
Journal of Artificial Intelligence Research 34 (2009) 391–442 Submitted 07/08; published 03/09

Solving #SAT and Bayesian Inference with Backtracking Search

Fahiem Bacchus FBACCHUS@CS.TORONTO.EDU

Shannon Dalmao
Toniann Pitassi TONI@CS.TORONTO.EDU

Department of Computer Science
University of Toronto
Toronto, Ontario
Canada, M5S 3G4

Abstract
Inference in Bayes Nets (BAYES) is an important problem with numerous applications in prob-

abilistic reasoning. Counting the number of satisfying assignments of a propositional formula
(#SAT) is a closely related problem of fundamental theoretical importance. Both these problems,
and others, are members of the class of sum-of-products (SUMPROD) problems. In this paper
we show that standard backtracking search when augmented with a simple memoization scheme
(caching) can solve any sum-of-products problem with time complexity that is at least as good
any other state-of-the-art exact algorithm, and that it can also achieve the best known time-space
tradeoff. Furthermore, backtracking’s ability to utilize more flexible variable orderings allows us to
prove that it can achieve an exponential speedup over other standard algorithms for SUMPROD on
some instances.

The ideas presented here have been utilized in a number of solvers that have been applied to
various types of sum-of-product problems. These system’s have exploited the fact that backtracking
can naturally exploit more of the problem’s structure to achieve improved performance on a range
of problem instances. Empirical evidence of this performance gain has appeared in published works
describing these solvers, and we provide references to these works.

1. Introduction

Probabilistic inference in Bayesian Networks (BAYES) is an important and well-studied problem
with numerous practical applications in probabilistic reasoning (Pearl, 1988). Counting the number
of satisfying assignments of a propositional formula (#SAT) is also a well-studied problem that is
of fundamental theoretical importance. These two problems are known to be closely related. In
particular, the decision versions of both #SAT and BAYES are #P-complete (Valiant, 1979b, 1979a;
Roth, 1996), and there are natural polynomial-time reductions from each problem to the other
(Darwiche, 2002; Sang, Beame, & Kautz, 2005b; Chavira, Darwiche, & Jaeger, 2006).

A more direct relationship between these two problems arises from the observation that they
are both instances of the more general “sum of products” problem (SUMPROD). Perhaps the most
fundamental algorithm for SUMPROD (developed in a general way by Dechter 1999) is based on
the idea of eliminating the variables of the problem one by one following some fixed order. This
algorithm is called variable elimination (VE), and it is the core notion in many state-of-the-art exact
algorithms for SUMPROD (and BAYES).

SAT, the problem of determining whether or not a propositional formula has any satisfying
assignments, is also an instance of SUMPROD, and the original Davis-Putnam algorithm (DP) for
determining satisfiability (Davis & Putnam, 1960) which uses ordered resolution is a version of

c©2009 AI Access Foundation. All rights reserved.

391

BACCHUS, DALMAO, & PITASSI

variable elimination. However, DP is never used in practice as its performance is far inferior to
modern versions of the backtracking search based DPLL algorithm (Davis, Logemann, & Loveland,
1962). In fact DP is provably less powerful than modern versions of DPLL equipped with clause
learning (Hertel, Bacchus, Pitassi, & van Gelder, 2008).

This performance gap naturally raises the question of whether or not backtracking search could
be used to solve other types of SUMPROD problems more efficiently than variable elimination. In
this paper, we present a general algorithmic framework for using backtrack search methods (specif-
ically DPLL) to solve SUMPROD and related problems.1 We first show that a straightforward adap-
tation of backtracking for solving SUMPROD is insufficient. However, by examining the sources
of inefficiency we are able to develop some simple caching schemes that allow our backtracking
algorithm, #DPLL-Cache, to achieve the same performance guarantees as state-of-the-art exact al-
gorithms for SUMPROD, in terms of both time and space. Furthermore, we prove that backtracking’s
natural additional flexibility allows it to sometimes achieve an exponential speedup over other ex-
isting algorithms. Specifically, we present a family of SUMPROD instances where #DPLL-Cache
achieves an exponential speedup over the original versions of three prominent algorithms for SUM-
PROD.

Besides these theoretical results, there are also good reasons to believe that backtracking based
algorithms have the potential to perform much better than their worst case guarantees on problems
that arise from real domains. In fact, subsequent work has investigated the practical application of
the ideas presented here to the problem of counting satisfying assignments, BAYES, and constraint
optimization with very successful results (Sang, Bacchus, Beame, Kautz, & Pitassi, 2004; Sang
et al., 2005b; Sang, Beame, & Kautz, 2005a, 2007; Davies & Bacchus, 2007; Kitching & Bacchus,
2008).

An outline of the paper follows. In Section 2, we define SUMPROD; demonstrate that #SAT,
BAYES, and other important problems are instances of this class of problems; discuss various graph-
theoretic notions of width that can be used to characterize the complexity of algorithms for SUM-
PROD; and review some core state-of-the-art exact algorithms for SUMPROD. In Section 3, we
discuss DPLL-based algorithms with caching for solving #SAT and SUMPROD and provide worst
case complexity bounds for these algorithms. These bounds are the same as the best time and space
guarantees achieved by currently known algorithms. In Section 4, we provide a framework for
comparing our algorithms with other algorithms for SUMPROD and prove that with caching DPLL
can efficiently simulate known exact algorithms while sometimes achieving super-polynomially
superior performance. In Section 5 we discuss some of the work that has used our algorithmic
ideas to build practical solvers for various problems. Finally, we provide some closing remarks in
Section 6.

2. Background

In this section, we first define the sum-of-products (SUMPROD) class of problems, and then illus-
trate how BAYES, #SAT, and some other important problems are instances of SUMPROD. As we
will show in the rest of the paper, backtracking search equipped with different caching schemes is

1. The notion of “backtracking” over a previous set of commitments can be utilized in other contexts, including in other
algorithms for SUMPROD. However, here we are referring to the standard algorithmic paradigm of backtracking
search that explores a single tree of partial variable assignments in a depth-first manner. This algorithm has an
extensive history that stretches back over a hundred years (Bitner & Reingold, 1975).

392

BACKTRACKING SEARCH FOR #SAT AND BAYES

well suited for solving SUMPROD. The key computational structure that is exploited by all algo-
rithms for SUMPROD is then explained and the graph theoretic notion of width that captures this
structure is identified. Different notions of “width” exist, and we present three different definitions
and show that they all yield essentially equivalent measures of complexity. The different definitions
are however very useful in that different algorithms are most easily analyzed using different defini-
tions of width. Finally, we briefly review some of the most important exact algorithms for solving
SUMPROD and related problems.

2.1 Sum-of-Products

Dechter (1999) has been shown that BAYES and many other problems are instances of a more
general problem called SUMPROD (sum-of-products). An instance of SUMPROD is defined by
the tuple 〈V,F ,⊕,⊗〉, where V is a set of discrete valued variables {X1, . . . ,Xn}, F is a set of
functions {f1, . . . , fm} with each fi defined over some set of variables Ei ⊆ V , ⊕ is an addition
operator, and⊗ is a multiplication operator. The range of the functions inF depends on the problem,
with ⊕ and ⊗ being operators over that range such that both are commutative, associative, and ⊗
distributes over ⊕. Typical examples involve functions that range over the boolean domain, with
⊕ being disjunction ∨ and ⊗ being conjunction ∧, or over the reals, with ⊕ and ⊗ being ordinary
addition and multiplication.

Definition 1 (SUMPROD) Given 〈V,F ,⊕,⊗〉 the SUMPROD problem is to compute

⊕
X1

⊕
X2

· · ·
⊕
Xn

m⊗
i=1

fi(Ei),

i.e., the sum (⊕) over all values (assignments) of the variables V of the product (⊗) of the functions
F evaluated at those assignments.

A number of well known problems are instances of SUMPROD. We describe some of them
below.

2.1.1 BAYES:

BAYES is the problem of computing probabilities in a Bayesian Network (BN). Developed by Pearl
(1988), a Bayesian network is a triple (V, E,P) where (V, E) describes a directed acyclic graph,
in which the nodes V = {X1, . . . ,Xn} represent discrete random variables, edges represent direct
correlations between the variables, and associated with each random variable Xi is a conditional
probability table CPT (or function), fi(Xi, π(Xi)) ∈ P, that specifies the conditional distribution of
Xi given assignments of values to its parents π(Xi) in (V, E). A BN represents a joint distribution
over the random variables V in which the probability of any assignment (x1, . . . , xn) to the variables
is given by the equation Pr(x1, . . . , xn) =

∏n
i=1 fi(xi, π(xi)), where fi(xi, π(xi)) is fi evaluated

at this particular assignment.
The generic BAYES problem is to compute the posterior distribution of a variable Xi given a

particular assignment to some of the other variables α: i.e., Pr(Xi|α). Since Xi has only a finite set
of k values, this problem can be further reduced to that of computing the k values Pr(Xi = dj ∧α),
j = 1, . . . , k and then normalizing them so that they sum to 1. The values Pr(Xi = dj ∧ α) can
be computed by making all of the assignments in α as well as Xi = dj , and then summing out the

393

BACCHUS, DALMAO, & PITASSI

other variables from the joint distribution Pr(x1, . . . , xn). Given the above product decomposition
of Pr(x1, . . . , xn), this is equivalent to reducing the functions fi ∈ P by setting the variables
assigned in α and Xi = dj , and then summing their product over the remaining variables; i.e., it is
an instance of SUMPROD.

Computing all Marginals It is common when solving BAYES to want to compute all marginals.
That is, instead of wanting to compute just the marginal Pr(Xi|α) for one particular variable Xi,
we want to compute the marginal for all variables not instantiated by α.

2.1.2 MARKOV RANDOM FIELDS

Markov Random Fields or Markov Networks (MN) (Preston, 1974; Spitzer, 1971) are similar to
Bayesian Networks in that they also define a joint probability distribution over a set of discrete
random variables V = {X1, . . . ,Xn} using a set of functions fi, called potentials, each over some
set of variables Ei ⊆ V . In particular, the probability of any assignment (x1, . . . , xn) to the variables
is given by the normalized product of the fi evaluated at the values specified by the assignment:∏

i fi(Ei[x1, . . . , xn]). The difficulty is to compute the partition function, or normalizing constant:

Z =
∑
X1

· · ·
∑
Xn

m∏
i=1

fi(Ei).

Computing the partition function is thus an instance of SUMPROD.

2.1.3 MOST PROBABLE EXPLANATION

Most Probable Explanation (MPE) is the problem of finding the most probable complete assignment
to the variables in a Bayes net (or Markov net) that agrees with a fixed assignment to a subset of the
variables (the evidence). If the evidence, α, is an instantiation of the variables in E ⊂ V , then MPE
is the problem of computing

max
V −E

m∏
i=1

fi|α(Ei − E),

where fi|α is the reduction of the function fi by the instantiations α to the variables in E (yielding
a function over the variables Ei − E).

2.1.4 SAT

Let V = {X1,X2, . . . ,Xn} be a collection of n Boolean variables, and let φ(V) be a k-CNF
Boolean formula on these variables with m clauses {c1, . . . , cm}. An assignment α to the Boolean
variables V is satisfying if it makes the formula True (i.e., φ(α) = 1). SAT asks, given a Boolean
formula φ(V) in k-CNF, does it have a satisfying assignment? By viewing each clause ci as being a
function of its variables Ei (i.e., it maps an assignment to these variables to TRUE if that assignment
satisfies the clause and to FALSE otherwise), we can see that SAT is equivalent to the instance of
SUMPROD 〈V, {c1, . . . , cm},∨,∧〉:

∨
X1

· · ·
∨
Xn

m∧
i=1

ci(Ei).

394

BACKTRACKING SEARCH FOR #SAT AND BAYES

2.1.5 #SAT

Given a k-CNF formula φ(V) on the boolean variables V = {X1, . . . ,Xn}, as above, #SAT is
the problem of determining the number of satisfying assignments for φ. By viewing each clause
ci as being a function from its variables Ei to {0, 1} (i.e., it maps satisfying assignments to 1
and falsifying assignments to 0), we can see that #SAT is equivalent to the instance of SUMPROD

〈V, {c1, . . . , cm},+,×〉: ∑
X1

· · ·
∑
Xn

m∏
i=1

ci(Ei).

2.1.6 OPTIMIZATION WITH DECOMPOSED OBJECTIVE FUNCTIONS

Let V = {X1, . . . ,Xn} be a collection of finite valued variables, the optimization task is to find
an assignment of values to these variables that maximizes some objective function O(V) (i.e., a
function that maps every complete assignment to the variables to a real value). In many problems
O can be decomposed into a sum of sub-objective functions {f1, . . . , fm} with each fi being a
function of some subset of the variables Ei. This problem can then be cast as the SUMPROD

instance 〈V, {f1, . . . , fm},max,+〉

max
X1

· · ·max
Xn

m∑
i=1

fi(Ei).

2.2 The Computational Complexity of SUMPROD

SUMPROD is a computationally difficult problem. For example, #SAT is known to be complete for
the complexity class #P (Valiant, 1979b, 1979a) as is BAYES (Roth, 1996). Many special cases that
are easy for SAT remain hard for #SAT, e.g., Valiant showed that the decision version of #SAT is #P
hard even when the clause size, k, is 2, and Roth (1996) showed that the problem is hard to even
approximate in many cases where SAT is easy, e.g., when φ(V) is monotone, or Horn, or 2-CNF.

Despite this worst case intractability, algorithms for SUMPROD, e.g., the variable elimination
algorithm presented by Dechter (1999), can be successful in practice. The key structure exploited
by this algorithm, and by most algorithms, is that the functions fi of many SUMPROD problems are
often relatively local and fairly independent. That is, it is often the case that the sets of variables
Ei that each function fi depends on are small, so that each function is dependent only on a small
“local” set of the variables, and that these sets share only a few variables with each other, so that the
functions fi are fairly independent of each other. The graph theoretic notion of Tree Width is used
to make these intuitions precise.

2.3 Complexity Measures and Tree width

There is a natural hypergraph, H = (V,E), corresponding to any instance 〈V,F ,⊕,⊗〉 of SUM-
PROD. In the hypergraph, V corresponds to the set V of variables, and for every function fi with
domain set Ei, there is a corresponding hyperedge, Ei.

The “width” of this hypergraph is the critical measure of complexity for essentially all state-of-
the-art algorithms for #SAT, BAYES, and SUMPROD. There are three different (and well known)
notions of width that we will define in this section. We will also show that these different notions of
width are basically equivalent. These equivalences are known, although we need to state them and

395

BACCHUS, DALMAO, & PITASSI

prove some basic properties, in order to analyze our new algorithms, and to relate them to standard
algorithms.

Definition 2 (Branch width) Let H = (V,E) be a hypergraph. A branch decomposition of H is
a binary tree T such that each node of T is labelled with a subset of V . There are |E| many leaves
of T , and their labels are in one-to-one correspondence with the hyperedges E. For any other node
n in T , let A denote the union of the leaf labeling of the subtree rooted at n, and let B denote the
union of the labelings of the rest of the leaves. Then the label for n is the set of all vertices v that
are in the intersection of A and B. The branch width of a branch decomposition T for H is the
maximum size of any labeling in T . The branch width ofH is the minimum branch width over all
branch decompositions of H.

Example 1 Figure 1 shows a particular branch decomposition Tbd for the hypergraph H = (V,E)
where V = {1, 2, 3, 4, 5} and E = {{1, 2, 3}, {1, 4}, {2, 5}, {3, 5}, {4, 5}}. Tbd has branch width
3.

{}

�����

�����

{3, 4, 5}
����

����

{2, 3, 4}
��� ���

{1, 2, 3} {1, 4}

{2, 5}

{3, 4, 5}
�� ��

{3, 5} {4, 5}

Figure 1: A branch decomposition of branch width 3 for H = {(1, 2, 3), (1, 4), (2, 5), (3, 5),
(4, 5)}.

Definition 3 (Elimination width) Let H = (V,E) be a hypergraph, and let π = vπ
1 , . . . , v

π
n be an

ordering of the vertices in V , where vπ
i is the ith element in the ordering. This induces a sequence

of hypergraphs Hn,Hn−1, . . . ,H1 where H = Hn and Hi−1 is obtained from Hi as follows. All
edges in Hi containing vπ

i are merged into one edge and then vπ
i is removed. Thus the underlying

vertices of Hi are vπ
1 , . . . v

π
i−1. The induced width of H under π is the size of the largest edge in

all the hypergraphs Hn, . . . ,H1. The elimination width of H is the minimum induced width over
all orderings π.

Example 2 Under the ordering π = 〈1, 2, 3, 4, 5〉 the hypergraph H of Example 1 produces the
following sequence of hypergraphs:

H5 = {(1, 2, 3), (1, 4), (2, 5), (3, 5), (4, 5)}
H4 = {(2, 3, 4), (2, 5), (3, 5), (4, 5)}
H3 = {(3, 4, 5), (3, 5), (4, 5)}
H2 = {(4, 5), (4, 5)}
H1 = {(5)}

396

BACKTRACKING SEARCH FOR #SAT AND BAYES

The induced width of H under π is 3—the edges (1, 2, 3) ∈ H1, (2, 3, 4) ∈ H2 and (3, 4, 5) ∈ H3
all achieve this size.

Tree width is the third notion of width.

Definition 4 (Tree width) Let H = (V,E) be a hypergraph. A tree decomposition of H is a
binary tree T such that each node of T is labelled with a subset of V in the following way. First,
for every hyperedge e ∈ E, some leaf node in T must have a label that contains e. Secondly, given
labels for the leaf nodes every internal node n contains v ∈ V in its label if and only if n is on a path
between two leaf nodes l1 and l2 whose labels contain v.2 The tree width of a tree decomposition
T forH is the maximum size of any labeling in T minus 1, and the tree width ofH is the minimum
tree width over all tree decompositions of H.

Example 3 Figure 2 shows Ttd a tree decomposition for H of Example 1. Ttd has tree width 3.

{3, 4, 5}

�����

�����

{2, 3, 4, 5}
����

����

{1, 2, 3, 4}
��� ���

{1, 2, 3} {1, 4}

{2, 5}

{3, 4, 5}
�� ��

{3, 5} {4, 5}

Figure 2: Tree decomposition of tree width for 3 for H of Example 1.

The next three lemmas show that these three notions are basically equivalent. The proofs of
Lemmas 2 and 3 are given in the appendix.

Lemma 1 (Robertson & Seymour, 1991) Let H be a hypergraph. Then the branch width of H is
at most the tree width ofH plus 1, and the tree width ofH is at most 2 times the branch width ofH.

Lemma 2 LetH = (V,E) be a hypergraph with a tree decomposition of width w. Then there is an
elimination ordering π of the vertices V such that the induced width of H under π is at most w.

Lemma 3 Let H be a hypergraph with elimination width at most w. Then H has a tree decompo-
sition of tree width at most w.

Letting TW (H), BW (H), and EW (H) represent the tree width, branch width and elimination
width of the hypergraph H, the above lemmas give the following relationship between these three
notions of width: for all hypergraphs H

BW (H) − 1 ≤ TW (H) = EW (H) ≤ 2BW (H).

2. Since the labels of internal nodes are determined by the labels of the leaf nodes in this way, it can be seen that for any
pair of nodes n1 and n2 in the tree decomposition every node lying on the path between them must contain v in its
label if v appears in both n1’s and n2’s labels. This is commonly known as the running intersection property of tree
decompositions.

397

BACCHUS, DALMAO, & PITASSI

{4, 5}
����

����

{3, 4, 5}
����

����

{2, 3, 4, 5}
����

����

{1, 2, 3, 4}
��� ���

{1, 2, 3} {1, 4}

{2, 5}

{3, 5}

{4, 5}

Figure 3: Tree decomposition of the hypergraph H of Example 1 that has been constructed from
the ordering π = 〈1, 2, 3, 4, 5〉.

