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Solving rate equations for electron tunneling via discrete quantum states

Edgar Bonet, Mandar M. Deshmukh, and D. C. Ralph
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853

~Received 6 August 2001; published 4 January 2002!

We consider the form of the current-voltage curves generated when tunneling spectroscopy is used to
measure the energies of individual electronic energy levels in nanometer-scale systems. We point out that the
voltage positions of the tunneling resonances can undergo temperature-dependent shifts, leading to errors in
spectroscopic measurements that are proportional to the temperature. We do this by solving the set of rate
equations that can be used to describe electron tunneling via discrete quantum states, for a number of cases
important for comparison to experiments, including~1! when just one spin-degenerate level is accessible for
transport,~2! when two spin-degenerate levels are accessible, with no variation in electron-electron interactions
between eigenstates, and~3! when two spin-degenerate levels are accessible, but with variations in electron-
electron interactions. We also comment on the general case with an arbitrary number of accessible levels. In
each case we analyze the voltage positions, amplitudes, and widths of the current steps due to the quantum
states.

DOI: 10.1103/PhysRevB.65.045317 PACS number~s!: 73.22.2f, 73.23.Hk, 74.80.Bj
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I. INTRODUCTION

Nanometer-scale single-electron tunneling transistors
now be fabricated in which electron flow occurs through
discrete spectrum of well-resolved quantum states. This
been achieved in devices incorporating semiconduc
quantum dots, metal nanoparticles, and molecules.1–3 In a
transistor geometry, the source-drain voltageV and the gate
voltageVg can be adjusted to achieve the simplest case
electron flow occurs just through a single quantum state.
V and Vg are changed, additional excited electronic sta
may also become energetically accessible for tunneling,
viding alternative channels for the current flow. In this r
gime, the tunneling processes can become quite complica
due to the many combinations of nonequilibrium states t
may be excited during tunneling, and the possibility of rela
ation between these states.

As long as the tunnel-barrier resistances are much gre
than h/e2 and internal relaxation is negligible, the curren
traveling via any number of energetically accessible sta
can be analyzed in a sequential-tunneling picture usin
rate-equation approach. The general procedure for com
ing this type of analysis has been outlined previously,
example in Refs. 4–6. Our purpose in this paper is to pre
the solutions of this model for selected simple cases imp
tant for analyzing experiments on nonmagnetic islands,
we describe several previously unappreciated conseque
of the model that explain recent observations. Whene
more than a single~non-spin-degenerate! quantum state is
accessible for tunneling, we show that the voltage positi
of the tunneling resonances can become temperature de
dent ~shifting proportional toT!. For the important case o
tunneling via one spin-degenerate quantum state, we de
the full form of the tunneling current as a function ofV, Vg ,
and T. This provides simple exact solutions for the volta
shift, resonance width, and current amplitude, thereby
proving upon an approximate approach used previou
When multiple spin-degenerate states participate in tun
ing, effects of nonequilibrium excitations and variations
0163-1829/2002/65~4!/045317~10!/$20.00 65 0453
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electron-electron interactions can lead to additional sh
and broadening of the tunneling resonances. The comp
code that we use for calculating the tunneling current in
general case with an arbitrary number of accessible quan
states is available electronically in bothMATHEMATICA andC

formats.19

This paper is organized as follows: In Sec. II we revie
the general procedure for calculating tunneling currents
the rate-equation approach. We discuss the physical assu
tions under which this approach is accurate, and we exp
our notation. In Sec. III, we solve the simplest nontrivi
case, in which current flow occurs by means of tunneling
a single spin-degenerate quantum level. In Sec. IV we t
extend this discussion to the case of tunneling via two
more spin-degenerate levels, and we describe several ex
mentally relevant consequences of the rate-equation m
for an arbitrary number of accessible states. In Sec. V,
consider effects of fluctuations in electron-electron inter
tions that can occur when current flow generates nonequ
rium electronic states, and we explain how these effects
produce additional shifts and can also broaden the meas
tunneling resonances.

