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Abstract. The paper concerns the problem of roadworks scheduling executed in the flow-shop system. Works may be per-

formed parallelly with the acceleration (overlaps) of construction project, i.e. the following work on the assembly line can 

begin before the completion of the predecessor work. Taking into account the acceleration enables accurate modeling of 

complex real construction processes. The above fact can greatly shorten the time of realization of construction process 

which has a direct impact on reducing costs. The considered issue belongs to the class of NP-hard problems. We introduce 

the new: mathematical model, specific properties as an acceleration tools, as well as two new optimization algorithms for 

the problem considered: construction and tabu search. The execution of algorithms was illustrated on the example of a 

case study concerning the construction of roads. They were also verified on the examples taken from the literature and on 

already completed construction processes. The obtained results are fully satisfactory. The assigned execution times are 

close to optimal. The presented methods allow its practitioners (both the planners and the managers) to include in the 

model the acceleration of the works and the design of a much more efficient construction scheduling. The presented new 

scheduling method leads to a more competitive environment for contraction companies. 

Keywords: scheduling, road building, flow shop, overlaps, tabu search. 

 

Introduction 

Construction project planning processes are usually car-

ried out using techniques based on the critical path meth-

od (CPM) (Mattila, Park 2003). CPMs have evolved 

(from simple diagrams to sophisticated commercial com-

puter programmes used today) for over 40 years. The 

network scheduling of continuous linear processes has 

been presented in many papers dealing with graphical 

network planning techniques (e.g. Lucko, PeñaOrozco 

2009; Arditi et al. 2001; Hegazy 1999; Johnston 1984). 

Construction process synchronization problems have 

been solved for linear engineering structures (i.e. rail-

ways, motorways, etc.). Novel network planning methods 

have been proposed by Hamerlink and Rowings (1998) 

and Harris and Ioannou (1998). Solutions to many specif-

ic problems can be found in works by Chrzanowski and 

Johnston (1996), Harris and Ioannou (1998) and 

Zavadskas et al. (2010). Solutions of production schedul-

ing are provided by Karwat (2012) in industrial applica-

tion. 

For linear scheduling methods applied to construction 

projects scheduling – deterministic (e.g. O’Brien 1969; 

Hamerlink, Rowings 1998; Mattila, Abraham 1998; Harris, 

Ionnou 1998; El-Rayes, Moselhi 2001) as well as fuzzy 

and probabilistic (e.g. Moselhi, Lorterapong 1995) – an 

optimization process is executed for a fixed order of tasks. 

In this paper we allow to change the order of the executed 

tasks, which situation takes place when a company per-

forms construction projects (e.g. roadworks) on several 

working fronts parallelly. That is why we propose robust 

metaheuristics approximate methods for minimization of 

such construction projects make spans.  

There is a number of applications designed to create 

construction projects schedules in literature. However, if 

the model is equal to NP-hard optimization problem, then 

existing algorithms for real-life data (hundreds of jobs) 

are not able to find an optimal solution in a reasonable 

time (computational complexity is exponential). Therefo-

re, approximate algorithms are usually applied (Bożejko 

et al. 2012).  

The development of optimization methods, particu-

larly applied to resource-constrained scheduling, has 

proceeded towards modern and more effective sequence 

approaches since the beginning of this field. At the end of 

the 1970s, the turning point in the combinatorial optimi-

zation methods was the branch and bound (B&B) method 

regarded those days as a remedy for nearly all problems 

of great size which could not be solved by means of me-

thods applied at that time. However, it soon occurred that 
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the B&B method only slightly extended the scope of 

solvable problems (e.g. for a sum-cost, single-machine 

scheduling problem this size extended from 20 to 40–50 

tasks). What is more, the cost necessary to obtain an op-

timal solution is much too high compared to economic 

benefits and its use in practice. The conclusion of these 

investigations was the definition of a bounded area of the 

B&B scheme application.  

The next breakthrough concerned the occurrence of 

advanced approximate methods: dedicated for a particular 

problem as well as metaheuristic (general schemas) – first 

the simulated annealing method and next the method of 

genetic algorithms and the tabu search method. Until 

around 2005 several dozen of different metaheuristics had 

been proposed (i.e. scatter search, ant colony optimiza-

tion, particle swarm optimization, genetic programming, 

etc.) though again those methods reached the limit of 

their abilities to the moment where the size of effectively 

solvable problems (i.e. these for which an average devia-

tion from the optimal solutions was smaller than 1%) 

might be shifted to a number reaching thousands, but not 

millions or hundred millions. Eventually the concept of 

“no-free-lunch” by Wolpert and Macready (1997) fi-

nished the discussion. With reference to rough methods 

this concept may be paraphrased in the following way: 

without using special attributes of examined problems 

considerable advantage of one metaheuristic over the 

other cannot be obtained. Nowadays, the classification of 

scheduling algorithms are: (1) analytical (exact) algo-

rithms; (2) heuristic (dedicated) methods; and (3) me-

taheuristics.  

In this paper we are using the newest achievements 

in this field applying algorithms which have proved to be 

very effective in solving classic optimization problems 

such as traveling salesman problem (TSP) or flow shop 

problem (Rogalska et al. 2008). We are proposing not 

only a description of the problem, but also a mathemati-

cal model and its solving algorithms. What is more, we 

prove specific properties (according to “no-free-lunch” 

theorem), significantly accelerating the calculations per-

formed by algorithm based on tabu method. The whole 

procedure is illustrated on the example of a certain part of 

a road divided into several segments, on which the same 

works are performed in the same sequence (some of them 

start in advance). 

