
Solving Rank-Deficient and Ill-posed Problems using

UTV and QR Factorizations∗

Leslie V. Foster

Department of Mathematics and Computer Science

San Jose State University

San Jose, CA 95192

foster@math.sjsu.edu

March 19, 2003

Abstract

The algorithm of Mathias and Stewart [A block QR algorithm and the singu-
lar value decomposition, Linear Algebra and Its Applications, 182:91-100, 1993]
is examined as a tool for constructing regularized solutions to rank-deficient and
ill-posed linear equations. The algorithm is based on a sequence of QR factor-
izations. If it is stopped after the first step it produces that same solution as the
complete orthogonal decomposition used in LAPACK’s xGELSY. However we
show that for low-rank problems a careful implementation can lead to an order
of magnitude improvement in speed over xGELSY as implemented in LAPACK.
We prove, under assumptions similar to assumptions used by others, that if the
numerical rank is chosen at a gap in the singular value spectrum and if the
initial factorization is rank-revealing then, even if the algorithm is stopped after
the first step, approximately half the time its solutions are closer to the desired
solution than are the singular value decomposition (SVD) solutions. Conversely,
the SVD will be closer approximately half the time and in this case overall the
two algorithms are very similar in accuracy. We confirm this with numerical
experiments. Although the algorithm works best for problems with a gap in the
singular value spectrum, numerical experiments suggest that it may work well
for problems with no gap.

1 Introduction

The solution to ill-posed or nearly rank-deficient linear equations is important in many
applications [18]. To solve these systems some form of regularization is usually used.
By regularization we mean the replacement of the original problem with a different,
better posed problem. For example if the original problem is

min ‖b−Ax‖ (1)

where A is an m×n ill-conditioned matrix with m ≥ n and the norm is the Euclidean
norm, it is often recommended to approximate A with an exactly rank-deficient matrix

∗This research was supported in part by the Woodward bequest to the Department of Mathe-

matics, San Jose State University. To appear in SIAM J. Matrix Anal. and Appl.

1

Â and solve for the minimum norm solution to (1) with A replaced by Â. To construct

Â it is useful to decompose A with a rank-revealing decomposition. The low-rank
approximation Â to A can be obtained by truncating such decompositions. The
singular value decomposition (SVD) is a very good, but expensive, decomposition. We
use the complete orthogonal or UTV decomposition A = UTV T with U orthogonal,
V orthogonal and T triangular. Here the superscript T indicates transpose. Some
of our results will apply to any UTV factorization and others to UTV factorizations
produced by the algorithm of Mathias and Stewart [21]. This algorithm produces
UTV factorizations by using a sequence of QR factorizations. We begin the algorithm
with an initial UTV factorization of the form A = UTV T = QRΠT where Q is an
orthogonal matrix, R is upper triangular, and Π is the permutation matrix produced
by the standardQR algorithm with pivoting [1, 4, 20]. (We also will discuss a variation
where initially AT is factored in this form). If the algorithm is stopped after the
first step it produces the same solution as the complete orthogonal decomposition
used in LAPACK’s xGELSY. However we show that for low-rank problems a careful
implementation can lead to an order of magnitude improvement in speed over the two
routines, xGELSY and xGELSD, that LAPACK provides for solving rank-deficient
problems. We prove, under assumptions similar to assumptions used by others about
the true solution to (1) and the noise in b , that if the numerical rank is chosen at
a gap in the singular value spectrum and if the initial factorization is rank-revealing
[3, p. 22] then, even if the algorithm is stopped after the first step, approximately
half the time its solutions are closer to the desired solution than are the singular
value decomposition solutions. Conversely, the SVD will be closer approximately half
the time and in this case overall the two algorithms are very similar in accuracy.
We confirm this with numerical experiments. Although the algorithm works best for
problems with a gap in the singular value spectrum, numerical experiments suggest
that it may work well for problems with no gap.
The paper is organized as follows. Following this introduction, in Section 2 we

discuss UTV factorizations in general. Section 3 discusses the algorithm in [21].
Section 4 focuses on perturbation errors and Section 5 on regularization errors. Section
6 describes implementation of the algorithm and numerical experiments. Section 7
has conclusions.

2 UTV factorizations

Consider any UTV factorization of A, A = UTV T . Let k be the rank of the low-rank
approximation to A. It is useful to partition the factorization as follows. If T is lower
triangular (T = L) we partition UTV T as

A = UTV T = ULV T =
(
Û U0

)



L̂ 0
H E
0 0



(
V̂ V0

)T

. (2)

If T is upper triangular (T = R) we partition UTV T as

A = UTV T = URV T =
(
Û U0

)



R̂ F
0 G
0 0



(
V̂ V0

)T

. (3)

In these equations Û is m× k, U0 is m× (m− k), V̂ is n× k, V0 is n× (n− k), L̂ is

k × k, H is (n− k)× k, E is (n− k)× (n− k), R̂ is k × k, F is k × (n− k), and G is

2

(n− k)× (n− k). In equations (2) and (3) U0 corresponds to the last two block rows
in the block triangular matrices. If we do not need to distinguish whether T is lower
or upper triangular we will let T̂ represent either L̂ or R̂. In each case we consider
two low-rank approximations to A. If T is either lower or upper triangular we will
call Û T̂ V̂ T the corner low-rank approximation to A. If T is lower triangular we call
U [L̂T HT 0]T V̂ T the block-column low-rank approximation to A. Similarly if T is

upper triangular we call Û [R̂ F]V T the block-row low-rank approximation to A.
We will also partition the SVD of A in a similar manner to (2) and (3).

A = USDV
T
S =

(
ÛS US0

)



D̂ 0
0 D0

0 0



(
V̂S VS0

)T

.

ÂS = ÛSD̂V̂
T
S is the rank k approximation produced by the SVD. We will use s1 ≥

s2 ≥ . . . ≥ sn to indicate the singular values of A. We will also use σk(A), 1 ≤ k ≤ n,
to indicate the kth singular value of a matrix A. Note that the SVD produces the best
rank k approximation to A in the sense that ‖A − Ã‖ is minimized over all rank k

matrices Ã when Ã = ÂS [3, p. 12].

When solving equation (1) we will consider the regularized solution xT = Â+
T b

where the superscript + indicates psuedoinverse and ÂT is either a corner or block-
row/column low-rank approximation to A corresponding to a UTV factorization of A.
It will be clear from the context whether xT refers to a corner or block-row/column
low-rank approximation. We call xT the truncated UTV solution to (1). We assume

in the rest of this paper that T̂ and D̂ are nonsingular. In this case the corner
low-rank solution has a simple form xT = V̂ T̂−1ÛT b. The truncated SVD (TSVD)

approximate solution to (1) is xS = V̂SD̂
−1ÛT

S b.
To evaluate the accuracy of xT we will assume that there is an underlying noiseless

solution x0 to equation (1) such that Ax0 = b0 and that in (1) b = b0 + δb where
δb is a noise vector in the right hand side b. We will prove theorems and carry out
numerical experiments that evaluate xT based on the value of ‖xT − x0‖ and will
compare ‖xT − x0‖ with ‖xS − x0‖. We might note that other authors [6, 8, 10] have
focused on bounding ‖xT −xS‖. In many cases the goal in solving (1) is to recover an
underlying solution x0 that is different from xS [18, 22]. In these cases comparison of
‖xT − x0‖ with ‖xS − x0‖ is of interest.
Suppose that C is some regularization operator so that x = Cb is the regularized

solution to (1). If x0 is the underlying noiseless solution then

x− x0 = Cb− x0 = (CA− I)x0 + C(δb) and (4)

‖x− x0‖ ≤ ‖(CA− I)x0‖+ ‖C(δb)‖. (5)

The two terms on the right are called, respectively, the regularization error and the
perturbation error. In the case that C corresponds to a corner low-rank solution
calculated using a truncated UTV factorization, where T is lower triangular, we have
a sharper result than (5):

‖x− x0‖
2 = ‖(CA− I)x0‖

2 + ‖C(δb)‖2. (6)

This result follows since, if C = V̂ L̂−1ÛT , then CT (CA− I) = 0 follows easily.
Our first theorem relates ‖xT − x0‖ and ‖xS − x0‖.

