1. Legendre equations. We test our algorithm on the values given in [4], and
we reproduce the notation: the coefficients are of the form 10k + ε. There are
100 test values for each k � 200 and only 5 for k = 500. In these examples, the
equation is rationally solvable, and the coefficients are known to be primes, a fact
which is explicitly used in the algorithm so that no factorization is needed. Our
implementation is written in GP and runs with an Athlon 900 MHz processor.
In Table 3 the time indicated for the certificate (first column) is the time for the
computation of the square roots modulo p (steps 1 and 2 of Algorithm 3.4). The
time indicated for the reduction (second column) is the time for the second part
of Algorithm 3.4 (steps 3–5), that is, essentially for Algorithm 1.3. The times are
expressed in seconds.

4.2. A huge example from 2-descent on elliptic curves. In [8] we have seen
that the algorithm of 2-descent on elliptic curves over a number field K uses the
solution of several quadratic equations over K. It was suggested there to solve
them using the standard algorithm, which starts by a diagonalization and then
uses either a standard algorithm for Legendre equations if the equation is over Q,
or an algorithm for solving norm equations (for example as described in [7]) if we
are over a number field. However, if we work over Q, this is not a good idea,
since the diagonalization step multiplies the determinant of the equation by its first
coefficient, which may be impossible to factorize, compared to the determinant. If
we use our new method, the factorization of the determinant is known in advance,

Table 3.

k Certificate Reduction
10 0.030 0.630
15 0.030 0.800
20 0.040 0.930
25 0.050 1.030
30 0.090 1.150
50 0.120 1.680
75 0.400 2.270
100 0.800 2.990
125 1.740 3.720
150 1.640 4.470
175 3.700 5.400
200 4.800 6.200
500 3.900 1.000
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and no other factorization is needed. Usually, the factorization of the determinant
is very easy (typically a few digits), since it is given by the norm of a unit or an
S-unit. On the other hand, the coefficients of the quadratic form themselves are
impossible to factor (typically hundreds of digits), since they correspond to the
coefficients of the same unit or S-unit.

We give here a striking example, occuring for the elliptic curve y2 = x3 + 7823.
We recall quickly how the quadratic equations are built in the context of 2-

descent on elliptic curves (for more details, see [8]). Let K = Q(θ) be a cubic
field, where θ is a root of θ3 + Aθ2 + Bθ + C = 0. Let δ = a − bθ + cθ2 be a
unit of K (or an S-unit of K, for some set S containing only a few small primes),
such that its norm NK/Q(δ) is a square r2. We want to find some nonzero z =
u + vθ + wθ2 ∈ K, such that the coefficient on θ2 of δz2 vanishes. This gives a
quadratic equation q2(u, v, w) = 0 with determinant det(q2) = NK/Q(δ) = r2. If
we follow the process of diagonalization suggested in [8] or [4], we have to solve the
new equation V 2 −αU2 − cW 2, where α = Abc + Bc2 − ac + b2. Hence, we have to
factor both c and α.

In our example, θ is a root of θ3 + 7823 = 0, and δ is the fundamental unit
of K: its coefficients a, b, c ∈ Z have about 1370 decimal digits, and its norm is
only 1 (the regulator is about 6306.9). If we want to solve the diagonal Legendre
equation, we have to factor c (about 1370 decimal digits) and α (about twice as
many!), which is out of reach. If we use our new method instead, we only have to
factor r2 = 1, so there is no factorization to do (and also no minimization) and
it only remains to solve the unimodular quadratic form q2, whose coefficients have
the size of a, b, and c: this takes only 1 second with Algorithm 1.3. We record here
only the value of c:

c =47355 47642 38342 24877 99072 68459 54397 37493 79449 77195 50937 15271 96023 78702 35986 15693

32318 03073 96962 24642 59795 53147 92312 40881 72610 70891 77105 51426 13056 31285 70083 46940 10067