 

1. Construction project problem with overlaps 

We are considering the construction work (Construction 

Project with Overlaps, in short denoted by CPwO) in-

volving execution of many construction projects. Each 

project consists of the same number of works to be done 

in a fixed sequence (the same for each object) set by the 

technological order. The works are performed by differ-

ent brigades. There are data of work execution times and 

overlapping times given. The problem consists in deter-

mining the starting and ending dates of individual work 

performance on the projects, which minimize the comple-

tion date of all the projects that meet the following re-

strictions: 

(i) each work can be performed only by a single, defi-

ned by a technological order, brigade; 

(ii) neither brigade can perform at the same time more 

than one work; 

(iii) for each project there must be a technological order 

maintained, i.e. the same order of work execution; 

(iv) execution of any work cannot be interrupted before 

it is completed; 

(v) any work can be started in advance (with overlap-

ping), i.e. before the end of the one preceding it in 

the technological order; 

(vi) any work cannot be completed before the end of the 

one preceding it in the technological order. 

The optimization issues related to the scheduling of 

construction works are usually formulated as discrete 

optimization problems, namely, works scheduling on 

machines, where projects correspond to tasks, works 

correspond to operations and brigades to machines. In the 

further part of the paper we will use definitions and de-

signations used in tasks scheduling theory. 

The above considered construction project with 

overlaps (CPwO problem in short) can be defined as 

follows. There is a set of jobs: 

 
1 2

{ , ,..., },
n

J J J J=  

to be carried out using a set of machines:  

 
1 2

{ , ,..., }.
m

M M M M=  

Each job 
i
J J∈  consists of m indivisible operations 

1, 2, ,( , ,..., )
i i i m i
J O O O= . The set of all operations: 

1,1 2,1 ,1 1,2 2,2 ,2 1, 2, ,{ , ,.., , ,  ,.., , ... , ,  ,.., }.
m m n n m n

O O O O O O O O O O=  

Operation 
,k i
O  is to be performed on the machine 

kM  in the time , .k i
p  For each 

,k i
O  operation there is 

defined the overlapping ,k i
l  which means that 

,k i
O  over-

laps operation 1,k i
O
−

 ( 0, 0
i

l = ). A case , 0
k i
l >  means 

the permission for ‘overlapping’ of subsequent job’s op-

erations, or the start of the next job’s operation with some 

time delay compared to the start of the current operation 

and before its completion. We assume that the “overlap-

ping” of the first operation of each task is equal to 0. We 

introduce the following variables: 

 

, ,

,i j i jS C  – searched due date of starting and  

ending operation 
,i jO ; 

S  – due date of all the operations start  

(without loss of generality we  

assume 0S = ); 

max
C  – searched date for ending of all  

operations. 

 

Using the above designations, the considered buil-

ding project can be described as the following optimiza-

tion problem: 

Minimize 
max

,C  (1) 
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subject to , 0,i jS ≥  =1, , , = 1, , ;i m j n… …  (2) 

 , , 1,i j i jS C
−

≥  = 2, , , = 1, , ;i m j n… …  (3) 

 , , 1 , 1
,i j i j i j

S S p
− −

≥ + =1, , , = 2, , ;i m j n… …  (4) 

 , , ,= ,i j i j i jC S p+  =1, , , = 1, , ;i m j n… …  (5) 

 , ,1,
,i j i ji j

S C l
−

≥ −  = 2, , , = 1, , ;i m j n… …  (6) 

 , 1,
,i j i j

C C
−

≥  = 2, , , = 1, , ;i m j n… …  (7) 

 
, max

,i jC C≤  =1, , , = 1, , .i m j n… …  (8) 

Constraints (3) are a mathematical record (i), const-

raints (4) correspond to (ii), constraints (5) refer to (iv), 

while (6) corresponds to (iii) and (v) and the constraints 

(7) correspond to (vi). All other constraints are obvious. 

Any solution (acceptable) of CPwO problem is a 

sequence of nm numbers (the start dates of operations): 

1,1 1,2 1, 2,1 2,2 2, ,1 ,2

, ,,1 ,2

( , , , , , , , , , , , ,

, , , , , ),

n n i i

i n m nm m

S S S S S S S S

S S S S

… … … …

… …

 

satisfying the constraints (2)–(8). Such a solution can be 

represented by permutation = ( (1), , ( ))nπ π π…  tasks 

from set J. It is easy to note that a non-decreasingly or-

dered set 1,1 1,2 1,{ , , , }
n

S S S…  of non-decreasing start times 

of tasks (i.e. the first operation of each task) on the first 

machine determines permutations of tasks (the same for 

each machine). On the other hand, for any permutation of 

the tasks π  we can determine the starting times of opera-

tions using the following recursive dependencies: 