3

Theorem 1 Define

Ũ = UTUS =

(
ÛT ÛS ÛTUS0

UT
0 ÛS UT

0 US0

)
=

(
Ũ11 Ũ12

Ũ21 Ũ22

)
, (7)

Ṽ = V TVS =

(
V̂ T V̂S V̂ TVS0

V T
0 V̂S V T

0 VS0

)
=

(
Ṽ11 Ṽ12

Ṽ21 Ṽ22

)
, (8)

M =

(
− D̂−1Ṽ T

21 Ṽ21D̂
−1 ŨT

11 T̂
−T T̂−1 Ũ12

ŨT
12 T̂

−T T̂−1 Ũ11 ŨT
12 T̂

−T T̂−1 Ũ12

)
(9)

and

N =

(
Ṽ T

21 Ṽ21 Ṽ T
21 Ṽ22

Ṽ T
22 Ṽ21 − Ṽ T

12 Ṽ12

)
(10)

Also let δ̃b = UT
S δb and x̃0 = V T

S x0 and let xT be the corner low-rank solution to (1)
calculated from a truncated UTV factorization with T lower triangular. Then

‖xT − x0‖
2 = ‖xS − x0‖

2 + δ̃b
T
M δ̃b + x̃T

0 N x̃0. (11)

Proof. First note that

T = UTUSDV
T
S V = ŨDṼ T =

(
Ũ11 Ũ12

Ũ21 Ũ22

)


D̂ 0
0 D0

0 0



(

Ṽ11 Ṽ12

Ṽ21 Ṽ22

)T

. (12)

The perturbation error term for the SVD solution is ‖Â+
S δb‖ where Â+

S = V̂SD̂
−1ÛT

S

and for the UTV solution it is ‖Â+
T δb‖ where Â+

T = V̂ T̂−1ÛT . Now ‖Â+
S δb‖2 =

‖D̂−1ÛT
S US δ̃b‖

2 = ‖D̂−1(I 0) δ̃b‖2. Note that since Ṽ is orthogonal I = Ṽ T
11Ṽ11 +

Ṽ T
21Ṽ21 and therefore D̂

−2 = D̂−1Ṽ T
11Ṽ11D̂

−1 + D̂−1Ṽ T
21Ṽ21D̂

−1. Rewriting (12) as

T Ṽ = ŨD and since T is lower triangular it follows that Ṽ11D̂
−1 = T̂−1Ũ11. We may

conclude that

‖Â+
S δb‖2 = δ̃b

T
(

ŨT
11T̂

−T T̂−1Ũ11 + D̂−1Ṽ T
21Ṽ21D̂

−1 0
0 0

)
δ̃b.

Next note that ‖Â+
T δb‖2 = ‖(V̂ T̂−1ÛT)US δ̃b‖

2 = ‖T̂−1(Ũ11 Ũ12) δ̃b‖
2. Therefore

‖Â+
T δb‖2 = δ̃b

T

(
ŨT

11T̂
−T T̂−1Ũ11 ŨT

11T̂
−T T̂−1Ũ12

ŨT
12T̂

−T T̂−1Ũ11 ŨT
12T̂

−T T̂−1Ũ12

)
δ̃b.

It now follows that

‖Â+
T δb‖2 = ‖Â+

S δb‖2 + δ̃b
T
M δ̃b. (13)

Using Â+
S = V̂SD̂

−1ÛT
S it follows that the regularization error term for the trun-

cated SVD satisfies ‖(Â+
SA− I)x0‖

2 = ‖(Â+
SA− I)VS x̃0‖

2 = ‖(V̂S V̂
T
S − I)VS x̃0‖

2 =

‖ − (0 I) x̃0‖
2. Also ‖(Â+

TA − I)x0‖
2 = ‖(V̂ V̂ T − I)VS x̃0‖

2 = ‖V0V
T
0 VS x̃0‖

2 =

‖V T
0 (V̂S VS0) x̃0‖

2 = ‖(Ṽ21 Ṽ22) x̃0‖
2. Using this result and I = Ṽ T

22Ṽ22+Ṽ
T
12Ṽ12 (since

Ṽ is orthogonal) it follows that

‖(Â+
TA− I)x0‖

2 = x̃T
0

[(
0 0
0 I

)
+N

]
x̃0 = ‖(Â

+
SA− I)x0‖

2 + x̃T
0 N x̃0.

4

The theorem follows from this equation, (6) and (13). ¤
Note that for a UTV factorization chosen so that M 6= 0 and N 6= 0 then it

follows from (9) and (10) that M and N are symmetric indefinite matrices. Therefore
if M,N 6= 0 in the UTV factorization of any matrix A, by (11) there exists solution
vectors x0 and noise vectors δb such that the truncated UTV solution is closer to
x0 than is the truncated SVD solution. We will see in our numerical experiments in
Section 6 that it is frequently true that xT is closer to x0 than xS is (and, conversely,
that xS is frequently closer to x0 than xT is). In Section 4 and 5 we will use Theorem
1 to explore reasons why this is true.
A result from [21] that we will need later relates the singular values of A, T̂ , E

and G. If ‖E‖ < σk(T̂) and if T is lower triangular then

σj(T̂) ≤ σj(A) ≤ σj(T̂)
/ [

1−
‖H‖2

σ2
k(T̂)− ‖E‖

2

]1/2

, for 1 ≤ j ≤ k (14)

and

σk+j(A) ≤ σj(E) ≤ σk+j(A)
/ [

1−
‖H‖2

σ2
k(T̂)− ‖E‖

2

]1/2

, for 1 ≤ j ≤ n− k. (15)

If T is upper triangular and if ‖G‖ < σk(T̂) then equations (14) and (15) are also
true with H and E replaced, respectively, by F and G.
In the later sections we will also use some of the results [9] which we collect here.

These results bound sin θ, the sine of the angle between the subspaces spanned by V̂
and V̂S , and sinφ, the sine of the angle between the subspaces spanned by Û and ÛS .
Let Ũ and Ṽ be defined by (7) and (8). Assume that ‖E‖ < σk(T̂) and ‖G‖ < σk(T̂).
If T is lower triangular then

sinφ = ‖Ũ12‖ = ‖Ũ21‖ ≤
σk(T̂)‖H‖

σ2
k(T̂)− ‖E‖

2
and (16)

sin θ = ‖Ṽ12‖ = ‖Ṽ21‖ ≤
‖H‖‖E‖

σ2
k(T̂)− ‖E‖

2
. (17)

If T is upper triangular then

sinφ = ‖Ũ12‖ = ‖Ũ21‖ ≤
‖F‖‖G‖

σ2
k(T̂)− ‖G‖

2
and (18)

sin θ = ‖Ṽ12‖ = ‖Ṽ21‖ ≤
σk(T̂)‖F‖

σ2
k(T̂)− ‖G‖

2
. (19)

Note that in most case of interest to us, we will have ‖H‖ ≤ ‖E‖ and ‖F‖ ≤ ‖G‖.
Assuming this, sin θ and sinφ can be small for either of two reasons: (1) ‖E‖ <<

σk(T̂) and ‖G‖ << σk(T̂) or (2) ‖H‖ << ‖E‖ and ‖F‖ << ‖G‖. The first condition
will be true if there is a sufficiently large gap, at singular value k, in the singular values
of A and if the UTV factorization is rank-revealing (as defined in the next section) .
The second condition can be achieved by some of the algorithms for calculating UTV
factorizations, even when there is not a gap in the singular values.

5

3 Calculating UTV factorizations

There are a number of algorithms for calculating UTV factorizations [11, 21, 25]. We
will discuss the algorithm in [21] and a variation of this algorithm. One nice feature
of this algorithm is that if the algorithm is stopped after one step it produces a UTV
factorization which uses a singleQR factorization and, as the algorithm continues with
more steps, it approaches the singular value decomposition [21]. The algorithm in [21]
does not include interchanges in the columns of A. We will consider a variation that
can include column interchanges in the algorithm. At step i the algorithm produces
the factorization A = UiTiV

T
i .