II. RATE-EQUATION CALCULATIONS
OF CURRENT FLOW

We are interested in calculating the tunneling current vi
nonmagnetic single-electron transistor in the regime wh
the discrete quantum states in the transistor island are
resolved. The circuit under consideration is shown in Fig
which illustrates the definitions of the bias voltageV and the
gate voltageVg . We will limit our discussion to the condi-
tions under which the energy levels are best resolved:~a!
kBT is smaller than the level spacing,~b! the level spacing is
much smaller than the Coulomb-charging energy of the tr
sistor islande2/(2CS), whereCS is the total capacitance o
the island,~c! the tunnel barriers have resistances@h/e2 so
that cotunneling processes may be neglected and the tun
ing current is accurately described by lowest-order pertur
©2002 The American Physical Society17-1
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tion theory, and~d! kBT is larger than the intrinsic lifetime
broadening of the quantum states. In parts of the discuss
in order to simplify the notation, we will also assume th
electron interactions are sufficiently weak that many-bo
eigenstatesua& are well approximated as single Slater det
minants specified by the occupation of a set of sing
electron statesi: ua&5$ni%. We neglect many-body effect
associated with Fermi-edge singularities in electrodes w
low-electron densities7 and effects of coupling to phonons o
local degrees of freedom, which can produce additional f
tures in tunneling characteristics.8–10 Under these approxi
mations, the temperature enters our calculation only thro
the Fermi functions in the electrodes.

Our primary goals are to study the effects on current fl
of nonequilibrium electronic excitations and electro
electron interactions. Nonequilibrium excitations can be s
pressed when excited electronic states return back to
ground state at a rate that is fast compared to the elec
tunneling rate. However, measurements on metal nano
ticles indicate that the relaxation rate is generally compara
to or slower than the tunneling rate in realistic samples.11,12

Therefore, we will generally neglect internal relaxation e
fects entirely, limiting ourselves to noting the ways in whi
internal relaxation will produce qualitative changes to t
results.

A. Energy of the eigenstates

In general, the quantum-mechanical electronic sta
within the transistor island can be complicated correla
many-electron eigenstates. The energy of any state ca
written as a sum of three terms

E5EC1EK1EJ , ~1!

the terms being, respectively, the electrostatic or ‘‘Coulom
energy, the kinetic energy, and the fluctuations in
electron-electron interactions. Notice that the mean-fi
contribution of the electron-electron interactions is the sa
as the electrostatic energyEC . Therefore,EJ accounts only
for the level-to-level fluctuations in these interactions.

1. Electrostatic energy

The electrostatic energy will in general depend on
charge of the island as well as on the applied voltagesV and
Vg . However, what matters for calculations of electron

FIG. 1. Circuit schematic defining the bias voltageV, the gate
voltageVg , and the capacitancesCl , Cr , andCg . f andQ are the
potential and the total charge of the island.
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transport are energy differences as electrons make transi
between the transistor island and the leads. We can selec
zero of energy~or, equivalently, the reference electrosta
potential! for convenience, and we will do so in a way th
makes the energy of the eigenstates on the island inde
dent ofV andVg . The consequence is that the Fermi en
gies in the leads will shift withV andVg . To be specific, we
choose the reference electrostatic potential such
SkCkfk50, whereCk and fk are the capacitance of th
island to thekth lead and the electric potential of thekth
lead, and the sum extends over the three leads. Using
reference, the chargeQ in the island is related to its potentia
f by Q5CSf. In calculating the energy required for a tun
neling transition, we must consider the work done. The t
neling of chargesdQl anddQr from the island to the left and
right leads requires a work

dW5~f l2f!dQl1~f r2f!dQr ~2a!

5f ldQl1f rdQr1
1

CS
QdQ ~2b!

5dS f lQl1f rQr1
Q2

2CgS
D , ~2c!

where Qk is the total charge that has tunneled into leadk
@NotedQ52(dQl1dQr).#. From Eq.~2! it follows that the
electrostatic energy17 of the island is

EC5
Q2

2CS
~3!

and the effective Fermi energies of the leads can be wri
as Ek

F5efk , wheree is the electron charge, including it
sign. To be explicit,

El
F51e

2Cr1Cg

2CS
V2e

Cg

CS
Vg , ~4a!

Er
F52e

2Cl1Cg

2CS
V2e

Cg

CS
Vg . ~4b!

Since the charge of the island varies only by multiples
e, we can write it asQ5Q01Ne, whereQ0 is a background
charge andN the number of electrons in the island. Th
electrostatic energy is then

EC5
1

2CS
~Q01Ne!2. ~5!

This is minimized whenN is the integer closest to2Q0 /e.
Throughout this paper, we will assume that the Coulo
energy is much larger than the level spacing so that only
two lowest energy values forN, namely,N0 and N15N0
11, are permitted during the process of current flow. T
assumption allows us to take the electrostatic energy to
proportional toN: since@N2(N01N1)/2#25 1

4 is a constant,
EC for N0 or N1 electrons can be rewritten, to within a con
stant, as
7-2
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SOLVING RATE EQUATIONS FOR ELECTRON . . . PHYSICAL REVIEW B65 045317
EC5N
e

CS
S Q01

N01N1

2
eD . ~6!