Example 4 The tree decomposition Ttd ofH = {(1, 2, 3), (1, 4), (2, 5), (3, 5), (4, 5)} given in Fig-
ure 2 has the property that it has tree width no more than twice the branch width of the branch
decomposition Tbd of H given in Figure 1. From Ttd we can obtain the ordering π = 〈1, 2, 3, 4, 5〉
that was used in Example 2. (The proof of Lemma 2, given in the appendix, shows how a elim-
ination ordering can be constructed from a tree-decomposition.) As shown in Example 2, π has
induced width 3, equal to the tree width of tree decomposition Ttd from which it was constructed.
Finally, from the ordering π we can construct a new tree decomposition for H shown in Figure 3.
(The proof of Lemma 3 shows how a tree decomposition can be constructed from an elimination
ordering). π has induced width 3 and, as indicated by Lemma 3 the tree decomposition constructed
from it has equal tree width of 3.

It can be noted that our definition of tree decompositions varies slightly from other definitions
that appear in the literature, e.g., (Bodlaender, 1993). Following Robertson and Seymour (1991)
we have defined tree decompositions over hypergraphs, rather than over graphs, and we have made
two extra restrictions so as to simplify the proofs of our results. First, we have restricted tree
decompositions to be binary trees, and second we have required that each hyperedge be contained
in the label of some leaf node of the tree decomposition. Usually tree decompositions are not
restricted to be binary trees, and only require that each hyperedge be contained in some node’s label
(not necessarily a leaf node).

It is not difficult to show that any tree decomposition that fails to satisfy our two restrictions
can be converted to a tree decomposition satisfying these restrictions without changing its width.
However, it is more straight forward to observe that with or without these two restrictions tree width
is equal to elimination width. Hence, our restrictions do not change the tree width.

2.4 Exact Algorithms for SUMPROD

Next we briefly review three prominent exact algorithms for BAYES. These algorithms solve the
more general problem SUMPROD. All of these algorithms are in fact nondeterministic algorithms
that should be considered to be families of procedures, each member of which is a particular deter-
ministic realization.

398

BACKTRACKING SEARCH FOR #SAT AND BAYES

2.4.1 VARIABLE ELIMINATION:

Variable or bucket elimination (VE) (Dechter, 1999) is a fundamental algorithm for SUMPROD.
Variable elimination begins by choosing an elimination ordering, π for the variables V = {X1,
. . ., Xn}: Xπ(1), . . ., Xπ(n). (This is the nondeterministic part of the computation). In the first
phase, all functions involving Xπ(1), are collected together in the set FXπ(1)

, and a new function,
F1 is computed by “summing out” Xπ(1). The new function sums the product of all the functions in
FXπ(1)

over all of Xπ(1)’s values. Specifically, F1 is a function of all of the variables of the functions
in FXπ(1)

except for Xπ(1), and its value on any assignment α to these variables is

F1(α) =
∑

d∈vals(Xπ(1))

∏
f∈FXπ(1)

f(α,Xπ(1) = d).

Summing out Xπ(1) induces a new hypergraph, H1, where the hyperedges corresponding to the set
of functions FXπ(1)

are replaced by a single hyperedge corresponding to the new function F1. The
process then continues to sum out Xπ(2) from H1 and so on until all n variables are summed out.
Note that the sequence of hypergraphs generated by summing out the variables according to π is the
same the sequence of hypergraphs that defines the induced width of π (Definition 3).

The original Davis-Putnam algorithm (Davis & Putnam, 1960) based on ordered resolution is an
instance of variable elimination. Consider applying variable elimination to the formulation of SAT
given above. For SAT, the new functions Fi computed at each stage need only preserve whether or
not the product of the functions in FXπ(i)

is 0 or 1, the exact number of satisfying assignments need
not remembered. This can be accomplished by representing the Fi symbolically as a set of clauses.
Furthermore, this set of clauses can be computed by generating all clauses that can be obtained
by resolving on Xπ(i), and then discarding all old clauses containing Xπ(i). This resolution step
corresponds to the summing out operation, and yields precisely the Davis-Putnam (DP) algorithm
for satisfiability.3

2.4.2 RECURSIVE CONDITIONING:

Recursive conditioning (RC) (Darwiche, 2001) is another type of algorithm for SUMPROD. Let
S = 〈V,F ,⊕,⊗〉 be an instance of SUMPROD and H be its underlying hypergraph. RC is a
divide and conquer algorithm that instantiates the variables of V so as to break the problem into
disjoint components. It then proceeds to solve these components independently. The original space-
efficient version of recursive conditioning, as specified by Darwiche (2001), begins with a branch
decomposition T of H of width w and depth d, and an initially empty set of instantiated variables
ρ. (Choosing T is the nondeterministic part of the computation.) We call this algorithm RC-Space
and show it in Algorithm 1.

The branch decomposition T specifies a recursive decomposition of the problem and is used by
RC-Space as follows. Let label(n) be the label of a node in T , and let ST be the SUMPROD problem
defined by the variables and functions contained in T . (In the initial call T is the complete branch
decomposition containing all variables and functions of S , so that initially ST = S). Starting at r,
the root of T , RC-Space solves the reduced SUMPROD ST |ρ∪α for all assignments α to the variables

3. Rish and Dechter (2000) have previously made a connection between DP and variable elimination. They were thus
able to show, that DP runs in time nO(1)2O(w), where w is the branch width of the underlying hypergraph of the SAT
instance.

399

BACCHUS, DALMAO, & PITASSI

in label(left(r)) ∩ label(right(r)) not yet instantiated by ρ, where left(r) and right(r) are the left
and right children of r. The sum over all such α is the solution to the inputed instance ST |ρ.

Each α renders the set of functions in the subtree below leftChild(r) (i.e., the leaf labels) disjoint
from the functions below rightChild(r). Thus for each α, RC-Space can independently solve the
subproblems specified by leftChild(r)|ρ∪α and rightChild(r)|ρ∪α (i.e., the sum of the products
of all of the functions below the left/right subtree conditioned on the instantiations in ρ ∪ α) and
multiply their answers to obtain the solution to ST |ρ∪α. At the leaf nodes, the function fi associated
with that node has had all of its variables instantiated, so the algorithm can simply “LOOKUP” fi’s
current value.

Algorithm 1: RC-Space—Linear Space Recursive Conditioning

RC-Space (T, ρ)1

begin2

if T is a leaf node then3

return LOOKUP(value of function labeling the leaf node)4

p = 0; r = root(T)5

�x = variables in label (left(r)) ∩ label(right(r)) uninstantiated by ρ6

forall α ∈ {instantiations of �x} do7

p = p + RC-Space (leftChild(T), ρ ∪ α) × RC-Space (rightChild(T), ρ ∪ α)8

end9

return p10

end11

A less space-efficient but more time-efficient version of recursive conditioning, called RC-
Cache, caches intermediate values that can be reused to reduce the computation. Algorithm 2
shows the RC-Cache algorithm. Like RC-Space, each invocation of RC-Cache solves the subprob-
lem specified by the variables and functions contained in the passed subtree T . Since the functions
below T only share the variables in label(root(T)) with variables outside of T , only the instan-
tiations in the subset, y, of ρ intersecting label(root(T)) can affect the form of this subproblem.
Hence, RC-Cache will return the same answer if invoked with the same T and same y, even if other
assignments in ρ have changed. RC-Cache, can thus use T and y to index a cache, storing the com-
puted result in the cache (line 13) and returning immediately if the answer is already in the cache
(line 7).

Propagation Since RC instantiates the problem’s variables, propagation can be employed. That
is, RC can perform additional inference to compute some of the implicit effects each assignment
has on the remaining problem ST |ρ∪α. For example, if the functions of the SUMPROD problem
are all clauses (e.g., when solving #SAT) unit propagation can be performed. Propagation can
make recursive conditioning more effective. For example, if one of the remaining clauses becomes
falsified through unit propagation, recursive conditioning can immediately move on to the next
instantiation of the variables �x. Similarly, unit propagation can force the value of variables that will
be encountered in subsequent recursive calls, thus reducing the number of different instantiations α
that must be attempted in that recursive call. It can be noted that propagation does not reduce the
worst case complexity of the algorithm, as on some SUMPROD problems propagation is ineffective.
It can however improve the algorithm’s efficiency on some families of problems.

400

BACKTRACKING SEARCH FOR #SAT AND BAYES

Algorithm 2: RC-Cache—Recursive Conditioning with caching

RC-Cache (T, ρ)1

begin2

if T is a leaf node then3

return LOOKUP(value of function labeling the leaf node)4

y = ρ ∩ label (root(T))5

if InCache(T,y) then6

return GetValue(T,y)7

p = 0; r = root(T)8

�x = variables in label (left(r)) ∩ label(right(r)) uninstantiated by ρ9

forall α ∈ {instantiations of �x} do10

p = p + RC-Cache (leftChild(T), ρ ∪ α) × RC-Cache (rightChild(T), ρ ∪ α)11

end12

AddToCache((T ,y), p)13

return p14

end15

RC-Cache+ A simple extension of RC that is used in practice is to set the variables �x ⊆
label(left(r) ∩ label(right(r)) (line 10 of Algorithm 2) iteratively rather than all at once. That
is, rather than iterate over all complete assignments α to �x we can instantiate these variables one at
a time, performing propagation after each assignment. This can make propagation more effective,
since, e.g., an empty clause might be detected after instantiating only a subset of the variables in �x
and thus the number of iterations of the for loop might be reduced.

Once the variables of �x are being set iteratively the order in which they are assigned can vary.
Furthermore, the order of assignment can vary dynamically. That is, depending on how the val-
ues assigned to the first k variables of �x, the algorithm can make different choices as to which
unassigned variable of �x to assign next.

We call the extension of RC-Cache that uses incremental assignments and dynamic variable or-
dering within set �x, RC-Cache+ . That is RC-Cache+ uses the same caching scheme as RC-Cache,
but has more flexibility in its variable ordering. It should be noted however, that RC-Cache+ does
not have complete freedom in its variable ordering. It must still follow the inputed branch decompo-
sition T . That is, the variable chosen must come from the set �x ⊆ label(left(r)) ∩ label(right(r)).
This is in contrast with the DPLL based algorithms we present in the next section, which are always
free to choose any remaining unassigned variable as the next variable to assign.

Space-Time Tradeoff RC has the attractive feature that it can achieve a non-trivial space-time
tradeoff, taking less time if it caches its recursively computed values (RC-Cache), or taking less
space without caching (RC-Space). In fact, Darwiche and Allen (2002) show that there is a smooth
tradeoff that can be achieved, with RC-Space and RC-Cache at the two extremes.

The DPLL based algorithms presented here share a number of features with RC; they also reduce
and decompose the input problem by making instantiations, gain efficiency by caching, and achieve
a similar space-time tradeoff. However, our algorithms are based on the paradigm of backtracking,
rather than divide and conquer. In particular, they explore a single backtracking tree in which
the decomposed subproblems are not solved separately but rather can be solved in any interleaved

401

BACCHUS, DALMAO, & PITASSI

fashion. As a result, they are not limited to following the decomposition scheme specified by a fixed
branch decomposition. As we will see, the limitation of a static decomposition scheme means that
RC-Space and RC-Cache must perform exponentially worse than our algorithms on some instances.

2.4.3 AND/OR SEARCH:

In more recent work Dechter and Mateescu (2007) have shown that the notion of AND/OR search
spaces (Nilsson, 1980) can be applied to formalize the divide and conquer approach to SUMPROD

problems utilized by RC. In this formulation the structure that guides the AND/OR search algorithm
is a pseudo tree. (Choosing the pseudo tree is the nondeterministic part of the computation.)

Definition 5 (Primal Graph) The primal graph of a hypergraph H is an undirected graph G that
has the same vertices asH and has an edge connecting two vertices if and only if those two vertices
appear together in some hyperedge of H.

Definition 6 (Pseudo Tree) Given an undirected graphGwith vertices and edges (V,EG), a pseudo
tree forG is a directed rooted tree T with vertices and edges (V,ET) (i.e., the same set of vertices as
G), such that any edge e that is in G but not in T must connect a vertex in T to one of its ancestors.
That is, e = (v1, v2) ∧ e ∈ EG ∧ e �∈ ET implies that either v1 is an ancestor of v2 in T or v2 is an
ancestor of v1 in T .

This implies that there is no edge of G connecting vertices lying in different subtrees of T .
Given a SUMPROD problem S = 〈V,F ,⊕,⊗〉 with underlying hypergraph H, we can form G, the
primal graph of H. The vertices of G are the variables of the problem V and any pair of variables
that appear together in some function of F will be connected by an edge in G. A pseudo tree T for
G will then have the property that two vertices of T (variables of S) can only appear in functions of
F with their ancestors or their descendants, they cannot appear in functions with their siblings nor
with their ancestor’s siblings nor with the descendants of such siblings.

This implies that once a variable v and all of its ancestors in T have been instantiated, the vari-
ables contained in its children subtrees become disconnected. That is, the variables in these subtrees
no longer appear in functions together, and the resulting subproblems can be solved independently.
The AND/OR search algorithm utilizes this fact to solve these subproblems independently, just like
recursive conditioning.

Example 5 Given the hypergraph H = (V,E) where V = {1, 2, 3, 4, 5} and E = {{1, 2, 3},
{1, 4},{2, 5}, {3, 5}}, the primal graph of H is G = (V,EG) where EG = {(1, 2), (1, 3), (2, 3),
(1, 4), (2, 5), (3, 5)}. H, its primal graph G, and a pseudo tree for G are shown in Figure 4. The
dotted lines shown on the pseudo tree are the edges of G that are not in the pseudo tree. As can be
seen from the diagram these edges connect nodes only with their ancestors.

The space efficient version of the AND/OR-Space search algorithm (Dechter & Mateescu,
2007) is shown in Algorithm 3. It solves the SUMPROD instance S = 〈V,F ,⊕,⊗〉, taking as
input a pseudo tree for the problem T (i.e., the hypergraph for S is converted to a primal graph
G, and T is a pseudo tree for G), and an initially empty set of instantiated variables ρ. The al-
gorithm solves a sub-problem of the original instance S reduced by the instantiations ρ, S|ρ. The
sub-problem being solved is defined by the functions of S|ρ that are over the variables contained in
the passed sub-tree T . Initially, with ρ being empty and T being the original pseudo tree containing
all variables, the algorithm solves the original problem S .

402

BACKTRACKING SEARCH FOR #SAT AND BAYES

1 2

54

3

Hypergraph

1 2

54

3

Primal Graph

1

4

5

3

2

Pseudo Tree

Figure 4: The hypergraph, primal graph, and a pseudo tree for Example 5.

The nodes of the pseudo tree T are variables of the problem S , and we also attach to each node
n of T a set of functions fns(n). A function f of F is in fns(n) if and only if (a) n is in the scope of
f and (b) all other variables in the scope of f are ancestors of n in T . This means that f will have a
fully instantiated set of arguments when AND/OR search instantiates the node (variable) n.

Algorithm 3: AND/OR-Space—Linear Space AND/OR search

AND/OR-Space (T, ρ)1

begin2

p = 0; r = root(T)3

STr = set of subtrees below r4

forall d ∈ {instantiations of r} do5

α =
∏

f∈fns(r) LOOKUP(value of f on ρ ∪ {r = d})6

p = p + α ×∏
T ′∈STr

AND/OR-Space (T ′, ρ ∪ {r = d})7

end8

return p9

end10

The algorithm operates on the variable r that is the root of the pseudo tree T . For each instanti-
ation of r the algorithm computes α, the product of the functions in F that have now become fully
instantiated by the assignment to r, i.e., those in fns(r). It then invokes a separate recursion for each
child of r passing the subtree rooted by that child to the recursive call. AND/OR search exploits
decomposition through these separate recursions. If r has only one child, then the problem is not
decomposed—there is only the single reduced subproblem that has resulted from instantiating r.

Like RC, AND/OR search can be made more time efficient at the expense of using more space.
Algorithm 4 shows the caching version AND/OR-Cache (called AND/OR graph search by Dechter
and Mateescu (2007)). Let label (n) for any node n in the pseudo tree T be the set of ancestors
of n that appear in some function with n or with some descendant of n in T . It is only the in-
stantiations to label(n) that can affect the functions over the variables in the subtree rooted by n.
Hence, label (n) plays the same role as the root label of the passed branch decomposition in RC-
Cache: only instantiations to these variables can affect the subproblem currently being computed.

403

BACCHUS, DALMAO, & PITASSI

Hence, like RC-Cache, AND/OR-Cache can use the instantiations in the subset, y, of ρ intersecting
label(root(T)) along with T to index a cache.

Finally, as with RC-Cache+, propagation can be used to decrease the number of branches that
AND/OR search needs to explore. For example, the recursive calls over the children of r can be
terminated when one of these calls returns the value zero.

Algorithm 4: AND/OR-Cache—AND/OR search with caching

AND/OR-Cache (T, ρ)1

begin2

p = 0; r = root(T)3

y = ρ ∩ label (root (T))4

if InCache(T,y) then5

return GetValue(T,y)6

STr = set of subtrees below r7

forall d ∈ {instantiations of r} do8

α =
∏

f∈fns(r) LOOKUP(value of f on ρ ∪ {r = d})9

p = p + α ×∏
T ′∈STr

AND/OR-Cache (T ′, ρ ∪ {r = d})10

end11

return p12

end13

AND/OR-Cache+ Some variable order dynamism can be employed during AND/OR search. In
particular, the variables along any chain in the pseudo tree T can be reordered without affecting
the decompositions specified by T . A chain is a sub-path of T such that none of its nodes, except
perhaps the last, have more than one child. In Figure 4 nodes 2, 3, and 5 form a chain. The resultant
extension, AND/OR-Cache+, can dynamically chose to next instantiate any of the variables in
the chain that starts at the root of its passed pseudo tree T . (Marinescu and Dechter (2006) refer
to AND/OR-Cache+ as “AND/OR with partial variable ordering”. However they did not utilize
caching in their version of the algorithm.)

It will then pass the rest of the chain (and the nodes below) to its next recursive call, or if the
chosen variable was the last in the chain it will invoke a separate recursive call for each child. Like
RC-Cache+, AND/OR-Cache+ does not have complete freedom in its choice of variable—it must
chose a variable from the top most chain. Furthermore, AND/OR-Cache+ can only use its caching
scheme at the bottom of each chain (i.e., after all variables in the chain have been instantiated) since
its cache requires that the same set of variables be instantiated. This makes AND/OR-Cache+ very
similar to RC-Cache+.

2.4.4 OTHER EXACT ALGORITHMS

The algorithm most commonly used for BAYES is the join tree algorithm (Lauritzen & Spiegelhal-
ter, 1988), which can also be adapted to solve other kinds of SUMPROD problems. The join-tree
algorithm first organizes the primal graph of the SUMPROD problem into a tree by clustering the
variables, and it then performs message passing on the tree where the messages are computed by a
variable elimination process. In the context of BAYES the main advantage of join-tree algorithms is

404

BACKTRACKING SEARCH FOR #SAT AND BAYES

that they compute all marginals. That is they compute the posterior probability of all of the variables
given some evidence.

In contrast, the default version of variable elimination computes only the posterior distribution
for a single variable. However, Kask et al. (2005) show how the join-tree algorithm can be reduced
to a version of VE that remembers some of its intermediate results and runs in the same time and
space as VE. Hence, all of the results we state here comparing VE with our new backtracking based
algorithms also hold for the join tree algorithm.

