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Solving real-life vehicle routing problems efficiently 
using tabu search 
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Chaire de Recherche Opdrationnelle, CH-1015 Lausanne, Switzerland 

Abstract 

This paper presents a tabu search based method for finding good solutions to a 

real-life vehicle routing problem. The problem considered deals with some new features 

beyond those normally associated with the classical problems of  the literature: in addition 

to capacity constraints for vehicles and time windows for ddiveries, it takes the 

heterogeneous character of the fleet into aecounL in the sense that utilization costs are 

vehicle-dependent and that some accessibility restrictions have to be fulfilled. It also 

deals with the use of trailers. In spite of the intricacy of the problem, the proposed tabu 

search approach is easy to implement and can be easily adapted to many other applications. 

An emphasis is placed on means that have to be used to speed up the search. In a few 

minutes of computation on a personal workstation, our approach obtains solutions that 

are significantly better than those previously developed and implemented in practice. 

Keywords: Combinatorial optimization, vehicle muting problem, tabu search. 

1. Introduction 

Generally speaking, solving real-life problems differs considerably from solving 

academic ones, in particular because of the amount and variety of restrictions to 

consider. This occurs for the vehicle routing problem (VRP) at a regional level of 

one of the major Swiss chain stores. A simplified version of the problem faced by 

this company is as follows. 

The problem involves 45 grocery stores located in the cantons of  Vaud and 

Valais in Switzerland (see fig. 1). As each store may place up to two different 

orders (one concerning the bakery service and the other concerning other types of  

goods), the problem deals with 70 to 90 orders. An order of a store can not be split, 

so it may be entirely loaded on any vehicle, but the sum of the volumes and weights 

of two orders of a same store may be bigger than the capacities of some vehicles. 

To stock its shops, the company owns a heterogeneous fleet of vehicles 

consisting of 21 trucks and 7 trailers. A truck is characterized by its carrying 

capacity, by its volume capacity, by its cost of use per kilometer, and by 
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the subset (eventually empty) of trailers that it can draw. A trailer is characterized 

by its carrying capacity, by its volume capacity, by its cost of  use per kilometer, 

and implicitly by the subset of  the truck that can draw it. For a mailer, the 

cost of  use per kilometer includes the additional consumption of  fuel o f  the 

truck drawing it. 

When a truck draws a trailer, it composes what we call a road train. The 

volumetric capacity of  a road train is the sum of  the volumetric capacities of  the 

truck and the trailer. Since the carrying capacity of  a road train is limited by Swiss 

law to a maximal value (28 tons), the carrying capacity of  a road train is the 

minimum of  this value and the sum of  the carrying capacities of  the truck and the 

trailer. 

A store is characterized by a subset of  trucks that can reach it, by whether 

it is equipped for receiving deliveries by road train, by its access time (manQeuvring 

time) by truck and if  applicable, by its access time by road train. From now on, we 

call a store that can receive deliveries by road train a trailer-store and call a store 

that can receive deliveries by truck only a truck-store. A trailer-store can receive 

deliveries either by road train or by any truck alone. Figure 1 shows the situation 

geographically and the main characteristics of  the stores. 

An order is characterized by the store that has placed it, by its volume, by 

its weight, by an unloading time and by a time window during which it must receive 

deliveries. 

Each vehicle may cover one route at most. A route covered by a truck alone 

is a classical circuit: the truck starts from the depot, delivers every order it has 

loaded and goes back to the depot. The routes including a trailer have a special 

character: the road train leaves the depot to reach a trailer-store where the trailer 

may be uncoupled, so that the truck alone can then serve some truck-store; we will 

call a route covered by a truck alone that starts from a trailer-store and that comes 

back to the same trailer-store a subtour. While the truck covers a subtour, the trailer 

is unloaded. Finally, the truck goes back to the trailer-store where the trailer is 

coupled again, and the road train moves to the next trailer-store, .and so on (see 

fig. 2). Notice that for such routes, the trailer contains the orders of  trailer-stores 

only, but the truck is loaded either with orders for trailer-stores or for truck-stores. 

