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Abstract. We look at dynamic programming algorithms for proposi-
tional model counting, also called #SAT, and MaxSAT. Tools from graph
structure theory, in particular treewidth, have been used to successfully
identify tractable cases in many subfields of AI, including SAT, Constraint
Satisfaction Problems (CSP), Bayesian reasoning, and planning. In this
paper we attack #SAT and MaxSAT using similar, but more modern,
graph structure tools. The tractable cases will include formulas whose
class of incidence graphs have not only unbounded treewidth but also
unbounded clique-width. We show that our algorithms extend all previous
results for MaxSAT and #SAT achieved by dynamic programming along
structural decompositions of the incidence graph of the input formula. We
present some limited experimental results, comparing implementations
of our algorithms to state-of-the-art #SAT and MaxSAT solvers, as a
proof of concept that warrants further research.

1 Introduction

The propositional satisfiability problem (SAT) is a fundamental problem in
computer science and in AI. Many real-world applications such as planning,
scheduling, and formal verification can be encoded into SAT and a SAT solver
can be used to decide if there exists a solution. To decide how many solutions
there are, the propositional model counting problem (#SAT), which finds the
number of satisfying assignments, could be useful. If there are no solutions,
it may be interesting to know how close we can get to a solution. When the
propositional formula is encoded in Conjunctive Normal Form (CNF) this may
be solved by the maximum satisfiability problem (MaxSAT), which finds the
maximum number of clauses that can be satisfied by some assignment. In this
paper we investigate classes of CNF formulas where these two problems, #SAT

and MaxSAT, can be solved in polynomial time. Tools from graph structure
theory, in particular treewidth, have been used to successfully identify tractable
cases in many subfields of AI, including SAT, Constraint Satisfaction Problems
(CSP), Bayesian reasoning, and planning, see for example [3,13,14,32]. In this
paper we attack #SAT and MaxSAT using similar, but more modern, graph
structure tools. The tractable cases will include formulas whose class of incidence
graphs have not only unbounded treewidth but also unbounded clique-width.



Both #SAT and MaxSAT are significantly harder than simply deciding if a
satisfying assignment exists. #SAT is #P-hard [17] even when restricted to Horn
2-CNF formulas, and to monotone 2-CNF formulas [30]. MaxSAT is NP-hard
even when restricted to Horn 2-CNF formulas [20], and to 2-CNF formulas where
each variable appears at most 3 times [27]. Both problems become tractable
under certain structural restrictions obtained by bounding width parameters
of graphs associated with formulas, see for example [14,16,32,34]. The work we
present here is inspired by recent results of Paulusma et al [25] and Slivovsky
and Szeider [33] showing that #SAT is solvable in polynomial time when the
incidence graph1 I(F ) of the input formula F has bounded modular treewidth,
and more strongly, bounded symmetric clique-width.

These tractability results work by dynamic programming along a decom-
position of I(F ). There are two steps involved: (1) find a good decomposition,
and (2) perform dynamic programming along the decomposition. The goal is to
have a fast runtime, and this is usually expressed as a function of some known
graph width parameter of the incidence graph I(F ) of the formula F , like its
tree-width. Step (1) is solved by a known graph algorithm for computing a
decomposition of low (tree-)width, while step (2) solves #SAT or MaxSAT by
dynamic programming with runtime expressed in terms of the (tree-)width k of
the decomposition.

The algorithms we give in this paper also work by dynamic programming along
a decomposition, but in a slightly different framework. Since we are not solving a
graph theoretic problem, expressing runtime by a graph theoretic parameter may
be a limitation. Therefore, our strategy will be to develop a framework based on
the following strategy

(A) consider, for #SAT or MaxSAT, the amount of information needed to
combine solutions to subproblems into global solutions, then

(B) define the notion of good decompositions based on a parameter that minimizes
this information, and then

(C) design a dynamic programming algorithm along such a decomposition with
runtime expressed by this parameter

Both Paulusma et al [25] and Slivovsky and Szeider [33] consider two assignments
to be equivalent if they satisfy the same set of clauses. When carrying out (A) for
#SAT and MaxSAT this led us to the concept of ps-value of a CNF formula.
Let us define it and give an intuitive explanation. A subset C of the clauses
of a CNF formula F is called projection satisfiable if there is some complete
assignment satisfying every clause in C but not satisfying any clause not in C.
The ps-value of F is the number of projection satisfiable subsets of clauses. Let
us consider its connection to dynamic programming, which in general applies
when an optimal solution can be found by combining optimal solutions to certain

1 I(F ) is the bipartite incidence graph between the clauses of F on the one hand
and the variables of F on the other hand. Information about positive or negative
occurrences of variables is not encoded in I(F ) so sometimes a signed or directed
version is used that includes also this information.



subproblems. For #SAT and MaxSAT these subproblems, at least in the cases
we consider, take the form of a subformula of F induced by a subset S of clauses
and variables, i.e. first remove from F all variables not in S and then remove all
clauses not in S. Consider for simplicity the two subproblems FS and FS defined
by S and its complement S. When combining the ’solutions’ to FS and FS , in
order to find solutions to F , it seems clear that we must consider a number of
cases at least as big as the ps-values of the two disjoint subformulas ’crossing’
between S and S, i.e. the subformulas obtained by removing from clauses in S
the variables of S, and by removing from clauses in S the variables of S. See
Figure 2 for an example.