Computing all Marginals All of the algorithms described above, i.e., VE, RC, and AND/OR
search, can be modified to compute all marginals when solving BAYES without any change to their
worst case complexity. In particular, besides the results of Kask et al. (2005), Darwiche (2001) has
shown that RC can compute all marginals on BAYES problems with an extra bottom up traversal
of its search tree—at most doubling its run time. The same technique can be applied to AND/OR
search algorithms. For the DPLL algorithms we present here, Sang et al. (2005b) have given an
even simpler scheme for modifying them so that they can computing all marginals. Sang et al.’s
scheme involves maintaining some extra information during search and does not require an extra
traversal of the search tree.

Another algorithm that has now been mostly superseded is cut-set conditioning (Pearl, 1988).
Here the idea is to identify a subset of variables which when set reduce the underlying hypergraph
of the SUMPROD into a tree. The reduced SUMPROD can then be easily solved. However, the
approach requires trying all possible instantiations of the cut-set yielding a runtime that is usually
worse than RC-Cache. Nevertheless, cutset conditioning can potentially be applied in conjunction
with other exact algorithms (Mateescu & Dechter, 2005).

Finally, an important early algorithm called DDP was presented by Bayardo and Pehoushek
(2000). This was a version of DPLL that utilized dynamic decomposition for solving #SAT. In
terms of the algorithms discussed above, AND/OR-Space can be viewed as being an version of
DDP that utilizes a pseudo tree to guide its variable ordering. In the original presentation of DDP,
any variable ordering could be used including dynamic variable orderings. The search continued
until the problem was decomposed into independent components (tested for during search) at which
point a separate recursion was used to solve each component. Hence, the DDP explored an AND/OR
search tree, however this tree need not correspond to any pseudo tree over the original problem.
(The DVO and DSO AND/OR search schemes presented by Mateescu and Dechter (2005) are also
versions of DDP run with particular variable ordering heuristics). In comparison with the algorithms
we present in the next section, Bayardo and Pehoushek (2000) did not provide a complexity analysis
of DDP, DDP did not use caching to enhance its performance, and DDP still has less flexibility in its
variable ordering. In particular, once the problem has been split into independent components the
search must solve these components sequentially in separate recursions. Inside each recursion the
search can only branch on the variables of the current component. That is, DDP cannot interleave
the solution of these components like the DPLL algorithms we present here.

2.5 Complexity Analysis

All known algorithms for BAYES, #SAT and SUMPROD run in exponential-time in the worst case.
However, when the branch width of the underlying hypergraph of the instance, w, is small, the
some of the above algorithms are much more efficient. It can be shown that the algorithms VE, RC-
Cache and AND/OR-Cache discussed above run in time and space nO(1)2O(w). We note that the

405

BACCHUS, DALMAO, & PITASSI

complexity of these algorithms is usually given in terms of tree width or elimination width, and not
branch width. However, by Lemmas 1, 2, and 3, these concepts are equivalent to within a factor of
2, and therefore the asymptotic complexity can equivalently be stated in terms of any of these three
notions of width (tree width, branch width, or elimination width). For analyzing our backtracking
algorithms, branch width is be somewhat more natural, and for this reason we have chosen to state
all complexity results in terms of branch width.

The runtime of the variable elimination algorithm is easily seen to be at most nO(1)2O(w). To
see this, notice that the algorithm proceeds in n stages, removing one variable at each stage. Sup-
pose that the algorithm is run on some variable ordering that has elimination width v. The algorithm
removes the ith variable during the ith stage. At the ith stage, all functions involving this variable
are merged to obtain a new function. As indicated in Section 2.4.1, computing the new function
involves iterating overall possible instantiations of its variables. The runtime of this stage is there-
fore exponential in the number of underlying variables of the new function, which is bounded by v.
Thus, the runtime of the algorithm is bounded by nO(1)2O(v). Now by Lemmas 1 and 2 and 3, if the
elimination width is v, then the branch width is at most v + 1, and therefore the overall runtime is
as claimed. It can also be noted that since the new function must be stored, the space complexity of
variable elimination is the same as its time complexity, i.e., nO(1)2O(w).

It has also been shown that the run times of RC-Cache and RC-Cache+ are bounded by nO(1)2O(w)

(Darwiche, 2001). Further, there is a nice time-space tradeoff. That is, the space-efficient imple-
mentation of RC, RC-Space, runs in time 2O(w logn) but needs only space linear in the size of the
input, where as RC-Cache has space complexity equal to its time complexity, nO(1)2O(w). We will
present proofs showing that our DPLL based algorithms can achieve the same time and time/space
bounds; our proofs give the bounds for RC-Space, RC-Cache, and RC-Cache+ as special cases.

Finally, it has been shown that AND/OR-Space runs in time 2O(w logn) (Dechter & Mateescu,
2007). Specifically, Dechter andMateescu show that AND/OR-Space runs in time exponential in the
height of its inputed pseudo tree, and Bayardo and Miranker (1995) show that this height is bounded
w log n. Lemma 1 then shows that the bound also holds for branch width. Similarly, Dechter and
Mateescu (2007) show that AND/OR-Cache runs in time and space bounded by nO(1)2O(w) by
exploiting the very close relationship between pseudo trees and elimination orders.

Making the algorithms deterministic. As stated above, all of these algorithms are in fact nonde-
terministic algorithms each requiring a different nondeterministically determined input. Hence, the
stated complexity bounds mean that there exists some choice of nondeterministic input (i.e., some
variable ordering for VE, some branch decomposition for RC, and some pseudo tree for AND/OR
search) with which the algorithm can achieve the stated complexity bound.

However, to achieve this runtime in practice, we will need to be able to find such a good branch
decomposition (variable ordering, pseudo tree) efficiently. Unfortunately, the general problem of
computing an optimal branch decomposition (i.e., one that has width equal to the branch width of
H) is NP-complete. However, Robertson and Seymour (1995) present an algorithm for computing
a branch decomposition with branch width that is within a factor of 2 of optimal and that runs in
time nO(1)2O(w), where w is the branch width of H. By first running this deterministic algorithm
to compute a good branch decomposition, one can obtain deterministic versions of RC-Cache and
RC-Cache+ that run in time and space nO(1)2O(w), as well as a deterministic version of RC-Space
that runs in linear space and time 2O(w logn). These deterministic versions no longer require access
to a nondeterministically determined choice to achieve their stated runtimes.

406

BACKTRACKING SEARCH FOR #SAT AND BAYES

Algorithm 5: DPLL for SAT

DPLL (φ)1

begin2

if φ has no clauses then3

return TRUE4

else if φ contains an empty clause then5

return FALSE6

else7

choose a variable x that appears in φ8

return (DPLL(φ|x=0) ∨ DPLL(φ|x=1))9

end10

Similarly with a nearly optimal branch decomposition, we can use Lemmas 1-3 to find a nearly
optimal elimination ordering, and thus can obtain a deterministic version of the variable elimination
algorithm that runs in time and space nO(1)2O(w). And finally, from that nearly optimal elimination
ordering the bucket-tree construction of Dechter and Mateescu (2007) can be used to construct a
nearly optimal pseudo tree, and thus we can obtain a deterministic version of AND/OR-Space that
runs in linear space and time 2O(w logn), and a deterministic version of AND/OR-Cache that runs in
time and space nO(1)2O(w).

3. Using DPLL for #SAT and SUMPROD

Now we present our methods for augmenting backtracking search with different caching schemes
so that it can solve SUMPROD with time and space guarantees at least as good as the other exact
algorithm for SUMPROD. For ease in presentation we present DPLL-based algorithms for solving
#SAT, and derive complexity results for these algorithms. Later we will discuss how the algorithms
and complexity results can be applied to other instances of SUMPROD (like BAYES).

3.1 DPLL and #DPLL:

DPLL is a nondeterministic algorithm for SAT, that has also been used to solve various generaliza-
tions of SAT, including #SAT (Dubois, 1991; Zhang, 1996; Birnbaum & Lozinskii, 1999; Littman,
Majercik, & Pitassi, 2001). DPLL solves SAT by performing a depth-first search in the space of
partial instantiations (i.e., it is a standard backtracking search algorithm). The nondeterministic part
of the computation is lies in the choice of which variable to query (i.e., instantiate) next during its
search. It operates on SAT problems encoded in clause form (CNF).

The standard DPLL algorithm for solving SAT is given in Algorithm 5. We use the notation
φ|x=0 or φ|x=1 to denote the new CNF formula obtained from reducing φ by setting the variable x
to 0 or 1. Reducing φ by x = 1 (x = 0) involves removing from φ all clauses containing x (¬x)
and removing the falsified ¬x (x) from all remaining clauses.

DPLL is a nondeterministic procedure that generates a decision tree representing the underlying
CNF formula. For solving SAT, the decision tree is traversed in a depth-first manner until either a
satisfying path is encountered, or until the whole tree is traversed (and all paths falsify the formula).
The nondeterminism of the algorithm occurs in the choice of variable on line 8. In practice this

407

BACCHUS, DALMAO, & PITASSI

Algorithm 6: #DPLL for #SAT (no caching)

#DPLL (φ)1

// Returns the probability of φ
begin2

if φ has no clauses then3

return 14

else if φ contains an empty clause then5

return 06

else7

choose a variable x that appears in φ8

return (12#DPLL(φ|x=0) + 1
2#DPLL(φ|x=1))9

end10

nondeterminism is typically resolved via some heuristic choice. Also, the algorithm utilizes early
termination of the disjunctive test on line 9; i.e., if the first test returns TRUE the second recursive
call is not made. Thus, the algorithm stops on finding the first satisfying path.

Note that we do not require that DPLL perform unit propagation. In particular, unit propagation
can always be realized through the choice of variable at line 8. In particular, if we force DPLL to
always chose a variable that appears in a unit clause of φ whenever one exists, this will have the
same effect as forcing DPLL to perform unit propagation after every variable instantiation. That is,
after a variable is chosen, and instantiated to one of its values, the input CNF φ will be reduced. The
reduced formula, φ|x=0 or φ|x=1, passed to the next recursive call may contain unit clauses. With
unit propagation, the variables in these clauses would be instantiated so as to satisfy the unit clauses.
If instead, we force one of these variable to be chosen next, one instantiation would immediately
fail due to the generation of an empty clause, while the other would instantiate the variable to the
same value as unit propagation. Hence, since we analyze DPLL as a nondeterministic algorithm,
this includes those deterministic realizations that perform unit propagation.

A simple modification of DPLL allows it to count all satisfying assignments. Algorithm 6 gives
the #DPLL algorithm for counting. The algorithm actually computes the probability of the set of
satisfying assignments under the uniform distribution. Hence, the number of satisfying assignments
can be obtained by multiplying this probability by 2n, where n is the number of variables in φ. The
alternative would be to return 2 raised to the number of unset variables whenever φ has no clauses
(line 4) and not multiply the recursively computed counts by 12 (line 9).

Known exponential worst-case time bounds for DPLL also apply to #DPLL: for unsatisfiable
formulas, both algorithms have to traverse an entire decision tree before terminating. Although this
decision tree can be small (e.g., when an immediate contradiction is detected), for some families of
formulas the decision tree must be large. In particular, it is implicit in the results of Haken (1985)
that any decision tree for the formulas encoding the (negation of the) propositional pigeonhole
principle has exponential size, and thus DPLL and #DPLL must take exponential-time on these
examples. This lower bound does not, however, help us discriminate between algorithms since
all known algorithms for #SAT and BAYES take exponential-time in the worst-case. Nevertheless,
#DPLL requires exponential time even on instances that can be efficiently solved by competing
algorithms for SUMPROD. To see this, consider a 3CNF formula over 3n variables consisting of

408

BACKTRACKING SEARCH FOR #SAT AND BAYES

n clauses that share no variables. Any complete decision tree has exponential size, and therefore
#DPLL will require exponential time. In contrast, since this formula has low tree width it can be
solved in polynomial time by VE, RC, or AND/OR search.

3.2 DPLL with Caching:

Given that the obvious application of DPLL to solve SUMPROD can give exponentially worse
performance than the standard algorithms, we now examine ways of modifying DPLL so that it
can solve #SAT (and thus BAYES and SUMPROD) more efficiently. To understand the source of
#DPLL’s inefficiency consider the following example.

Example 6 The following diagram shows a run of #DPLL on φ = {(w ∨ x)(y ∨ z)}. Each node
shows the variable to be branched on, and the current formula #DPLL is working on. The left hand
branches correspond to setting the branch variable to FALSE, while on the right the variable is set
to TRUE. The empty formula is indicated by {}, while a formula containing the empty clause is
indicated by {()}. The diagram shows that #DPLL encounters and solves the subproblem {(y ∨ z)}
twice: once along the path (w = 0, x = 1) and again along the path (w = 1). Note that in this
example unit propagation is realized by the choice of variable ordering—after w is set to FALSE,
#DPLL chooses to instantiate the variable x since that variable appears in a unit clause.

w:{(x ∨ w))(y ∨ z)}

��������

��������

x:{(x)(y ∨ z)}

�����

�����

0:{()} y:{(y ∨ z)}
��� ���

z:{(z)}
�� ��

0:{()} 1:{}
1:{}

y:{(y ∨ z)}
��� ���

z:{(z)}
�� ��

0:{()} 1:{}
1:{}

If one considers the above example of applying #DPLL to disjoint sets of clauses, it becomes
clear that in some formulas #DPLL can encounter the same subproblem an exponential number of
times.

3.2.1 DPLL WITH SIMPLE CACHING (#DPLL-SIMPLECACHE)

One way to prevent this duplication is to apply memoization. As indicated in Example 6, associated
with every node in the DPLL tree is a formula f such that the subtree rooted at this node is trying
to compute the number of satisfying assignments to f . When performing a depth-first search of
the tree, we can keep a cache that contains all formulas f that have already been solved, and upon
reaching a new node of the tree we can avoid traversing its subtree if the value of its corresponding
formula is already stored in the cache.

In Example 6 we would cache {(y ∨ z)}, when we solve it along the path (w = 0, x = 1)
thereby avoid traversing the subtree below (w = 1).

409

BACCHUS, DALMAO, & PITASSI

Algorithm 7: #DPLL algorithm with simple caching (#DPLL-SimpleCache)

#DPLL-SimpleCache (φ)1

// Returns the probability of φ
begin2

if InCache(φ) then3

// Also detects obvious formulas.
return GetValue(φ)4

else5

choose a variable x that appears in φ6

val = 1
2#DPLL-SimpleCache (φ|x=0) + 1

2#DPLL-SimpleCache (φ|x=1)7

AddToCache(φ,val)8

return val9

end10

The above form of caching, which we will call simple caching (#DPLL-SimpleCache) can be
easily implemented as shown in Algorithm 7.4 As with #DPLL, #DPLL-SimpleCache returns the
probability of its input formula φ; multiplying this by 2n gives the number of satisfying assignments.

In addition to formulas stored in the cache there are also the following obvious formulas whose
value is easy to compute. (1) The empty formula {} containing no clauses has value 1. (2) Any
formula containing the empty clause has value 0. Obvious formulas can be treated as if they are
implicitly stored in the cache (they need not be explicitly stored in the cache, rather their values can
be computed as required).

The following (low complexity) subroutines are used to access the cache. (1) AddToCache(φ, r):
adds to the cache the fact that formula φ has value r. (2) InCache(φ): takes as input a formula φ
and returns true if φ is in the cache. (3) GetValue(φ): takes as input a formula φ known to be in the
cache and returns its stored value. There are various ways of computing a cache key from φ. For
example, φ can be maintained as a sorted set of sorted clauses, and then cached as if it was a text
string. Such a caching scheme has nO(1) complexity.

Surprisingly, simple caching, does reasonably well. The following theorem shows that simple
caching achieves runtime bounded by 2O(w logn), where w is the underlying branch width. As with
our complexity analysis of earlier algorithms presented in Section 2.5, the simple caching algorithm
can also be made deterministic by first computing a branch decomposition that is within a factor
of 2 of optimal (using the Robertson-Seymour algorithm), and then running #DPLL-SimpleCache
with a variable ordering determined by this branch decomposition.

Theorem 1 For solving #SAT with n variables, there is an execution of #DPLL-SimpleCache that
runs in time bounded by 2O(w logn) where w is the underlying branch width of the instance. Fur-
thermore, the algorithm can be made deterministic with the same time guarantees.

Although the theorem shows that #DPLL-SimpleCache does fairly well, its performance is not
quite as good as the best SUMPROD algorithms (which run in time nO(1)2O(w)).

4. Simple caching has been utilized before (Majercik & Littman, 1998), but without theoretical analysis.

410

BACKTRACKING SEARCH FOR #SAT AND BAYES

Algorithm 8: #DPLL algorithm with component caching (#DPLL-Cache)

#DPLL-Cache (Φ)1

// Returns the probability of the set of disjoint formulas Φ
begin2

if InCache(Φ) then3

// Also detects obvious formulas.
return GetValue(Φ)4

else5

Ψ = RemoveCachedComponents(Φ)6

choose a variable x that appears in some component φ ∈ Ψ7

Ψ− = ToComponents(φ|v=0)8

#DPLL-Cache (Ψ − {φ} ∪ Ψ−)9

Ψ+ = ToComponents(φ|v=1)10

#DPLL-Cache (Ψ − {φ} ∪ Ψ+)11

AddToCache(φ, 12GetValue(Ψ
−) + 1

2GetValue(Ψ
+))12

if #DPLL-Space then13

RemoveFromCache(Ψ− ∪ Ψ+)14

return GetValue(Φ)15

end16

3.2.2 DPLL WITH COMPONENT CACHING (#DPLL-CACHE)

Now we show that a more sophisticated caching scheme allows #DPLL to perform as well as the
best known algorithms. We call the new algorithm #DPLL-Cache, and its implementation is given
in Algorithm 8.

In the algorithm we generalize the cache to deal with sets of formulas. First, we say that a
(single) formula φ is known if its value is stored in the cache or it is an obvious formula (and its
value is implicitly stored in the cache). Given a set of formulas Φ we say that the set is known if
either every φ ∈ Φ is known, or there is some φ ∈ Φ whose value is known to be zero. In both cases
we say that Φ’s value is equal to the product of the values of the φ ∈ Φ.

Now we generalize some of the cache access subroutines. (1) InCache(Φ) is generalized so that
it can take as input a set of formulas Φ. It returns true if Φ is known as just defined. (2) Similarly
GetValue(Φ) is generalized to take sets of formulas as input. It returns the product of the cached
values of the formulas φ ∈ Φ.

The intuition behind #DPLL-Cache is to recognize that as variables are set the input formula
may become broken up into disjoint components, i.e., sets of clauses that share no variables with
each other. Since these components share no variables we can compute the number of solutions to
each component and multiply the answers to obtain the total solution count. Thus, it is intended
that GetValue be called with a set of disjoint components Φ. In that case it will correctly return the
solution count for Φ—i.e., the product of the solution counts for each φ ∈ Φ.

The algorithm creates a standard DPLL tree, however it caches component formulas as their
values are computed. It keeps its input in decomposed form as a set of disjoint components, and
if any of these components are already in the cache (and thus their value is known) it can remove

411

BACCHUS, DALMAO, & PITASSI

these parts of the input—reducing the size of the problem it still has to solve and avoiding having
to resolve these components.

The new algorithm uses the previously defined cache access subroutines along with two addi-
tional (low complexity) subroutines. (1) ToComponents(φ): takes as input a formula φ, breaks it
up into a set of minimal sized disjoint components, and returns this set. (2) RemoveCachedCom-
ponents(Φ): returns the input set of formulas Φ with all known formulas removed. The input to
#DPLL-Cache is always set of disjoint formulas. Hence, to run #DPLL-Cache on the input formula
φ we initially make the call #DPLL-Cache (ToComponents(φ)).