1, (1) 1, ( ) 1, ( 1) 1, ( 1)= 0, = , = 2,3, , ,
i i i

S S S p i n
π π π − π −

+ …

, (1) 1, (1) 1, (1) , (1)= , = 2,3, , ,
j j j j

S S p l j m
π − π − π π

+ − …  

, ( ) 1, ( ) 1, ( ) , ( ) , ( 1) , ( 1)= max{ , },
j i j i j i j i j i j i

S S p l S p
π − π − π π π − π −

+ − +  

for = 2,3, , , = 2,3, , .i n j m… …  

Computational complexity of starting times calculated 

in the above manner equals ( ).O nm  

Remark 1. Date of completion of the tasks performed 

in the order π : 

 max , ( )( ) = .
m n

C C
π

π  

By Φ  we denote the set of all permutations of the 

solution of tasks from .J  The solution to the herein con-

sidered problem of construction project with overlaps 

CPwO (i.e. equivalent to problems of tasks scheduling 

defined by the constraints (1)–(8)) is to determine the 

optimal permutation *π ∈Φ  such that:  

 
max max

( *) = min{ ( ) : }.C Cπ π π∈Φ  

The problem which is presented in this section con-

cerns construction projects scheduling in which – using 

the language of automation – jobs should start on the next 

machine before being finished on the previous one. In a 

classical permutation flow shop problem each of jobs 

should be carried out one after the other; moreover, the 

sequence of carrying out jobs on each machine has to be 

the same; start of carrying out a job on a next machine 

has not to follow until it is finished on the previous ma-

chine. Optimization consists in determining such a se-

quence of carrying out jobs that it will minimize the total 

times of carrying them out. 

In the literature there were different generalizations 

and special cases of the problem CPwO considered. They 

cover both the objective function and the constraints. If 

we assume that the acceleration times (overlaps) 
,

0i jl =  

(
,i jO O∈ ) we get a classical permutation flow shop 

problem with the C
max

 criterion. In literature this problem 

is denoted by 
max

| |F perm C  and is strongly NP-hard 

(from this fact it follows that CPwOproblem is also NP-

hard). Although for over 30 years intensively examined 

permutational flow problem is already classical optimiza-

tion problem nowadays, however there are still no satis-

factory algorithms of its solving, in particular for practi-

cal instances of big sizes. Instances which are not bigger 

than 20 jobs and 5 machines can be solved, in a reasona-

ble time, by exact algorithms based on the branch and 

bound method. In last years many algorithms of the 

max
| |F perm C  problem based on tabu search method 

(Grabowski, Wodecki 2004), genetic algorithm (Reeves, 

Yamada 1998; Bożejko, Wodecki 2004), parallel algo-

rithm, scatter search (Bożejko, Wodecki 2008) and simu-

lated annealing (Ishubuchi et al. 1995), parallel algorithm 

(Wodecki, Bożejko 2002) have been published. General-

ly, the quality of defined by these algorithms solutions is 

dependent, to a large extent, on their operation time. The 

higher the time, the bigger subset of the set of acceptable 

solutions is searched (directly), which increases the op-

portunity to find a good solution.  

Many works are also devoted to the flow-shop pro-

blem with transportation time (i.e. transport times of jobs 

between machines). Work of Gupta and Stafford (2006) 

is a classical study of the problem. The latest results and 

literature review are presented in the works of Gupta 

(2012) and Lamoudan et al. (2011). 

 

2. Graph model 

For any feasible solution, i.e. the order of execution of 

tasks on machines (permutations) = ( (1), , ( ))nπ π π… , we 

construct a directed graph with burdened vertices and 

arcs ( ) = ( , ( ))G V Aπ π , where a set of vertices V O=  

(vertices correspond to operations), and ( ) ( )A R Eπ = ∪ π  

and a set of arcs, where: 

1. ( )
1

, ( ) 1, ( )
=1 =1

= , .

n m

i j i j

j i

R O O

−

π + π

 
 
  

∪ ∪  

The set R contains arcs connecting consecutive op-

erations of the same task (they represent the techno-

logical order). These are called vertical arcs; 
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2. ( ){ }
1

, ( ) , ( 1)
=1 =1

( ) = , .
m n

k i k i

k i

E O O

−

π π +
π ∪∪  

Arcs from the set ( )E π  combine the operations per-

formed by the machine, setting the sequence of 

tasks (the same on each machine). These are called 

horizontal arcs. 

Vertices and arcs of the graph are loaded with 

weights. Weight of vertex 
,i jO  is equal to the time of 

operation execution 
,

.i jp  The weight of vertical arc 

( ),1,
, i ji j

O O R
−

∈  is 
,i jl−  (i.e. minus overlap). The 

weights of all other arc (horizontal) equal 0. Figure 1 

shows part of the graph ( ),G π π∈Φ  (without marked 

burdens of vertices and arcs). 

 

 

Fig. 1. Solution graph π 

 

A sequence of vertices 
1 2

( , , , )
w

v v v…  of graph 

( )G π  such that 
1

( , ) ( ),
i i
v v A

+
∈ π  1,2,..., 1i w= −  call 

path from vertex 
1
v  to .

w
v  Its length is equal to the sum 

of the weights of vertices and arcs (including the weight 

of the first and last vertex). By ( , ), ,P u v u v O∈  we de-

noted the critical path, i.e. the longest path in the graph 

from vertex u  to v , and by ( , )L u v  – the length of the 

path. 

Example 1. Figure 2 shows a fragment of a permu-

tation graph (1,2,3,4,5,6,7)π =  for data taken from the 

Table 1. A sequence of vertices 

1,1 1,2 1,3( , , ,O O O 1,4 2,4 3,4, , )O O O  is a path from vertex 

1,1O  to 3,4O  of length 33. A critical path 

is 1,1 3,4 1,1 2,1 3,1 3,2 3,3 3,4( , ) ( , , , , , )P O O O O O O O O= , and its 

length 1,1 3,4( , ) 47.L O O =  

Remark 2. The permutation π∈Φ  is a feasible solu-

tion of the CPwO problem if and only if the graph ( )G π  

does not contain cycles. 

