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Flexgrid 

 Flexgrid uses a finer spectrum granularity. 

 The optical spectrum is divided into frequency slices (e.g. 6.25GHz). 

 It brings features that are not offered by the fixed grid networks, such as 

 flexible bandwidth allocation.  

 transporting optical connections with a capacity beyond 100Gb/s 

 elasticity against time-varying traffic. 
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Spectrum allocation 

s1 s2 s|S| 

Frequency 
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Optical spectrum 
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Spectrum allocation entail dealing with two constraints: 
• spectrum continuity along the links of a given routing path: the same slices 

must be used in all links of the path, 
• spectrum contiguity: the allocated slices must be contiguous in the 

spectrum. 
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Slices and Channels 

INPUT S, d 

OUTPUT C(d) 

1: 

2: 

3: 

4: 

5: 

Initialize: C(d) ← 0[|S|-nd+1 x |S|] 

for each i in [0, |S|-nd] do 

for each s in [i, i+nd-1] do 

C(d)[s]=1 

return C(d) 

C(d) pre-computation 

Set of 

channels C(d) 
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Basic RSA Problem Statement 

From To BW 

Demand Matrix 

Flexgrid 

Lightpaths 

 Given: 

1. a set N of locations and a set of optical fibers E 
connecting those locations; 

2. the characteristics of the optical spectrum (i.e., 
spectrum width, frequency slice width) and the 
set of modulation formats; 

3. a traffic matrix D with the amount of bitrate 
exchanged between each pair of locations in N; 

 Output: the Route and Spectrum Allocation for 
each demand in D. 

 Objective: one or more among: 

 Minimize the amount of bitrate blocked, 

 Minimize the total amount of used slices, 

 Minimize the total number of links used,  

 etc. 
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Link-path Channel Assignment Formulation 

* L. Velasco, et al., "Modeling the Routing and Spectrum Allocation Problem for Flexgrid Optical Networks," Springer 
Photonic Network Communications, 24, 177-186, 2012 

xd Binary. Equal to 1 if demand d is rejected, 0 otherwise. 

ypc Binary. Equal to 1 if channel c is assigned to path p and 0 otherwise 

P(d) Set of predefined candidate paths for demand d. 

C(d) Set of channels for demand d. 

Pre-computed Parameters 

Variables 

δpe Equal to 1 if path p uses link e, 0 otherwise. 

γcs Equal to 1 if channel c includes slice s, 0 

otherwise. 

O(|P(d)|·|D|·|C|) variables 

O(|D|+|E|·|S|) constraints 
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Topology Design as a RSA Problem 

 Given: 

1. a connected graph G(N,E), where N is the set of locations and E the 
set of optical fibers; 

2. the characteristics of the optical spectrum and modulation formats; 

3. a traffic matrix D; 

 Output: 

1. The route and spectrum allocation for each demand in D. 

2. The links that need to be equipped; 

 Objective: Minimize number of links to be equipped to transport the 
given traffic matrix. 
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Node-link CA Formulation 
 

* L. Velasco, et al., "Modeling the Routing and Spectrum Allocation Problem for Flexgrid Optical Networks," Springer 
Photonic Network Communications, 24, 177-186, 2012 

wdec Binary. Equal to 1 if demand d uses channel c in link e, 0 otherwise 

ze Binary. Equal to 1 if link e is opened, 0 otherwise 

Variables 

O(|D|·|E|·|C|) variables 

O(|D|·|C|·|V|·|E|) constraints 
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Network Dimensioning as a RSA Problem 

 Given: 

1. a connected graph G(N,E), where N is the set of locations and E the 
set of optical fibers; 

2. the characteristics of the optical spectrum and modulation formats; 

3. a traffic matrix D; 

4. the cost of every component, such as optical cross-connects 
(OXC) and transponder (TP) types specifying its capacity and 
reach. 

 Output: 

1. The route and spectrum allocation for each demand in D. 

2. Network dimensioning including the type of OXC and TPs in each 
location; 

 Objective: Minimize the total cost to transport the given traffic matrix. 
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Heuristics 

 RSA problems are NP-hard, so there is little hope of ever finding efficient 
exact solution procedures for them.  

 Un-tractability of MILP formulations appears when instances to be 
solved involve a large number of variables. 

 Tens of nodes x Tens of links x Hundreds of slots x Hundreds of demands = 
Millions of binary variables. 

 Heuristics, i.e., approximate solution techniques, can be used to 
tackle RSA-based (combinatorial) problems. 