Algorithm:

For i = 1 let A = U1T1V
T
1 where U1, T1 and V1 are formed either by

A = Q1R1Π
T
1 with U1 = Q1, T1 = R1 and V1 = Π1 or A

T = Q1R1Π
T
1 with

U1 = Π1, T1 = RT
1 and V1 = Q1. In this second case we will also use L1

to indicate T1 since T1 is lower triangular.

For i ≥ 2, if Ti−1 is upper triangular form T T
i−1 = QiRiΠ

T
i and let

Ti ≡ Li = RT
i , Ui = Ui−1Πi, Vi = Vi−1Qi.

For i ≥ 2, if Ti−1 is lower triangular form Ti−1 = QiRiΠ
T
i and let

Ti = Ri, Ui = Ui−1Qi, Vi = Vi−1Πi.

To determine when to stop this algorithm one can use the bounds on ‖xT − xS‖ in
Theorem 3.3 of [10]. We will select the initial permutation Π1 using the standard
pivoting technique [1, 4, 20] for QR factorizations and let Πi = I for i ≥ 2. We will
also consider a variation where at each step Πi is chosen by the standard pivoting
technique. We will see shortly that often the two alternatives produce identical low-
rank solutions. In later section when we use “the algorithm” or “the algorithm of
Section 3” we will refer to the first, simpler alternative (Πi = I, i ≥ 2).
We will find it useful to introduce notation to describe the first few steps of the

algorithm. When T1 is upper triangular we use QRP to indicate the first step of
the algorithm, QRLP the next step, QRLRP the next step, etc. When T1 is lower
triangular we use QLP for the first step, QLRP for the next step, QLRLP for the
next step, etc. Here the Q indicates that we are using QR factorizations, P indicates
that we use pivoting at the first step and the middle letters indicate the history of the
steps of the algorithm. When we are calculating xT using one of these factorizations
we will use TQRP, TQRLP, TQLP, TQLRP, etc. to indicate that we are using a
truncated factorization – we only need to calculate a portion of U , V and T .
The above algorithm, without column interchanges, was used in [21], to calculate

the singular value decomposition. The paper [21] focuses a block implementation of
the above algorithm. Results concerning the convergence of the above algorithm as a
tool to estimate singular values and singular vectors is discussed in [7]. Stewart [26, 27]
discusses QRLP, with pivoting at both steps, as a tool for estimating singular values
and for constructing low-rank approximations. We should note that Stewart uses the
designation QLP to refer to what we have called QRLP. In [19] the TQLRP algorithm
is described and an example is presented where it works well for regularization. Also
we should note that the block-row low-rank approximation produced by TQRP is

6

the same as the approximate solution to (1) produced by LAPACK’s xGELSY [1] or
by the algorithm HFTI in [20]. Mathematically these algorithms are identical. Our
comparison in this paper of TQRP with TSVD provides a comparison of the accuracy
of xGELSY and xGELSD, the two recommended tools in LAPACK 3.0 for solving
rank-deficient problems.
We now show that there is a close relationship between solutions produced by

block-row/column low-rank approximations and by corner low-rank approximations.
We also show that often identical low-rank solutions to (1) are produced by the
algorithm if Πi = I, i ≥ 2, or if Πi is chosen by standard column pivoting.

Theorem 2 Let UiTiV
T
i be the decomposition of A at step i ≥ 1 of the algorithm.

Using the notation of (2) and (3) with subscripts added to indicate the step number in

the algorithm, define ρi = ‖Ei‖/σk(T̂i) if Ti is lower triangular and ρi = ‖Gi‖/σk(T̂i)
if Ti is upper triangular.

(a) Assume T̂i−1 is nonsingular and that Πi in the algorithm has the form Πi =(
Πa 0
0 Πb

)
where Πa and Πb, respectively, are k × k and (n − k) × (n − k) per-

mutation matrices. Then the block-row/column rank k solution xB calculated from
Ui−1Ti−1V

T
i−1 is the same as the corner rank k solution xC calculated from UiTiV

T
i .

(b) If the initial factorization has the property that ρ1 < 1 and if Πi, i ≥ 2, is
chosen by the standard pivoting algorithm of [4] then for all i ≥ 2, Πi is of the form
required in part (a).

(c) Assume that ρ1 < 1. Then the corner low-rank solution produced at each step
of the algorithm using standard column pivoting is identical to the corner low-rank
solution produced at the corresponding step of the algorithm where standard column
pivoting is used at the first step and no pivoting is used at each following step.

Proof. Assume that Ti−1 is lower triangular. We will use the notation of the algo-

rithm, equation (2) and equation (3) except that we will add subscripts to E, V̂ , L̂,

H, R̂ to indicate the step number of the algorithm.
To prove part (a), note that at step i − 1 the rank k block-row/column approxi-

mation to A is Âi−1 = Ui−1(L̂
T
i−1 H

T
i−1 0)

T V̂ T
i−1 and by properties of psuedoinverses

[3, 20], xB = Â+
i−1b = V̂i−1




L̂i−1

Hi−1

0




+

UT
i−1b. However by our assumption on Πi

and by the constructions of the algorithm,




L̂i−1

Hi−1

0


 = Qi

(
R̂i

0

)
ΠT

a and so




L̂i−1

Hi−1

0




+

= Πa(R̂
−1
i 0)QT

i .

It now follows that, xB = V̂i−1Πa(R̂
−1
i 0)QT

i U
T
i−1b = V̂i(R̂

−1
i 0)UT

i b = xC . The proof
for the case that Ti−1 is upper triangular is similar.
To show part (b) we again assume that Ti−1 is lower triangular. We will use

induction. Assume that after the first step of the algorithm and prior to step i, that
the permutation matrices in the algorithm have the form of part (a). It then follows

easily from Theorem 2.1 of [21] and its proof, that σk(L̂i−1) ≥ σk(T̂1) and, if T1

is lower triangular, ‖E1‖ ≥ ‖Ei−1‖ or, if T1 is upper triangular, ‖G1‖ ≥ ‖Ei−1‖.

Therefore, by the assumption of part (b), σk(L̂i−1) > ‖Ei−1‖. If Πi is of the form of

part (a), then for 1 ≤ j ≤ k, it follows that |rjj | ≥ σk((L̂
T
i−1, H

T
i−1)) ≥ σk(L̂i−1). Now

7

suppose, on the other hand, that at step i the column interchanges in the standard
pivoted QR factorization move a column of Li−1 with column index larger than k into
column j, where 1 ≤ j ≤ k. The diagonal entry rjj in the QR factorization of Li−1

will satisfy |rjj | ≤ ‖Ei−1‖. It follows that this last type interchange is not possible

since σk(L̂i−1) > ‖Ei−1‖ and since standard column pivoting will move to column
j, the column of the remaining unprocessed columns that will make |rjj | as large as
possible. The proof when Ti−1 is upper triangular is similar.
Part (c) follows from part (b) and the block structure of Πi for i ≥ 2. Our proof

is somewhat tedious and we omit it here. Contact the author for the details. ¤
In [27] Stewart notes that in the QRLP factorization if there is a substantial gap

in diagonal entries of R1 “it is unlikely that the pivoting process will interchange
columns” across column k in constructing L2. Theorem 2 proves under a mild condi-
tion on R1 (ρ1 < 1) that Stewart’s observation is true. Note that ρ1 < 1 will be true
if there is a modest gap in the singular values of A and if the initial QR factorization
is rank-revealing [3, p. 22]. Part (c) shows that if ρ1 < 1 pivoting is not necessary
after the first step in the algorithm in the sense that the corner solutions are the same
with pivoting or without pivoting. This is also true for block-row/column solutions by
part (a) of the theorem . Our numerical experience indicates that even when ρ1 > 1
pivoting at steps after the first step usually makes little difference in the quality of
the solution. However, pivoting at the first step is often critical.
The theorem also shows that there is a close connection between solutions pro-

duced by rank-revealing QR factorizations and rank-revealing UTV factorizations. A
rank-revealing QR factorization of A [3, p. 22] has the properties ‖G‖ = O(sk+1)

and σk(R̂) = O(sk). A rank-revealing ULV factorization of A [10, p. 456] has the

properties ‖(H E)‖ = O(sk+1) and σk(L̂) = O(sk). Assume that, at step 1 of the
algorithm, A = U1T1V