Remark 3. Time of jobs execution, according to the 

solution π∈Φ  equals to the length of the critical path 

(i.e. the longest path) of the graph ( ).G π  

 

 

Fig. 2. Fragment of a solution graph for data from Example 1 

 
Table 1. Total times of actions on working segments and over-

laps values represented as workdays 

works 
Segments 

s1 s2 s3 s4 s5 s6 s7 

w1 19 (0)* 4 (0) 5 (0) 3 (0) 4 (0) 12 (0) 6 (0) 

w2 13 (2) 3 (2) 3 (2) 2 (2) 4 (2) 9 (2) 6 (2) 

w3 17 (11) 4 (2) 4 (2) 3 (1) 6 (2) 11 (7) 8 (4) 

w4 13 (11) 3 (1) 3 (1) 2 (0) 4 (2) 9 (7) 6 (4) 

w5 7 (5) 2 (0) 2 (0) 2 (0) 2 (0) 5 (3) 2 (0) 

w6 15 (13) 3 (3) 3 (2) 2 (1) 4 (4) 19 (9) 6 (4) 

w7 15 (15) 2 (3) 4 (3) 3 (2) 6 (4) 10 (10) 6 (6) 

w8 15 (15) 4 (2) 4 (4) 3 (3) 6 (6) 11 (10) 10 (6) 
*in parentheses – overlap values. 

 

Remark 4. 
1, (1) , ( )( , )

m n
P O O

π π

 is a critical path in the 

graph ( ).G π  

Solving the CPwO problem boils down to determin-

ing such a feasible solution π∈Φ  for which the corre-

sponding graph ( )G π  has the shortest possible critical 

path. 

Let π∈Φ  be a feasible solution. By ( )P π =  

1, (1) , ( )( ,..., )
m n

O O
π π

 denote the critical path in the graph 

( ).G π  This path can be partitioned into subsequences of 

vertices (subsequences of operations):  

 1 2= [ , , , ]mB B B B… , 

such as: 

(a) each subsequence contains successive operations 

executed directly one after another on the same ma-

chine; 

(b) cross-section of any two subsequences is an empty 

set; 

(c) each subsequence is a maximum (due to inclusion) 

the subset of the operations.  

Subsequence ,kB  = 1,2, ,k m…  of operations from the 

critical path executed on the k-th machine is called a 

block (Wodecki 2009). 

Remark 5. Any block contains exactly one opera-

tion from each task. 

In the further part of the paper we will be conside-

ring blocks as sequences of jobs which will be denoted as 

follows: 
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= ( ( ), ( 1), , ( 1), ( )), 1 .k k k k k k kB a a b b a b nπ π + π − π ≤ ≤ ≤…  

Jobs ( )kaπ  and ( )kbπ  are respectively the first and 

the last in a sequence. In turn a block without the first and 

the last job ( ˆ kB ) we call an internal block. The defini-

tions given are presented on the Figure 3. 
 

 

Fig. 3. A block on the critical path 

 

Theorem 1. Let permutation π∈Φ  be a feasible 

solution of construction project problem with overlaps. If 
kB  is a block from the critical path, then any change in 

the sequence of jobs of the internal block does not gener-

ate solution with cost function value lower than the value 

of the cost function of the solution .π  

Proof. Let 1 2= [ , , , ]mB B B B…  be a sequence of 

blocks in a permutation .π∈Φ  We are considering the  

k-th block:  

 = ( ( ), ( 1), , ( 1), ( )).k k k k kB a a b bπ π + π − π…  

A critical path in a graph ( )G π , i.e. from vertex 

1, (1)O
π

 to , ( )m n
O
π

: 

1 2( ) = ( , , , )mP B B Bπ =…  

1 2 1
, ( ) , ( 1) , ( 1)

1
, ( )

( , ,..., , ( , , , ,

), ,..., )

k k k

k

k

k a k a k b

k m

k b

B B B O O O

O B B

−

π π + π −

+

π
=

…

 

1, (1) , ( ), ( ) , ( 1) , ( 1) , ( )
( ( , ), ( , ), ( , ),k k k k m nk a k a k b k b
P O O P O O P O O

π ππ π + π − π
 

and its length: 

1, (1) , ( ) , ( 1) , ( 1)

, ( ), ( )

( ) ( , ) ( , )

( , )

k k k

k

k a k a k b

m nk b

L L O O L O O

L O O

π π π + π −

ππ

π = + +

=

1

1, (1) , ( ) , ( ), ( ) , ( )
1

( , ) ( , ).

k

k k

k

b

k i m nk a k b

i a

L O O p L O O
−

π π ππ π

= +

+ +∑  

Let β∈Φ  be a permutation generated from π  by 

changing the order of the tasks of the internal block ˆ ,kB  

i.e. tasks from a set of tasks: 

 { ( 1), ( 2), , ( 2), ( 1)}.k k k ka a b bπ + π + π − π −…  

From definition of a permutation β  results that: 

 1 1( ) ( ), 1,2,..., , , , ,...,k k k ki i i a a b b n− +β = π =  

and there appears equality of sets:  

 { ( 1), ( 2), , ( 2), ( 1)}k k k ka a b bβ + β + β − β − =…  

 { ( 1), ( 2), , ( 2), ( 1)}.k k k ka a b bπ + π + π − π −…  

In the graph ( )G β  we are considering certain path 

from vertex 1, (1)O β  to , ( )m n
O β : 

 
1, (1) , ( ) , ( 1) , ( 1)

, ( ), ( )

( ( , ), ( , ),

( , )).

k k k

k

k a k a k b

m nk b

W P O O P O O

P O O

β β β + β −

ββ

=

 

The length of the path is: 