Ω Solution space 

f: Ω→R Objective function defined on the solution space 

goal: find ω* ∈ Ω, f(ω)≥f(ω*) ∀ ω ∈ Ω 
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Heuristics 

 Heuristic algorithms usually consists on two phases: 

 Constructive Phase, where a solution is built. 

 Local search, where the solution is improved. 

 During the Constructive phase, 
greedy algorithms may be used. 

 During the local search phase, 
exchanges among elements in the 
solution and not in the solution are 
done. 

N(ω) 

ω 

ω' 
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Meta-heuristics 

 Meta-heuristics allow go beyond heuristics by: 

 adding variability (randomize) 

 allowing escaping from local optima, at risk of cycling 

 Some well-known meta-heuristics are: 

 GRASP (Feo and Resende):  a multi-start metaheuristic for 
combinatorial problems. 

 Evolutionary algorithms (genetics). BRKGA (M. Resende) 

 Simulated Annealing, probabilistic metaheuristic often used when 
the search space is discrete 

 Tabu Search (Fred W. Glover): Enhances the performance of Local 
search by using memory structures. 

 Ant colony: probabilistic technique (Marco Dorigo) 

 Path relinking: an intensification method. 
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Hybrid meta-heuristics 

 Heuristic hybridization: Combine several of the previous techniques. 

 GRASP + PR -> Diversification + Intensification 

 Example: multi-greedy + PR 

 Three different constructive algorithms to provide diversification. 

 Path Relinking finds new solutions in the path connecting two solutions. 

ES = incumb= Ø 
ite = 1 

Greedy Algorithm - 1 

Greedy Algorithm - 2 

Greedy Algorithm - 3 

Local search 

PR 
(Solution <-> ES) 

Update 
incumb and 

ES 

Select at 
random 
{1,2,3} 

ite++ stop? 
 
 

yes 

no 

1 

2 

3 

* M. Ruiz, et al., "Ultra-fast meta-heuristic for the spectrum re-allocation problem in flexgrid optical networks", 25th European 
Conference on Operational Research (EURO XXV), 2012 

Solution 

end 
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Hybrid meta-heuristics: Solving Time 
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G3 provides feasible 
solutions in few 

miliseconds (20-50 msec) 

Multi-start with PR provides 
the best results: 

(G1 + G3) 
(G2 + G3) 

(G1 + G2 + G3) 

G1 and G2 provide better 
solutions but at the 
expense of higher 
computation time 
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Large Scale Optimization (LSO) 

 The objective of LSO methods is to extend the exact methodology 
(Branch & Bound) for MILP formulations. 

 Among different methods, decomposition methods have been 
successfully used for solving communications network design 
problems 

 Lagrangean relaxation aims at improving lower bounds on the objective 
function, a decisive factor for the effectiveness of Branch & Bound. 

 Column generation consists in finding a reduced set of variables 
(columns) to solve the linear relaxation of the link-path MILP 
formulations, providing high quality integer solutions in an efficient way. 

 Benders decomposition is an iterative procedure based on projecting 
out a subset of variables from the original problem with the whole set of 
variables and creating new constraints (cuts) from the projected ones. 
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Lagrangian Relaxation 

 Some (difficult) constraints are moved to the objective function and 
penalized by Lagrange multipliers (λ) 
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 It allows obtaining lower bounds for the original problem for any positive 
Lagrange multipliers. 

 Those Lagrange multipliers that provide the optimal solution of the 
original problem can be found by solving the Lagrangian dual problem. 

 Iterative methods such as sub-gradient optimization methods are 
commonly used for solving the Lagrangian dual problem. 
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Column Generation Algorithm 
 

Initial set of 
lightpaths P 

Solve RSA 
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Solve Pricing 
Problem 

Dual variables 

New 
lightpaths 

added 

Solve RSA 
(ILP)  

No more lightpaths 
found 

Main Algorithm Lightpath set initialization 

* M. Ruiz, et al., “Column Generation Algorithm for RSA Problems 
in Flexgrid Optical Networks,” Springer Photonic Network 
Communications, 2013.  

For each demand d:  
1) Compute the shortest (hops) path in the network 
2) Generate a lightpath with the shortest path and the first channel 

for demand d. 

Pricing Problem 

1)  For each demand d and each channel in Cd, compute the 
shortest path in the network with link metrics: 

2)  Return those lightpaths (route + channel) with the highest positive 
reduced costs (if any) 

Exhaustive search of channels optimized by means of Floyd-
Warshall algorithm  
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The Dijkstra’s Shortest Path algorithm 

 Each node i is labeled with the 
aggregated metric d(i) from the 
source node and with its 
predecessor pred(i). 

 the route source-i (subset of links 
E(source, i) ⊆ E) can be computed 
visiting the predecessor node 
starting from i, until source node is 
reached. 