In our case, there are 9 trailer-stores (see fig. 1). Obviously, such shops may be 

served by some routes covered by a truck alone. 

Therefore, our problem may be sketched as follows: Determine a transportation 

schedule using a heterogeneous fleet consisting of  trailers and trucks that minimizes 

the transportation costs  and satisfies the following constraints: 

• Each order must be delivered during a time window. 

• The volume capacity for each vehicle must be respected. 

• The carrying capacity for each vehicle must be respected. 

• Each store can be reached by a subset of  the trucks and trailers. 
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. . . . .  l I D  

Main circuit : Tour covered by a truck with a trailer 

Subtour : Tour covered by a truck whithout trailer 

Lausanne 

Fig. 2. An  example  o f  a road train-route.  

In this paper, we present a very flexible approach based on tabu search 

techniques (TS) to find good solutions to this problem. In section 2, we 

summarize the first heuristic that we developed to solve the problem and that 

is now used by the company. Our adaptation of TS is described in section 3. We 

show how this search can be speeded up in section 4. Numerical results are compared 

with the solutions used by the company in section 5. Finally, we conclude in 

section 6 with some general remarks on this work and future research that may be 

undertaken. 

2. First heuristic method based on clustering methods 

The problem we are dealing with contains significantly more features than 

a standard VRP, and hence no classical method is able to handle it. We first sketch 

the method the company uses for finding good transportation plans. The heuristic 

method (see [7]) is based on that of Fisher and Jaikumar [3] and on clustering 

methods. It provides feasible solutions for a VRP that incorporates the same constraints 

described above except for time window restrictions. It embodies the three following 

steps: 

(1) Elaboration of trailer-routes: 

Solve the VRP restricted to trailer-stores and to trailers; this provides routes 

including only trailer-stores from which subtours may be generated in step 2 

(see the main circuit in fig. 2). 
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(2) Formation of  road trains: 

For each trailer-store, build a cluster including the nearest truck-stores. Assign 

trucks to trailers considering the volumes that may be delivered on subtours. 

(3) Elaboration o f  truck-routes: 

Solve the VRP on truck-stores not yet delivered, using the remaining trucks. 

We now state some important points of these steps. In step 1, the total 

capacities of trailers (volume and weight) may be insufficient to serve every trailer- 

store, so the fleet is completed by adding some trucks that are then assigned to 

trailers. In this phase as well as in step 3, we solve the VRP using the two-phase 

heuristic method of Fisher and Jaikumar [3]. Indeed, this method may be adapted 

to deal with two capacity restrictions of a heterogeneous fleet and provides good 

solutions. 

Some key points relative to the implementation of the Fisher and Jaikumar 

method have to be stated precisely. The first phase consists of assigning orders to 

vehicles by solving a generalized assignment problem (GAP). The coefficients ca of 

the GAP objective function represent the cost of delivering order i with vehicle k. 

They are computed as follows: 

czk = doi + 

where/i, is the seed order (see [3]) associated with vehicle k and dij is the distance 

between the stores where orders i and j have to be delivered. Note that order i does 

not represent a store since stores may place different orders to the central depot 0. 

We set cik to infinity when order i can not be delivered by vehicle k due to the VRP 

constraints. 

To select seed orders, two heuristic criteria are successively used. First, 

orders for which the volume (respectively, the weight) is greater than the half 

volumetric capacity (respectively, the carrying capacity) of  the larger vehicle are 

chosen as seed orders. When the number of such orders is less than the number of 

vehicles, the following criterion is applied. The farthest order from the previously 

selected seed orders is selected as seed order. This is repeated until the desired 

number of seed orders is reached. 