Notice that Eq.~5! explicitly includes the Coulomb energ
that forbids states not havingN0 or N1 electrons, but this is
implicit in Eq. ~6!. The conditionN5N0 or N1 has, there-
fore, to be assumed explicitly when using Eq.~6!.

2. Kinetic energy

The kinetic energy of the electrons in the island can
written as

EK5(
i

e i
Kni , ~7!

wheree i
K is the energy, relative to the Fermi level, of spi

degenerate single-electron quantum statei, andni is the oc-
cupancy of this level~either 0, 1, or 2!.

SinceN5S ini , the sum of the electrostatic and kinet
energies is just

ECK5(
i

e ini , ~8!

wheree i is defined by

e i5e i
K1

e

CS
S Q01

N01N1

2
eD . ~9!

Writing the effective energy of the single-electron states
this way allows a simple accounting of the average Coulo
energy in the calculations.

In the absence of variations in electron-electron inter
tions between electrons in different energy levels, the ene
of the island is justECK . With our conventions, the threshol
voltages required for the onset of a tunneling process ca
pictured with simple energy diagrams, as illustrated in Fig
For example, atT50, electrons can tunnel from leadk into
the island if the island is aN0-electron state and Fermi en
ergy Ek

F of leadk is above the energye i of a nonfully occu-

FIG. 2. Energy diagrams for the single-electron transistor. T
island is represented by a set of discrete energy levels and the
by continua of levels. Filled dots in the island stand for electro
present in anN0-electron ground state. The empty dot is an ex
electron that tunnels onto the island to give anN1-electron state.
The transition marked with a solid arrow is the one that determi
the initial threshold for starting current flow. The transitions mark
by dotted arrows then also contribute to the total current.~a! When
the Fermi energy of the right lead is swept past the first level av
able for tunneling at energyed , current can tunnel through thi
level. ~b! For a slightly lower gate voltage and higher bias voltag
two levels contribute to tunneling even at the initial onset of curr
flow.
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pied level. In the same way, electrons can tunnel out of
island into leadk if the island is in aN1-electron state andEk

F

is below the energy of a nonempty state. The onset of
current is associated with the first level available for tunn
ing, i.e. the lowest-energy nonfull level in theN0-electrons
ground state or the highest-energy nonempty level in
N1-electrons ground state. AsV is ramped for a fixed value
of Vg , the Fermi energy in a lead can sweep past the ene
required to initiate tunneling via an eigenstate, producin
stepwise change in the current. The voltage position, wid
and current amplitude of this step are the quantities that
will analyze. It is important to note that asV is increased,
more than one spin-degenerate quantum level can contri
to tunneling even at the initial onset of current flow. O
example of this case is illustrated by Fig. 2~b!. The first-
allowed tunneling transition is for an electron to enter t
level with energyed from the right electrode. However, afte
this electron has tunneled in to give a total ofN1 electrons on
the island, transitions to the left electrode can occur eit
from the state with energyed or from the lower-energy oc-
cupied state depicted in Fig. 2~b!. If an electron tunnels ou
of the lower-energy state, subsequent tunneling transiti
from the right electrode can involve either quantum lev
Therefore, calculations of the current for this situation m
include tunneling processes occurring via both levels.

It is possible to have current flow at vanishingV if the
Fermi energy of both leads is aligned with the first lev
available for tunneling. The gate voltage that realizes t
condition is calleddegeneracy pointand is defined by

Vg
052

CS

eCg
ed , ~10!

whereed is the energy of this particular level.

3. Variations in electron-electron interactions

In the presence of variations in electron-electron inter
tions between electrons in different energy levels,11 the en-
ergy of the island has the extra term

EJ5J~$ni%!. ~11!

Equation~1! can be interpreted as an expansion of the ene
of the system around the ground state: the second term is
part ofE that is linear in$ni%, the first term is the mean-field
contribution of the quadratic part andJ($ni%) is defined to be
the rest. The net effect of theJ($ni%) term is to produce
shifts in the energy thresholds for tunneling that depend
the actual state of the particle. For instance, the effec
energy levele i8 for adding an election to leveli starting with
the N0-electron state$nj% is

e i85e i1J~$nj1d i j %!2J~$nj%!. ~12!