ToComponents simply computes the connected components of the primal graph generated by
φ. That is, in this graph all of the variables of φ are nodes, and two nodes are connected if and only
if the corresponding variables appear together (in any polarity) in a clause of φ. Each connected
component of this primal graph (which can be computed with a simple depth-first traversal of the
graph Cormen, Leiserson, Rivest, & Stein, 2001), defines a set of variables whose clauses form an
independent component of φ.

Each call of #DPLL-Cache completes with the solution of the unknown components from the
set of inputed components Φ. If all components of Φ are known the product of the values of these
components will be returned at line 4. Otherwise the input set of components is reduced by re-
moving all known components (line 6), which must leave at least one unknown component and
potentially reduces the size of the remaining problem to be solved. Then a variable from some un-
solved component is chosen and is branched on. Since the variable only appears in the component
φ its assignment can only affect φ. In particular, its assignment might break φ into smaller com-
ponents (line 8 and 11). The recursive call will solve all components it is passed, so after the two
recursive calls the value of φ can be computed and cached (line 12). Finally, since all components
in the inputed set Φ are now solved its value can be retrieved from the cache and returned.

Example 7 Figure 5 illustrates the behavior of #DPLL-Cache on the formula φ = {(a, b, c, x),
(¬a, b, c), (a,¬b, c), (d, e, f, x), (¬d, e, f), (d,¬e, f)}. Although the problem could be solved
with a simpler search tree, we use a variable ordering that generates a more interesting behavior.

Each node shows the variable to be branched on, and the current set of components #DPLL-
Cache is working on. The known components (i.e., those already in the cache) are marked with an
asterisk (∗). The branch variables are set to FALSE on the left branch and TRUE on the right branch.
The empty formula is indicated by {}, while a formula containing the empty clause is indicated
by {()}. To simply the diagram we use unit propagation to simplify the formula after the branch
variable is set. This avoids the insertion into the diagram of nodes where unit clause variables are
branched on. Finally, note that known formulas are removed before a recursive call is made, as per
line 6 of Algorithm 8).

At the root, once x has been set to false, φ is broken up into two components φa,b,c = {(a, b, c),
(¬a, b, c), (a,¬b, c)}, and φd,e,f = {(d, e, f), (¬d, e, f), (d,¬e, f)}. The search tree demonstrates
that it does not matter how the search interleaves branching on variables from different components,
the components will still be solved independently. We see that the leftmost node in the tree that
branches on f succeeds in solving the component {(e, f), (¬e, f)}. This component is then added
to the cache. Similarly, the parent node that branches on b solves the component {(b, c), (¬b, c)}.
(The subcomponents Ψ− and Ψ+ generated by setting b, lines 8 and 11 of Algorithm 8, and per-
forming unit propagation are equal to the empty formula, {}, and thus are known). On backtrack
to d, the alternate value for d does not affect the component {(b, c), (¬b, c)}, so its value can be
retrieved from the cache leaving only the component {(e, f)} to be solved. Branching on e solves

412

BACKTRACKING SEARCH FOR #SAT AND BAYES

x:{φ}

�������

�������

a:

{
φa,b,c,
φd,e,f

}

����������

����������

d:

{
{(b, c), (¬b, c)},
φd,e,f

}

���������

���������

b:

{ {(b, c), (¬b, c)},
{(e, f), (¬e, f)}

}

������

������

f :

{ {{}}∗

{(e, f), (¬e, f)}
}

��� ���{
{()}∗

} {
{}∗

}
{ {{}}∗

{(e, f), (¬e, f)}∗
}

e:

{ {(b, c), (¬b, c)}∗,
{(e, f)}

}
�� ��{

{}
}∗ {

{}
}∗

b:

{ {(b, c)},
φd,e,f

∗
}

�� ��{
{}
}∗ {

{}
}∗

...

Figure 5: Search Space of #DPLL-Cache

this component. Backtracking to d we have that both {(e, f)} and {(e, f), (¬e, f)} are solved, so
φd,e,f ’s value can be computed and placed in the cache. On backtracking to a, the alternate value
for a does not affect the component φd,e,f , so its value can be retrieved from the cache leaving
only the component {(b, c)} to be solved. Branching on b solves this component, after which both
{(b, c)} and {(b, c), (¬b, c)} are solved so φa,b,c’s value can be computed and placed in the cache.
The search can then backtrack to try setting x to TRUE.

We can obtain the following upper bound on the runtime of #DPLL-Cache.

Theorem 2 For solving #SAT on n variables, there exists an execution of #DPLL-Cache that runs in
time bounded by nO(1)2O(w) where w is the underlying branch width of the instance. Furthermore,
the algorithm can be made deterministic with the same time guarantees (as discussed in Section 2.5).

So we see that #DPLL-Cache can achieve the same level of performance as the best SUMPROD

algorithms.
Finally, there is a third variant of #DPLL with caching, #DPLL-Space , that achieves a nontriv-

ial time-space tradeoff. This algorithm is the natural variant of #DPLL-Cache, modified to remove
cached values so that only linear space is consumed. The algorithm utilizes one additional subrou-
tine. (6) RemoveFromCache(Φ): takes as input a set of formulas (a set of components) and removes
all of them from the cache. After splitting a component with a variable instantiation and computing
the value of each part, #DPLL-Space cleans up the cache by removing all of these sub-components,
so that only the value of the whole component is retained. Specifically, #DPLL-Space is exactly like
#DPLL-Cache, except that it calls RemoveFromCache(Ψ− ∪ Ψ+) just before returning (line 14).

413

BACCHUS, DALMAO, & PITASSI

Theorem 3 For solving #SAT on n variables, there is an execution of #DPLL-Space that uses only
space linear in the instance size and runs in time bounded by 2O(w logn) where w is the underlying
branch width of the instance. Furthermore, the algorithm can be made deterministic with the same
time and space guarantees.

The proofs of Theorems 1–3 are given in the appendix.

3.3 Using DPLL Algorithms for Other Instances of SUMPROD:

The DPLL algorithms described in this section can be easily modified to solve other instances of
SUMPROD. However, since #SAT is #P complete many instances of SUMPROD can also be solved
by simply encoding them in #SAT. For example, this approach is readily applicable to BAYES and
has proved to be empirically successful (Sang et al., 2005b). Furthermore, the encoding provided
by Sang et al. (2005b) achieves the same complexity guarantees as standard algorithms for BAYES.
(That is, the CNF encoding has tree width no greater than the original Bayes Net). Note that this
encoding assigns non-uniform probabilities to values of the variables. That is, for variable x the
probability of x = 0 might not be equal to the probability of x = 1. This is easily accommodated
in our algorithms: instead of multiplying the value returned by each recursive call by 1

2 we simply
multiply it by the probability of the corresponding variable value (i.e., by Pr(x = 0) or Pr(x = 1)).

On the other hand, if conversion to #SAT is inapplicable or undesirable the algorithms can
be modified to solve other instances of SUMPROD directly. For SUMPROD, we want to compute⊕

X1
. . .

⊕
Xn

⊗m
j=1 fj(Ej). DPLL chooses a variable, Xi, and for each value d of Xi it recursively

solves the reduced problem F|Xi=d. (Hence, instead of a binary decision tree it builds a k-ary tree).
The reduced problem F|Xi=d is to compute

⊕
X1

. . .
⊕
Xi−1

⊕
Xi+1

. . .
⊕
Xm

m⊗
j=1

fj(Ej)|Xi=d,

where fj(Ej)|Xi=d is fj reduced by setting Xi = d. #DPLL-SimpleCache caches the solution to
the reduced problem to avoid recomputing it. For example, it can remember the reduced problem by
remembering which of the original functions in F remain (i.e., have not been reduced to a constant
value) and the set of assignments that reduced these remaining functions. #DPLL-Cache caches
the solution to components of the reduced problem. For example, it can remember a component by
remembering the set of original functions that form the component along with the set of assignments
that reduced these functions. It can compute the current components by finding the connected
components of the primal graph generated from the hypergraph of the SUMPROD instance with
all instantiated variables removed. It is a straightforward adaptation to show that the above three
theorems continue to hold for #DPLL, #DPLL-Cache, and #DPLL-Space so modified to solve SUM-
PROD.

Algorithm 9 shows how #DPLL-Cache, for example, can be modified to solve general SUM-
PROD problems. The algorithm takes as input a set of components Φ, just like #DPLL-Cache,
initially containing the components of the original problem. In the algorithm fns(x) denotes the set
of functions of the original problem that (a) contain x in their scope, and (b) are fully instantiated
by the instantiation of x.

414

BACKTRACKING SEARCH FOR #SAT AND BAYES

Algorithm 9: SUMPROD-DPLL-Cache algorithm for arbitrary SUMPROD problems

SUMPROD-DPLL-Cache (Φ)1

begin2

if InCache(Φ) then3

return GetValue(Φ)4

else5

Ψ = RemoveCachedComponents(Φ)6

choose a variable x that appears in some component φ ∈ Ψ7

p = 08

foreach d ∈ domain of x do9

Φd = ToComponents(φ|x=d)10

α =
∏

f∈fns(x) LOOKUP(value of f on ρ ∪ {x = d})11

p = p + α × SUMPROD-DPLL-Cache(Φ − {φ} ∪ Φd)12

end13

AddToCache(φ, p)14

return GetValue(Φ)15

end16

4. Comparing Algorithms for BAYES and #SAT

In this section, we will prove that our DPLL based algorithms are at least as powerful as the standard
complete algorithms for solving #SAT, and that they are provable more powerful than many of
them on some instances. This last feature is important as it means that solving SUMPROD using
DPLL augmented with caching can in some cases solve problems that are beyond the reach of many
standard complete algorithms.

As mentioned earlier, the algorithms for SUMPROD as well as our new DPLL-based algorithms,
are actually nondeterministic algorithms that require some nondeterministically chosen input. (This
input can be viewed as being a sequence of bits). For VE, the nondeterministic bits encode an elim-
ination ordering; for RC, the nondeterministic bits encode a branch decomposition; for AND/OR
search the nondeterministic bits encode a pseudo tree; and for our DPLL based algorithms, the
nondeterministic bits encode the underlying decision tree indicating which variable will be queried
next in the backtracking process. Thus when comparing the “power” of these algorithms we must
be careful about how the nondeterminism is resolved. For example, VE operating with a very bad
elimination ordering cannot be expected to run as efficiently as #DPLL-Cache operating with a
very good branching strategy. First we present some definitions which allow us to state our results
precisely.

Definition 7 Let f be a CNF formula. Define Time[VE](f) to be the minimal runtime of any vari-
able elimination algorithm for solving #SAT for f , over all choices of elimination orderings for f .
Similarly define Time[A](f), for A equal to RC-Cache, RC-Space, RC-Cache+, AND/OR-Space,
AND/OR-Cache, AND/OR-Cache+, #DPLL-Cache, and #DPLL-Space. (For example, Time[RC-
Cache](f) is the minimal runtime of the RC-Cache algorithm solving #SAT for f , over all possible
branch decompositions of f .)

415

BACCHUS, DALMAO, & PITASSI

Definition 8 Let A and B be two nondeterministic algorithms for #SAT. Then we will say that A
polynomial-time simulates B if there is a fixed polynomial p such that for every CNF formula f
Time[A](f) ≤ p(Time[B](f)).

The following theorem shows that RC-Cache and RC-Cache+ polynomially simulate VE. The
proof of this theorem is implicit in the results of Darwiche (2001).

Theorem 4 Both RC-Cache and RC-Cache+ polynomially simulate VE.

Now we prove that DPLL with caching is as powerful as previous algorithms.

Theorem 5 #DPLL-Cache polynomially simulates RC-Cache, RC-Cache+, AND/OR-Cache,
AND/OR-Cache+, and VE. #DPLL-Space polynomially simulates RC-Space, AND/OR-Space and
DDP.5

The proof of this theorem is given in the appendix. It should be noted that the proof also
implies that there is a deterministic version of #DPLL-Cache that has time (and space) complex-
ity that is at least as good as any deterministic realization of RC-Cache, RC-Cache+, AND/OR-
Cache, AND/OR-Cache+, or VE. Similarly, there is a deterministic version of #DPLL-Space that
has time (and space) complexity that is at least as good as any deterministic realization of RC-Space,
AND/OR-Space and DDP.

Now we prove that DPLL with caching can in some cases run super-polynomially faster than
previous algorithms. The proof is given in the appendix.

Theorem 6 None of RC-Space, RC-Cache, AND/OR-Cache, AND/OR-Space or VE can polyno-
mially simulate #DPLL-Cache, #DPLL-Space, or #DPLL.

This theorem shows that #DPLL-Cache/Space has a basic advantage over the other standard
algorithms for SUMPROD. That is, on some problems RC, AND/OR search, and VE will all require
time super-polynomially greater than #DPLL-Cache no matter what branch decomposition, pseudo
tree, or variable ordering they are supplied with, even when caching is utilized. The proof of this
theorem shows that the advantage of #DPLL-Cache arises from its ability to utilize dynamic vari-
able orderings, where each branch can order the variables differently. The flexibility of a dynamic
variable ordering for these instances gives rise to increased opportunities for contradictions thereby
significantly decreasing the overall runtime.

We note that Theorem 6 does not cover those algorithms that have more flexibility in their
variable ordering, i.e., AND/OR-Cache+, RC-Cache+, and DDP. It is an open problem whether or
not #DPLL-Cache is superpolynomially faster than these algorithms on some instances, although
we conjecture that Theorem 6 is also true for these algorithms.

In particular, note that #DPLL-Cache still has greater flexibility in its variable ordering than any
of these algorithms. None of these algorithms have complete flexibility in their variable ordering.
AND/OR-Cache+ must select an uninstantiated variable from the chain that starts at the root of its
passed pseudo tree; RC-Cache+ must select an uninstantiated variable from the intersection of the
labels of the left and right children of the root of its passed branch decomposition; and DDP must
select an uninstantiated variable from the component it is currently solving. In contrast #DPLL-
Cache can select any uninstantiated variable.

5. DDP is the algorithm presented by Bayardo and Pehoushek (2000).

416

BACKTRACKING SEARCH FOR #SAT AND BAYES

The difficulty with proving Theorem 6 for these other algorithms is that all of them can trade-
off flexibility in their variable ordering with their ability to decompose the problem. The clearest
example of this occurs with AND/OR-Cache+. If AND/OR-Cache+ is passed a pseudo tree that is
simply a single chain of variables, it will have complete flexibility in its variable ordering, but at the
same time it will never decompose the problem. Similarly, if RC-Cache+ is provided with a branch
decomposition that has large labels it will have more flexibility in its variable ordering, but will be
less effective in decomposing the problem. For the family of problems used to prove Theorem 6
only flexibility in the variable ordering is needed to achieve a superpolynomial speedup, and thus
for example AND/OR-Cache+ can achieve this speedup by completely sacrificing decomposition.

#DPLL-Cache can manage the tradeoff between flexibility in variable ordering and decom-
posing the problem in more sophisticated ways. For example, it has the ability to use a variable
ordering that encourages decomposition in some parts of its search tree while using a different vari-
able orderings in other parts of its search tree. For instance, the Cachet system, which is based on
#DPLL-Cache, employs a heuristic that dynamically trades off a variable’s ability to decompose the
problem with its ability to refute the current subtree (Sang et al., 2005a). (It employs a weighted
average of the number of clauses the variable will satisfy and the variable’s VSID score Moskewicz,
Madigan, Zhao, Zhang, & Malik, 2001). #DPLL-Cache also has the ability to interleave the solving
of its current set of components by successively choosing variables from different components. To
extend Theorem 6 to cover AND/OR-Cache+, RC-Cache+ and DDP a family of problems exploit-
ing these features of #DPLL-Cache would have to be developed.

5. Impact on Practice

Some of the results of this paper were first presented in a conference paper (Bacchus, Dalmao, &
Pitassi, 2003), and since that time a number of works have been influenced by the algorithmic ideas
presented here.

The Cachet system (Sang et al., 2004, 2005a) is a state of the art #SAT solver directly based
on the results presented here. Cachet like our #DPLL-Cache algorithm, is based on the ideas of
dynamic decomposition into components and caching of component solutions. It was an advance
over previous #SAT solvers in its use of caching to remember previously solved components and
in its integration of clause learning. The previous best #SAT solver, the DDP solver (Bayardo
& Pehoushek, 2000), also performed dynamic component detection but had neither component
caching nor clause learning. Our results highlighted the importance of component caching and the
possibility of basing a #SAT solver on a standard DPLL implementation thus making the integration
of clause learning feasible.

Cachet resolved a number of issues in making the algorithms we presented here practical. This
included practical ways of implementing the caching of components including a method for ef-
ficiently computing a key that could be used for cache lookup. (This method was subsequently
improved by Thurley, 2006). The Cachet system has also been used to solve BAYES, most probable
explanation (MPE), and weighted MAX-SAT problems by encoding these problems as weighted
#SAT problems (Sang et al., 2005b, 2007). This approach has proved to be very successful, espe-
cially for BAYES where it is often much superior to standard BAYES algorithms. The applications
of #SAT and the Cachet system for BAYES has been further advanced by Li et al. (2006, 2008).

It should also be noted that practical #SAT solving and its applications to other problems like
BAYES has also been advanced during this period by work on the RC algorithm and its application

417

BACCHUS, DALMAO, & PITASSI

to compiling CNF into representations on which model counting is tractable, e.g., (Darwiche, 2004;
Chavira & Darwiche, 2006, 2008). This work has also illustrated the value of converting various
problems into weighted #SAT instances, and the utilization of techniques like clause learning (in
this case integrated into a RC style algorithm). There has also been considerable work advanc-
ing AND/OR search, e.g., (Dechter & Mateescu, 2004; Marinescu & Dechter, 2006; Dechter &
Mateescu, 2007).

One difference between the Cachet system and the RC and AND/OR search based systems men-
tioned above is that Cachet utilized a dynamic decomposition scheme. In particular, Cachet used a
dynamic variable ordering heuristic that attempts to trade off a variable’s ability to decompose the
problem with its ability to refute the current subtree. Because the variable ordering was dynamically
determined during search, Cachet cannot predict what components will be generated during search.
Hence it has to examine the current component (i.e., the component containing the variable just
instantiated) to discover the new components generated. Thus Cachet utilized an approach like that
specified in Algorithm 8 where a function like ToComponents is invoked on newly reduced compo-
nent (see line 8). ToComponents must do a linear computation to find the new components (e.g., a
depth-first search or a union-find algorithm). In addition, for each component it must examine the
clauses contained in the component to compute a cache key.

In contrast, RC and AND/OR search take as input a static or precomputed decomposition
scheme (i.e., a branch decomposition or a pseudo tree). Hence, they are able to find components
without doing any extra work during search, and are able to more efficiently compute cache keys for
these components. For example, with AND/OR search, the algorithm simply follows the supplied
pseudo tree. When the variable V along with all variables on the path from the root to V have
been instantiated, AND/OR search knows that the variables in each subtree rooted by a child of V
forms an independent component. Hence, it can “detect” these components during search in con-
stant time. Similarly, it need not examine the clauses over the variables in these new components to
compute a cache key. Instead it can compute a cache key from the node of the pseudo tree that roots
the component and the set of instantiations of the parents of that root that appear in clauses with
the variables of the component. Note that, the set of parents whose instantiations are relevant can
be computed before search so that all that has to be done during search is to look up their current
values.