 
1, (1) , ( ) , ( 1) , ( 1)

, ( ), ( )

( ) ( , ) ( , )

( , ).

k k k

k

k a k a k b

m nk b

L W L O O L O O

L O O

β β β + β −

ββ

= + +

 

From definition of a permutation β  results that the 

length of some paths in graphs ( )G β  and ( )G π  are the 

same, in particular: 

 1, (1) 1, (1), ( ) , ( )
( , ) ( , )k kk a k a

L O O L O Oβ πβ π
= ; 

 , ( ) , ( ), ( ) , ( )
( , ) ( , ).k km n m nk b k b

L O O L O Oβ πβ π
=  

Moreover: 

 

1 1

1 1

, ( ) , ( ), ( 1) , ( 1)

, ( 1) , ( 1)

( , )

( , ).

k k

k k

k k

k k

b b

k i k ik a k b

i a i a

k a k b

L O O p p

L O O

− −

+ +

β πβ + β −
= =

π + π −

= = =∑ ∑
 

Therefore, the length of the path ,W  

max
( ) ( ) ( ).L W L C= π = π  The length of the critical path in 

the graph ( )G β , max ( ) ( )C L Wβ ≥  (because the critical 

path is the longest path in the graph). Thus 

max max( ) ( ) ( ).C L W Cβ ≥ = π  

We have shown that there exists a path W in the 

graph ( )G β  which length equals:  

 
max

( ) ( ).L W C= π  (9) 

Because 
max

( )C β  is the length of the longest path in the 

graph ( )G β , therefore:  

 
max

( ) ( ).C L Wβ ≥  (10) 

From Eqns (9) and (10) we have 
max max

( ) ( ).C Cβ ≥ α   

In this way we have proved that if the permutation 

β was generated from π  by changing the order of tasks 

in some internal block, then the length of the critical path 

max max
( ) ( ),C Cβ ≥ π  which completes the proof. 

The change of operations order in any block does 

not generate the solution with lower value of the cost 

function. At least one operation from any block should be 

moved before the first or after the last operation of this 

block to generate the solution (graph) with smaller length 

of the critical path. We use this property to reduce the 

neighborhood size, i.e. to omit generating solutions with 

greater values (comparing to the current solution) of the 

cost function. 

 



W. Bożejko et al. Solving resource-constrained construction scheduling problems with overlaps by metaheuristic 

 

654 

3. Solution algorithms  

In the literature several criteria of classification methods 

for solving NP-hard problems are used. With reference to 

the determined solutions the following methods are dis-

tinguished: 

− exact methods; 

− approximation methods. 

Exact (optimal) methods, due to their exponential 

computation time, are of little use in practice. With their 

use, it is possible to solve only small size instances within 

a reasonable time. Even constantly increasing power of 

computers cannot significantly affect the increase in the 

size of examples solvable in acceptable time. Therefore, 

to solve NP-hard optimization problems there are almost 

exclusively approximate methods used. However, they do 

not give a guarantee that the determined solution is opti-

mal. In reference to the way in which the solutions are 

determined algorithms can be divided into three main 

classes: 

− construction algorithms; 

− correction algorithms; 

− metaheuristc algorithm. 

Hereby considered CPwO problem is an important 

generalization of the flow shop problem. In recent years, 

many metaheuristic algorithms, solving the above men-

tioned flow shop problem, have been published. The best 

of them are based on tabu search method parallel algo-

rithm (Grabowski, Wodecki 2004; Bożejko, Wodecki 

2002). Solutions determined by them, for a representative 

group of examples, are only slightly different from the 

best currently known in the literature. Therefore, in order 

to solve the CPwOproblem we will use the tabu search 

algorithm. 

Construction algorithm. To determine the starting 

solution, for the tabu search algorithm, we have used a 

modified version of the NEH algorithm (Nawaz et al. 

1983). This algorithm is considered to be the best algo-

rithm for solving a classical design flow shop problem 

with the criterion 
max

C . Based on computational 

experiments carried out on a representative group of 

examples, the mean relative error set by the NEH algo-

rithm of solutions does not exceed 5%. 

 

Algoritm MNEH 

Step 1: Number the tasks so that: 

1 2
, , ,

n
t t t≥ ≥ ≥…  where , ,=1

= ( );
m

j i j i ji
t p l−∑  

(1) : 1;π =  

Step 2: for := 2k  to n to 

insert task k  in one of the positions 1, 2, , k…  in 

subpermutation π  so that the value of the objecti-

ve function (i.e. the date of tasks completion) was 

minimal. 

Computational complexity of the algorithm equals 

O(m + nlnn). 

Tabu search method. This method was proposed by 

Glover and Laguna (1997) and then developed by other 

authors (Nowicki, Smutnicki 1996; Grabowski, Wodecki 

2004). Tabu search (TS) is a modification of the local 

search method. In the basic version the TS method starts 

its operation of a certain initial solution x
0
 ∈ X, where X 

is a set of the all feasible solutions. In the basic step of 

this method the whole neighbourhood N(x
i
) of a solution 

x
i
 is searched. Neighbourhood is defined by movements 

which can be performed with x
i
. The search aims at find-

ing in N(x
i+1

) a solution with the smallest cost function 

value. The process of searching is continued till the best 

found solution. 