Notice that this is only defined ifni,2. In the same way, the
energy of a nonempty energy level in aN1 state can be
defined asminusthe energy required to remove an electr
from that level.
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B. Steady-state occupation probabilities

Owing to the influence of the Coulomb charging ener
even in the simplest cases that we will consider the occu
tion probability for a given many-body stateua&5$ni% of the
particle cannot be factorized as the product of occupan
probabilities for each single-electron level. Therefore,
have to solve the full rate-equation problem where the oc
pation probability of each many-body state is treated as
independent variable.

The evolution of the occupation probability of stateua& is
given by4,5

dPa

dt
5(

b
~Gb→aPb2Ga→bPa!, ~13!

whereGa→b is the transition rate from stateua& to stateub&.
This can be written in matrix form as

dP

dt
5G•P ~14!

with the following coefficients for the matrixG.

Gab5Gb→a if aÞb ~15a!

Gaa52 (
bÞa

Ga→b . ~15b!

We do not consider cotunneling or internal relaxation
the particle. Therefore, the only states that are coupled
gether are states that have the same occupancy for al
levels, except one electron difference in one level. Let
assume that statesua& and ub& differ only by ub& having one
extra electron in leveli. Then

Ga→b5g i
l f ~e i82El

F!~22ni !1g i
r f ~e i82Er

F!~22ni !,
~16a!

Gb→a5g i
l@12 f ~e i82El

F!#ni1g i
r@12 f ~e i82Er

F!#ni
~16b!

where

f ~x!51/@11exp~x/kBT!# ~17!

is the Fermi function corresponding to the temperature in
leads andg i

l and g i
r are the bare tunneling rates betwe

level i and each of the leads. Heree i8 is the energy needed t
add an electron to stateua& in level i. It includes the contri-
bution of the interaction term.

The steady-state occupation probabilities can be found
iterating Eq.~14! with a discrete timestepdt to find the prob-
abilities for whichdP/dt50. This is equivalent to finding the
eigenvectorP0 of G associated with the eigenvalue zero.

C. Current

Once the occupation probabilities for each stateua& are
determined at given values ofV andVg , then the current can
be calculated either through the right tunnel barrier
04531
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through the left barrier. In the steady state these two curre
are equal. The current through the left barrier is4,5

I l5ueu(
a

(
b

Ga→b
l Pa , ~18!

where Ga→b
l is the contribution of the left lead toGa→b ,

multiplied by 11 or 21 depending on whether thea→b
transition gives a positive or negative contribution to t
current.

In order to get a feeling of the physics that will come o
of this rate-equation model, in the rest of the paper we w
consider selected examples that are simple enough to
solved by hand, yet have the basic ingredients of the co
plete problem.

III. ONE SPIN-DEGENERATE LEVEL ACCESSIBLE

A. General formula

Consider the situation represented in Fig. 3 where o
one spin-degenerate energy level, with energye1 , is acces-
sible for tunneling and~on account of the large Coulom
energy! it can be occupied by either zero or one electron,
not two.18 If we call

f r5 f ~e12Er
F! ~19a!

f l5 f ~e12El
F! ~19b!

andN50 or 1 the state withN electrons, the transition rate
are

G0→152g r f r12g l f l ~20a!

G1→05g r~12 f r !1g l~12 f l !
~20b!

for the tunneling-in and tunneling-out transitions. Then, t
occupation probabilities are

P15
G0→1

G0→11G1→0
5

2g r f r12g l f l

g r~11 f r !1g l~11 f l !
~21a!

P05
G1→0

G0→11G1→0
5

g r~12 f r !1g l~12 f l !

g r~11 f r !1g l~11 f l !
~21b!

and the current through the left lead in the steady state i

FIG. 3. Energy diagram with one level available for tunnelin
7-4
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SOLVING RATE EQUATIONS FOR ELECTRON . . . PHYSICAL REVIEW B65 045317
I 5ueu@g l~12 f l !P122g l f l P0#

52ueu
g rg l~ f r2 f l !

g r~11 f r !1g l~11 f l !
. ~22!

This expression differs from an approximate form used
Ref. 13 to analyze tunneling data.

We can plot the current as a function of the applied vo
ages by replacingf k by their definitions in Eqs.~19! andEk

F

by the expressions in Eqs.~4!. Figure 4 shows the curren
steps as a function of the bias voltage when the gate vol
is first equal to the degeneracy point, then is tuned aw
from it.