Thus, by using a static decomposition scheme RC and AND/OR search can gain efficiency
over Cachet. However, these statically computed decompositions are not always as effective as the
dynamic scheme employed by Cachet. First, it can be useful to override the precomputed decompo-
sition scheme so as to drive the search towards contradictions. This is the gist of Theorem 6 which
shows that more dynamic flexibility in variable ordering can provide superpolynomial reductions in
the size of the explored search tree by better exploiting such contradictions. Second, static decom-
positions cannot account for the different values of the variables. That is, the formula that arises
after instantiating a variable V to 0 can be quite different from the formula that arises after instan-
tiating V to 1. This difference can negatively affect the performance of RC and AND/OR search
in at least a couple of ways: components might be generated that are not predicted by the static
decomposition scheme and thus the static scheme might not fully exploit decomposition; and due to
the specific changes to the formula generated by particular instantiations, the static decomposition
scheme might be inappropriate for much of the search space.

In practice, Cachet displays a performance that is at least as good as systems built using the
RC algorithm, and in some cases its performance is superior (see the empirical results presented

418

BACKTRACKING SEARCH FOR #SAT AND BAYES

by Sang et al., 2004, 2005a). It should also be noted that #DPLL-Cache can easily utilize a static
decomposition scheme and gain all of the efficiencies of such schemes. For example, if provided
with a pseudo tree #DPLL-Cache can follow any ordering of the variables in that pseudo tree under
which parents are always instantiated before their children. Like AND/OR search it will know that
the children of any node in the pseudo tree each root an independent component, so it also will be
able to detect these components in constant time. Furthermore, it would be able to utilize the more
efficient caching scheme of AND/OR search. In this case its advantage over AND/OR search would
be that it would have the freedom to interleave the solving of its components.6

In more recent work our algorithms have also been applied to optimization problems (Kitching
& Bacchus, 2008). This work involved adding branch and bound techniques to the decomposition
and component caching described in #DPLL-Cache. During branch and bound dynamic variable
ordering can be very effective. In particular, one wants to branch on variables that will drive the
value of the current path towards a better value as this can generate a global bound that can be more
effective in pruning the rest of the search space. The empirical results of Kitching and Bacchus
(2008) show that the added flexibility of #DPLL-Cache can sometimes yield significant perfor-
mance improvements over AND/OR search even when the extra flexibility of AND/OR-Cache+ is
exploited.

6. Final Remarks

In this paper we have studied DPLL with caching, analyzing the performance of various types
of caching for #SAT. Our results apply immediately to a number of instances of the SUMPROD

problem including BAYES, since #SAT is complete for the class #P. However, our proofs can also
be modified without much difficulty so that our complexity results apply directly to any problem in
SUMPROD.

More sophisticated caching methods have also been explored for solving SAT by Beame et al.
(2003) who showed that some of these methods can considerably increase the power of DPLL.
However, these more sophisticated caching methods are currently not practical due to their large
overheads. In other related work, one of the results of Aleknovich and Razborov (2002) showed that
SAT could be solved in time nO(1)2O(w). Our results extend this to any problem in SUMPROD—as
shown in Section 2.1 SAT is an instance of SUMPROD.

We have proved that from a theoretical point of view, #DPLL-Cache is just as efficient in terms
of time and space as other state-of-the-art exact algorithms for SUMPROD. Moreover, we have
shown that on specific instances, #DPLL-Cache substantially outperforms the basic versions of
these other algorithms. The empirical results presented in the works described in Section 5 indicate
that these advantages can often be realized in practice and that on some problems our DPLL based
algorithms can yield significant performance improvements.

There are a number of reasons why our DPLL based algorithms can outperform traditional
algorithms for SUMPROD. Algorithms like VE and the join tree algorithm (which is used in many
BAYES inference systems), take advantage of the global structure of interconnections between the
functions as characterized by the tree width or branch width of the instance. Our DPLL algorithms
however, can also naturally exploit the internal or local structure within the functions. This is
accomplished by instantiating variables and reducing the functions accordingly. This can lead to

6. Marinescu and Dechter (2007) present a method for searching an AND/OR tree in a best-first manner. This method
can also interleave the solving of components, but in general best-first search has exponential space overheads.

419

BACCHUS, DALMAO, & PITASSI

improvements especially when the functions are encoded in a way to expose more of the function’s
internal structure, such as an encoding by sets of clauses (e.g., see Li et al., 2008). There are two
prominent examples of structure that can be exploited by DPLL.

First, some of the subproblems might contain zero valued functions. In this case our algorithms
need not recurse further—the reduced subproblem must have value 0.7 In VE the corresponding
situation occurs when one of the intermediate functions, Fi, produced by summing out some of the
variables, has value 0 for some setting of its inputs. In VE there is no obvious way of fully exploiting
this situation. VE can achieve some gains by ignoring those parts of Fi’s domain that map to 0
when Fi appears in a product with other functions. However, it can still expend considerable effort
computing some other intermediate function Fj many of whose non-zero values might in fact be
irrelevant because they will eventually be multiplied by zero values from Fi.

Second, it can be that some of the input functions become constant prior to all of their variables
being set (e.g., a clause might become equivalent to TRUE because one of its literals has become
true), or they might become independent of some of their remaining variables. This means the sub-
problems f |xi=1 and f |xi=0 might have quite different underlying hypergraphs. Our DPLL-based
algorithms can take advantage of this fact, since they work on these reduced problems separately.
For example, our algorithms are free to use dynamic variable orderings, where a different variable
ordering is used solving each subproblem. VE, on the other hand, does not decompose the problem
in this way, and hence cannot take advantage of this structure.

In BAYES this situation corresponds to context-specific independence where the random vari-
able X might be dependent on the set of variables W,Y,Z when considering all possible assign-
ments to these variables (so f(X,W,Y,Z) is one of the input functions), but when W = True it
might be that X becomes independent of Y (i.e., f(X,W,Y,Z)|W=1 might be a function F (X,Z)
rather than F (X,Y,Z)). Previously only ad-hoc methods have been proposed (Boutilier, Friedman,
Goldszmidt, & Koller, 1996) to take advantage of this kind of structure.

It should be noted however, that when the problem’s functions have little or internal structure
VE can be significantly more efficient than any of the other algorithms (RC, AND/OR search and
our DPLL algorithms). VE only uses simple multiplication and summation operations and does
have any of the overheads involved with instantiating variables and exploring an AND/OR search
tree or backtracking tree.

RC and AND/OR search share some of the same advantages over VE. However, they do not have
as much flexibility as our DPLL algorithms. We have shown in Theorem 6 that fully exploiting the
zero valued functions can in some instances require dynamic variable orderings that lie outside of
the range of the basic versions of RC and AND/OR search. Although our proof does not cover the
enhanced versions of RC and AND/OR (RC-Cache+ and AND/OR-Cache+), we have pointed out
that even these versions do not have the same flexibility as our DPLL algorithms. In practice, the
empirical evidence provided by the Cachet system (Sang et al., 2004, 2005a) and by the branch
and bound system described by Kitching and Bacchus (2008) support our belief that this added
flexibility can be important in practice.

The exploitation of context-specific independence also poses some problems for RC and AND/OR
search algorithms. In particular, the static decomposition schemes they employ are incapable of
fully exploiting this structure—as pointed out above the underlying hypergraphs of the subprob-
lems arising from different instantiations can be radically different. However, although our DPLL

7. For #SAT this corresponds to the situation where a clause becomes empty.

420

BACKTRACKING SEARCH FOR #SAT AND BAYES

algorithms are in principle able to exploit such structure, it remains an open problem to find practical
ways to accomplishing this. Specifically, when a decomposition scheme is computed prior to search
sophisticated (and computationally complex) algorithms can be utilized. It is difficult to overcome
the overhead of such methods when they are used dynamically during search (although see Li and
van Beek 2004 for some work in this direction). The development of methods that are light weight
enough to use during search and are still effective for selecting decomposition promoting variables
remains an open problem.

Finally, as shown in the proof of Theorem 5, RC and AND/OR search possess no intrinsic
advantages over our DPLL algorithms except perhaps conceptually simplicity. The proof shows
that our DPLL algorithms can simulate RC and AND/OR search in such a way that no additional
computation is required. Furthermore, as pointed out in the Section 5 our algorithms are also able
to utilize static decomposition schemes obtaining the same efficiency gains as RC and AND/OR
search.

Recently, several papers (Sanner & McAllester, 2005; Mateescu & Dechter, 2007) have made
significant progress on developing more compact representations for functions (rather than tabular
form), thereby potentially enhancing all of the algorithms discussed in this paper (VE, RC, etc.) by
allowing them to exploit additional local structure within the functions. An interesting future step
would be to combine the unique dynamic features of #DPLL-Cache with one of these promising
compact function representations to try to further improve SUMPROD algorithms.

Acknowledgments This research funded by governments of Ontario and Canada through their
NSERC and PREA programs. Some of the results of this paper were presented in an earlier confer-
ence paper (Bacchus et al., 2003). We thank Michael Littman for valuable conversations.

Appendix A. Proofs

A.1 Lemmas Relating Branch Width, Tree Width, and Elimination Width

Lemma 2 Let H = (V,E) be a hypergraph with a tree-decomposition of width w. Then there is
an ordering π of the vertices V such that the induced width of H under π is at most w.

Proof: Let H = (V,E) be a hypergraph of tree width w and let Ttd be a tree decomposition
that achieves width w. That is, the maximum sized label of Ttd is of size w + 1. We can assume
without loss of generality that the labels of the leaves of Ttd are in a one-to-one correspondence
with the edges of H. For an arbitrary node m in Ttd, let label(m) be the set of vertices in the label
of m, Am be the tree rooted at m, vertices(m) be the union of the labels of the leaf nodes in Am

(i.e., the hyperedges of H appearing below Am), and depth(m) be the distance from m to the root.
Let x be any vertex of H, and let leaves(x) be the set of leaves of Ttd that contain x in their

label. We define node(x) to be the deepest common ancestor in Ttd of all the nodes in leaves(x),
and the depth of a vertex, depth(x), to be depth(node(x)). Note that x ∈ label(node(x)), since
the path from the left-most leaf in leaves(x) to the right-most leaf must pass through node(x); and
that x does not appear in the label of any node outside of the subtree rooted at node(x), since no
leaf outside of this subtree contains x.

Finally let π = x1, . . . , xn be any ordering of the vertices such that if depth(y) < depth(x),
then y must precede x in the ordering. We use the notation y <π x to indicate that y precedes x in

421

BACCHUS, DALMAO, & PITASSI

the ordering π (and thus y will be eliminated after x). We claim that the induced width of π is at
most the width of Ttd, i.e., w.

Consider Anode(x), the subtree rooted at node(x), and vertices(node(x)), the union of the labels
of the leaves of Anode(x). We make the following observations about these vertices.

1. If y ∈ vertices(node(x)) and y <π x, then y labels node(x) and node(y) must be ancestor
of node(x) (or equal). y <π x implies that depth(y) ≤ depth(x). There must be a path from
the leaf in Anode(x) containing y to node(y), and since node(y) is at least as high as node(x)
the path must go through node(x) (or we must have node(x) = node(y)). In either case
y ∈ label (node(x)).

2. If y ∈ vertices(node(x)) and y >π x then node(y) must lie inside Anode(x) and node(y)
must be a descendant of node(x) (or equal). y >π x implies that depth(y) ≥ depth(x).
There must be a path from the leaf in A containing y to node(y), and since node(y) is at
least as deep at node(x) there must either be a further path from node(y) to node(x), or
node(y) = node(x).

Note further that condition 2 implies that if y >π x and y appears in the subtree below node(x),
then all hyperedges in the original hypergraph H containing y must also be in the subtree below
node(x).

We claim that the hyperedge produced at stage i in the elimination process when xi is eliminated
is contained in label(node(xi)). Since the size of this set is bounded by w + 1, we thus verify that
the induced width of π is bounded by w (note that the hyperedge produced in elimination does not
contain xi where as label (node(xi)) does).

The base case is when x1 is eliminated. All hyperedges containing x1 are contained in the sub-
tree below node(x1), thus the hyperedge created when x1 is eliminated is contained in vertices(node(x1)).
All other vertices in vertices(node(x1)) follow x1 in the ordering so by the above they must label
node(x1) and vertices(node(x1)) ⊆ label(node(x1)).

When xi is eliminated there are two types of hyperedges that might be unioned together: (a)
those hyperedges containing xi that were part of the original hypergraph H, and (b) those hyper-
edges containing xi that were produced as x1, . . . , xi−1 were eliminated. For the original hyper-
edges, all these are among the leaves below node(xi), and thus are contained in vertices(node(xi)).
For a new hyperedge produced by eliminating one of the previous variables, say the variable y, the
hyperedge it produced is contained in label(node(y)) by induction, which in turn is contained in
vertices(node(y)). If y is in the subtree below node(x) we get that this hyperedge is contained in
vertices(node(x)) since this is a superset of vertices(node(y)). Otherwise, node(y) lies in another
part of the tree, and its label cannot contain x (no node outside the subtree below node(x) has x in
its label). Thus the hyperedge created when it is eliminated also cannot contain xi.

In sum the hyperedge created when xi is eliminated is contained in vertices(node(xi)), since
all of the hyperedges containing xi at this stage are in this set. Furthermore, all vertices x1, . . . , xi−1
are removed from this hyperedge, thus it contains only variables following xi in the ordering. Hence,
by (1) above this hyperedge is contained in label (node(xi)). �

Lemma 3 LetH be a hypergraph with elimination width at mostw. ThenH has a tree-decomposition
of tree width at most w.

422

BACKTRACKING SEARCH FOR #SAT AND BAYES

Proof: (Proof of Lemma 3) Let π = x1, . . . xn be an elimination ordering for H. Then we will
construct a tree decomposition for H using π as follows. Initially, we have |E| trees, each of size
1, one corresponding to each edge e ∈ E. We first merge the trees containing xn into a bigger tree,
Tn, leaving us with a new, smaller set of trees. Then we merge the trees containing xn−1 into a
bigger tree, Tn−1. We continue in this way until we have formed a single tree, T . Now fill in the
labels for all intermediate vertices of T so that the tree is a tree-decomposition. That is, if m and
n are two leaves of T and they both contain some vertex v, then every node along the path from m
to n must also contain v in its label. It is not too hard to see that for each xi, the tree Ti (created
when merging the trees containing xi) has the property that the label of its root (which connects it
with the rest of T) is contained in ei ∪ xi, where ei is the hyperedge created when xi is eliminated.
Basically, all nodes with xj , j > i, are already contained in Ti so xi does not need to label Ti’s root.
Furthermore, if xj j < i is contained in Ti’s root label, then xj must have been in some original
hyperedge with a variable xk k ≥ i: thus xj would have appeared in the hyperedge ei generated
when xi was eliminated.

Hence the tree width of the final tree T can be no larger than the induced width of π. �

A.2 Complexity Results for Caching Versions of DPLL

For the proof of theorems 1 and 2 we will need some common notation and definitions. Let f be
k-CNF formula with n variables and m clauses, letH be the underlying hypergraph associated with
f with branch width w. By the results of Darwiche (2001), there is a branch decomposition of
H of depth O(log m) and width O(w). Also by the results of Robertson and Seymour (1995), it
is possible to find a branch decomposition, Tbd, such that Tbd has branch width O(w) and depth
O(log m), in time nO(1)2O(w). Thus our main goal for each of the three theorems will be to prove
the stated time and space bounds for our DPLL-based procedures, when they are run on a static
ordering that is easily obtainable from Tbd.

Recall that the leaves of Tbd are in one-to-one correspondence with the clauses of f . We will
number the vertices of Tbd according to a depth-first preorder traversal of Tbd. For a vertex numbered
i, let fi denote the subformula of f consisting of the conjunction of all clauses corresponding to the
leaves of the tree rooted at i. Let Vars(fi) be the set of variables in the (sub)formula fi. Recall
that in a branch decomposition the label of each vertex i, label(i), is the set of variables in the
intersection of Vars(fi) and Vars(f−fi). Each node i in Tbd partitions the clauses of f into three
sets of clauses: fi, fL

i , and fR
i , where fL

i is the conjunction of clauses at the leaves of Tbd to the
left of fi, and fR

i is the conjunction of clauses at the leaves to the right of fi.

All of our DPLL caching algorithms achieve the stated run time bounds by querying the vari-
ables in a specific, static variable ordering. That is, down any branch of the DPLL decision tree,
DT , the same variables are instantiated in the same order. (In contrast a dynamic variable order-
ing allows DPLL to decide which variable to query next based on the assignments that have been
made before. Thus different branches can query the variables in a different order.). The variable
ordering used in DT is determined by the depth-first pre-ordering of the vertices in the branch de-
composition Tbd and by the labeling of these vertices. Let (i, 1), . . . , (i, ji) denote the variables in
label(i) that do not appear in the label of an earlier vertex of Tbd. Note that since the width of Tbd

is w, ji ≤ w for all i. Let 1, . . . , z be the sequence of vertex numbers of Tbd. Then our DPLL algo-
rithm will query the variables underlying f in the following static order: π = 〈(i1, 1), (i1, 2), . . . ,
(i1, j1), (i2, 1), . . . , (i2, j2), . . . , (is, 1), . . . , (is, js)〉 i1 < i2 < . . . < is ≤ z, and j1, . . . , js ≤ w.

423

BACCHUS, DALMAO, & PITASSI

Note that for some vertices i of Tbd, nothing will be queried since all of the variables in its label may
have occurred in the labels of earlier vertices. Our notation allows for these vertices to be skipped.
The underlying complete decision tree, DT , created by our DPLL algorithms on input f is thus a
tree with j1 + j2 + . . . + js = n levels. The levels are grouped into s layers, with the ith layer
consisting of ji levels. Note that there are 2l nodes at level l in DT , and we will identify a particular
node at level l by (l, ρ) where ρ is a particular assignment to the first l variables in the ordering, or
by ((q, r), ρ), where (q, r) is the lth pair in the ordering π, and ρ is as before.

The DPLL algorithms carry out a depth-first traversal of DT , keeping formulas in the cache
that have already been solved along the way. (For #DPLL-SimpleCache, the formulas stored in
the cache are of the form f |ρ, and for #DPLL-Cache and #DPLL-Space, the formulas stored are
various components of ToComponents(f |ρ).) If the algorithm ever hits a node where the formula
to be computed has already been solved, it can avoid that computation, and thus it does not do a
complete depth-first search of DT but rather it does a depth-first search of a pruned version of DT .
For our theorems, we want to get an upper bound on the size of the pruned tree actually searched by
the algorithm.

Theorem 1 For solving #SAT with n variables, there is an execution of #DPLL-SimpleCache that
runs in time bounded by 2O(w logn) where w is the underlying branch width of the instance. Fur-
thermore, the algorithm can be made deterministic with the same time guarantees.

Proof: We want to show that the size of the subtree of DT searched by #DPLL-SimpleCache
is at most 2O(w logn). When backtracking from a particular node (l, ρ) = ((q, r), ρ) at level l in DT ,
the formula put in the cache, if it is not already known, is of the form f |ρ. (Recall ρ is a setting to the
first l variables.) However, we will see that although there are 2l different ways to set ρ, the number
of distinct formulas of this form is actually much smaller than 2l. Consider a partial assignment, ρ,
where we have set all variables up to and including (q, r), for some q ≤ is and some r ≤ jq. The
number of variables set by ρ (the length of ρ) is j1 + j2 + . . . + jq−1 + r.