T
1 = QRΠT is a rank-revealing QR factorization of A and

that Π2 has the form of part (a) of Theorem 1, for example if no pivoting is done at
step 2. It is not hard to show that the UTV factorization of step 2 of the algorithm
will be a rank-revealing ULV factorization of A. It follows from Theorem 2 that the
regularized solution produced from a block-row low-rank approximation using a rank-
revealing QR factorization is identical to the corner low-rank solution using a related
rank-revealing UTV factorization.
Another useful consequence of part (a) is that the results that we develop for

corner low-rank solutions to (1) lead directly to results for block-row/column low-
rank solutions to (1).
For some of our later results we will need to assume that the UTV factorization

is rank-revealing. The first factorization in the algorithm uses the QR factorization
with standard column pivoting. There are contrived examples [3, p. 105] where
standard column pivoting is not rank-revealing. To overcome this potential problem
the algorithm could be started with a QR factorization that guarantees to be reveal
rank [3, pp. 22, 108] or one could include pivoting at the second step [27]. Our
numerical experience suggests that this is not necessary for examples that are not
contrived.
Finally, for later use we would like to present some of the results of [21] that

concern the convergence of the algorithm. We define ρi as in Theorem 2.

if Ti is lower triangular then ‖Hi‖ ≤ ρ1ρ2 . . . ρi−1σk(T̂1) ≤ ρi−1
1 σk(T̂1) (20)

if Ti is upper triangular then ‖Fi‖ ≤ ρ1ρ2 . . . ρi−1σk(T̂1) ≤ ρi−1
1 σk(T̂1) (21)

8

The inequalities (20) and (21) indicate that, if ρ1 < 1, then the off-diagonal blocks
Fi and Gi are forced to zero as the algorithm proceeds. These results combined with
(14) and (15) show that the singular values of T̂i, Ei and Gi converge to singular
values of A. Inequalities (20) and (21) combined with (16) - (19) show that if ρ1 < 1
then sinφ and sin θ approach zero as the algorithm proceeds.

4 Perturbation errors

We now compare the perturbation error terms in (4), (5) and (6) for corner low-
rank approximations calculated using a truncated UTV decomposition with the cor-
responding error terms when using a truncated SVD decomposition. We will assume
in (4) that the regularization error term (CA− I)x0 is sufficiently small so that

x− x0 = C(δb) (22)

is a good approximation. We will also assume initially that the UTV factorization has
T lower triangular. As we noted following Theorem 1, equation (11) implies that in
some cases ‖xT −x0‖ will be smaller than ‖xS−x0‖. The following theorem concerns
the probability that this occurs, if we assume (22).

Theorem 3 Let xT be calculated using a corner low-rank UTV approximation to A
with T lower triangular. Assume that (22) is true, that ‖E‖ < σk(T̂) and that the
components of δb come from uncorrelated zero mean Gaussian random variables with
common variance (Gaussian white noise). Then as sinφ approaches 0 the probability
that ‖xT − x0‖ is less than ‖xS − x0‖ approaches one-half.

Proof. Due to (22) in equation (11) we can assume thatN is 0. By (9) we can writeM

as M =

(
−M11 M12

MT
12 M22

)
with M11 = D̂−1Ṽ T

21 Ṽ21D̂
−1, M12 = ŨT

11 T̂
−T T̂−1 Ũ12

and M22 = ŨT
12 T̂

−T T̂−1 Ũ12. Then it follows that

‖M11‖ ≤
sk+1

sk
(tan θ) ‖M12‖ ≤ (tanφ) ‖M12‖ and ‖M22‖ ≤ (tanφ) ‖M12‖ (23)

where tanφ = sinφ/
√
1− sin2 φ and tan θ = sin θ/

√
1− sin2 θ. These inequalities

follow from (12), ‖E‖ < σk(T̂) and the identities M22 = ŨT
12Ũ

−T
11 M12 and M11 =

M12 (D0 0)
T Ṽ −1

22 Ṽ21D̂
−1 which are consequences of (12) and properties of orthogonal

matrices. For sinφ small (23) implies that the diagonal blocks ofM are small relative

to the off-diagonal blocks. Consider the matrix M̃ =

(
0 M12

MT
12 0

)
formed by the

off-diagonal blocks. Note that the eigenvalues of M̃ come in plus and minus pairs
of equal magnitude. Since we are assuming that δb is governed by Gaussian white
noise it follows from Theorem 4.4.8 and Corollary 5.4.2 of [24] that the distribution

governing δ̃b
T
M̃ δ̃b is symmetric and that the probability that δ̃b

T
M̃ δ̃b is negative is

one-half. Due to (23) the theorem follows from a continuity argument. ¤
By the comments following (19) sinφ will be small when ‖H‖ is sufficiently small

or when there is a sufficiently large gap in the singular values of A and the UTV
factorization is rank-revealing. It follows under the conditions of the theorem that if
sinφ is small then xT will be closer to x0 than xS is approximately half the time and,
conversely, xS will be closer approximately half the time. Our numerical experiments

9

support this. They also suggest that in some cases even when sinφ is not small xT is
still frequently as close or closer to x0 than xS is.
We assumed in this theorem that the noise is Gaussian white noise. According

to [28] “Gaussian white noise is a common occurrence in many signal processing
systems.”
It is also of interest to look at the expected value of ‖xT − x0‖

2 relative to the
expected value of ‖xS−x0‖

2 which we do in Theorem 4. The following lemma is used
in the proof of Theorem 4.

Lemma 1 Assume that u ∈ Rm has components that come from uncorrelated zero
mean random variables with common variance (white noise) and that the expected
value of ‖u‖2, indicated by E(‖u‖2), is ∆2. Then for an m by m matrix A, E(uT Au)
= ∆2 trace(A)/m. Also for an n by m matrix A, E(‖Au‖2) = ∆2 ‖A‖2F /m where
‖A‖F indicates the Frobenius norm.

Proof. Since ∆2 = E(Σm
i=1u

2
i) = Σ

m
i=1E(u

2
i) then E(u

2
i) = ∆

2/m. Now for an m by
m matrix A, E(uTAu) = ΣΣaijE(uiuj) = ΣaiiE(u

2
i) = trace(A)∆

2/m. Also for an
n by m matrix A, E(‖Au‖2) = E(uTATAu) = ∆2trace(ATA)/m = ∆2‖A‖2F /m. ¤

Theorem 4 Let xT be calculated using a corner low-rank UTV approximation to A.
Define sinφ as in (16). Assume that T is lower triangular, that (22) is true and that
the components of δb correspond to white noise. Then

0 ≤
E(‖xT − x0‖

2)− E(‖xS − x0‖
2)

E(‖xT − x0‖2)
≤ sin2 φ. (24)

Proof. Let us assume that E(‖δb‖2) = ∆2. Since ‖xS − x0‖
2 = ‖Â+

S δb‖2 =

‖V̂SD̂
−1ÛT

S δb‖2 and ‖xT − x0‖
2 = ‖Â+

T δb‖2 = ‖V̂ T̂−1ÛT δb‖2 it follows from the

lemma that E(‖xS−x0‖
2) = ∆2‖D̂−1‖2F /m and E(‖xT−x0‖

2) = ∆2‖T̂−1‖2F /m. The

left inequality in (24) is true since E(‖xS − x0‖
2) = ∆2‖D̂−1‖2F /m, E(‖xT − x0‖

2) =

∆2‖T̂−1‖2F /m, since the Frobenius norm squared is the sum of the square of the
singular values and due to the left inequality in (14). By (11), (22) and Lemma 1,

E(‖xT −x0‖
2) − E(‖xS−x0‖

2) = E(δ̃b
T
Mδ̃b) = ∆2trace(M)/m = ∆2[trace(M22)−

trace(M11)]/m ≤ ∆2trace(M22)/m = ∆2‖T̂−1Ũ12‖
2
F /m ≤ ∆2‖Ũ12‖

2‖T̂−1‖2F /m =

∆2 (sin2 φ) ‖T̂−1‖2F /m. The theorem now follows. ¤
The left hand inequality in (24) implies under the conditions of the theorem that

the truncated SVD solutions will, on average, be better than truncated UTV solutions.
However, the right hand term suggests, as we will see in our numerical experiments,
that often the difference, on average, will not be large and the truncated UTV and
SVD will be similar in accuracy. Note that by the comments following equation (19)
the size of sinφ is related to the size of a gap in the singular values of A and to the
size of H. Also note that sin2 φ in (24) can be small even for modest sinφ.
Theorems 3 and 4 are applicable to corner low-rank UTV approximations when T

is lower triangular. When T is upper triangular one can prove, although we will not
do so here, that equation (24) is valid except that sin2 φ must be replaced by sin2 θ.
Our numerical experiments suggest that there are results similar to Theorem 3 for
the case that T is upper triangular.