B. High bias limit

If the level spacing is very large compared tokBT, there
is an interesting regime in whichV is substantially bigger
than kBT/ueu yet only one level is involved in the curren
transport. The limiting current in this case is bias indep
dent and can be obtained from Eq.~22! by settingf r51 and
f l50 ~positive bias! or f l51 and f r50 ~negative bias!. For
these two cases we have, respectively,14

I 152ueu
g rg l

2g r1g l
~23a!

I 2522ueu
g rg l

g r12g l
. ~23b!

These expressions give different heights for the posi
and negative current steps. Measuring these heights
therefore, allow an experimental determination of bothg r
andg l . Note that this is in contrast with the case in whi
tunneling occurs through a single level that is not spin
generate. In that case

I 1
656ueu

g rg l

g r1g l
~24!

for both bias directions,14 so thatg r andg l cannot be deter-
mined separately.

FIG. 4. Current profiles as a function of the bias voltage for
case of a single spin-degenerate level accessible for tunneling
three different gate voltages. We assumeCr5Cl andg l54g r . The
bias voltage is plotted in units ofkBT/ueu. The current is in units of
ueug0 , where g05g lg r /(g l1g r). The reduced gate voltagevg

5ueuCg(Vg2Vg
0)/CSkBT is 0,23 or 26.
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In the limit of barriers with very different tunneling rate
~which can be experimentally relevant if the barrier thickne
is not well controlled!, the current depends only on th
smallerg. For example, ifg l@g r , then I 152ueug r and I 2

52ueug r . The factor of 2 inI 1 /I 2 arises from the differ-
ence in the number of spin states accessible for tunneling
the rate-limiting transition across the right barrier.

C. Position and width of the current step

Next we consider the case depicted in Fig. 5, in whichVg
is adjusted away from the degeneracy point so that at
thresholdV for tunneling only the effective Fermi energy i
the right electrode is close toe1 , while the Fermi energy of
the left electrode is at a much lower energy. That is, we w
assumef l50. Using this assumption, after some algebra E
~22! becomes

I 5I 1 f S e12Er
F2kBT ln

2g r1g l

g r1g l
D . ~25!

Even though both spin states of the quantum level contrib
to tunneling, we can see in this expression that the cur
step has the shape of a simple Fermi function whose widt
given by the electron temperature of the leads. However,
nonzero temperature, the center of the step is shifted rela
to its position at zero temperature. The shift is proportio
to the temperature, vanishes ifg l@g r , and has a maximum
value ofkBT ln 2 wheng r@g l . Figure 6 shows the shape o
the conductance peakdI/dV in the latter limit for three dif-
ferent temperatures.

There is a simple intuitive explanation of the shift in th
limit g r@g l . The current threshold at zero temperature
given by Er

F5e1 . At nonzero temperatures, whenEr
F5e1 ,

the Fermi occupancy probability is12 for states in the right
lead with the energye1 . In this case the transition rates a
dominated by electrons tunneling back and forth from
right lead~sinceg r@g l!

G0→15 1
2 ~2g r ! ~26a!

G1→05 1
2 g r . ~26b!

Here the factor1
2 comes from the Fermi occupancy of th

lead and the factor 2 inG0→1 is from the spin degeneracy
This factor is only present forG0→1 because electrons tun

e
for

FIG. 5. Energy diagram with one level available for tunneli
and Vg,VG

0 . Since El
F is substantially belowe1 , electrons can

tunnel into the island only from the right lead.
7-5



tro
a
-
ic

nt

p
d

on

the

be
rent
al
-

s.
-

o
the

c-
er,
the

e
. W

is

We

for

EDGAR BONET, MANDAR M. DESHMUKH, AND D. C. RALPH PHYSICAL REVIEW B65 045317
neling into the island see two empty states, while an elec
tunneling out comes from a given spin state. It follows th
when Er

F5e1 the probability that the island is in the one
electron state is exactly two-thirds. Then the rate at wh
electrons tunnel to the left lead~the rate-limiting process
determining the total current! is two-thirds of the maximum
value. This can be seen directly in Figs. 6~a!, or in 6~b! by
the fact that two-thirds of the current~area under the peaks!
lies left of V2V050. ThisT-dependent shift in the appare
resonance position has been observed by Deshpandeet al.15

D. Zeeman splitting of the energy level

In the presence of an applied magnetic field, the two s
states associated with a given orbital level are no longer
generate, but split to give the energiese1

65e1

6gmBm0H/2. If we call these states1 and 2, and f k
6

[ f (e1
62Ek

F), then the transition rates are

G0→65g r f r
61g l f l

6 ~27a!