Let ρ− denote the partial assignment that is consistent with ρ where only the variables in ρ that
came from the labels of the vertices on the path from the root of Tbd up to and including vertex q
are set. The idea is that ρ− is a reduction of ρ, where ρ− has removed the assignments of ρ that are
irrelevant to fq and fR

q .
Consider what happens when the DPLL algorithm reaches a particular node ((q, r), ρ) at level

l of DT . At that point the algorithm is solving the subproblem f |ρ, and thus, once we backtrack to
this node, f |ρ = fL

q |ρ ∧ fq|ρ ∧ fR
q |ρ is placed in the cache, if it is not already known. Note that all

variables in the subformula fL
q are set by ρ, and thus either fL

q |ρ = 0, in which case nothing new
is put in the cache, or fL

q |ρ = 1 in which case f |ρ = fq|ρ ∧ fR
q |ρ = fq|ρ− ∧ fR

q |ρ− is put in the
cache. Thus, the set of distinct subformulas placed in the cache at level l = (q, r) is at most the
set of all subformulas of the form fq|ρ− ∧ fR

q |ρ− , where ρ− is a setting to all variables in the labels
from the root to vertex q, plus the variables (q, 1), ..., (q, r). There are at most d · w such variables,
where q has depth d in Tbd (each label has at most w variables since this is the width of Tbd). Hence
the total number of such ρ−’s is at most 2(w·d). This implies that the number of subtrees in DT at
level l + 1 that are actually traversed by #DPLL-SimpleCache is at most 2 · 2w·d = 2O(w·d), where
d is the depth of node q in Tbd. Let t be the number of nodes in DT that are actually traversed by
#DPLL-SimpleCache. Then, t is at most n2O(w·logn), since t is the sum of the number of nodes
visited at every level of DT and for each node q in Tbd d ∈ O(log m) = O(log n).

424

BACKTRACKING SEARCH FOR #SAT AND BAYES

Accounting for the time to search the cache, the overall runtime of #DPLL-SimpleCache is at
most t2, where again t is the number of nodes in DT that are traversed by the algorithm. Thus,
#DPLL-SimpleCache runs in time (n2O(w·logn))2 = 2O(w·logn). �

Theorem 2 For solving #SAT on n variables, there exists an execution of #DPLL-Cache that runs in
time bounded by nO(1)2O(w) where w is the underlying branch width of the instance. Furthermore,
the algorithm can be made deterministic with the same time guarantees.

Proof: We prove the theorem by placing a bound on the number of times #DPLL-Cache can
branch on any variable xl. Using the notation specified above, xl corresponds to some pair (q, r) in
the ordering π used by #DPLL-Cache. That is, xl is the r’th new variable in the label of vertex q of
the branch decomposition Tbd.

When #DPLL-Cache utilizes the static ordering π, it branches on, or queries, the variables
according to that order, always reducing the component containing the variable xi that is cur-
rently due to be queried. However, since previously cached components are always removed (by
RemoveCachedComponents in the algorithm), it can be that when it is variable xi’s turn to be
queried, there is no component among the active components that contains xi. In this case, #DPLL-
Cache simply moves on to the next variable in the ordering, continuing to advance until it finds
the first variable that does appear in some active component. It will then branch on that variable
reducing the component it appears in, leaving the other components unaltered.

This implies that at any time when #DPLL-Cache selects xl as the variable to next branch on it
must be the case that (1) xl appears in an active component. In particular the value of this component
is not already in the cache. And (2) no variable prior to xl in the ordering π appears in an active
component. All of these variables have either been assigned a particular value by previous recursive
invocations, or the component they appeared in has been removed because its value was already in
the cache.

In the branch decomposition Tbd let p be q’s parent (q must have a parent since the root has
an empty label). We claim that whenever #DPLL-Cache selects xl as the next variable to branch
on, the active component containing xl must be a component in the reduction of fp whose form is
determined solely by the settings of the variables in p and the r variables of q that have already been
set. If this is the case, then there can be at most 2(w+r) = 2O(w) different components that xl can
appear in, and hence #DPLL-Cache can branch on xl at most 2O(w) times as each time one more of
these components gets stored in the cache.

Now we prove the claim. The label of q consists of variables appearing in p’s label and variables
appearing in the label of q’s sibling. Since all of the variables in label(p) have been set, q and its
sibling must now have an identical set of unqueried variables in their labels. Hence, q must be the
left child of p as by the time the right child is visited in the ordering, xl will have already been
queried. Thus, at the time xl is queried, fp will have been affected only by the current setting of
label(p) (as these are the only variables it shares with the rest of the formula) and the first r queried
variables from label (q). That is, fp can be in at most 2(w+r) different configurations, and thus the
component containing xl can also be in at most this many different configurations.

Thus with n variables we obtain a bound on the number of branches in the decision tree explored
by #DPLL-Cache of n2O(w). As in the proof of the previous theorem, the overall runtime is at most
quadratic in the number of branches traversed, to give the claimed bound of nO(1)2O(w). �

425

BACCHUS, DALMAO, & PITASSI

Theorem 3 For solving #SAT on n variables, there is an execution of #DPLL-Space that uses only
space linear in the instance size and runs in time bounded by 2O(w logn) where w is the underlying
branch width of the instance. Furthermore, the algorithm can be made deterministic with the same
time and space guarantees.

Proof: For this proof, it will be more natural to work with a tree decomposition rather than a
branch decomposition.

Let f be a k-CNF formula with n variables and m clauses and let H be the underlying hyper-
graph associated with f . We begin with a tree decomposition Ttd of depth O(log m) and width
O(w) (computable in time nO(1)2O(w)). We can assume without loss of generality that the leaves
of Ttd are in one-to-one correspondence with the clauses of f . Each node i in Ttd partitions f into
three disjoint sets of clauses: fi, the conjunction of clauses at the leaves of the subtree of Ttd rooted
at i, fL

i , the conjunction of clauses of the leaves of Ttd to the left of fi, and fR
i , the conjunction of

clauses of the leaves of Ttd to the right of fi. #DPLL-Space will query the variables associated with
the labels of Ttd according to the depth-first preorder traversal. Let the variables in label (i) not ap-
pearing in an earlier label on the path from the root to node i be denoted by S(i) = (i, 1), . . . , (i, ji).
If i is a non-leaf node with j and k being its left and right children, then the variables in S(i) are
exactly the variables that occur in both fj and fk but that do not occur outside of fi. If we let c
be the total number of nodes in Ttd, then #DPLL-Space will query the variables underlying f in
the following static order: S(1), S(2), . . . , S(c), where some S(i) may be empty. The underlying
decision tree, DT , created by #DPLL-Space is a complete tree with n levels. As before we will
identify a particular node s at level l of DT by s = (l, ρ) where ρ is a particular assignment to the
first l variables in the ordering, or by s = ((q, r), ρ) (the rth variable in S(q)).

#DPLL-Space carries out a depth-first traversal of DT , storing the components of formulas in
the cache as they are solved. However, now components of formulas are also popped from the cache
so that the total space ever utilized is linear. If the algorithm hits a node where all of the components
of the formula to be computed are known, it can avoid traversing the subtree rooted at that node.
Thus it searches a pruned version of DT .

During the (pruned) depth-first traversal of DT , each edge that is traversed is traversed twice,
once in each direction. At a given time t in the traversal, let E = E1 ∪ E2 be the set of edges that
have been traversed, where E1 are the edges that have only been traversed in the forward direction,
and E2 are the edges that have been traversed in both directions. The edges in E1 constitute a partial
path p starting at the root of DT . Each edge in p is labeled by either 0 or 1. Let p1, . . . , pk be the
set of all subpaths of p (beginning at the root) that end in a 1-edge. Let ρ1, . . . , ρk be subrestrictions
corresponding to p1, . . . , pk except that the last variable that was originally assigned a 1 is now
assigned a 0. For example, if p is (x1 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = 0, x2 = 0), then
ρ1 = (x1 = 0, x3 = 0), and ρ2 = (x1 = 0, x3 = 1, x4 = 0, x5 = 0). Then the information that is
in the cache at time t contains ToComponents(f |ρi), i ≤ k.

For a node q of Ttd and corresponding subformula fq, the context of fq is a set of variables
defined as follows. Let (q1, . . . , qd) denote the vertices in Ttd on the path from the root to q (ex-
cluding q itself). Then the context of fq is the set Context(fq) = S(q1) ∪ S(q2) ∪ . . . ∪ S(qd).
Intuitively, the context of fq is the set of all variables that are queried at nodes that lie along the path
to q. Note that when we reach level l = (q, 1) in DT , where the first variable of S(q) is queried,
we have already queried many variables, including all the variables in Context(fq). Thus the set
of all variables queried up to level l = (q, 1) can be partitioned into two groups relative to fq: the

426

BACKTRACKING SEARCH FOR #SAT AND BAYES

irrelevant variables, and the set Context(fq) of relevant variables. We claim that at an arbitrary
level l = (q, r) in DT , the only nodes at level l that are actually traversed are those nodes ((q, r), ρ)
where all irrelevant variables in ρ (with respect to fq) are set to 0. The total number of such nodes
at level l = (q, r) is at most 2|Context(fq)|+r which is at most 2w logn. Since this will be true for all
levels, the total number of nodes in DT that are traversed is bounded by n2w logn. Thus, all that
remains is to prove our claim.

Consider some node s = ((q, r), α) in DT . That is, α = α1α2 . . . αq−1b1 . . . br−1, where for
each i, αi is an assignment to the variables in S(i), and b1 . . . br−1 is an assignment to the first r−1
variables in S(q). Let the context of fq be S(q1) ∪ . . . ∪ S(qd), d ≤ log n. Now suppose that α
assigns a 1 to some non-context (irrelevant) variable, and say the first such assignment occurs at αu

t ,
the tth variable in αu, u ≤ q − 1. We want to show that the algorithm never traverses s.

Associated with α is a partial path in DT ; we will also call this partial path α. Consider the
subpath/subassignment p of α up to and including αu

t = 1. If α is traversed, then we start by
traversing p. Since the last bit of p is 1 (i.e., αu

t = 1) when we get to this point, we have stored
in the cache ToComponents(f |ρ) where ρ is exactly like p except that the last bit, αu

t , is zero. Let
j be the first node in q1, q2, . . . qd with the property that the set of variables S(j) are not queried
in p. (On the path to q in Ttd, j is the first node along this path such that the variables in S(j) are
not queried in p.) Then ToComponents(f |ρ) consists of three parts: (a) ToComponents(fL

j |ρ), (b)
ToComponents(fj |ρ), and (c) ToComponents(fR

j |ρ).
Now consider the path p′ that extends p on the way to s inDT , where p′ is the shortest subpath of

αwhere all of the variables S(i) for i < j have been queried. The restriction corresponding to p′ is a
refinement of pwhere all variables in S(1)∪S(2)∪. . . S(j−1) are set. Since we have already set ev-
erything that occurs before j, we will only go beyond p′ if some component of ToComponents(f |p′)
is not already in the cache. ToComponents(f |p′) consists of three parts: (a) ToComponents(fL

j |p′),
(b) ToComponents(fj |p′), and (c) ToComponents(fR

j |p′). Because we have set everything that oc-
curs before j, all formulas in (a) will be known. Since p′ and ρ agree on all variables that are relevant
to fj , ToComponents(fj|p′) = ToComponents(fj|ρ) and hence these formulas in (b) in the cache.
Similarly all formulas in (c) are in the cache since ToComponents(fR

j |p′) = ToComponents(fR
j |ρ).

Thus all components of ToComponents(f |p′) are in the cache, and hence we have shown that we
never traverse beyond p′ and hence never traverse s. Therefore the total number of nodes traversed
at any level l = (q, r) is at most 2wd, where d is the depth of q in Ttd, as desired. This yields an
overall runtime of 2O(w logn).

It is left to argue that the space used is linear in the instance size. The total number of formulas
that are ever stored in the cache simultaneously is linear in the depth of the tree decomposition,
which is O(log m). Since we store each restricted formula f |ρ by storing the associated restriction
ρ, the total space ever used is O(n log m), which is linear in the input size. �

A.3 Comparing Algorithms for BAYES and #SAT

Before proving the next theorem, we first discuss in more detail the structure of the search space
explored by various versions of RC, AND/OR search and DDP. All of these algorithms operate
in the same way. They instantiate variables and when the problem decomposes into independent
components they solve these components in separate recursions. Hence, when solving any CNF
formula f they all generate some AND/OR search tree (Dechter & Mateescu, 2007).

427

BACCHUS, DALMAO, & PITASSI

The AND/OR search tree AO generated when one of the above algorithms solves the #SAT
instance f (a CNF formula), is a rooted tree. Each node n of AO is labeled by a formula n.f and
the subtree below n is generated when solving n.f . The root ofA0 is labeled by the original formula
f . There are four different types of nodes in AO:

Query nodes. Each query node q has an associated variable q.var and two children corresponding
to the two possible instantiations of q.var . That is, its children are labeled by the formulas
q.f |q.var=0 and q.f |q.var=1. A query node q is generated by the search algorithm whenever
it chooses to instantiate q.var and then executes recursive calls on the two resultant reduced
formulas.

AND nodes. Each AND node, a, has a query node as its parent, and has one or more children
all of which are query nodes. An AND node is generated by the search algorithm when it
decomposes the current formula into two or more independent components following the in-
stantiation of the parent query node’s variable. Each of these components will then be solved
in one of the subtrees rooted by the AND node’s children. If a.f splits into the components
fi, i = 1, . . . , k, then a.f =

∧
i fi, and the i’th child of a is labeled by fi. Note that the fi

share no variables. Hence, the set of query node variables that appear in the subtree below
the i-th child of a are disjoint from the set of query node variables appearing below the j-th
child of a for all j �= i.

Failure nodes. These are leaf nodes of the tree that are labeled with a formula containing the empty
clause. If caching is being used, failure nodes might also be labeled by a formula in the cache
that has already been shown to be unsatisfiable.

Satisfying nodes. These are leaf nodes of the tree that are labeled with a formula containing no
clauses. If caching is being used, satisfying nodes might also be labeled by a satisfiable
formula in the cache whose model count is already know.

Figure 6 shows an example AND/OR search tree.
Each node n of the AO also has a value, n.value, computed by the algorithm that generates it.

Here we only need to distinguish between zero values n.value = 0, and non-zero values denoted
by n.value = 1. Every satisfying node has value 1, and every failure node has value 0. A query
node has value 1 if and only if at least one of its children has value 1, and an AND node has value
1 if and only if all of its children have value 1. For example, in Figure 6 AND node D has value
0, while query node 2 has value 1. Note that all of the children of an AND node in AO must have
value 1 except possibly the right most child. The algorithms generating AO all terminate the search
below an AND node as soon as they discover a value 0 child—this implies that the AND node has
value 0. It can be seen that n.value = 0 if n.f is unsatisfiable and n.value = 1 if n.f is satisfiable.

Given any node n ofAO, letAO(n) be the AND/OR subtree ofAO rooted by n. Each satisfying
assignment ρ of n’s formula n.f defines a solution subtree S(n) of AO(n). In particular, S(n) is
a connected subtree of AO(n) rooted by n such that (1) if q is a query node in S(n) then S(n)
also contains the child of q corresponding to the assignment made by ρ (i.e., if ρ[q.var] is the value
assigned to q.var in ρ, then S(n) will contain the child labeled by the formula q.f |q.var=ρ[q.var]),
(2) if a is an AND node in S(n) then S(n) contains all children of a, and (3) S contains no failure
nodes. For example, a solution subtree of the AND/OR tree shown in Figure 6 (i.e., a solution
subtree of the root node) is formed by the leaf nodes b, c, f, and l; the query nodes 1, 2, 3, 4, 5, 6,

428

BACKTRACKING SEARCH FOR #SAT AND BAYES

1

2

A � D 16

11

n

3 6 8

B � ��

� E

17 197

12 13

14 15

n

u
�C �B

4 5

�

� �

��

�

17 19

� �18

7 14 15

� � ��

e

f g

ml o p

q r s t x y z

�C

9 10

�

� � � ���

a b c d v w

F il d

� � � �

h i j k

�

�

Failure node

Satisfying node

Query node

AND dAND node

Figure 6: An example AND/OR search tree with query nodes numbered 1–19, leaf nodes (both
failure and satisfying) numbered a–z, and AND nodes labeled A–E.

7, and 8; and the AND nodes A, and B. In particular, the left value of query nodes 1, 2, 3, 5, 6, 7
and 8, along with the right value of query node 4 satisfy all clauses of the formula 1.f . A solution
subtree of AO(n) exists if and only if n.value = 1.

Finally, in an AND/OR search tree we say that a query node whose parent is an AND node is
a component root. We also classify the root node as a component root. In Figure 6 query nodes 1
(the root node), 3, 6, 8, 4, 5, 9, 10, 12, 13, 17, and 19 are component roots.

Theorem 5 #DPLL-Cache polynomially simulates RC-Cache, RC-Cache+, AND/OR-Cache,
AND/OR-Cache+, and VE. #DPLL-Space polynomially simulates RC-Space, AND/OR-Space and
DDP.

Proof: Since RC-Cache polynomially simulates VE we can ignore VE in our proof: showing that
#DPLL-Cache polynomially simulates RC-Cache also shows that it polynomially simulates VE.
Also we assume in our proof that if any of these algorithms use unit propagation, then so does
#DPLL-Cache/Space. As explained in Section 3.1, #DPLL-Cache/Space without unit propagation
can polynomially simulate versions of #DPLL-Cache/Space using unit propagation.

429

BACCHUS, DALMAO, & PITASSI

Each of the stated algorithms will generate an AND/OR search tree when solving a CNF formula
f . To prove the theorem we first show how any AND/OR search tree solving f can be converted
into a partial DPLL decision tree, DT , that is no bigger. Then we show that our DPLL algorithms
can solve f using DT to guide its variable ordering. Thus, we obtain the result that the minimal
runtime for any of the stated algorithms, which must result in the generation of some AND/OR
search tree AOmin, can also be achieved by our DPLL algorithms. In particular, when run on the
partial decision tree constructed from AOmin, our DPLL algorithms will achieve a polynomially
similar runtime. (This suffices to prove the theorem, as we need only show the existence of an
execution of our DPLL algorithms achieving this run time.)

To make the distinction between the AND/OR search tree and the constructed partial decision
tree clear, we will use the suffixes ao and dt to indicate elements of the AND/OR tree and decision
tree respectively.

DPLL decision trees contain only query variables, satisfying nodes, and failure nodes, where
satisfying and failure nodes are both leaf nodes. We construct a partial decision tree DT from an
AND/OR tree AO by expanding the left most solution subtree S(nao) below every node nao ∈ AO
with nao.value = 1 into a linear sequence of query variables in DT using a depth-first ordering
of the query variables in S(nao). For nodes nao ∈ AO with nao.value = 0 the same expansion is
attempted, but in this case it will result in a sequence of query nodes that terminate at failure nodes.

Every node qdt in DT has a pointer, dt→ao(qdt) to a node qao in AO, at the end of the construc-
tion these pointers establish a map between the nodes in DT and the nodes in AO. Initially, the root
of DT has a pointer to the root of AO. Then, for any node qdt ∈ DT :

1. If dt→ao(qdt) is a query node qao in AO, then make qdt a query node and create a left and
right child, ldt and rdt, for qdt in DT . We make qdt query the same variable as qao (i.e.,
qdt.var = qao.var), and set its children to point to the children of qao (i.e., dt→ao(ldt) and
dt→ao(rdt) are set to the left and right children of qao in AO).

2. If dt→ao(qdt) is an AND node aao in AO, then we reset dt→ao(qdt) to be the left most child
of aao in AO. We then apply the first rule above, and continue.

3. If dt→ao(qdt) is a failure node in AO then we set qdt to be a failure node. In this case qdt has
no children.

4. If dt→ao(qdt) is a satisfying node in AO then we examine the path ρao in AO from the root
to dt→ao(qdt). Let rao be the last component root on ρao that has a right sibling.

(a) If such an rao exists, and no node on the path from rao to dt→ao(qdt) in AO is the right
child of a query node whose left child has value 1, then we reset dt→ao(qdt) to be the
leftmost right sibling of rao. This node is also a component root, and hence it is a query
node in AO. We then apply the first rule above, and continue.