In step 2 (formation of road trains), clusters are built around trailer-stores, 

assigning first the nearest truck-stores. Then, some exchanges of truck-stores between 

clusters are performed based on an index of inter-cluster proximity. This is due to 

the capacity constraints of the largest truck that can access the trailer-store. The 

proximity index DAB between two clusters CA and Ca is defined as follows: 

DAB = 
2 

ICAIIC I 

1 
AAB - AAA -- ABB, 
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with 

iecA jGcn 

This type of  index between clusters, introduced by Tricot and Donegani [11], 

can be interpreted as follows. AAs measures the separation between clusters A and 

B, when A n  measures the dispersion of  cluster A. Thus, DAn is greater as the 

clusters CA and Cs are more compact (i.e. A n ,  Ass are smaller) and vice versa. As 

a particular case, the proximity index between one truck-store a and one cluster Ca 

is calculated according to the following formula: 

1 Z d  ~ 1 

I Ca i i~cA I C~-~ AAA. 

Given a cluster CA violating a capacity restriction, the exchanges consist of  

permuting n truck-stores of  CA for m truck-stores of  CB. Clusters CB satisfying the 

capacity constraints are considered according to increasing values of  DAB. Different 

n - m  exchanges are tried between CA and CB: 1 -0 ,  1-1 ,  1 -2 ,  2 - 1 ,  2 - 2 .  Finally, 

clusters are compacted to keep a set of  stores that are close to each other. 

At the present time (May 1992), this method is used by the company and has 

produced solutions significantly superior to those obtained "by hand". The solutions 

from this method allow us to evaluate the quality of  solutions obtained by TS. We 

specify below our tabu search approach to this problem. 

3. Tabu search and VRP 

TS first requires us to define the notion of  move applicable to a given 

solution. For the VRP, a move that transfers an order from one route to another is 

convenient. We denote by r0 the fictitious route that contains every non-delivered 

order. Associated with this route, we introduce a cost to ensure ro = O for an 

admissible solution of the problem. Thus, we use a constraint relaxation technique 

that allows some orders not to be delivered on certain intermediate steps, but that 

takes the constraint r0 = O into the objective function with a penalty attached to its 

violation, controlled in a manner that also causes feasible solutions to be generated. 

3.1. EVALUATION OF THE COST OF A MOVE 

A central aspect of our approach is the implementation of  two fast procedures, 

one for removing an order from a route and one for inserting an order into a route. 

Both routines have to be able to deal with variants of  the TSP with time windows. 

Since the number of  stores included in a route is small in our case (less than 10), 

we take advantage of  heuristic processes that are simple and convenient to implement. 

For this, we extend fundamental heuristic notions devised for the standard VRP to 
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allow them to handle the more complex requirements of  our formulation. The capacity 

and accessibility restrictions are not taken into account in this part of  the method, 

but they are considered in the assignment of  vehicles to routes (see section 3.3). 

The insertion procedure first consists of  determining the best place to locate 

an order on a given route, and then of improving the route using a 2-optimality 

routine (see [5]). The insertion phase constitutes an extension of  the work of  

Solomon [8]. We briefly summarize the basis for this phase as follows. 

Let (Oio, oi 1 . • .oi,+~ ) be the orders belonging to the route r i with oio and oi,+1 

constituting fictitious orders that stand for the depot (i.e. oio - oi,+~). Let ou denote 

the order to be inserted. For each feasible insertion of  o,  between oil and oli+~, we 

then compute: 

• the increase in the length o f  the route: 

c (ij, u) = d i :  + d , . , .  - > 0; 

• the delay on arrival at  the store that places oi1+: 

c (i. u) = t, L - b , , . .  

where bi is the delivering time of  oi , i e the time at which order oz 
j + l  j + !  " " 

i t  ou is inserted. begins being unloaded, and b~+l is the new delivery time - J'+~ 

Then the best place to insert ou in the route, between oi and oi , is 
. . . . . . . . .  j( .) . .  . j ( . )+ l  

determined to minimize me convex combination of  me two preceding cntena:  

alCl(i, j(u)) + a2c2(i, j(u)) = p=moinn(OflCl(ip, U ) 4" Ol2c2(ip,U)), 

with al  + ~ = 1, a l ,  a2 --- 0. We choose al = ~ = 0.5. 