10

5 Regularization errors

We now compare the regularization error terms in (4), (5) and (6) for corner low-
rank approximations calculated using a truncated UTV decomposition with the cor-
responding error terms when using a truncated SVD decomposition . We will assume
in (4) that the perturbation error term C(δb) is sufficiently small so that

x− x0 = (CA− I)x0 (25)

is a good approximation. We will also assume that the UTV factorization has T lower
triangular.
Some of our results in this section will involve the values of components of U T

S b0.
The discrete Picard condition [14, p. 507] is that these components decay to zero
somewhat faster than the singular values. The condition is required for regularization
to produce useful solutions [13, 14, 15]. We will call these components of UT

S b0 the
“Picard coefficients” to indicate their connection to the Picard condition (the term

Fourier coefficients is sometimes used). If we let D̃ be the n × n diagonal matrix
consisting of the first n rows of D in the singular value decomposition A = USDV

T
S ,

we will model the rate of decrease of the Picard coefficients by assuming that the first
n components of UT

S b0 are equal to the components of D̃
p+1w where D̃p+1 indicates

the (p + 1)st power of D̃, p ≥ 0 and w is a vector whose components do not depend
on p or the singular values of A. Following Hansen [13, 14, 15] who defines a similar
parameter, we will call p the relative decay rate of the Picard or Fourier coefficients.
It will be useful to assume a particular form for the underlying noiseless solution

x0. We assume that
x0 = VSD̃

pw (26)

where D̃ is first n rows of D. We have two motivations for this choice. First, with this

x0, b0 = Ax0 = US

(
D̃p+1 0

)T

w so that the first n Picard coefficients are D̃p+1w.

Therefore p is the relative decay rate of the Picard coefficients. If p > 0 the Picard
condition will be satisfied. Also note that by (26) x0 is a linear combination of the

singular vectors of A. Due to the factor D̃p, if the singular values decrease sufficiently
rapidly or if p is sufficiently large, the contribution of higher index singular vectors
will be small. It is often the case that the lower index singular vectors correspond to
smoothly varying functions [17, 18]. If these assumptions are true, as is frequently
the case, x0 will be smoothly varying. We also note that (26) is equivalent to the
model [22, p. 640] for characterizing smooth solutions x0. We conclude that (26)
provides a method, that has been used by others, to generate a class of smoothly
varying solutions x0 that satisfy the Picard condition.
Our results will involve the decay rate p of the Picard coefficients for smaller values

of p since these values of p appear to be useful in many practical applications. For
example we looked at 16 examples from Hansen’s Regularization Tools [16]. Most of
the problems in [16] come from the literature and all share characteristic features of
ill-posed problems. For each example we made a rough estimate of p by estimating
the slope of a graph of the log of the Picard coefficients versus the log of the singular
values (for values not dominated by errors). In 14 of the 16 cases the rough estimate
was 1 or less. Our theorems in this section will assume 0 ≤ p ≤ 1 (Theorem 5) and
0 ≤ p ≤ 2 (Theorem 6).
As we noted following Theorem 1 and in Section 4, equation (11) implies that in

some cases ‖xT −x0‖ will be smaller than ‖xS−x0‖. The following theorem concerns
the probability that this occurs, if we assume (25).

11

Theorem 5 Let xT be calculated using a corner low-rank UTV approximation to A
with T lower triangular. Assume that x0 satisfies (26) with 0 ≤ p ≤ 1, that (25)

is true, that ‖E‖ < σk(T̂) and that w follows Gaussian white noise. Then as sinφ
approaches 0 the probability that ‖xT −x0‖ is less than ‖xS−x0‖ approaches one-half.

Proof. Due to (25) it follows that M is 0 in equation (11). Due to (26) and (10) we
can write x̃T

0 Nx̃0 = wT Np w where

Np = D̃pND̃p =

(
D̂p Ṽ T

21 Ṽ21 D̂
p D̂p Ṽ T

21 Ṽ22 D
p
0

Dp
0 Ṽ

T
22 Ṽ21 D̂

p −Dp
0 Ṽ

T
12 Ṽ12 D

p
0

)
=

(
N11 N12

NT
12 −N22

)
. (27)

By equation (12) and properties of orthogonal matrices it follows that N11 =

N12(D
1−p
0 0)Ũ−1

22 Ũ21D̂
p−1 and N22 = Dp

0 Ṽ
T
12Ṽ

−T
11 D̂−pN12. From these identities,

0 ≤ p ≤ 1 and ‖E‖ < σk(T̂) it follows that ‖N11‖ ≤ (sk+1/sk)
1−p(tanφ)‖N12‖ ≤

(tanφ) ‖N12‖ and that ‖N22‖ ≤ (sk+1/sk)
p (tan θ) ‖N12‖ ≤ (tanφ) ‖N12‖. The rest

of the proof follows in manner very similar to the proof of Theorem 3. ¤
It follows under the conditions of the theorem that if sinφ is small then ‖xT −x0‖

will be smaller than ‖xS−x0‖ approximately half the time and, conversely, ‖xS−x0‖
will be smaller approximately half the time. One condition of the theorem is that
0 ≤ p ≤ 1. Numerical experiments suggest that the conclusion of the theorem is also
true for 1 ≤ p < 2. They also suggest that in some cases even when sinφ is not small
xT is still frequently as close or closer to x0 than xS is.
For regularization errors we can also prove a useful result about the expected value

of the errors.

Theorem 6 Let xT be calculated using a corner low-rank UTV approximation to
A. Assume that T is lower triangular, that (25) is true, that x0 satisfies (26) with
0 ≤ p ≤ 2 and that the components of w correspond to white noise. If

α =

(
sk

sk+1

)p [
‖H‖+ (sin θ) ‖E‖

]
‖E‖F / s2k then (28)

− sin2 θ ≤
E(‖xT − x0‖

2)− E(‖xS − x0‖
2)

E(‖xS − x0‖2)
≤ α2. (29)

Proof. Lemma 1 and (25) imply for p ≥ 0 that E(‖xS−x0‖
2) = τ2‖Dp

0‖
2
F / n, where

τ2 ≡ E(‖w‖2). Lemma 1, (11), (25) and (27) imply E(‖xT −x0‖
2)−E(‖xS −x0‖

2 =

τ2trace(Np)/n. By (27) it follows that −(sin
2 θ)‖Dp

0‖
2
F ≤ −‖Ṽ12D

p
0‖

2
F ≤ trace(Np) ≤

‖Ṽ21D̂
p‖2F . For T lower triangular (12) implies that Ṽ21D̂

2 = ETHṼ11 + ETEṼ21.