G6→05g r~12 f r
6!1g l~12 f l

6! ~27b!

Notice the absence of the factors 2 that were in Eqs.~20! due
to the spin degeneracy. The occupation probabilities are

P05
1

11
G0→1

G1→0
1

G0→2

G2→0

~28a!

P65
G0→6

G6→0
P0 ~28b!

and the current through the left lead is

I 5ueug l@~12 f l
1!P11~12 f l

2!P22~ f l
11 f l

2!P0#.
~29!

Figure 7 shows the effect of the magnetic field on the c

FIG. 6. ~a! Current step and~b! conductance peak at positiv
bias and negative gate voltage for three different temperatures
assumeCr5Cl , g l550 MHz Ref. 12 andg r@g l . The peak occurs
at V052Cg(Vg2Vg

0)/CS at zero temperature and shifts from th
position by an amount 2kBT ln 2/ueu at nonzero temperature.
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ductance peak at positive bias for a gate voltage below
degeneracy point~i.e., the casef l

650!. The peak splits into
two subpeaks of different weight. This asymmetry can
understood by noticing that the first subpeak carries a cur
given by Eq.~24! and the two peaks together give a tot
current given by Eq.~23!. Then the fraction of the total cur
rent carried by the first subpeak is just

I 1
1

I 1
5

2g r1g l

2g r12g l
. ~30!

If g r@g l , this ratio is one and the second peak vanishe14

On the other hand, ifg l@g r , the peak splits into two sub
peaks carrying the same current.

IV. TWO LEVELS ACCESSIBLE

Next consider the situation pictured in Fig. 8 where tw
spin-degenerate levels are accessible for tunneling and
number of electrons in these levels isN52 or 3. Due to the
Coulomb blockade, no current flow is possible until an ele
tron can tunnel from the right electrode to state 2; howev
after this happens both states 1 and 2 can contribute to
current even at the initial current onset. Let (n1 ,n2) be the
state withn1 electrons in level 1 andn2 electrons in level 2
(n11n25N), let P(n1 ,n2) be the probability of state
(n1 ,n2), and letg i

k be the bare tunneling rate of the leveli
across the barrierk. We will specialize immediately to the

e

FIG. 7. Splitting of a conductance peak in a magnetic field.
assumef l

650, Cr5Cl , and g r5g l5g. At zero temperature and
zero field the peak occurs atV052Cg(Vg2Vg

0)/CS . The reduced
field h5gmBm0H/(2kBT) is 0, 3, or 6.

FIG. 8. Energy diagram for a case with two levels available
tunneling.
7-6
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interesting case of positive bias~as pictured in Fig. 8! with
the right barrier substantially thicker than the left barrier,
g i

l@g j
r for i, j P$1,2%. ~Note that this is opposite to the in

equality considered in Fig. 6.! To simplify further, we will
also look only at the current onset at positive bias for a la
negative gate voltage, i.e., we will assumef (e12El

F)
5 f (e22El

F)50 and f (e12Er
F)51. For this case,f (e2

2Er
F) will simply be calledf. These conditions correspon

to line III in the data of Ref. 12.
Figure 9 shows the available transitions together with

FIG. 9. Available transitions for the situation described in Fig.
ec

t

a

o

ug

a

04531
o

e

e

corresponding transition rates. Sinceg i
r!g i

l for i 51,2, the
terms having a factor 12 f can be neglected.

A. Rate equation

The rate equation in this case has to describe eight p
sible transitions between five different states. It is, therefo
convenient to use the matrix notation of Eq.~14!, which
gives

d

dt S P~2,0!

P~1,1!

P~0,2!

P~2,1!

P~1,2!

D 5GS P~2,0!

P~1,1!

P~0,2!

P~2,1!

P~1,2!

D ~31a!

with

.

~31b!
we
he

vel
te-

o-

on
.

This matrix has the structure

G5S Guu Guc

Gcu Gcc
D ~32!

whereGuu and Gcc are diagonal blocks associated, resp
tively, with the N0-electron ~uncharged! and N1-electron
~charged! states. The cross-diagonal blocks are associa
with the tunneling-out (Guc) and tunneling-in (Gcu) events.
This structure is preserved whatever number of levels
available for tunneling.

In the steady state, the solutions for the occupation pr
abilities are as follows:

P~2,1!!1, P~1,2!!1, ~33a!