In this way, a good position is determined for o,, on the route in the case o,, 

is delivered by a truck. In the case of  road train-routes, inserting order 0,, for a 

trailer-store needs another computation of  c~ because we enforce the trailer-stores 

to be served by a road train to deliver a maximum number of  truck-stores by truck. 

The computation of  c2 remains unchanged. We have to consider four cases when 

ou is an order for a trailer-store: 

Case 1" oil and oij+l are orders f o r  trailer-stores. 

This case is the classical one, so computation of  cl and c2 are not modified. 

Case 2: o~ is an order f o r  a trailer-store, oli+l is an order f o r  a truck-store. 

Let oik be the order preceding oil on the subtour and oit the order following 

oq on the main circuit (see fig. 3); then we compute: 

cl(ij, u) = diyu + duii+ ~ - diiii+ 1 + (diku - dikii) + (dui t - dliit), 



476 F. Semet, E. Taillard, Vehicle routing problems 
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which can be written: 

C l ( i j , u  ) = di j  u + dul l  - d i j i t  + (duij+l - d i j i j+ l )  + (d i ,  u - dikij ) .  

This insertion is equivalent to inserting ou between oi~ and olt on the main 

circuit and to exchanging the origin of the subtour initially issued from oij; 

ou then becomes the new root of  the subtour. 

Case 3: olj is an order for  a truck-store, oii+ ~ is an order for  a trailer-store. 

This case is symmetrical to the previous one. ou is the predecessor of  oij+~ 

on the main circuit and becomes the new origin of the subtour previously 

issued from o/i+ 1 (see fig. 4). 
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5. Case 4: Insertion of a trailer-store between two truck-stores. 

Case 4: oii and o~+~ are orders for truck-stores. 

Let oi~ be the origin of the subtour including oii and oil÷t, let oik be the 

predecessor of oit on the subtour, and let oi,, be its successor on the main 

circuit (see fig. 5). Then we compute: 

cl( j.u)= d,,.. + + (di,,, + -d , , , , . , )  + (d,,. -d, , , , ) .  

This insertion is equivalent to inserting o,  between o~ z and oi,, and to 

splitting the subtour issued from o/r The splitting occurs by deleting the 

trip from the store where oii is delivered to the store that places order oq+~. 

The removal procedure, which complements the foregoing insertion procedure, 

consists of  removing the order considered from the route and updating the parameters 

of  the route. The deletion of  an order that is the origin of  a subtour is the only 

critical case. The operation in fact makes use of  the insertion processes previously 

described. Every order on the subtour is inserted on the other subtours of  the same 

route using the insertion routine identified above. However, if there is no other 

trailer-store served by the route, the latter becomes a truck-route. 

3.2. TABU I~TS 

The next component of  our TS method is the definition of  the tabu list. Two 

types of tabu lists were tested: one based on forbidding orders to be assigned to 

particular routes, and the other based on forbidding stores to receive deliveries by 

particular routes. 

The first tabu list is defined as follows: If  order oj currently belongs to route 

rt and is selected to be inserted on another route, the tabu list forbids order oj to 

be moved back to route rk again during a given number s of  iterations. This may 
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be implemented by  storing for each order o./and for each route r i the number  of  the 

iteration after which oj may again be delivered on route r~. 

The second tabu list type is particularly relevant to our problem where each 

store places many orders: every order that originates from a given store is forbidden 

to be assigned back to a route from which any one o f  these orders was just  removed. 

Finally, we use the commonly applied aspiration function that releases the 

tabu state of  a move if  the move improves the best solution found up to now. 