Therefore for 0 ≤ p ≤ 2 we have trace(Np) ≤ ‖Ṽ21D̂
2D̂p−2‖2F ≤ ‖ETHṼ11 +

ETEṼ21‖
2
F s

2(p−2)
k ≤ s2p−4

k (‖H‖+ (sin θ) ‖E‖)2‖E‖2F . Since s
2p
k+1 ≤ ‖D

p
0‖

2
F the theo-

rem follows. ¤
For TQRLP or at any subsequent step of the algorithm with T lower triangular,

it follows from (16), (17), (20) and (28) that, for 0 ≤ p < 2, sinφ, sin θ and α will be
small either if ‖H‖ is sufficiently small or if the UTV factorization is rank-revealing
and there is a sufficiently large gap in the singular values. Note that sin2 θ and α2

may be small even for modest sin θ and α.
The right hand bound in (29) increases in magnitude as p increases. This suggests

that the solutions produced by a truncated UTV factorization will be best, relative to
those produced by the SVD, for smaller values of p. As mentioned earlier, in practice

12

values of p one or less appear to be common. For larger values of p, accuracy close to
that of the SVD can be achieved by using additional steps in the algorithm. As seen
in (20) if ρ1 < 1 these steps will force ‖Hi‖ and sin θi to become small. Note the [22,
p. 644] discusses the effect of p on classical Tikhonov regularization.

Theorems 5 and 6 assume equation (26), x0 = VSD̃
pw, applies where w is governed

by Gaussian white noise (Theorem 5) or white noise (Theorem 6). These may be
only rough models of solutions x0 as they appear in practical applications. However
note that Neumaier [22, p. 641] comments that a model equivalent to (26) is “a
frequently used assumption” and, in addition, the model has been used with similar
statistical assumptions about the components of w [2, 22]. A conclusion from Theorem
5 is, under the conditions of the theorem, that ‖xT − x0‖ is frequently smaller than
‖xS − x0‖. This is consistent with our experiments using examples from [16] where
x0 is not chosen randomly (see Table 2).

6 Implementation and numerical experiments

Before discussing our numerical experiments we will discuss some implementation is-
sues for the algorithm of Section 3 and the efficiency of the algorithm. For a point
of comparison we note that there are three classical methods for solving least squares
problems – the QR factorization without column interchanges, the QR factorizations
with column interchanges and the SVD. The first algorithm is not reliable for solving
rank-deficient problems but we include it for comparison of the efficiency of the al-
gorithms. These algorithms are implemented in LAPACK as xGELS, xGELSY and
xGELSD. For large n and m ≥ n (but not too much bigger than n) the approximate
flop counts are 2mn2 − 2/3n3, 2mn2 − 2/3n3 and 4mn2 − 4/3n3 [23], respectively,
for xGELS, xGELSY, and xGELSD for the full rank case. For the case that m = n
these counts predict run times in the ratio 1:1:2 for the three algorithms. However in
practice xGELS makes more effective use of the potential speedup in BLAS-3 calcula-
tions and the actual run time ratios depend on the computer architecture and matrix
size. As illustrations of potential actual run-time ratios note that LAPACK [1, p. 72]
reports ratios of 1:1:4 for 900 by 900 matrices run on an Compaq AlphaServer DS-20,
Ren [23, p. 94] reports ratios of 1:1.3:3.4 for 1600 by 1600 matrices run on an IBM
RS 6000/590 and our numerical experiments indicate ratios of 1:2.1:4.7 for 1600 by
1600 matrices run on a 700 MHertz Pentium computer.
We will consider the construction of a block-row/column low-rank approximate

solution to (1) using the algorithm in Section 3. In the algorithm if k, the effective
numerical rank, is less than n it is not necessary to do complete QR factorizations.
One can start the algorithm with a QR factorization with the usual pivoting scheme
[4] and stop the initial factorization when, for example, norms of the columns of E1

(or G1) are small. The matrices Ei, i ≥ 1 and Gi, i ≥ 1, need not be factored in or-
der to calculate the solutions, xT , at subsequent steps of the algorithm. An efficient
way to implement the algorithm is to begin with the initial partial factorization just
described. At subsequent steps one can construct orthogonal factorizations that suc-
cessively update the block triangular structure of T while keeping the structure (lower

or upper triangular) of T̂ fixed. The solution xT produced by this implementation of
the algorithm is identical to the solution produced by the implementation described
in Section 3. With this implementation the overall flop count for i steps of the algo-
rithm is approximately 4k2(n− 2/3k) + 2k(n− k)(2n− k)i where, for simplicity, the
count is for the case where m = n . For any m ≥ n and for i = 1 the flop count for

13

the algorithm is approximately 4mnk− 2k2m− 2k3/3. For k < n this is less than the
flop count for xGELSY. Also we can show that for m ≥ n and i ≤ 2 the flop count
of the algorithm is less than the theoretical flop count for xGELSD. The advantage
of the algorithm is most striking in the low-rank case where k << n. In this case, for
m ≥ n, the leading order term in the flop count is 4kmni which is substantially less
than the theoretical counts for xGELSY and xGELSD. Alternative algorithms for the
low-rank case are discussed in [5, 11]. The smallest flop count of the algorithms in
[11] is 12mnk. The flop count for the algorithm of Section 3 for i = 1 will also be
smaller than the count for the algorithm in [5].
The actual time required by an algorithm depends on details of its implementa-

tion and the computer architecture as well as flop counts. As discussed earlier the
block-row low-rank solution produced by TQRP (or by Theorem 2 the corner low-
rank solution produced by TQRLP) will be the same as the solution produced by
LAPACK’s xGELSY. However LAPACK does a complete factorization of A not a
partial factorization as discussed in the last paragraph. The routine xGELSY can
be modified to incorporate the partial factorization. The tests in xGELSY for the
determination of the effective rank can be moved into LAPACK’s factorization rou-
tine xGEQP3. If these tests are inserted in xGEQP3 immediately after the call to
LAPACK’s xLAQPS, the efficient BLAS-3 calls in xGEQP3 will not be affected. The
solution xT produced by this modification is identical to that of the unmodified LA-
PACK but the modified algorithm will run much more quickly for low-rank problems.
This is illustrated in Figure 1. The sample problems in Figure 1 were generated by
LAPACK’s xLATMS and have a gap in the singular values at the indicated numerical
rank. They were run on a 700 MHertz Pentium computer using BLAS routines sup-
plied by Intel. From the graph it is clear that for low-rank problems the modification
of xGELSY is much more efficient than the existing implementations of LAPACK’s
routines xGELSY and xGELSD. For k = 25 the run-time ratios are approximately
1:14:31. Due to this substantial speedup it also clear that in the low-rank case the
algorithm of Section 3 will remain more efficient than the LAPACK routines if the
algorithm is continued with some additional steps.

0 200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

60

70

80
time for solving a 1600 by 1600 linear system

tim
e

in
 s

ec
on

ds

numerical rank

 DGELSY (modified)
 DGELSY
 DGELSD

Figure 1: Timings for the modification of DGELSY, DGELSY and DGELSD.

We should add here that another issue that can be important in choosing an
algorithm to solve (1) is the ability to easily do updates and downdates. This is more

14

easily done with a UTV factorization than the SVD [25]. Also note that [26, 27]
discuss implementation issues for the QRLP algorithm including the observation that
in the low-rank case the savings in stopping the reduction are substantial. Finally,
we should note that it is well known [12, p. 250] that truncating the QR factorization
reduces the flop count in the factorization to approximately 4mnk for small k.
We now present experiments that focus on the accuracy of the algorithm. For

our first test results we generated random 64× 64 matrices A using REGUTM from
[16]. We chose the singular values of A in three manners. To describe the first type
of selection let us define quantities which we call the “gap” and the “spread” where
the gap is s16/s17 and the spread is s1/s16 = s17/s64. Singular values s2 to s15 were
selected from a log-uniform distribution over s1 to s16 and singular values s18 to s63
from a log-uniform over s17 to s64. For this selection of singular values we fixed the
effective numerical rank at 16. In the second selection of singular values we selected
10 singular values from a log-uniform distribution from 1 to .001, 10 singular values
equal to .001, and 44 singular values from a log-uniform distribution from .001 to
.000001. We again fixed the effective numerical rank at 16. This selection is designed
to test the algorithm in an extreme case, forcing the algorithm to select the numerical
rank in the middle of a cluster of identical singular values. To describe the third
selection of singular values we will use a quantity which we call the “mean gap.”
We let s1 = 1 and s64 = (meangap)