(b) Otherwise (either rao does not exist or there is some node on the path from rao that is
the right child of a query node whose left child has value 1), we make qdt a satisfying
node. In this case qdt has no children.

Rule 4 of the construction is where we convert the leftmost solution subtree below each node nao

in AO into a sequence of query nodes in DT by performing a depth-first traversal of this solution
subtree. In particular, in this solution subtree the leftmost right sibling of the deepest component

430

BACKTRACKING SEARCH FOR #SAT AND BAYES

1

2 112

3 � 1612

11

n

4

5b

� � �

�

17

18

13o

14 15�

a

e p u

x

� 19v

� �

���

d q r s t w

y z

6c

7 9

��

y z
8f �

g

ml
�

� 10i
h

j k
� � �

�

�

Failure node

Satisfying node

Query node

ml j k

Query node

Figure 7: The partial DPLL decision tree constructed from the AND/OR search tree of Figure 6.
Each query and leaf nodes n is numbered with the number of the corresponding node,
dt→ao(n), in the AND/OR search tree.

root is the depth-first successor of the satisfying leaf node. The condition that no node on route
to that sibling is the right child of a query node whose left child has value 1 ensures that we only
perform a depth-first traversal along the leftmost solution subtree and not along subsequent solution
subtrees. Figure 7 shows the partial decision tree that would be constructed from the AND/OR
search tree of Figure 6.

In the diagram, satisfying nodes whose pointers are reset to the next component root using
rule 4a, are numbered with the corresponding query node in the AND/OR tree followed by the
leaf label of the corresponding satisfying node. For example, node 5b in the Figure 7 represents
satisfying child b of node 4 in Figure 6 that has been redirected to its depth-first successor node 5
(the leftmost right sibling of the deepest component root 4).

As another example, in the AND/OR tree, the right child of node 6 is the AND node C. Hence, in
the decision tree, the right child of the corresponding query node 6, becomes query node 9 which is
the leftmost child of node C (rule 2). Furthermore, when we reach satisfying node j in the AND/OR
tree, we can proceed no further and hence the left child of query node 10 in the decision tree becomes
a terminal satisfying node (rule 3). In particular, although the path from the root to node 10 in the
AND/OR tree contains a component root with a right sibling, namely node 6, this path also contains
the node C that is the right child of a query node (node 6) whose left child (node 7) has value 1.

431

BACCHUS, DALMAO, & PITASSI

There are two things to note. First, at any node ndt of DT all variables instantiated on the path
ρao in A0 from the root to dt→ao(n) have been instantiated to the same values on the path ρdt in
DT from the root to ndt. Since Rules 3 and 4b terminate paths, all nodes on ρdt are inserted only
by Rules 1, 2, and 4b. Rules 1 and 2 only insert nodes on ρdt whose parents are already on ρdt, and
Rule 1 ensures that the values assigned are the same as those in AO. Finally, Rule 4a only inserts a
node adt on ρdt if one of dt→ao(adt)’s siblings is already on ρdt, and hence that sibling’s (and a’s)
parent must already be on ρdt.

Second, no variable is queried twice along any path of DT . That is, no node ndt in DT has
an ancestor n′

dt with ndt.var = n′
dt.var . Again any path ρdt in DT is grown only by applications

of Rules 1, 2, and 4a. Since no path in AO queries the same variable twice, Rules 1 and 2 must
preserve this condition. Similarly Rule 4a moves to a new component root aao, and the set of query
variables at and below aao in AO is disjoint with the set of query variables already appearing in ρdt.

Using the above, from the AND/OR search tree AO generated by any of the algorithms RC-
Space, AND/OR-Space or DDP when solving the formula f , we can construct a corresponding
partial decision tree DT . Now we show that #DPLL-Space can solve f by exploring a search tree
that is no larger than DT . Note that DT is itself no larger than AO, hence this will show that
#DPLL-Space can solve f with a polynomially similar run time, proving that it can polynomially
simulate RC-Space, AND/OR-Space and DDP. (Note that the run time of all of these algorithms is
polynomially related to the size of the search trees they explore.)

We execute #DPLL-Space using the variable ordering specified in DT . That is, starting at the
root rdt of DT , #DPLL-Space will always query the variable of the current node of DT , ndt.var ,
and then descend to ndt’s left child. When it backtracks to ndt it will then descend to the right child.
Hence, we only need to show that #DPLL-Space must backtrack if it reaches a leaf of DT . That is,
it explores a search tree that is no larger than DT .

First, if #DPLL-Space reaches a failure node of DT it must detect an empty clause and back-
track. By Rule 3 of the construction any failure node fdt of DT must correspond to a failure node
dt→ao(fdt) in AO. Since all variables instantiated on the path in AO from the root to dt→ao(fdt)
are instantiated to the same values on the path in DT from the root to fdt, we see that if an empty
clause was detected in AO at dt→ao(fdt) then #DPLL-Space must also detect an empty clause
at fdt. (Note that if the algorithm that generated AO used unit propagation, then we assume that
#DPLL-Space does as well).

Second, if #DPLL-Space reaches a satisfying node sdt of DT it must detect that all of its current
set of components are solved and backtrack (line 4 of Algorithm 8). Let ρdt be the path in DT from
the root to sdt, ρao be the path in AO from dt→ao(sdt) to the root, and crdt be a node on ρdt such
that dt→ao(crdt) is a component root in AO (we say that crdt is a component root on ρdt). We
claim that (a) if lao is a left sibling of dt→ao(crdt) in AO, then there exists a node ldt on ρdt such
that dt→ao(ldt) = lao, and lao.f is satisfied by ρdt; (b) if rao is a right sibling of dt→ao(crdt) in
AO then rao.f is in #DPLL-Space’s cache.

Given claim (a) the only clauses of the original formula not yet satisfied by ρdt are clauses from
rao.f for those nodes rao in AO that are right siblings of some component root crdt on ρdt (i.e.,
rao is a right sibling of component root dt→ao(crdt) in AO). When #DPLL-Space arrived at crdt,
prior to reaching sdt, all variables in AO on the path from the root to dt→ao(crdt) have already
been instantiated to the same values on ρdt. Thus, if pao is dt→ao(crdt)’s parent in AO, #DPLL-
Space would have recognized that rao.f was a separate component once it instantiated pao.var , and
it would have added rao.f to its list of components (at line 8 or 11 of Algorithm 8). Note that,

432

BACKTRACKING SEARCH FOR #SAT AND BAYES

once solved rao.f would not be removed from #DPLL-Space’s cache until it backtracks to undo the
instantiation of pao.var . (At which point the solution all of pao’s children would be combined to
yield a solution to pao.f).

Furthermore, following the variable ordering specified in DT , #DPLL-Space would not instan-
tiate any of the variables in r.f along the path ρdt. Hence, any component that is on #DPLL-Space’s
list of components when it reaches ns must be equal to rao.f for some right sibling rao of a com-
ponent root on ρdt, and by claim (b) will be removed by the call to RemoveCachedComponents(Φ)
(line 6). This will leave #DPLL-Space with an empty list of components to solve, and hence it must
backtrack at sdt.

Now we prove the claims. For (a) we see that DT will always visit the children of an AND node
in AO in a left to right order. That is, before inserting a component root crdt on its path, it must
first visit all left siblings lao of dt→ao(crdt). After inserting ldt on its path (with dt→ao(ldt) = lao),
it will instantiate ldt and then start to query the nodes under lao searching alternate instantiations
to these variables until it is able to traverse a leftmost solution subtree of AO(lao). This traversal
results in the insertion into the path of a solution to lao.f , after which DT inserts crdt on its path
using Rule 4a.

For (b) we observe that sdt is a satisfying node in DT only through the application of Rule 4b.
Hence there are two possible cases. First, it can be that none of the component roots on ρdt have a
right sibling. In this case every clause of the original formula is satisfied and #DPLL-Space must
backtrack. For example, in Figure 7 this occurs at leaf nodes l and y.

Otherwise, let crdt be a component root on ρdt such that dt→ao(crdt) has a right sibling in AO,
and let ndt be the first node on ρdt following crdt such that (i) ndt’s successor on ρdt is its right
child, and (ii) dt→ao(ndt) has a left child in AO with value 1. Such a node ndt must exist, else sdt

would not have been a leaf node of DT by Rule 4a. When #DPLL-Space arrived at node crdt it
would have rao.f on its list of components for all right siblings rao of dt→ao(crdt). There might
also be other unsolved components on this list. All of these components, however, must be equal
to rao.f for some right sibling rao of a component root on ρdt preceding crdt, and must have been
placed on the list of components prior to #DPLL-Space reaching crdt. Then, when #DPLL-Space
arrived at ndt it would have taken the left branch first. Thus it would have previously been invoked
with all of these right sibling components on its component list.

When #DPLL-Space is invoked with a list of components it either solves every component,
placing them in its cache and keeping them there until it backtracks to the node where they were
first placed on its list, or it discovers that one of these components is unsatisfiable. If one of the
components is unsatisfiable, it will immediately backtrack to the point where that component was
first placed on its list. In particular, all recursive calls where the list of components contains a known
unsatisfiable component will return immediately since the call to InCache(Φ) will detect that the
list of components has product equal to zero.

Hence, on taking the left branch at ndt, #DPLL-Space, will have on its list of components,
components of the form rao.f for right siblings of component roots above ndt on ρdt, and also lao.f
where lao is the left child of dt→ao(ndt) in AO. Since lao has value 1, lao.f is satisfiable, and either
#DPLL-Space will solve all its components, placing their value in its cache, or it will discover that
one of the components rao.f is unsatisfiable and will backtrack without visiting sdt. Therefore, if it
does visit sdt it would have solved all components that could potentially be on its list of components,
and these components would still be in is cache since they were placed on the list before arriving at
sdt.

433

BACCHUS, DALMAO, & PITASSI

This shows that #DPLL-Space polynomially simulates RC-Space, AND/OR-Space and DDP.
RC-Cache and AND/OR-Cache gain over RC-Space and AND/OR-Space by not having to solve
some components more than once. That is, when they arrive at a node nao in their generated
AND/OR tree AO, if nao.f has been solved before they can immediately backtrack.

#DPLL-Cache gains the same efficiency over #DPLL-Space. In particular, it need never solve
the same component more than once. Using caching to removing previously solved components
from its list of components gives rise to the same savings that are realized by adding caching to
AND/OR or RC. Formally, the same construction of a partial decision tree DT can be used. In
AO we mark all nodes where search is terminated by a cache hit as a satisfying node (if the cached
formula is satisfiable) or as a failure node (if the cached formula is unsatisfiable). Now, for example,
AND nodes can have satisfying or failure nodes as children when those components have been
solved before. Applying our construction to AO gives rise to a partial decision tree DT , and it
can then be shown that #DPLL-Cache using DT to guide its variable choices will explore a search
tree that is about the same size as DT . This proves that #DPLL-Cache polynomially simulates
RC-Cache and AND/OR-Cache.

The only subtle point is that #DPLL-Cache might not solve a component at the same point
in its search. In particular, if a component φ first appears on #DPLL-Cache’s list of components
with a previously added unsatisfiable component, #DPLL-Cache will backtrack without solving φ.
Following DT , #DPLL-Cache will only do enough work to find φ’s first solution, after which it
will proceed to the other components on its list. During its search for φ’s first solution, it will cache
all unsatisfiable reductions of φ found during this search. Thus, the next time it encounters φ it can
follow the same variable ordering and not do any extra work: the cached unsatisfiable reductions
will immediately prune all paths leading to failure and it can proceed directly to the first solution
to φ. If the other components on its list are all satisfiable, it will eventually backtrack to this first
solution and then continue to solve φ. Hence, although #DPLL-Cache might encounter φ many
times before solving it, each such encounter, except for the first, require adding to its search tree
only a number of nodes linear in the number of variables in φ. The number of nodes added by
the first encounter, where the φ’s first solution is found, and the encounter where it finally solves
φ, together equal the number of nodes required in AO to solve φ. Hence, the “encounters without
solving” do not increase the size of #DPLL-Cache’s search tree by more than a polynomial.

Finally, we note that the construction given accommodates the use of dynamic variable orderings
where the order of variables varies from branch to branch in the AND/OR search tree. (Varying
the value assigned along the left and right branch of each query variable is also accommodated).
That is, the proof also shows that #DPLL-Cache polynomially simulates AND/OR-Cache+ and
RC-Cache+. �

Theorem 6 None of RC-Space, RC-Cache, AND/OR-Cache, AND/OR-Space or VE can polyno-
mially simulate #DPLL-Cache, #DPLL-Space, or #DPLL.

To prove this theorem we first observe that from a result of Johannsen (Johannsen, 2001),
#DPLL-Cache, #DPLL-Space, and #DPLL can all solve the negation of the propositional string-
of-pearls principle (Bonet, Esteban, Galesi, & Johannsen, 1998) in time nO(logn), when run with a
dynamic variable ordering. Then we prove (in Theorem 7) that all of the other algorithms require
time exponential in n on this problem. Hence, none of these algorithms can polynomially simulate
#DPLL (or the stronger #DPLL-Space or #DPLL-Cache).

434

BACKTRACKING SEARCH FOR #SAT AND BAYES

The string-of-pearls principle, introduced in a different form by Clote and Setzer (1998) and
explicitly by Bonet et al. (1998) is as follows. From a bag of m pearls, which are colored red and
blue, n pearls are chosen and placed on a string. The string-of-pearls principle says that if the first
pearl in the string is red and the last one is blue, then there must be a red-blue or blue-red pair of
pearls side-by-side somewhere on the string. The negation of the principle, Sm,n, is expressed with
variables pi,j and pj for i ∈ [n] and j ∈ [m] where pi,j represents whether pearl j is mapped to
vertex i on the string, and pj represents whether pearl j is colored blue (pj = 0) or red (pj = 1).
The clauses of SPm,n are as follows.

(1) Each hole gets at least one pearl: ∨m
j=1pi,j , i ∈ [n].

(2) Each hole gets at most one pearl: (¬pi,j ∨ ¬pi,j′), i ∈ [n] j ∈ [m] ,j′ ∈ [m], j �= j′.

(3) A pearl goes to at most one hole: (¬pi,j ∨ ¬pi′,j), i ∈ [n], i′ ∈ [n], i �= i′, j ∈ [m].

(4) The leftmost hole gets assigned a red pearl and the rightmost hole gets assigned a blue pearl:
(¬p1,j ∨ pj) and (¬pn,j ∨ ¬pj), j ∈ [m].

(5) Any two adjacent holes get assigned pearls of the same color: (¬pi,j ∨¬pi+1,j′ ∨¬pj ∨ pj′),
1 ≤ i < n, j ∈ [m], j′ ∈ [m], j �= j′, and (¬pi,j ∨¬pi+1,j′ ∨ pj ∨¬pj′), 1 ≤ i < n, j ∈ [m],
j′ ∈ [m], j �= j′.

Johannsen (Johannsen, 2001) shows that SPn,n has quasipolynomial size tree resolution proofs.
It follows that #DPLL, #DPLL-Space and #DPLL-Cache can solve SPn,n in quasipolynomial time.

Lemma 4 (Johannsen, 2001) SPn,n can be solved in time nO(logn) by #DPLL, #DPLL-Space, and
#DPLL-Cache.

Theorem 7 Let ε = 1/5. Any of the algorithms RC-Space, RC-Cache, AND/OR-Cache, AND/OR-
Space, VE, or #DPLL-Cache using a static variable ordering, require time 2nε

to solve SPn,n.

Proof: It can be seen from the proof of Theorem 5 that #DPLL-Cache using a static variable
ordering can polynomially simulate all of the stated algorithms.

Hence, it suffices to prove that #DPLL-Cache under any static ordering requires time 2nε
for

SPm,n, m = n. By a static ordering, we mean that the variables are queried according to this
ordering as long as they are mentioned in the current formula. That is, we allow a variable to be
skipped over if it is irrelevant to the formula currently under consideration. We will visualize SPn,n

as a bipartite graph, with n vertices on the left, and n pearls on the right. There is a pearl variable
pj corresponding to each of the n pearls, and an edge variable pi,j for every vertex-pearl pair. (Note
that there are no variables corresponding to the vertices but we will still refer to them.)

Fix a particular total ordering of the underlying n2 + n variables, θ1, θ2, . . . , θl. For a pearl j,
let fanint(j) equal the number of edge variables pk,j incident with pearl j that are one of the first
t variables queried. Similarly, for a vertex i, let fanint(i) equal the number of edge variables pi,k

incident with vertex i that are one of the first t variables queried. For a set of pearls S, let fanin t(S)
equal the number of edge variables pk,j incident with some pearl j ∈ S that are one of the first t
variables queried. Similarly for a set of vertices S, fanin t(S) equals the number of edge variables
pi,k incident with some vertex i ∈ S that are one of the first t variables queried. Let edgest(j) and

435

BACCHUS, DALMAO, & PITASSI

edgest(S) be defined similarly although now it is the set of such edges rather than the number of
such edges. It should be clear from the context whether the domain objects are pearls or vertices.

We use a simple procedure, based on the particular ordering of the variables, for marking each
pearl with either a C or with an F as follows. In this procedure, a pearl may at some point be marked
with a C and then later overwritten with an F; however, once a pearl is marked with an F, it remains
an F for the duration of the procedure. If a pearl j is marked with a C at some particular point in
time, t, this means that at this point, the color of the pearl has already been queried, and fanint(j)
is less than nδ, δ = 2/5. If a pearl j is marked with an F at some particular point in time t, it means
that at this point fanint(j) is at least nδ. (The color of j may or may not have been queried.) If a
pearl j is unmarked at time t, this means that its color has not yet been queried, and fanint(j) is
less than nδ.

For l from 1 to n2+n, we do the following. If the lth variable queried is a pearl variable (θl = pj

for some j), and less than nδ edges pi,j incident to j have been queried so far, then mark pj with
a C. Otherwise, if the lth variable queried is an edge variable (θl = pi,j) and fanin l(j) ≥ nδ, then
mark pearl j with an F (if not already marked with an F). Otherwise, leave pearl j unmarked.

Eventually every pearl will become marked F. Consider the first time t∗ where we have either
a lot of C’s, or a lot of F’s. More precisely, let t∗ be the first time where either there are exactly
nε C’s (and less than this many F’s) or where there are exactly nε F’s (and less than this many
C’s.) If exactly nε C’s occurs first, then we will call this case (a). Extend t∗ to t∗a as follows.
Let θt∗+1, . . . , θt∗+c be the largest segment of variables that are all pearl variables pj such that j
is already marked with an F. Then t∗a = t∗ + c. Notice that the query immediately following θt∗a
is either a pearl variable pj that is currently unmarked, or an edge variable. On the other hand, if
exactly nε F’s occurs first, then we will call this case (b). Again, extend t∗ to t∗b to ensure that the
query immediately following θt∗

b
is either a pearl variable pj that is currently unmarked, or is an

edge variable.
The intuition is that in case (a) (a lot of C’s), a lot of pearls are colored prematurely–that is,

before we know what position they are mapped to–and hence a lot of queries must be asked. For
case (b) (a lot of F’s), a lot of edge variables are queried thus again a lot of queries will be asked.
We now proceed to prove this formally.