33. TABU SEARCH PROCEDURE 

Figure 6 illustrates the procedure of  performing a move in pseudo-code.  The 

only point that has not been clarified yet is the assignment o f  vehicles to routes. 

If  there were no trailers, this point would be clear. Then, we would simply compute 

a square matrix (aij) that gives the cost o f  assigning vehicle v./to route r i. Clearly, 

Procedure perform_a_move 

kept_cost := ** 

for every order oj do 

remove oj from route rk to which it belongs 

for every route rl ~ rk do 

insert oj on ri 

find an assignment of vehicles to routes minimizing the total cost 

if (there is an assignment satisfying the restrictions of the problem) 

and (the move is not tabu or is aspirated) 

and (the cost of this move is lower than kept_cost) then 

kept_cost := cost of tried_move 

kept_move := tried_move 

end if 

end for 

end for 

if kept_cost < ** then 

perform kept_move; 

update solution, tabu list, assignment ... 

end if 

end perform_a_move 

Fig. 6. Procedure performing a move. 

i f  vehicle vj can not be assigned to route ri, either a store can not be served by  vy, 

or another restriction (volume or carrying capacities) is violated, and aij has to be 

set to infinity. 

In our problem, a truck can draw only one type of  trailer. Assuming that the 

number of  trailers is not limited, we may solve a linear assignment problem. Thus, 

i f  the total volume or the total weight exceeds the corresponding capacity of  truck 
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vj, and if there is a store that can receive deliveries by a trailer on this route, a~j 
is the delivery cost of route r/using vehicle vj plus its associated trailer. However, 

the optimal assignment may use more trailers than available. To simplify, we reject 

a priori such solutions even if a finite cost assignment using a feasible number of 

trailers exists. 

The complexity of one step of TS (one execution of the procedure "perform 

a move") is O(n 2 + nm4), where m is the number of trucks and n is the number of 

orders (in our case, m = 21 and 70 < n < 90). Indeed, inserting an order on a route 

may be performed in O(nlm) time using a simple insertion procedure (routes are 

assumed to be balanced) and the assignment of vehicles to routes may be computed 

in O(m 3) using the Hungarian algorithm (see [6]). 

As described above, one step of TS takes a few minutes on a personal workstation 

that has a computing power of 10 Mips. Since 2000 to 10,000 steps are necessary 

to find good solutions, such a time is prohibitive. In the next section, we identify 

a way to reduce computation time, essentially by using data already computed in 

previous steps. 

4. Speeding up TS 

CPU time can be dramatically reduced by three strategies: (1) employing an 

assignment routine designed more appropriately for our problem and invoking it 

only when it yields the most benefit; (2) recording move evaluations and using a 

streamlined updating process; (3) employing a screening criterion to reduce the size 

of the neighbourhood. (1) and (3) imply that an intensification search procedure has 

to be invoked when the search reaches a solution that satisfies appropriate conditions. 

4.1. ASSIGNMENT 

A profiler program discloses that over 90% of the CPU time of the unaceelerated 

version of the method is spent in finding the optimal assignment of vehicles to 

routes. Therefore, the assignment step requires special attention to devise a more 

efficient procedure. Upon examining optimal assignments successively obtained, 

we found that very few changes occur from one assignment to the next. The Hungarian 

algorithm starts from an empty assignment and builds an optimal one by adding one 

truck after the other. Therefore, this algorithm is not well suited to our purpose 

because it does not profit from knowledge of the optimal assignment of the previous 

step. Thus, we make use of a primal transportation method that progressively improves 

feasible assignments until reaching one that is optimal (see [1]). Its complexity is 

O(m4), but it runs five to seven times faster than the Hungarian algorithm in our 

application since each initial solution is nearly optimal for the problem of the 

following stage. 