63 and chose s2 through s63 from a log-uniform
distribution from s1 to s64. For this selection of singular values the geometric mean
of sj/sj+1, j = 1, 2, . . . 63 equals the mean gap. In this case the singular values decay
gradually and there is not an obvious gap to help select the effective rank k. A variety
of approaches have been suggested in the literature [18] for selecting k . For simplicity
and to focus on the approximation scheme, not the technique for selecting k, for the
third choice of singular values and for each regularization algorithm we selected the
effective rank by calculating a regularized solution, x, for each numerical rank k < n.
Among all lower rank approximations, the approximation that minimizes ‖x − x0‖
was selected.
For each matrix A we chose the underlying noiseless solution x0 = V D̃pw, b0 =

Ax0 and noise vectors δb = ∆‖b0‖v. We used seven different noise to signal ratios, ∆ =
.3, .1, .01, .001, 10−4, 10−6 and 10−10. This wide range of noise levels should produce
cases where the regularization error dominates (∆ small), where the perturbation
error dominates (∆ large) and cases in between these extremes. We selected 100
random matrices as described above. For each matrix and for each of the seven
noise levels we selected 100 random values of x0 = D̃pw, with w selected from white
noise and for each x0 we selected a random noise vector δb, with v selected from
white noise for a total of 70,000 (= 100 × 7 × 100) samples. For each sample we
calculated xS as well as five different solutions xT . To calculate xT we used block-
row/column low-rank approximations for the TQLP, TQLRP, TQRP, TQRLP and
TQRLRP factorizations. To summarize the results in a concise manner, for each low-
rank approximation we calculated the mean value of ‖xT − x0‖/‖xS − x0‖ − 1 over
all 70,000 samples. These results are in Table 1. Also in the last column of Table 1
we indicate the percent of the cases where ‖xT − x0‖ is smaller than ‖xS − x0‖ for
the block-row low-rank solutions using the TQRP factorization. These solutions can
be produced by LAPACK’s xGELSY.
Most of the entries in the table are positive, which indicates that on average the

truncated SVD solutions are better. However except for TQLP, if p < 2, the truncated
UTV solutions are on average not far from the truncated SVD solutions. For example,

15

Problem
Properties Method %

g s p TQLP TQLRP TQRP TQRLP TQRLRP

100 100 .5 .0015 2.1 x 10−7 2.8x10−5 7.7x10−8 −7.8x10−10 50
100 100 1 .23 1.2x10−7 6.8x10−5 1.0x10−5 8.4x10−10 50
100 100 1.5 5.3 1.8x10−6 4.1x10−4 3.2x10−4 2.2x10−10 49
100 100 2 817 1.3x10−5 .14 .14 −2.3x10−8 44
100 100 3 6882 3.3x10−6 .65 .65 −2.0x10−8 43

100 104 1 .14 3.5x10−7 1.7x10−4 6.5x10−6 2.1x10−9 50
100 1 1 .29 −3.8x10−8 7.3x10−5 3.5x10−5 −3.4x10−10 49

10 100 1 .32 3.1x10−5 5.9x10−3 9.1x10−4 9.9x10−7 47
4 100 1 .40 .0016 .040 .0091 6.5x10−5 42
1 100 1 .36 .082 .13 .099 .063 39

cluster 1 .11 .044 .067 .046 .037 45

m.g. 10 1 .28 .0081 .024 .015 .0044 49
m.g. 10 2 81 .019 .18 .16 .0076 44
m.g. 10 3 1163 .11 11 11 .016 23

m.g. 4 1 .29 .015 .038 .024 .0094 48
m.g. 1.2 1 .34 .041 .091 .065 .024 32

Table 1. Mean value of ‖xT−x0‖−‖xS−x0‖
‖xS−x0‖

for block-row/column low-rank

approximations and, in the last column, the percent of the runs where, for TQRP,
xT is closer to x0 than is xS . In the table g stands for gap, s for spread and m. g.
for mean gap. These terms and the term cluster are defined in the text. p is the
decay rate in the Picard coefficients. Each entry summarizes 70,000 samples.

for p < 2, ‖xT − x0‖ was within 15% of ‖xS − x0‖ on average for all the methods
except TQLP. Remarkably this is true for runs with a small gap or no gap in the
singular values and when the numerical rank is selected in the middle of a cluster of
singular values. As p increases more steps of the algorithm are required to match the
accuracy of the SVD. As mentioned earlier, smaller values of p appear to be more
common in practice. Note that we arrive at these same general conclusions by looking
at the cases where the rank of the low-rank approximation is fixed at 16 or the “mean
gap” cases where the rank is chosen dynamically. Also note that the last column of
the table indicates, as suggested by Theorems 3 and 5, that if there is a sufficiently
large gap in the singular values and if p is not large then ‖xT − x0‖ is smaller than
‖xS − x0‖ close to 50% of the time for block-row TQRP solutions. For the problems
with a small or no gap and p = 1 the percent of the cases where the block-row TQRP
solution is closer to x0 than is the TSVD solution varied between 45% for the cluster
example to 32% for the runs with a mean gap of 1.2.
The examples so far have been artificial. To test examples from practice or used

elsewhere in the literature we looked at problems from Hansen’s Regularization Tools
[16]. Our sample consists of Hansen’s baart, deriv2 (with 3 different solutions), fox-
good, heat (with 3 parameter values), ilaplace (with 4 different solutions), phillips,
shaw, spikes, and wing, for a total of 16 different examples. This is all the ill-
conditioned examples in Regularization Tools, except for parallax and ursell for which

16

x0 is not supplied and blur which is parameterized differently from the other examples.
Most of these example do not have a clear gap in the singular value spectrum and so
we need a technique to choose the numerical rank k. For simplicity and to focus on
the approximation scheme, not the technique for selecting k, for each regularization
algorithm we selected the effective rank by calculating a regularized solution, x, for
each numerical rank k < n and then among all lower rank approximations, selecting
the approximation that minimizes ‖x− x0‖.
For each of the 16 examples we looked at the seven noise levels used in Table 1, for

a total of 112 cases. For each case we chose 100 random noise vectors, applied a variety
of regularization methods and calculated the mean values of (‖xT − x0‖ − ‖xS − x0‖)
and of ‖xS − x0‖. In each of the 112 cases we used the x0 supplied by Regulariza-
tion Tools, not a randomly chosen x0. Each mean value is a mean over 100 differ-
ent random noise vectors δb for a fixed x0. In Table 2 we summarize the results
for the block-row/column low-rank solutions produced by TQLP, TQLRP, TQRP
and TQRLRP factorizations. Each entry counts the number of the 112 cases where
mean(‖xT−x0‖−‖xS−x0‖)

mean(‖xS−x0‖)
is in the indicated range.

Range less −50% −10% −5% −1% 1% 5% 10% 50%
——— than to to to to to to to or
Method −50% −10% −5% −1% 1% 5% 10% 50% more

TQRP 0 13 8 17 50 11 8 5 0
TQRLP 0 11 12 16 53 7 8 5 0
TQRLRP 0 7 7 7 77 12 0 2 0

TQLP 9 16 4 10 37 8 5 17 6
TQLRP 0 5 8 8 65 15 5 6 0

Table 2. Counts for examples with characteristic features of ill-posed problems from

[16] of the number or cases, out of 112 cases, where mean(‖xT−x0‖−‖xS−x0‖)
mean(‖xS−x0‖)

is in the

range indicated in the first row of the table. Rows two through six correspond to
block-row/column solutions for different truncated factorizations.