We begin with some notation and definitions. Let f = SPn,n, and let Vars(f) denote the
set of all variables underlying f . A restriction ρ is a partial assignment of some of the variables
underlying f to either 0 or to 1. If a variable x is unassigned by ρ, we denote this by ρ(x) = ∗. Let
T be the DPLL tree based on the variable ordering θ. That is, T is a decision tree where variable θi

is queried at level i of T . Recall that corresponding to each node v of T is a formula f |ρ where ρ is
the restriction corresponding to the partial path from the root of T to v. The tree T is traversed by a
depth-first search. For each vertex v with corresponding path p that is traversed, we check to see if
f |p is already in the cache. If it is, then there is no need to traverse the subtree rooted below v. If
it is not yet in the cache, then we traverse the left subtree of v, followed by the right subtree of v.
After both subtrees have been traversed, we then pop back up to v, and store f |p in the cache. This
induces an ordering on the vertices (and corresponding paths) of T that are traversed—whenever
we pop back up to a vertex v (and thus, we can store its value in the cache), we put v (p) at the end
of the current order.

Lemma 5 Let f be SPn,n and let π be a static ordering of the variables. Let ρ be a partial restriction
of the variables. Then the runtime of #DPLL-Cache on (f, ρ) is not less than the runtime of #DPLL-
Cache on (f |ρ, π′), where π′ is the ordering of the unassigned variables consistent with π.

436

BACKTRACKING SEARCH FOR #SAT AND BAYES

Lemma 6 For any restriction ρ, if f |ρ �= 0 and ρ(pi,j) = ∗, then pi,j occurs in f |ρ.
Proof: Consider the clause Ci = (pi,1 ∨ . . . ∨ pi,m) in f . Since pi,j is in this clause, if pi,j

does not occur in f |ρ, then Ci|ρ must equal 1. Thus there exists j′ �= j such that ρ(pi,j′) = 1. But
then the clause (¬pi,j ∨ ¬pi,j′)|ρ = ¬pi,j and thus pi,j does not disappear from f |ρ. �

Corollary 1 Let θ be a total ordering of Vars(f). Let ρ, ρ′ be partial restrictions such that ρ sets
exactly θ1, . . . , θq and ρ′ sets exactly θ1, . . . , θq′ , q′ < q. Suppose that there exists θk = pi,j such
that ρ sets θk but ρ′(θk) = ∗. Then either f |ρ = 0 or f |ρ′ = 0 or f |ρ �= f |ρ′ .
Case (a). Let θ be a total ordering to Vars(f) such that case (a) holds. Let PC denote the set of
exactly nε pearls that are marked C and let PF denote the set of less than nε pearls (disjoint from
PC) that are marked F. Note that (the color of) all pearls in PC have been queried by time t∗a; the
color of the pearls in PF may be queried by time t∗a, and the color of all pearls in P − PC − PF

have not been queried by time t∗a. Note further that the total number of edges pi,j that have been
queried is at most nε+δ + n1+ε ≤ 2n1+ε.

We will define a partial restriction, Ma, to all but 2nε
of the variables in θ1, . . . , θt∗a as follows.

For each j ∈ PF , fix a one-to-one mapping from PF to [n] such that range(j) ∈ edgest∗a(j) for
each j. For each j ∈ PC , for any variable pi,j queried in θ1, . . . θt∗a , set pi,j to 0. For any vertex i
such that all variables pi,j have been queried in θ1, . . . , θt∗a , map i to exactly one pearl j such that
pj ∈ P − PC − PF . There are at most 2nε such i. (This can be arbitrary as long as it is consistent
with the one-to-one mapping already defined on PF .) For all remaining pj ∈ P − PC − PF that
have not yet been mapped to, set all queried variables pi,j to 0. For all pearls pj in PF that have
been queried in θ1, . . . , θt∗a , assign a fixed color to each such pearl (all Red or all Blue) so that the
smallest Red/Blue gap is as large as possible. Note that the gap will be of size at least n1−ε. Ma

sets all variables in θ1, . . . θt∗a except for the variables pj , j ∈ PC . Since there are nε such variables,
the number of restrictions ρ to θ1, . . . , θt∗a consistent with Ma is exactly 2nε

. Let S denote this set
of restrictions.

Let f ′ = f |Ma and let θ′ be be the ordering on the unassigned variables consistent with θ. (The
set of unassigned variables is: pj , for j ∈ PC , plus all variables in θk, k > t∗a.) Let T ′ be the DPLL
tree corresponding to θ′ for solving f ′. By Lemma 5, it suffices to show that #DPLL-Cache when
run on inputs f ′ and T ′, takes time at least 2nε

.
Note that the first nε variables queried in T ′ are the pearl variables in PC , and thus the set of all

2nε
paths of height exactly nε in T ′ correspond to the set S of all possible settings to these variables.

We want to show that for each vertex v of height nε in T ′ (corresponding to each of the 2nε
settings

of all variables in PC), that v must be traversed by #DPLL-Cache, and thus the runtime is at least
2nε

.
Fix such a vertex v, and corresponding path ρ ∈ S. If v is not traversed, then there is some

ρ′ ⊆ ρ and some σ such that σ occurs before ρ′ in the ordering, and such that f ′|σ = f ′|ρ′ . We want
to show that this cannot happen. There are several cases to consider.

1a. Suppose that |σ| ≤ nε and σ �= ρ′. Then both ρ′ and σ are partial assignments to some of the
variables in PC that are inconsistent with one another. It is easy to check that in this case,
f ′|ρ′ �= f ′|σ.

2a. Suppose that |σ| > nε, and the (nε + 1)st variable set by σ is an edge variable pi,j . Because
|ρ′| ≤ nε, ρ′(pi,j) = ∗. By Corollary 1, it follows that f ′|ρ′ �= f ′|σ.

437

BACCHUS, DALMAO, & PITASSI

3a. Suppose that |σ| > nε and the (nε + 1)st variable set by σ is a pearl variable pj . (Again, we
know that pj is unset by ρ′.) Since this is case (a), we can assume that pj ∈ P − PC − PF .
Call a vertex i bad if P − PF − PC ⊂ edgest∗a(i). If i is bad, then fanint∗a(i) is greater
than n − 2nε ≥ n/2. Since the total number of edges queried is at most 2n1+ε, if follows
that the number of bad vertices is at most 4nε. This implies that we can find a pair i, i + 1 of
vertices and a pearl j′ such that: (1) pi,j is not queried in θ1, . . . , θt∗a ; (2) pi+1,j′ is not queried
in θ1, . . . , θt∗a ; (3) pj′ is in P − PC − PF and thus pj′ is also not queried. Thus the clause
(¬pi,j ∨ ¬pj ∨ ¬pi+1,j′ ∨ pj′)|ρ′ does not disappear or shrink in f ′|ρ′ , and thus f ′|ρ′ �= f ′|σ .

Case (b). Let θ be a total ordering to Vars(f) such that case (b) holds. Now let PC denote the set
of less than nε pearls marked C and let PF denote the set of exactly nε pearls marked F.

We define a partial restriction Mb to all but 2nε
of the variables in θ1, . . . , θt∗ as follows. Call a

vertex i full if all variables pi,j have been queried in θ1, . . . , θt∗b . There are at most nε full vertices.
For each j ∈ PF , we will fix a pair of vertices Fj = (ij , i′j) in [n]. Let the union of all nε sets Fj be
denoted by F . F has the following properties. (1) For each j, no element of Fj is full; (2) For each
j ∈ PF , Fj ∈ edgest∗

b
(j); and (3) every two distinct elements in F are at least distance 4 apart.

Since fanint∗
b
(j) ≥ nδ, and δ = 2/5 > ε, it is possible to find such sets Fj satisfying these criteria.

For each pi,j queried in θ1, . . . θt∗b , where j ∈ PF and i �∈ Fj , Mb will set pi,j to 0. For each
j ∈ PC , and for any variable pi,j queried in θ1, . . . θt∗

b
, set pi,j to 0. For any full vertex i , map i

to exactly one pearl j such that pj ∈ P − PC − PF . (Again this can be arbitrary as long as it is
consistent with a one-to-one mapping.) For the remaining pj ∈ P − PC − PF that have not yet
been mapped to, set all queried variables pi,j to 0. For all pearls pj in PC , color them Red. For all
pearls pj in PF that have been queried, assign a fixed color to each pearl.

The only variables that were queried in θ1, . . . θt∗
b
and that are not set by Mb are the edge

variables, pi,j , where j ∈ PF , and i ∈ Fj . Let S denote the set of all 2nε
settings of these edge

variables such that each j ∈ PF is mapped to exactly one element in Fj . Let f ′ = f |Mb
and let

T ′ be the DPLL tree corresponding to θ′ for solving f ′, where θ′ is the ordering on the unassigned
variables consistent with θ. By Lemma 5, it suffices to show that #DPLL-Cache on f ′ and T ′ takes
time at least 2nε

.
Note that the first 2nε variables queried in T ′ are the variables Pij ,j , Pi′j ,j , j ∈ PF . The

only nontrivial paths of height 2nε in T ′ are those were each j ∈ PF is mapped to exactly one
vertex in Fj , since otherwise the formula f ′ is set to 0. Thus, the nontrivial paths in T ′ of height
2nε correspond to S. We want to show that for each such nontrivial vertex v of height 2nε in T ′

(corresponding to each of the restrictions in S), that v must be traversed by #DPLL-Cache, and thus
the runtime is at least 2nε

.
Fix a vertex v and corresponding path ρ ∈ S. Again we want to show that for any ρ′ ⊆ ρ, and

σ where σ occurs before ρ′ in the ordering, that f ′|ρ′ �= f ′|σ. There are three cases to consider.

1b. Suppose that |σ| ≤ 2nε. If σ is nontrivial, then both ρ′ and σ are partial mappings of the pearls
j in PF to Fj , that are inconsistent with one another. It is easy to check that in this case
f ′|σ �= f ′|ρ′ .

2b. Suppose that |σ| > 2nε and the (2nε + 1)st variable set by σ is an edge variable pi,j . Because
|ρ′| ≤ 2nε, ρ′(pi,j) = ∗. By Corollary 1, it follows that f ′|σ �= f ′|ρ′ .

438

BACKTRACKING SEARCH FOR #SAT AND BAYES

3b. Suppose that |σ| > 2nε and the (2nε + 1)st variable set by σ is a pearl variable pj . By the
definition of t∗b , we can assume that pj ∈ P −PC −PF . By reasoning similar to case 3a, can
find vertices i, i+1, and pearl j′ ∈ P−PC−PF such that none of the variable pi,j, pi+1,j, pj′

are queried in θ1, . . . , θt∗
b
. Thus the clause (¬pi,j ∨¬pj ∨¬pi+1,j′ ∨pj′)|ρ′ does not disappear

to shrink in f ′|ρ′1, and therefore f ′|ρ′ �= f ′|σ.
Thus for each of the two cases, #DPLL-Cache on f ′ and T ′ takes time at least 2nε

and thus
#DPLL-Cache on f and T takes time at least 2nε

. �

References

Aleknovich, A., & Razborov, A. (2002). Satisfiability, Branch-width and Tseitin Tautologies. In
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 593–603.

Bacchus, F., Dalmao, S., & Pitassi, T. (2003). Algorithms and Complexity Results for #SAT
and Bayesian Inference. In Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 340–351.

Bayardo, R. J., & Pehoushek, J. D. (2000). Counting Models using Connected Components. In
Proceedings of the AAAI National Conference (AAAI), pp. 157–162.

Bayardo, R. J., &Miranker, D. P. (1995). On the space-time trade-off in solving Constraint Satisfac-
tion Problems. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pp. 558–562.

Beame, P., Impagliazzo, R., Pitassi, T., & Segerlind, N. (2003). Memoization and DPLL: Formula
Caching Proof Systems. In IEEE Conference on Computational Complexity, pp. 248–264.

Birnbaum, E., & Lozinskii, E. L. (1999). The good old Davis Putnam procedure helps counting
models. J. Artif. Intell. Research (JAIR), 10, 457–477.

Bitner, J. R., & Reingold, E. (1975). Backtracking programming techniques. Communications of
the ACM, 18(11), 651–656.

Bodlaender, H. L. (1993). A tourist guide through Treewidth. Acta Cybernetica, 11(1–2), 1–21.

Bonet, M., Esteban, J. L., Galesi, N., & Johannsen, J. (1998). Exponential separations between
restricted resolution and cutting planes proof systems. In Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 638–647.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. (1996). Context-specific independence in
Bayesian Networks. In Uncertainty in Artificial Intelligence, Proceedings of Annual Confer-
ence (UAI), pp. 115–123.

Chavira, M., & Darwiche, A. (2006). Encoding CNFs to empower component analysis. In Theory
and Applications of Satisfiability Testing (SAT), pp. 61–74.

Chavira, M., & Darwiche, A. (2008). On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6-7), 772–799.

Chavira, M., Darwiche, A., & Jaeger, M. (2006). Compiling relational bayesian networks for exact
inference. Int. J. Approx. Reasoning, 42(1-2), 4–20.

Clote, P., & Setzer, A. (1998). On PHP, st-connectivity and odd charged graphs. In Proof Complexity
and Feasible Arithmetics, Vol. 39 of DIMACS Series, pp. 93–117. AMS.

439

BACCHUS, DALMAO, & PITASSI

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to Algorithms. 2nd
Edition. McGraw Hill.

Darwiche, A., & Allen, D. (2002). Optimal time-space tradeoff in probabilistic inference. In Euro-
pean Workshop on Probabilistic Graphical Models. Available at www.cs.ucla.edu/˜darwiche.

Darwiche, A. (2001). Recursive conditioning. Artificial Intelligence, 126, 5–41.

Darwiche, A. (2002). A logical approach to factoring belief networks. In Proceedings of the Interna-
tional Conference on Principles of Knowledge Representation and Reasoning, pp. 409–420.

Darwiche, A. (2004). New advances in compiling CNF into decomposable negation normal form.
In Proceedings of the European Conference on Artificial Intelligence (ECAI), pp. 328–332.

Davies, J., & Bacchus, F. (2007). Using more reasoning to improve #SAT solving. In Proceedings
of the AAAI National Conference (AAAI), pp. 185–190.

Davis, M., Logemann, G., & Loveland, D. (1962). A machine program for theorem-proving. Com-
munications of the ACM, 4, 394–397.

Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory. Journal of the
ACM, 7, 201–215.

Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113, 41–85.

Dechter, R., & Mateescu, R. (2004). Mixtures of deterministic-probabilistic networks and their
AND/OR search space. In Uncertainty in Artificial Intelligence, Proceedings of Annual Con-
ference (UAI), pp. 120–129.

Dechter, R., & Mateescu, R. (2007). AND/OR search spaces for graphical models. Artificial Intel-
ligence, 171(2-3), 73–106.

Dubois, O. (1991). Counting the number of solutions for instances of satisfiability. Theoretical
Computer Science, 81, 49–64.

Haken, A. (1985). The intractability of resolution. Theoretical Computer Science, 39, 297–305.

Hertel, P., Bacchus, F., Pitassi, T., & van Gelder, A. (2008). Clause learning can effectively p-
simulate general propositional resolution. In Proceedings of the AAAI National Conference
(AAAI).

Johannsen, J. (2001). Exponential incomparability of tree-like and ordered resolution. Un-
published manuscript, available at http://www.tcs.informatik.uni-muenchen.
de/˜jjohanns/notes.html.

Kask, K., Dechter, R., Larrosa, J., & Dechter, A. (2005). Unifying tree decompositions for reasoning
in graphical models. Artificial Intelligence, 166(1-2), 165–193.

Kitching, M., & Bacchus, F. (2008). Exploiting decomposition in constraint optimization problems.
In Proceedings of Principles and Practice of Constraint Programming (CP), pp. 478–492.

Lauritzen, S., & Spiegelhalter, D. (1988). Local computation with probabilities on graphical struc-
tures and their application to expert systems. Journal of the Royal Statistical Society Series
B, 50(2), 157–224.

440

BACKTRACKING SEARCH FOR #SAT AND BAYES

Li, W., & van Beek, P. (2004). Guiding real-world sat solving with dynamic hypergraph separa-
tor decomposition. In Proceedings of the International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 542–548.

Li, W., van Beek, P., & Poupart, P. (2006). Performing incremental Bayesian Inference by dynamic
model counting. In Proceedings of the AAAI National Conference (AAAI), pp. 1173–1179.

Li, W., van Beek, P., & Poupart, P. (2008). Exploiting causal independence using weighted model
counting. In Proceedings of the AAAI National Conference (AAAI).

Littman, M. L., Majercik, S. M., & Pitassi, T. (2001). Stochastic boolean satisfiability. J. Automated
Reasoning, 27(3), 251–296.

Majercik, S. M., & Littman, M. L. (1998). Maxplan: A new approach to probabilistic planning. In
Proceedings of the International Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS), pp. 86–93.

Marinescu, R., & Dechter, R. (2006). Dynamic orderings for AND/OR branch-and-bound search
in graphical models. In Proceedings of the European Conference on Artificial Intelligence
(ECAI), pp. 138–142.

Marinescu, R., & Dechter, R. (2007). Best-first AND/OR search for graphical models. In Proceed-
ings of the AAAI National Conference (AAAI), pp. 1171–1176.

Mateescu, R., & Dechter, R. (2007). AND/OR multi-valued decision diagrams for weighted graph-
ical models. In Uncertainty in Artificial Intelligence, Proceedings of Annual Conference
(UAI).

Mateescu, R., & Dechter, R. (2005). AND/OR cutset conditioning. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp. 230–235.

Moskewicz, E., Madigan, C., Zhao, M., Zhang, L., & Malik, S. (2001). Chaff: Engineering an
efficient sat solver. In Proc. of the Design Automation Conference (DAC).

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Tioga.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems (2nd edition). Morgan Kaufmann,
San Mateo, CA.

Preston, C. (1974). Gibbs States on Countable Sets. Cambridge University Press.

Rish, I., & Dechter, R. (2000). Resolution versus search: Two strategies for SAT. Journal of
Automated Reasoning, 24(1), 225–275.

Robertson, N., & Seymour, P. (1991). Graph minors X. obstructions to tree-decomposition. Journal
of Combinatorial Theory, Series B, 52, 153–190.

Robertson, N., & Seymour, P. (1995). Graph minors XIII. the disjoint paths problem. Journal of
Combinatorial Theory, Series B, 63, 65–110.

Roth, D. (1996). On the hardness of approximate reasoning. Artificial Intelligence, 82(1–2), 273–
302.

Sang, T., Bacchus, F., Beame, P., Kautz, H. A., & Pitassi, T. (2004). Combining component caching
and clause learning for effective model counting. In Theory and Applications of Satisfiability
Testing (SAT).

441

BACCHUS, DALMAO, & PITASSI

Sang, T., Beame, P., & Kautz, H. A. (2005a). Heuristics for fast exact model counting. In Theory
and Applications of Satisfiability Testing (SAT), pp. 226–240.

Sang, T., Beame, P., & Kautz, H. A. (2005b). Performing Bayesian Inference by weighted model
counting. In Proceedings of the AAAI National Conference (AAAI), pp. 475–482.

Sang, T., Beame, P., & Kautz, H. A. (2007). A dynamic approach for MPE and weighted MAX-
SAT. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pp. 173–179.

Sanner, P., & McAllester, D. (2005). Affine algebraic decision diagrams (aadds) and their applica-
tions to structured probabilistic inference. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), pp. 1384–1390.

Spitzer, F. L. (1971). Markov random fields and Gibbs ensembles. American Mathematical Monthly,
78, 142–54.

Thurley, M. (2006). sharpSAT—Counting models with advanced component caching and implicit
BCP. In Theory and Applications of Satisfiability Testing (SAT), pp. 424–429.

Valiant, L. G. (1979a). The complexity of enumeration and reliability problems. SIAM Journal of
Computing, 9, 410–421.

Valiant, L. G. (1979b). The Complexity of Computing the Permanent. Theoretical Computer Sci-
ence, 8, 189–201.

Zhang, W. (1996). Number of models and satisfiability of sets of clauses. Theoretical Computer
Science, 155, 277–288.

442