 

 
   

Procedure Dijkstra (N, E, source) 

begin 

  S : = {source}, T = N – {source} 

  d(source) = 0 and pred(source) = 0 

  d(j) = ∞ for each j ≠ source 
  update(source) 

  while S ≠ N do 
let i ∈ T be a node for which 
        d(i) = min {d(j) : j ∈ T} 
S = S ∪ {i}, T = T – {i} 
update(i) 

end 

 

Procedure Update (i) 

 for each (i,j) ∈ E(i) do 
if d(j) > d(i) + cij then  

d(j) = d(i) + cij 

pred(j) = i 
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Dijkstra-based RSA (1/2) 

 The label also contains η
s
(i), the 

aggregated state of frequency slice s  

  η
s
(i) = ∏

eϵE(source,i) ηes
 ∀ sϵS 

 The downstream node j of node i 
updates the label only if at least one 
channel is available, computing: 
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Procedure Update (i) 

 for each (i,j) ∈ E(i) do 
if π(i,j)==1 and d(j) > d(i) + cij 
then  

d(j) = d(i) + cij 

pred(j) = i 

i 

η(i) 
ηe3 

ηe2 

ηe1 

src 
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Dijkstra-based RSA (2/2) 

 Spectrum allocation can be done implementing any 
heuristic, such: 

 First Fit 

 Random 

 Least fragmented spectrum 

 etc. 

 Modulation formats, reachability, etc, can be easily 
included. 
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BV-OXC 

MF-TPs 

Flexgrid-
based Core 

Network 

Client flows 

Source of traffic variations 

Reducing aggregation level might 
increase traffic variations 

Intra-datacenter 
network 

Flexgrid-based Network 

Scheduler 

Cloud Middleware 

QoS 

estimation 

Optical Connection 
Datacenter 

A 

IT resources 

Scheduler 

Cloud Middleware 

QoS 

estimation 

Intra-datacenter 
network 

Datacenter B 

IT resources 
Active 

Stateful 
PCE 

ABNO 
Controller 

Policy 
Agent 

TED LSP-DB 

Prov. Mngr OAM Handler 

Datacenter interconnection to 
transfer bulk data 

* L. Velasco, et al., "Cross-Stratum Orchestration 
and Flexgrid Optical Networks for Datacenter 
Federations," accepted in IEEE Network Magazine, 
2013.  
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Shared 
Spectrum 

t 

t+1 

Allocated spectrum 

t 

t+1 

Allocated spectrum 

Used spectrum 

t 

t+1 

Elastic CF Allocated 
spectrum 

Elastic Spectrum Allocation Policies 

Fixed: both the assigned CF and 
spectrum width do not change in time.  

* M. Klinkowski, et al., "Elastic Spectrum Allocation for Time-Varying 
Traffic in Flexgrid Optical Networks," IEEE Journal on Selected Areas 
in Communications (JSAC), vol. 31, pp. 26-38, 2013 

Semi-Elastic: the assigned CF is fixed but 
the allocated spectrum may vary. 
• At each time interval, the allocated 

spectrum corresponds to the utilized 
spectrum. 

• Spectrum increments/decrements are 
achieved by allocating/releasing frequency 
slices. 

• The frequency slices can be shared 
between neighboring demands, but used by, 
at most, one demand in a time interval. 

Elastic: both the assigned CF and the 
spectrum width can be subject to change in 
each time interval. 
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Multi-period RSA 

 Find, for each demand in D: 

 a route and 

 a SA for each time period in T, constraining SA changes to a certain policy.  

 Complexity depends on SA policy 

 SA between consecutive time periods is constrained by the chosen policy 

 
RSA 

MP-RSA 
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Dynamic lightpath adaptation 

 Given: 

 a core network topology represented by a graph G(N, E); 

 a set S of available slices of a given spectral width for every link in E; 

 a set L of lightpaths already established on the network; each lightpath l is 
defined by the tuple {Rl, fl, sl}, where the ordered set Rl ⊆ E represents its 
physical route, fl its central frequency and sl the amount of frequency slices. 

 a lightpath p ∈ L for which spectrum adaptation request arrives and the 
required number of frequency slices, (sp)

req. 

 Output: 

 the new values for the spectrum allocation of the given lightpath p: {Rp, fp, 
(sp)’} and {Rp, (fp)’, (sp)’}, respectively, if the Semi-Elastic and Elastic policy is 
used. 