To prevent the cyclic repetitions of solutions, stop-

ping in a local extreme and to direct search into promis-

ing solutions areas there has been introduced the history 

memory of searching in the form of tabu list (so-called 

tabu list). On this list the definite number of recently 

“visited” solutions (basic solutions) is stored. These solu-

tions are not remembered directly, but as some of their 

“attributes”. That’s why tabu arising from a particular 

iteration refers also to solutions which have been previ-

ously basic solutions. To weaken this constraint, addi-

tionally some aspiration function for the tabu solution is 

defined. If value of this function is smaller than the given 

level, then the solution is not treated as tabu. In the course 

of performing next iterations, it’s remembered the best 

found solution *x  in the sense of cost function value and 

corresponding to the value of this function. Searching 

stops at the moment of starting working appropriate al-

loy’s conditions. Summing up, the tabu method includes 

the following basic elements: 

 

initial solution – a solution from which an algo-

rithm starts its operation; 

movement – a function transforming one solu-

tion into another; 

neighbourhood – a set of solutions which are possi-

ble to obtain from a determined 

solution by means of a class of 

movements; 

tabu list – a list including attributes of 

movements or solutions for deter-

mined number of recently exam-

ined solutions; 

completion 

condition 

– a situation in which an algorithm 

ends up its operation e.g. (1) was 

performed the determined before-

hand number of iterations; passed 

the algorithm’s operation time, (2) 

in successive iterations the cost 

function value was constant. 

 

Moves and neighbourhood. In the literature we can 

meet many types of a move based on interchanges of jobs 

on a machine. The intuition following from Theorem 1 

suggests that the “insertion” type move should be the 

most proper one for the problem considered. Roughly 

speaking, the insertion move operates (see Wodecki 

2009; Bożejko, Wodecki 2007) on a sequence of jobs on 

a machine and removes a job placed at a position in this 

sequence and inserts it in another position of the se-

quence. More precisely, let kB , = 1,2, ,k m…  be the k
th

 

block in a permutation .π∈Φ  For the job 
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ˆ( ) { ( )}k kj B bπ ∈ ∪ π  let us denote by ( )kN j
�

 a set of 

permutations created by moving the job ( )jπ  to the be-

ginning of the block kB  (before the first job in block 

( )).kaπ  Analogously, for the ˆ( ) { ( )}k kj B aπ ∈ ∪ π  let us 

denote by ( )kN j
�

 a set of permutations created by mov-

ing the job ( )jπ  to the end of the block kB  (after the last 

job in the block ( )).kbπ  The neighbourhood of the solu-

tion π  has the form of: 

 
1 ( )

( ) ( ( ) ( )).
k

m
k k

k j B

N N j N j
= π ∈

π = ∪

� �
∪ ∪  (11) 

The number of elements of this neighbourhood is li-

mited in advance by n. 

Tabu List. Let k

l
π  be the permutation obtained from 

π  by removing job the ( )kπ  from its original position 

,k  and next inserting it in the position l  in π  (
k

l
i move). 

To prevent generating a cycle in the graph ( )G π  some 

attributes of each movement are put on the list of tabu 

moves, which is served as the FIFO queue. We put the 

move’s attribute, the triple ( ( ), , ( )),k

l
k l Fπ π  on the tabu 

list .

TS
L  

Let us assume that we analyze a move k

l
i  which 

generates the permutation k

l
β  from .β∈Φ  If the triple 

( , , )r j Ψ  such that ( ) ,k rβ =  l j=  and ( )k
l

F β ≥ Ψ  is on 

the 
TS
L  list, such a move is forbidden. The only parame-

ter of this list is its length (the number of its elements). 

There are many realizations of the tabu list presented in 

the given references (Glover, Laguna 1997; Grabowski, 

Wodecki 2004). 

The algorithm stops (completion condition) after 

Max_iteriterations. 

 

Algorithm ATS (Tabu search) 

Step 0: Find the initial solution 
0
π ; 

 
0

: ;π = π  

* : ;π = π  

max_tabu_lenght / 2n=  (n is the number of 

jobs); 

Step 1: Define the neighbourhood ( )N π  (see 

Eqn (11)) of a permutation π , remove from 

the neighbourhood elements forbidden by the 

tabu list except these ( )Nβ∈ π  for which:  

max max
( ) ( );C Cβ < π  

Step 2: Find such a permutation ( )Nδ∈ π  for which:  

max max
( ) min{ ( ) : ( )};C C Nδ = β β∈ π  

Step 3: if 
max max

( ) ( *)C Cδ < π  then 

* :π = δ ; 

 Insert attributes of δ to the list 
TS
L ;  

 if length ( TSL >max_tabu_lenght) then 

erase the oldest element on 
TS
L ; 

 : ;π = δ  

Step 4: if the completion condition is satisfied then 

Stop 
 else go to Step 1. 

 

4. Case study 

During planning the road works execution, e.g. a road 

repair, the whole project can be divided into working par-

cels with different sizes whose boundaries are set for in-

stance by crossroads/intersections with existing road paths. 

The sequence of taking actions on parcels by working 

teams will affect not only the total time of the whole pro-

ject, but also the time of machines or working brigades 

delays. The problem of setting the optimal sequence of 

doing works on individual parcels in regard to the estab-

lished criterion, for example the minimal time of carrying 

out a project, the minimal time of the working brigades 

delay or working costs concerning jobs sequencing.  

To make a right division of works, it’s necessary to 

determine the kind of works according to the general 

classification. The general works classification in the 

road and bridge construction is presented as follows: 

1) preparatory works; 

2) earthworks; 

3) lands and pavements consolidation; 

4) profiled lands and gravel pavements building; 

5) reinforcement of soil-surfaced road pavement and 

subgrade; 

6) broken stone pavement building; 

7) asphalt concrete pavement building; 

8) cement concrete pavement building; 

9) repairing, conservation, maintenance and recon-

struction of pavement; 

10) production, conversion and purification of aggre-

gates including aggregates usage obtained in the 

process of recycling; 

11) loading, unloading and transport works; 

12) bridges and culverts building; 

13) energy production and transfer; 

14) old objects demolition. 