P~2,0!5
1

S
, P~1,1!5

4 f K

S
, P~0,2!5

f 2K2

S
,

~33b!

whereK5g1
l g2

r /g2
l g1

r andS5114 f K1 f 2K2.

B. Current

Since we can neglect the tunneling-out transitions thro
the right barrier, we can calculate the current as the sum
the contributions of the tunneling-in events through this b
rier
-

ed

re

b-

h
of
r-

I

ueu
52 f g2

r P~2,0!1~ f g2
r 1g1

r !P~1,1!12g1
r P~0,2!

I 5ueu
~4g2

r K12g1
r K2! f 21~2g2

r 14g1
r ! f

114 f K1 f 2K2 . ~34!

In Fig. 10 we compare this expression to the current
would have in the presence of infinitely fast relaxation in t
island@state~1, 1! relaxing instantaneously to~2, 0!#. In such
a case electrons can only tunnel into the higher energy le
in the island. Since the tunneling in of electrons is the ra

FIG. 10. Shift of the current step by nonequilibrium in the tw
levels-accessible case. We assumeg1

l 5g2
l 5g l and g1

r 5g2
r 5g r ,

with g l@g r . The step occurs atV052Cg(Vg2Vg
0)/CS at zero tem-

perature. The ‘‘equilibrium’’ curve assumes infinitely fast relaxati
in the island. The ‘‘nonequilibrium’’ curve assumes no relaxation
7-7
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limiting process, this situation is equivalent to the case of
~22! when only one level is accessible for tunneling, and
current would just be

I equilibrium52ueug2
r f ~e22Er

F!. ~35!

The main effect of nonequilibrium states as illustrated in F
10 is, therefore, to shift the current step to a lower volta
Although not exactly a Fermi function, the shape of the s
described by Eq.~34! is very close to a Fermi function
shifted by21.79kBT and widened by 8.5%. The shift can b
understood as follows: WhenEr

F5e2 , electrons tunneling to
the upper level come from half-full states in the right lead
the island is in a nonequilibrium state@~1, 1! or ~0, 2!#, elec-
trons can also tunnel to the lower level. Since these elect
come from full states in the lead, the current atEr

F5e2 is
higher when these states are allowed, hence the shift.

The temperature dependence of the current step and
conductance peak in this two-level-accessible case withg l
@g r is displayed in Fig. 11. Although theT-dependent shift
looks very similar to the result for one level displayed in F
6, the shift in Fig. 11 is of a different nature since it orig
nates from nonequilibrium states. For the one-lev
accessible case, there was no shift for positive bias withg l
@g r . If we look at the opposite limit with two levels~posi-
tive bias g l!g r!, the rate equation will be dominated b
electrons tunneling back and forth between the right lead
the second level in the island. This situation is very similar
the one-level case and gives the current

I 5ueu~2g1
l 1g2

l ! f ~e22Er
F2kBT ln 2!, ~36!

where the shift bykBT ln 2 is explained by the same argu
ment as in the one-level case. The additional level, theref
does not produce an additional shift wheng l!g r .

If the voltages are tuned so that more than two levels
made available for tunneling-out transitions~by lowering
El

F!, or if the tunnel couplings to state 1 are greater than
state 2, then the shifting of the resonance away from thT

FIG. 11. Dependence of~a! the current step and~b! the conduc-
tance peak on the temperature in the two-levels-accessible ca
the presence of nonequilibrium. We assumeg1

l 5g2
l 5g l and g1

r

5g2
r 5g r , with g l@g r and no relaxation in the island.
04531
.
e

.
.

p

f
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he

.
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50 position in theg l@g r case will be enhanced beyon
what is shown in Fig. 11. This shift will, however, rema
proportional tokBT.

We have also considered the case whenEr
F is very high,

so that many levels are accessible for an electron to tun
into the island across the higher-resistance tunnel bar
while El

F remains fixed slightly belowe1 . In such a situation
the total tunneling-in transition rate will be proportional
the number of levels available for tunneling in, and this ra
can eventually become greater than the tunneling-out r
which will be roughly constant. In this case, tunnelin
through the left lead will eventually become the bottlene
process even ifg l@g r , which allows one to estimate a
average tunneling rate through the lower-resistance ba
even in the case of very asymmetric barriers.