 Objective: maximize the amount of bit-rate served. 
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INPUT: G(N,E), S, L, p, (sp)req 

OUTPUT: (sp)’ 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

if (sp)
req ≤ sp then  (sp)’ ← (sp)

req 

else 

L+ ← Ø, L- ← Ø 

for each e ∈ Rp do 

L- ← L- ∪ {l ∈ L: e ∈ Rl , adjacents(l, p) , fl<fp} 

L+ ← L+ ∪ {l ∈ L: e ∈ Rl , adjacents(l, p) , fl>fp} 

smax ← 2*min{min{fp – fl – sl, l ∈ L-}, min{fl – fp – sl, l ∈ L+}} 

(sp)’ ← min{smax, (sp)
req} 

return (sp)’ 

On-line Algorithms for Elastic SA 

INPUT: G(N,E), S, L, p, (sp)req 

OUTPUT: (fp)’, (sp)’ 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

if (sp)
req ≤ sp then  (sp)’ ← (sp)

req; (fp)’ ← fp 

else 

L+ ← Ø, L- ← Ø 

for each e ∈ Rp do 

L- ← L- ∪ {l ∈ L: e ∈ Rl , adjacents(l, p) , fl<fp} 

L+ ← L+ ∪ {l ∈ L: e ∈ Rl , adjacents(l, p) , fl>fp} 

smax ← min{fp – fl – sl, l ∈ L-} + min{fl – fp – sl, l ∈ L+} 

(sp)’ ← min{smax, (sp)
req} 

(fp)’ ← findSA_MinCFShifting (p, (sp)’, L
+, L-) 

return {(fp)’, (sp)’} 

Algorithm for the 
semi-elastic policy 

Algorithm for the 
elastic policy 

* A. Asensio, et al., "Impact of Aggregation Level on the 
Performance of Dynamic Lightpath Adaptation under Time-
Varying Traffic," in Proc. IEEE International Conference on 
Optical Network Design and Modeling (ONDM), 2013. 
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Example of Re-optimisation (Defragmentation)  

A B C 

Re-allocation 

A B C 

Connection set-up 

A B C 

Initial Spectrum 

25 GHz 50 GHz 37.5 GHz 

37.5 GHz 
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Spectrum Reallocation (SPRESSO) 

* A. Castro, et al., "Dynamic Routing and Spectrum (Re)Allocation in Future Flexgrid Optical Networks," Elsevier 
Computers Networks, vol. 56, pp. 2869-2883, 2012.  

xpc binary, 1 if channel c is assigned to path p, 0 otherwise. 

yp binary, 1 if path p is reallocated, 0 otherwise. 

r integer with the number of already established paths to reallocate. 

Variables 

Pm subset of P with the candidate paths, including newP. Pm = P(newP) ⋃ {newP}. 

Parameters 

O(|Pm|·|C|) variables 

O(|Pm|·|C|+|E|·|S|) constraints 
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Gains of Using SPRESSO 

Offered load (Erlangs)

P
b

b
w
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25GHz 25GHz (w/ SPRESSO)
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6.25GHz 6.25GHz (w/ SPRESSO)

Network 25 GHz 12.5 GHz 6.25 GHz 

TEL 30,4% 28,4% 30,3% 
BT 22,9% 23,0% 34,1% 
DT 22,2% 24,8% 33,0% 

TEL 

BT 

DT 

* A. Castro, et al., "Dynamic Routing and Spectrum (Re)Allocation in Future Flexgrid Optical 
Networks," Elsevier Computers Networks, vol. 56, pp. 2869-2883, 2012.  
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Bulk path computation 

 Path computation for a set of connection requests. 

 the bulk of path requests is computed attaining the optimal solution for the 
whole set. 

 Increases optimality but increases also provisioning time. 

 Bulk path computation can be used for restoration.  

* R. Martínez, et al., "Experimental Validation of Dynamic Restoration in GMPLS-controlled Multi-layer Networks using PCE-based 
Global Concurrent Optimization," in Proc. IEEE/OSA Optical Fiber Communication Conference (OFC), 2013. 

PCE GCO 

Queue 

Path Computation 
requests for restoration 

 Reduces resource contention. 

 Increases resource utilization, specially in 
MLN. 

 Stringent computation times require 
heuristic algorithms. 
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Bitrate Squeezed and Multi-path Recovery 

s 

1 2 

t 

5 6 7 

3 4 

restoration 
paths 

s 

1 2 

t 

5 6 7 

3 4 

working path 

backup paths 
(reserved) 

6 slices 

2 slices 

Path 
Recovery 

Description 

Protection 

Protection routes are known in advance: 

• Dedicated Protection 

• Shared Protection 

Restoration 

Restoration routes are found adaptively based 
on the failure and the state of the network at the 
time of failure. 