In this table in some cases the truncated SVD solutions are closer to x0 and
in others the truncated UTV solutions are closer. However, overall for this set of
problems the truncated UTV algorithm, even when stopped at the first step, appears
to work as well as the truncated SVD. The table also indicates that additional steps
of the algorithm bring values of mean (‖xT −x0‖) closer to values of mean(‖xS−x0‖).
We also kept track of the percent of the time that ‖xT − x0‖ was less that ‖xS − x0‖
over the 11,200 (= 112×100) samples. These percents were 51%, 54%, 51%, 57% and
57%, respectively, for the block-row/column solutions corresponding to the TQRP,
TQRLP, TQRLRP, TQLP, and TQLRP factorizations. It is interesting to note that
the results for the these test problems, where A and x0 are not random, seem to favor
the truncated UTV solutions more than do the results for test problems involving
randomly generated examples. The reason for this merits further investigation.
In order to understand Table 2 better it is useful to look at a specific case, for

example, the Phillips example of [16] when the noise to signal ratio, ‖δb‖/‖b‖, equals
0.1. We can illustrate the results in the table by looking at ‖xT − x0‖ for TQRP and
‖xS −x0‖ for a few typical values of δb. For the Phillips example the underlying true
solution x0 provided by [16] has ‖x0‖ = 2.99. Six typical values of ‖xT − x0‖ are
.25, .29, .17, .30, .25 and .29 and the corresponding values of ‖xS − x0‖ are .21, .34,

17

.14, .34, .23 and .33. Overall the magnitude of these values are quite similar and the
two methods have approximately the same accuracy. The differences between these
values are, respectively, .04, −.05, .03, −.04, .02 and −.04 and the corresponding
values of ‖xT − xS‖ are .09, .09, .07, .09, .04 and .41, respectively. In the table the

sample size was 100, not 6. For these 100 values mean(‖xT−x0‖−‖xS−x0‖)
mean(‖xS−x0‖)

was −.042

and this example is one of the 17 entries in the table for the TQRP method with
mean(‖xT−x0‖−‖xS−x0‖)

mean(‖xS−x0‖)
between −5% and −1%.

7 Conclusions

We have discussed the application of the algorithm of [21] to solving ill-posed and
rank-deficient problems. The algorithm constructs a UTV factorization of A by using
one or more QR factorizations. The following are some of our results.

• The block-row solution produced by a rank-revealing QR factorization is iden-
tical to the corner solution produced by a related rank-revealing UTV factor-
ization. (See Theorem 2 and the comments following the theorem.)

• If there is a modest gap in the singular values so that ρ1 < 1, pivoting is not
needed after the first step in the algorithm of Section 3. (See Theorem 2.)

• We have presented an implementation of LAPACK’s xGELSY that, in the low-
rank case, is substantially faster than the implementation of xGELSY currently
in LAPACK. (See Figure 1 and the discussion prior to Figure 1.)

Some of our results concern the accuracy, relative to truncated SVD solutions, of
the solutions to (1) produced by truncated UTV factorizations. The results suggest
the following recommendations about the appropriate choice of a method to use to
construct regularized solutions to the system (1).

• If one can identify and evaluate the accuracy of typical examples then we rec-
ommend that a variety of methods of regularization be compared for these
examples. Our results indicate that although in some examples a relatively ex-
pensive method such as the truncated SVD will produce the best solution in
other examples cheaper methods will calculate solutions as close or closer to the
underlying desired solution. (See Theorems 3 and 5 and Tables 1 and 2.)

• If the initial QR factorization is rank-revealing, if the desired regularized solution
corresponds to a sufficiently large gap in the singular values, and if p, the decay
rate in the Picard coefficients, is not too large, as is often true in practice,
then we recommend using the block-row truncated QRP solution. On average
this truncated QRP solution will be very close to the accuracy of the truncated
SVD solution and it can be calculated more quickly, dramatically so for low-rank
problems. (See Theorem 4, Theorem 6, Figure 1, Table 1 and Table 2).

• If the desired solution does not correspond to a gap in the singular values our
experimental results with random examples suggest that truncated SVD so-
lutions are, on average, somewhat better than truncated UTV solutions but,
for p < 2, the difference may be modest (see Table 1). The case where there
is not a gap in the singular values merits further investigation. For this case
Stewart [27] conjectures for the QRLP decomposition that “the analysis of this
decomposition will not be simple.”

18

We also did test runs for the set of problems of [16], which have characteristic
features of ill-posed problems. In some cases the truncated SVD solutions were closer
to the desired solution and in others the truncated UTV solutions were closer. Overall
for this set of problems the truncated UTV algorithm, even when stopped at the first
step, appeared to work as well as the truncated SVD algorithm (see Table 2).

Acknowledgments. The helpful comments and suggestions from the anonymous
referees are gratefully acknowledged.

References

[1] E. Anderson, Z. Bai, C. Bischof, , S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK
Users’ Guide, Third Edition. SIAM, Philadelphia, 1999.

[2] M. Bertero, C. De Mol, and G. A. Viano. The stability of inverse problems. In
H. P. Baltes, editor, Scattering in Optics, pages 161–214. Springer-Verlag, New
York, 1980.

[3] A. Bjorck. Numerical Methods for Least Squared Problems. SIAM, Philadelphia,
1996.

[4] P. Businger and G. H. Golub. Linear least squares solutions by Householder
transformations. Numerische Mathematik, 7:269–276, 1965.

[5] T. F. Chan and P. C. Hansen. Low-rank revealing QR factorizations. Numerical
Linear Algebra with Applications, 1:33–44, 1991.

[6] T. F. Chan and P. C. Hansen. Some applications of the rank revealing QR fac-
torization. SIAM Journal on Scientific and Statistical Computing, 13:727–741,
1992.

[7] S. Chandrasekaran and I.C.F. Ipsen. Analysis of a QR algorithm for computing
singular values. SIAM J. Matrix Annal. App., 16:520–535, 1995.

[8] R. D. Fierro. Perturbation analysis for two-sided (or complete) orthogonal de-
compositions. SIAM Journal on Matrix Analysis and Applications, 17:383–400,
1996.

[9] R. D. Fierro and J. R. Bunch. Bounding the subspaces from rank revealing
two-sided orthogonal decomposions. SIAM J. Matrix Annal. App., 16:743–759,
1995.

[10] R. D. Fierro and P. C. Hansen. Accuracy of TSVD solutions computed from
rank-revealing decompositions. Numer. Math., 70:453–471, 1995.

[11] R. D. Fierro and P. C. Hansen. Low-rank revealing UTV decompositions. Nu-
merical Algorithms, 15:37–55, 1997.

[12] G. Golub and C. F. Van Loan. Matrix Comutations. John Hopkins, Baltimore,
1996.

[13] P. C. Hansen. The discrete Picard condition for discrete ill-posed problems. BIT,
30:658–672, 1990.

19

[14] P. C. Hansen. Truncated singular value decomposition solutions to discrete ill-
posed problems with ill-determined numerical rank. SIAM Journal on Scientific
and Statistical Computing, 11:503–518, 1990.

[15] P. C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve.
SIAM Review, 34:561–580, 1992.

[16] P. C. Hansen. Regularization tools: A matlab package for analysis and solution
of discrete ill-posed problems. Numer. Algorithms, 6:1–35, 1994.

[17] P. C. Hansen. Test matrices for regularization methods. SIAM J. Sci. Comput.,
16:506–512, 1995.

[18] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadel-
phia, 1998.

[19] Y. Hosoda. Truncated least-squares least-norm solutions by applying the QR de-
composition twice. Transactions of the Information Processing Society of Japan,
40:1051–1055, 1999.

[20] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice-Hall,
Englewood Cliffs, N. J., 1974.

[21] R. Mathias and G. W. Stewart. A block QR algorithm and the singular value
decomposition. Linear Algebra and Its Applications, 182:91–100, 1993.

[22] A. Neumaier. Solving ill-conditioned and singular linear systems: A tutorial on
regularization. SIAM Review, 40:636–666, 1999.

[23] H. Ren. On the error analysis and implementation of some eigenvalue decompo-
sition and singular value decomposition algorithms. UT, CS-96-336, LAPACK
Working Note 115, 1996.

[24] V. K. Rohatgi. An Introducion to Probability Theory and Mathematical Statistics.
John Wiley and Sons, NY, 1976.

[25] G. W. Stewart. An updating algorithm for subspace tracking. IEEE Trans.
Signal Proc., 40:1535–1541, 1992.

[26] G. W. Stewart. Matrix Algorithms Volume 1: Basic Decompositions. SIAM,
Philadelphia, 1998.

[27] G. W. Stewart. The QLP approximation to the singular value decomposition.
SIAM J. Sci. Comput., 20:1336–1348, 1999.

[28] C. W. Therrien. Discrete Random Signals and Statistical Signal Processing. Pren-
tice Hall, Englewood Cliffs, NJ, 1992.

20