However, the resulting version of TS still spends more than 70% of its CPU 

time in this procedure, and hence we undertake to reduce the number of invocations 
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of the assignment procedure. The solution adopted consists simply of  computing an 

optimal assignment only when a move is effectively performed, instead of each time 

a move is evaluated as a candidate for selection. The quality of the evaluation can 

be diminished by this change, and we show how to handle this consideration in 

section 4.3. 

4.2. STORING INFORMATION TO ENABLE RESTRICTED UPDATES 

By the preceding approach, an assignment solution is generated once instead 

of n(m - 1) times at each iteration, and this change causes the time spent to rebuild 

the routes during the move trials to become preponderant (consuming 70% of the 

CPU time). By an analogous approach, we seek to call the insertion and removal 

procedures as few times as possible, in order to reduce the O(nm)  times per iteration 

that are otherwise invoked. This can be realized by storing the values: 

oj ~ r i • length of route r/if order oj is inserted on this route, 

lii = oj ~ r i "length of route r/if order oj is removed from this route. 

At each iteration, the only values lij that must be updated are those for which 

the composition of route r i has changed since the previous iteration (there are two 

such routes). Exploiting this fact, the complexity of one TS step decreases from 

O(n 2 + nm 4) to O(m2n + n2/m), independently from the time improvement gained 

by altering the assignment solution process. 

4.3. INTENSIFICATION OF THE SEARCH 

Since the optimal assignment is not computed for each evaluation of a trial 

move, the information underlying this evaluation may be misleading. Indeed, if the 

vehicles are very loaded (as typically occurs for good solutions), the evaluation 

obtained by the accelerated process may fail to disclose that an improving move 

exists, whereas the assignment solution would directly identify this possibility. For 

this reason, each time a "good solution" is obtained by the accelerated procedure, 

we amend the procedure to perform a small number of iterations, during which an 

optimal assignment is computed at each trial move to determine a true local optimum. 

We must specify what a "good solution" means: 

Let gk be the best solution obtained by the accelerated search up to iteration 

k and let sk be the current solution: if the cost of sk is lower than the cost of gk-I 

(then gk = sD, sk is a "good solution". Under this circumstance, we search the true 

local optimum associated with gk by performing a "short" TS (independent of the 

accelerated one) which computes an optimal assignment for each trial move. We 

choose to stop this intensive search if more than five iterations are performed 

without improving the best solution obtained by this search. For this process, we 

fix the tabu list size equal to 3. 
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This modification generally yields a best overall solution that is superior to 

the one obtained by the unmodified form of  the accelerated procedure. 

4.4. SIZE OF THE NEIGHBOURHOOD 

A usual strategy for decreasing computation time is to reduce the size of  the 

neighbourhood, but this often impairs the quality of  the solutions obtained. In the 

present case, we find that a proper choice of  the neighbourhood size (with appropriate 

coordination) does not suffer this defect, but considerably cuts down the time 

spent to perform an iteration. Rather than inspecting the neighbourhood completely 

( n ( m  - 1) moves),  we inspect approximately a quarter of  it (i_n / 4_l(m - 1) moves). 

More precisely, we try to perform a route change for only a quarter of  orders, 

examining at each iteration a different set of  orders. At iteration k, the orders 

considered are: 

°(((k-l)Lnl4J) rood n) + 1, °(((k-1)Ln/41+l) rood n) + 1 • • • °((kLnl4J- 1) rood n)+ 1" 

Paradoxically, we sometimes obtained better solutions using this partial 

neighbourhood examination. This may be explained by the diversity of  moves generated 

by this inspection. Indeed, if  no improving move is available for a given solution, 

neighbourhood restrictions may lead to a move that will destroy the structure associated 

with the current solution. For the first tabu list type, fig. 7 shows the value of  the 
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Fig. 7. Partial versus complete examination of the neighbourhood. 
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objective function for both variants (for a given problem and after 10,000 TS steps) 

as a function of  the tabu list size, because this parameter still has to be determined. 