2 slices 

2 slices 

2 slices 

* A. Castro et al., "Single-path Provisioning with Multi-path Recovery in Flexgrid Optical Networks," International Workshop on Reliable 
Networks Design and Modeling (RNDM), 2012 
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Network Life Cycle 

 Network planning is performed periodically: 

Planning 

& 

Forecast 

Architect & 

Design 

Implement 

design 

Network 

Operation 

Monitor 

and 

Measure  

New Services Population grow 

 Capacity is installed to guarantee 
that the network can support the 
forecast traffic. 

 Long planning cycles are used to 
upgrade the network and prepare it 
for the next planning period. 

 Results from network capacity 
planning are manually deployed in 
the network. 
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Extending the core towards the 
metro 

Migrating Towards Flexgrid Technology 

core metro border nodes 

Enlarging the core Sub-network 
Upgrading 

1 2 3 

* M. Ruiz, et al, "Planning Fixed to Flexgrid Gradual Migration: Drivers and Open Issues," submitted to IEEE Communications Magazine, 2014.  
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Migrating connections (1/4) 

A B 

A 

B 
Fixed grid 
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Migrating connections (2/4) 

A B 

A 

B 
Flexgrid 
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Migrating connections (3/4) 

A B C 

A B C 

Mixed grid 
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Migrating connections (4/4) 

A B C D 

A 
B 

C 
D 

Mixed grid 



43 
Th.1.E.1 Luis Velasco 

Migration flow chart 
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Static Network Operation 
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IETF architectures supporting in-operation 
Planning (1/2) 

Architecture Strengths Weaknesses 

Stateless 
PCE 

• Path computation can be off-loaded onto a 
dedicated entity capable of complex 
computations with tailored algorithms and 
functions. 

• Has a standard and mature interface and 
protocol. 

• Supports simple optimisation, such as bulk 
path computation. 

• Is unaware of existing LSPs and has no 
view of the current network resource 
utilisation and key choke points. 

• Cannot configure by itself any LSP in the 
network. 

• Delays need to be introduced to sequence 
LSP set-up. 

Stateful PCE 

• Maintains a database of LSPs that are 
active in the network, i.e. so that new 
requests can be more efficiently placed 
optimising network resources. 

• Supports optimization involving already 
established LSPs. 

• More complex than a stateless PCE, 
requires additional database and 
synchronization. 

• No existing LSPs can be modified, e.g. 
for network re-configuration purposes. 
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IETF architectures supporting in-operation 
Planning (2/2) 

Architecture Strengths Weaknesses 

Active 
Stateful 

PCE 

• Capable of responding to changes in 
network resource availability and predicted 
demands and reroute existing LSPs for 
increased network resource efficiency. 

• Supports complex reconfiguration and re-
optimization, even in multilayer networks. 

• No new LSPs can be created, e.g. for VNT 
re-optimisation purposes. 

• Requires protocol extensions to modify 
and/or instantiate (if the capability is 
available) LSPs. 

ABNO 

• Provides a network control system for 
coordinating OSS and NMS requests to 
compute paths, enforce policies, and manage 
network resources for the benefit of the 
applications that use the network. 

• New LSPs can be created for in-operation 
planning. VNTM in charge of VNT re-
configuration. 

• Supports deployment of solutions in multi-
technology scenarios (NetConf, OpenFlow, 
control plane, etc.) 

• Requires implementation of a number of 
key components in addition to the PCE 
function.  

• Some interfaces still need to be defined 
and standardized.  
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Migration towards in-operation network 
planning 
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Re-optimisation Process 
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* L. Velasco, et al., "In-operation Network Planning ," submitted 
to IEEE Communications Magazine, 2014. 



51 
Th.1.E.1 Luis Velasco 

In-Operation Planning Tool: PLATON 

CPU GPU 

* L. Gifre, et al. “Architecture of a Specialized Back-end High Performance Computing-based PCE for Flexgrid Networks," in Proc. 
IEEE International Conference on Transparent Optical Networks (ICTON), 2013. 



52 
Th.1.E.1 Luis Velasco 

Conclusions 

 Basic RSA algorithms have been reviewed 

 Elastic SA: Semi-elastic and Elastic policies 

 Off-line planning: and example for gradual migration process from fixed 
to Flexgrid has been presented. 

 Re-optimization can be performed to increase network performance. 

 A control and management architecture to support in-operation 
planning. 

 The architecture allows dynamic network operation and to reconfigure and 
re-optimise the network near real-time in response to changes. 

 Networks life cycle is extended achieving better resource utilization. 

 Process automation reduces manual interventions and, consequently, OPEX. 

 PLATON: an In-Operation Planning Tool has been presented.  
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