38064 96608 46156 58665 34864 18124 66382 09200 76958 35199 50394 77725 00014 54651 60673 20602 88379

58836 00959 25255 73399 68766 20231 05833 89860 34597 55786 83776 25628 25726 73794 89942 85394 32918

33006 88608 19014 78465 25124 59692 61429 88221 51680 44616 26181 13724 03145 21440 31030 84663 09890

20724 50488 61069 48766 15988 04854 64097 80681 83971 51702 28725 81522 20556 48833 45371 78786 39558

20893 85252 54441 30765 15325 30745 05560 72888 43070 87720 33760 36121 92697 00127 79708 71383 62874

41701 35637 27954 48964 48588 55219 50671 69581 56588 43037 45785 05866 09486 17728 94481 72639 24805

83508 09025 10878 20743 48511 22014 72796 98562 99812 30396 88176 86861 60576 55387 94588 37579 05779

03513 12618 46336 89855 43410 76374 53962 81655 32752 38561 64313 77612 56185 56445 27520 76296 38686

38771 70383 59844 84765 97233 53418 73696 67030 74121 22183 63083 04086 77691 83360 51810 50699 08408

52046 27144 85278 05072 76393 68278 86359 92021 21872 18920 38223 71149 53584 33110 16613 61300 64277

29041 07062 21578 81387 35328 86961 69316 83369 86647 89790 32589 24992 66880 42179 72512 60053 72967

71798 28828 38244 78910 21648 69938 04775 09451 65793 38502 78503 10149 58498 37198 85645 25202 21032

10982 98751 79521 97877 37537 17573 15753 82400 39513 81495 02461 34722 47217 97326 55105 37103 78126

80943 13206 17143 43277 00041 18122 19502 79438 38816 95155 20987 80276 46692 11549 82831 93578 08920

83133 8238 188

References

1. J.W.S. Cassels: Rational Quadratic Forms, L.M.S. Monographs, No.13. London, New York,
San Francisco: Academic Press (1978). MR0522835 (80m:10019)

2. T. Cochrane and P. Mitchell: Small solutions of the Legendre equation, Journal of Number
Theory 70 (1998), 62-66. MR1619944 (99a:11029)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=0522835
http://www.ams.org/mathscinet-getitem?mr=0522835
http://www.ams.org/mathscinet-getitem?mr=1619944
http://www.ams.org/mathscinet-getitem?mr=1619944


SOLVING QUADRATIC EQUATIONS 1543

3. H. Cohen: A Course in Computational Algebraic Number Theory , Graduate Texts in
Math. 138, Third corrected printing, Springer–Verlag (1996). MR1228206 (94i:11105)

4. J.E. Cremona, D. Rusin: Efficient solution of rational conics, Math. Comp. 72 (2003), 1417–
1441. MR1972744 (2004a:11137)

5. C.F. Gauss: Disquisitiones Arithmeticae, Springer Verlag (1986). MR0837656 (87f:01105)
6. J.-P. Serre: Cours d’arithmétique, P.U.F. 3d edition (1988). MR0498338 (58:16473)
7. D. Simon: Solving norm equations in relative number fields using S-units, Math. Comp., vol.

71 No. 239 (2002), 1287 – 1305. MR1898758 (2003d:11044)
8. D. Simon: Computing the rank of elliptic curves over number fields, London Math. Soc.

Journal of Computation and Mathematics, vol. 5 (2002), 7–17. MR1916919 (2003g:11060)
9. N.P. Smart: The algorithmic resolution of Diophantine equations, London Math. Soc. Student

Texts 41, Cambridge University Press, 1998. MR1689189 (2000c:11208)
10. B. Vallée: An affine point of view on minima finding in integer lattices of lower dimensions,

Proc. of EUROCAL ’87 (Leipzig, 1987), Lecture Notes in Comput. Sci. 378, Springer, Berlin,
1989, 376–378. MR1033317 (92d:11069)
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