It tums out that a longest tabu list size is needed when the neighbourhood is 

not reduced. This may be explained by a lack of  diversity. Moreover, for an optimal 

tabu list size, the version with a reduced neighbourhood provides slightly worse 

solutions (2%) but the CPU time reductions are very important here. From now on, 

we refer to the version of the method that uses a partial neighbourhood examination. 

4.5. AGGREGATION OF ORDERS 

An ultimate way to cut down CPU time is to compress the size of  the 

problem: multiple orders for a given store can be aggregated into a unique order 

when the total volume is lower than the capacity of the smallest truck that may 

access the store. This aggregation may hinder the discovery of  an optimal solution 

of  our problem, but the CPU time and the size of  the solution space are considerably 

reduced, making it possible to obtain good solutions in shorter CPU time. 

We tested this by re-solving the previous problem (which was used as a basis 

for determining parameter settings for all problems subsequently examined), this 

time aggregating orders. For the first tabu list type, fig. 8 shows the value of  the 

solution obtained as a function of tabu list size for the initial and reduced problem. 

We make the following observations: first, the optimal tabu list size for the reduced 
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Fig. 8. Effect of the aggregation of the orders. 
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problem (for which the number of orders is about half the original one) is slightly 

lower, but not significantly so. Second, for the reduced problem, the optimal objective 

function values are 5% lower than those of the original problem for optimal tabu 

list sizes. The incidence of the aggregation of orders is more extensively studied 

in the next section. 

Using all the improvements described above, we were able to perform 1000 

iterations of TS in only a few minutes on our personal workstation. By comparison, 

the initial version of the program required several days to perform this number of 

iterations! 

Our TS procedure can now be summarized as follows: 

• Search for the best allowed move over a subset of the neighbourhood that is 

systematically varied, keeping the assignment of trucks to routes of the preceding 

iteration. 

• Perform this best move. 

• Compute the new optimal assignment. 

• If a good solution is obtained, find its associated local optimum by performing 

some steps of TS that compute an optimal assignment at each trial of move. 

In the next section, we present more extensive results (for problems occurring 

each working day) that justify the values of the various parameters selected on the 

basis of studying the original benchmark problem. The results are also compared with 

those provided by the heuristic method described earlier that the company has used 

up to now. 

5. Numerical results 

First, we study the behaviour of both tabu list types described in the preceding 

section. On the one hand, the tabu list forbids an order to be reassigned to a route 

it just left, and on the other hand, the tabu list forbids every order of a store to be 

reassigned to a route that any one of these orders just left. The two types of lists differ 

more significantly when the orders are not aggregated. Therefore, we additionally 

examine a new problem (different from those of figs. 7 and 8) in which the orders 

are not aggregated. For both tabu list types, we plot (in fig. 9) the solution found as 

a function of the tabu list size. It tums out that the second type of list provides 

slightly better and more regular results than the first one. 

For the new problem, the optimal tabu list size is greater than the one obtained 

for the problem treated in section 4. This leads us to examine the choice of tabu list 

size from the standpoint of developing a general rule for its determination. 

Cycling occurs when the size of the list is too small: the same solutions are 

ultimately visited again and again, thus wastefully reducing the efficiency of  the 

procedure. Conversely, when the tabu list size is too large, some moves that may lead 

to good solutions will be forbidden. We examine more precisely the behaviour of  the 
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search as a function of the tabu list size by plotting the mean value of the solutions 

visited in addition to the best value of the solution found. This is illustrated 

in fig. 10. Best tabu list sizes for this particular problem range between 3 and 10 

according to the mean cost criterion, but between 25 and 30 according to the criterion 

of obtaining the best possible solution STo.o0o. Undoubtedly, a tabu list size of 3 is 

too small to prevent cycling, whereas a size of 30 is too large to uncover the best 

solutions for some problems (but large tabu lists are often more advisable than small 

ones). 