V. TWO LEVELS ACCESSIBLE WITH VARIATIONS
IN THE INTERACTIONS

In the presence of variations in electron-electron inter
tions, the energy thresholds for tunneling are different
pending on whether the island is initially in a ground state
in an excited state. For example, in the case described in
preceding section, this effect can make the energy requ
for the (1,1)→(1,2) transition different than the (2,0
→(2,1) transition. We can account for such variations
assigning a different energy to the upper level in the prese
or absence of an excitation in the island. Namely, the ene
of the upper level will bee2 for the (2,0)→(2,1) transition
and e285e21d for the (1,1)→(1,2) transition. Hered is a
measure of the strength of the variations. In order to gen
alize the previous notation, we will callf 5 f (e22Er

F) and
f 85 f 8(e282Er

F).
The possible transitions are still described by Fig. 9 a

the corresponding rate equations are the same as Eqs.~31!
but with

G~1,1!→~1,2!5 f 8g2
r ~37a!

G~1,2!→~1,1!52g2
l 12~12 f 8!g2

r , ~37b!

which gives the current

I 5ueu
~4g2

r K12g1
r K2! f f 81~2g2

r 14g1
r ! f

114 f K1 f f 8K2 . ~38!

Figure 12~a! shows the current step for the case that
energy required for the tunneling transition is decreased
nonequilibrium ~negative d! for various values ofd/kBT
ranging from 0 to220, and Fig. 12~b! shows I -V curves
when the nonequilibrium effect increases the tunneling
ergy. These plots were made forg1

r 5g2
r 5g r , g l@g r , and

K51. For negatived, the effect of the variation in electron
electron interactions is to produce an additional shift in
voltage position of the current step, on top of the shift
ready described due to the nonequilibrium states. This a
tional shift is proportional toudu if udu!kBT and becomes a
constant of the order ofkBT if udu@kBT. A shift of this sort
has been observed in Fig. 3~b! of Ref. 12. For positived, the

in
7-8
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effect of nonequilibrium is to produce an extra step in t
I -V curve at voltages larger than the position of thed50
current step.

As V is increased so that more than two levels beco
energetically accessible for tunneling, the ensemble of p
sible nonequilibrium excitations grows combinatorically, a
each combination of excitations can produce a different s
for the tunneling resonance energies. Interactions that dep
on the spin state of the island~neglected thus far! can pro-
duce further complications. The nonequilibrium excitatio
can produce a variety of effects depending on the ratiog l /g r
and on the magnitude of variations in electron-electron in
actions. When the interaction-induced shifts are compara
to kBT, they have been observed to produce an effec
broadening of the observed conductance peaks.12 For larger
interactions, shifts due to nonequilibrium excitations ha
been resolved individually.11,16

FIG. 12. Current steps for different interaction strengths.
assumeCl5Cr , g1

l 5g2
l 5g l , andg1

r 5g2
r 5g r , with g l@g r . The

‘‘equilibrium’’ curve assumes infinitely fast relaxation in the islan
The other curves assume no relaxation andd/kBT ranging~a! from
0 to 220 and~b! 0 to 6.
R

, P
.

ev
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VI. CONCLUSIONS

We have solved the rate equations describing electron
neling via discrete quantum states on a nanoscale island
selected simple cases, under the assumption that rate fo
ternal relaxation of excited electronic states is slower th
the electron tunneling rate. Even the simplest case of tun
ing via a single spin-degenerate energy level has some
tially surprising features. The magnitude of the maximu
tunneling current can depend on the sign of the applied b
V, and the voltage position of the resonance is tempera
dependent. When two spin-degenerate quantum levels
accessible for tunneling, the behavior is even richer beca
of the influence of nonequilibrium excitations on the islan
The voltage position of the resonance can undergo str
temperature-dependent shifts even in regimes~e.g., positive
bias andg l@g r noted above! where the one-level resonanc
positions do not depend on the temperature. Understan
the variations in the strength of electron-electron interacti
is critical in the nonequilibrium regime with two or mor
levels accessible. Such variations can produce additio
shifts of resonance curves on top of the shifts noted pre
ously, and they can also introduce extra steps into
current-voltage curves.

The methods we have described for determining tunne
currents are applicable to more than two levels, but the a
lytic expressions become sufficiently complicated to be
limited usefulness. We have verified numerically that the
sults for additional levels are qualitatively similar to the tw
level case. The computer codes we have used for calcula
the general cases are available electronically.19 These are
useful, for instance, in extracting the rate-limiting bare tu
neling rates from experimental data in which stepwise
creases in the current are measured asV andVg are adjusted,
so that the number of states accessible for tunneling
creases one by one.12
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