 

Example 1. We are considering a project for the 

construction of a section of a road, which was divided 

into seven segments: s1, s2, s3, s4, s5, s6, s7. Figure 4 

shows a diagram of the works to be performed on each of 

the segments. 

The technological order of works is as follows: 

w1 – earthworks; 

w2 – sand drainage blanket preparation;  

w3 – preparation of broken-stone or macadam founda-

tion; 

w4 – binding course preparation with asphalt medium-

grained concrete; 

w5 – surface course preparation with asphalt fine-grained 

concrete; 

w6 – roadsides preparation with stone dust; 

w7 – drainage process; 

w8 – planting and eventual topsoil removal. 
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Fig. 4. The section of an access road to a dumping ground 

 

For each of the segments the works should be done 

in a flow-shop system, i.e. in the following order: (w1, 

w2, w3, w4, w5, w6, w7, w8). It is possible to start the 

implementation of the next job before the end of the pre-

vious one (overlap). Figure 5 shows one of the segments 

under construction. Some of the works are done in ad-

vance (in parallel). Figures illustrating the issue of a 

construction project example are given in Table 1. 

 

 

Fig. 5. Works performed in advance (photo J. Chrobok) 

 

 

Fig. 6. Scheduling example for a road segment s1 
 

We are presenting a special case of general works 

classification mentioned above, namely, the national road 

section, which consists of eight activities. Figure 6 shows 

works scheduling for a single road segment s1 (the 

arrows indicate the order of execution of separate works). 

Total time of works completion took 42 workdays. The 

work w1 is performed within 19 days. Two days before 

the end of the work w1,w2 work begins (overlap for this 

work is 2, see Table 1). If the acceleration for each work 

from the segment s1 was equal to 0 (as in the classic 

flow-shop system), then, in order to execute all the works 

in this segment, we would need 114 days. 

 

4.1. Computational experiments 

Due to the lack of test instances in the literature, for the 

considered problem appropriate  test  instances  have 

been generated basing on instances of Taillard (1993) for 

a classical flow shop problem. Taillard’s set of instances 

consists of 120 examples divided into 12 groups with 

different sizes. For each size n×m: 20×5, 20×10, 20×20, 

50×5, 50×10, 50×20, 100×5, 100×10, 100×20, 200×10, 

200×20, 500×20 ten instances occur. 

As in literature there are no solving algorithms for 

the problem considered, the quality of solutions (in the 

sense of the cost function value) generated by the ATS 

algorithm has been compared to solutions obtained by the 

MNEH algorithm. Additionally, there have been created 

instances of the problem of the small sizes nxm: 10×10. 

For these instances the optimal solution has been deter-

mined by a total searching of the solutions set (by the 

branch and bound, B&B algorithm). The obtained values 

have been compared to results which MNEH and ATS 

algorithms have provided. 

To determine the initial permutation for the ATS al-

gorithm the appropriately adopted MNEH algorithm has 

been applied. The adaptation of the this algorithm for the 

need of the algorithm discussed here has consisted in 

considering the transport times of jobs between machines 

during determining the cost function value for each solu-

tion processed in the algorithm. 

For each problem instances the following values 

have been calculated: 

C
 

– the cost function value obtained by the 

ATS algorithm; 

PRD(A) – the relative percentage deviation to the 

C
ref

 value obtained by the MNEH algo-

rithm of the cost function value obtained 

by the ATSalgorithm; PRD(A) = (C
A 

– 

C
ref

)/C
ref

 ⋅100%. 

Table 2 presents the percentage relative deviation to 

the MNEH algorithm for the tabu search algorithm consid-

ered. Table 3 shows the cost function value for the optimal 

solutions and solutions obtained by the MNEH and the 

tabu search algorithms. Average relative deviation of the 

constructive MNEH was on the level of 3.32%. The pro-

posed tabu search found optimal solutions for all the ex-

amples (average relative deviation was 0.00%). 
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The proposed ATS algorithm as well as MNEH 

were also tested for the classic flow shop problem, i.e. for 

zero overlaps. The percentage relative deviation of the 

tabu search and the MNEH algorithms to the Taillard’s 

(1993) reference solutions are presented in the Table 4. 

Average relative deviation to the best known solutions 

was on the level of 3.25% for the MNEH algorithm, 

0.19% and 0.07% for the proposed tabu search algorithm, 

for 1000 and 5000 iterations, respectively. 

 
Table 2. The percentage relative deviation for the tabu search 

algorithm ATS as against the MNEH algorithm 

n×m 
ATS  

(1000 iter.) 

ATS  

(2000 iter.) 

ATS 

(5000 iter.) 