We therefore decided to generate the tabu list size randomly and uniformly 

between 6 and 30, determining a new size every 60 iterations. By this means, a region 

will be visited intensively when the tabu list is small and the search can leave this 

region when the tabu list is larger, a policy that has also been successfully applied 

to quadratic assignment and job shop scheduling problems [9,10]. 

Since all parameters of our TS procedure are now fixed, we examine its 

behaviour on several different problems whose characteristics are summarized in 

table 1. To compare the results provided by the first heuristic method with those 

Table 1 

Characteristics of problems tested. 

Total volume Total weight Total number Lower bound on the 

(pallets) (kg) of orders number of trucks 

Monday 177 71,390 83 10 

Tuesday 176 71,330 79 10 

Wednesday 196 79,820 78 11 

Thursday 190 75,375 77 10 

Friday 207 83,675 74 11 

Saturday 218 86,840 78 12 

obtained by our 'IS procedure, we point out that the first heuristic method seeks to 

minimize the total distribution time, and we may calculate the total distribution cost 

(in Swiss francs) of the solution provided by the first heuristic method by assigning 

trucks to routes as described above for our TS procedure. Notice that this method 

does not consider time window restrictions. Consequently, it tends to use a minimum 

number of very loaded vehicles (see table 2), the routes of which may violate time 

window constraints. 

In table 2, we summarize the mean results obtained for the problems of 

table 1. The best known solutions of these problems were systematically found by 

TS. First, we present the results provided by the first heuristic method (derived from 

the method of Fisher and Jaikumar), which works only on aggregated orders, then 

those obtained by our TS procedure. Solutions for the TS procedure are presented 

after 2000 iterations using the second tabu list type, then after 10,000 iterations using 
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the first tabu list type, and finally after 10,000 and 100,000 iterations, again using 

the second tabu list type. Each problem was solved ten times, mixing orders initially. 

This generates many independent search paths because of partial neighbourhood 

examination. 

It turns out that the second tabu list type provides solutions whose 

values are a few tenths of a percent below those obtained with the first tabu list type 

for 10,000 iterations. The aggregation of orders leads to very good solutions in a 

very short CPU time, but sometimes we found better solutions without aggregating 

orders. 

Our TS procedure consistently obtains solutions of better quality than those 

generated by the method currently used by the company. This improvement holds 

for the total time criterion even if the choice rules of the TS optimization are not 

based on this criterion. 

6. Conclusions 

Using a standard tabu search method, using straightforward processes to 

ensure efficient execution, we achieved very encouraging results, obtaining solutions 

significantly better than those previously generated for practical application. Indeed, 

our outcomes indicate that distribution costs can be reduced 10 to 15 percent while 

continuing to observe all restrictions taken into account by the method based on the 

approach of [3]. 

To improve our TS procedure, knowledge about the problem has to be added, 

for instance by compelling some orders to belong to given routes; this could lead 

the search to good solutions very quickly. 

Another avenue for potential improvement may result by incorporating iterated 

constructive processes, building the solution one route after the other, assigning 

orders that are farther from the depot before assigning those that are closer. "IS 

machinery can be used to guide such processes as readily as to guide the processes 

indicated in the preceding sections; some preliminary experiments in this direction 

provide very good solutions in less than one CPU minute. 

In addition to demonstrating the ability to deal with practical problems having 

many constraints in an easy way, and to obtain good solutions in moderate CPU 

time, our work underscores the convenient flexibility of the TS approach. Without 

important changes, it would be easy to adapt our TS procedure to consider other 

specifications such as pick-ups and deliveries, intermediate breaks, duration of 

routes, time windows for trucks, and multiple depots. Each of these can be 

accommodated by performing another computation of the objective function and by 

reducing the set of admissible solutions. Additional considerations such as differentiating 

drivers' territories and allowing multiple routes per vehicle can be handled, respectively, 

by including a routine to assign drivers to routes and by duplicating trucks to 

operate within specified time windows. 
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