20×5 –2.31% –2.31% –2.38% 

20×10 –4.91% –5.02% –5.16% 

20×20 –4.44% –4.49% –4.58% 

50×5 –0.94% –0.94% –0.94% 

50×10 –4.30% –4.57% –4.59% 

50×20 –4.82% –5.18% –5.48% 

100×5 –0.79% –0.81% –0.81% 

average –3.22% –3.33% –3.42% 

 
Table 3. The cost function value for the optimal solution and 

solutions obtained by the MNEH and the tabu search 

algorithms 

instance   Cmax  PRD[%]  

 n×m OPT MNEH ATS MNEH ATS 

TM21 10×10 908 950 908 4.63 0.00 

TM22 10×10 784 803 784 2.42 0.00 

TM23 10×10 883 912 883 3.28 0.00 

TM24 10×10 922 971 922 5.31 0.00 

TM25 10×10 884 884 884 0.00 0.00 

TM26 10×10 888 919 888 3.49 0.00 

TM27 10×10 911 915 911 0.44 0.00 

TM28 10×10 835 861 835 3.11 0.00 

TM29 10×10 881 929 881 5.45 0.00 

TM30 10×10 825 867 825 5.09 0.00 

average     3.32 0.00 

 
Table 4. The percentage relative effort of the tabu search and 

the MNEH algorithms as against Taillard’s solutions 

n×m MNEH ATS (1000 iter.) ATS (5000 iter.) 

20×5 3.36% 0.08% 0.02% 

20×10 4.60% 0.27% 0.20% 

20 20 3.73% 0.30% 0.22% 

5 0 × 5  0.71% 0.16% 0.16% 

50×10 4.14% –0.02% –0.12% 

50×20 5.70% 0.52% 0.01% 

100×5 0.50% –0.01% –0.01% 

average 3.25% 0.19% 0.07% 
 

Our algorithms MNEH and ATS was coded in C++ 

and executed on a PC with Intel Celeron 1.73 GHz pro-

cessor. Computations times were at most few seconds. 

From the perspective of practitioners of construction 

industry, there is an attempt to synchronize a number of 

works in time and space in scheduling of construction 

projects by flow-shop system. Computational experi-

ments presented above gives practitioners an useful algo-

rithms (ATS and fast MNEH) which can be embedded 

into expert systems and tool engineering computer appli-

cations, e.g. as it was shown in the work Bożejko et al. 

(2012). 

 

4.2. Application of the proposed method to the case 

study  

Apart of the benchmark data presented above, the practical 

data, referring to the building of road segments with differ-

ent length, have been considered. In Table 1 here have 

been included data presented as the total times of actions 

on working segments represented as workdays. The ATS 

algorithm has been applied to data from Table 1. 

The algorithm work has resulted in a solution 

π  = (4,2,5,7,6,1,3) for which the cost function value is 

max
C

 
= 75 (workdays). In the Figure 8 there is presented 

a building schedule for individual road segments for the 

obtained permutation π . The cost function value in case 

of scheduling for the permutation accordant to the seg-

ments numeration (natural permutation) 

(1,2,3,4,5,6,7)π =  (Fig. 7, 
max

C = 78) is bigger than for 

a scheduling achieved from results of the ATS algorithm 

operation (Fig. 8, 
max

C = 75). The algorithm executed 20 

iterations and computations time did not exceed 0.1 sec. 
 

 

Fig. 7. Building schedule for individual road segments for the 

permutation accordant to the segments numeration (natural 

permutation) 

 

 

Fig. 8. Building schedule for individual road segments for the 

permutation obtained by the tabu search algorithm 

 

In order to examine the effectiveness of the method 

there were additional calculations performed. They were 

carried out in two stages: 

1. Using the algorithm of solving the flow shop prob-

lem (flow shop problem without acceleration of 

works) stated in the work of Grabowski and 

Wodecki (2004) the solution for the example taken 

from Table 1 was determined. 
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2. Given the acceleration (Table 1), moved up to the 

left (reduced) schedule of individual works was ob-

tained. 

This resulted in a solution C
max 

= 98 workdays. 

Taking into account the acceleration of works al-

ready in the mathematical model of the issue provides a 

significant reduction (by over 20) of the completion time 

of the construction process. 

 

Conclusions 

We have discussed the problem of road projects schedul-

ing in this paper. Moving the issues of construction 

scheduling in the field of classical scheduling theory one 

can encounter many difficulties associated with the selec-

tion of the correct model (a type of an issue), and the 

corresponding algorithm. For they are usually completely 

new, with many nonstandard constraints, strongly  

NP-hard combinatorial optimization problems. In order to 

solve them one can use the most up-to-date effective 

methods of algorithm construction (metaheuristics): sim-

ulated annealing, genetic algorithm, tabu search, neural 

networks, ant colony optimization, etc. On the basis of 

our theoretical research, experimental computations and 

the results presented in the literature (including “no free 

lunch” theorem) it can be stated that none of these meth-

ods is generally better than the others. Effective solving 

of NP-hard problems requires a proper choice of algo-

rithm design methods and the use of specific properties of 

the problem. 

We propose to use the new flow shop scheduling 

model with overlaps. Tabu search metaheuristics has 

been adopted to solve the problem with the use of the 

new so-called block properties which were introduced in 

the paper. Although the limitation of the proposed algo-

rithms does not guarantee optimality of the generated 

solutions, however, solutions determined by the ATS 

algorithm are very close to optimal (for large examples of 

the 500 jobs the average percentage relative deviation to 

optimal ones equals 0.07%). The above mentioned algo-

rithm is deterministic and guarantees repetition of calcu-

lations. Therefore, the obtained results show the efficien-

cy of the proposed method, which is especially visible for 

data instances of the large size, as well as for the practical 

data of the small and medium sizes, for which the pro-

posed tabu search approach gives optimal solutions.  

Presented in the paper method allows its practition-

ers for a better analysis of the actual construction process 

and to determine the optimal (or close to optimal) sched-

ules. This enables efficient use of not only equipment but 

also personnel and a better estimation of the time (and 

cost) of construction, which has a direct impact on the 

financial situation of construction companies. 
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