We did not find in the literature a study of the ps-value of CNF formulas, so
we start by asking for a characterization of formulas having low ps-value. We
were led to the concept of the mim-value of I(F ), which is the size of a maximum
induced matching of I(F ), where an induced matching is a subset M of edges
with the property that any edge of the graph is incident to at most one edge in
M . Note that this value can be much lower than the size of a maximum matching,
e.g. any complete bipartite graph has mim-value 1. We show that the ps-value of
F is upper bounded by the number of clauses of F raised to the power of the
mim-value of I(F ), plus 1. For a CNF formula F where I(F ) has mim-value 1 the
interpretation of this result is straightforward: its clauses can be totally ordered
such that for any two clauses C < C ′ the variables occurring in C are a subset
of the variables occurring in C ′, and this has the implication that the number
of subsets of clauses for which some complete assignment satisfies exactly this
subset is at most the number of clauses plus 1.

Families of CNF formulas having small ps-value are themselves of algorithmic
interest, but in this paper we continue with part (B) of the above strategy, and
focus on how to decompose a CNF formula F based on the concept of ps-value.
A common way to decompose a mathematical object is to recursively partition its
ground set into two parts, giving a binary tree whose root represents the ground
set and whose leaves are bijectively mapped to the elements of the ground set.
Taking the ground set of F to be the set containing its clauses and its variables,
this is how we will decompose F , in other words by a binary tree whose leaves
are in 1-1 correspondence with the variables and clauses. A node of the binary
tree represents the subset X of variables and clauses at the leaves of its subtree.
Which decomposition trees are good for efficiently solving #SAT and MaxSAT?
In accordance with the above discussion under part (A) the answer is that the
good decomposition trees are those where all subformulas ’crossing’ between X
and X, for some X defined by a node of the tree, have low ps-value. See Figure
2 for an example. To define this informal notion precisely we use the concept
of a branch decomposition over the ground set of a formula with cut function
being the ps-value of the formulas crossing the cut. Branch decompositions are
by now a standard notion in graph and matroid theory, originating in the work
of Robertson and Seymour on graph minors [29]. This way we arrive at the
definition of the ps-width of a CNF formula F , and of the decompositions of
F that achieve this ps-width. It is important to note that a formula can have



ps-value exponential in formula size while ps-width is polynomial, and that in
general the class of formulas of low ps-width is much larger than the class of
formulas of low ps-value.

To finish the above strategy, we must carry out part (C) and show how to solve
#SAT and MaxSAT by dynamic programming along the branch decomposition
of the formula, and express its runtime as a function of the ps-width. This is
not complicated, as dynamic programming when everything has been defined
properly simply becomes an exercise in brute-force computation of the sufficient
and necessary information, but it is technical and quite tedious. It leads to the
following theorem.

Theorem 4 Given a formula F over n variables and m clauses, and a decom-
position of F of ps-width k, we solve #SAT and weighted MaxSAT in time
O(k3m(m+ n)).

Thus, given a decomposition having a ps-width k that is polynomially-bounded
in the number of variables n and clauses m of the formula, we get polynomial-time
algorithms. Let us compare our result to the strongest previous result in this
direction, namely that of Slivovsky and Szeider [33] for #SAT. Their algorithm
takes as input a branch decomposition over the vertex set of I(F ), which is the
same as the ground set of F , and evaluates its runtime by the cut function they
call ’index’. They show that this cut function is closely related to the symmetric
clique-width scw of the given decomposition, giving runtime (n + m)O(scw).
Considering the clique-width cw of the given decomposition the runtime of [33]
becomes (n+m)O(2cw) since symmetric clique-width and clique-width is related
by the essentially tight inequalities 0.5cw ≤ scw ≤ 2cw [12]. Their algorithm
is thus a polynomial-time algorithm if given a decomposition with constantly
bounded scw. The result of Theorem 4 encompasses this, since our Corollary
6 ties ps-width to mim-width and Vatshelle [37] shows that mim-width is upper
bounded by clique-width, see also [28] for symmetric clique-width, so that a
decomposition of I(F ) having constantly bounded (symmetric) clique-width
also has polynomially bounded ps-width. In this way, given the decomposition
assumed as input in [33], the algorithm of Theorem 4 will have runtime O(m3cws),
for cw the clique-width of the given decomposition.

In a paper by Brault-Baron et al [9], appearing after a preliminary presentation
of our results [31], it is argued that the framework behind Theorem 4 gives a
uniform explanation of all tractability results for #SAT in the literature, in
particular those using dynamic programming based on structural decompositions
of the incidence graph. Brault-Baron et al [9] also goes beyond this, giving a
polynomial-time algorithm, not by dynamic programming, to solve #SAT on
β-acyclic CNF formulas, being exactly those formulas whose incidence graphs are
chordal bipartite. They show that these formulas do not have bounded ps-width
and that their incidence graphs do not have bounded mim-width. See Figure 1
which gives an overview of the results in this paper and in other papers.
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Fig. 1. We believe, as argued in [9], that any dynamic programming approach working
along a structural decomposition to solve #SAT (or MaxSAT) in polynomial time
cannot go beyond the green box. Paper A is [9] and Paper B is [33]. On the left of
the two dashed lines are 4 classes of graphs with bound k/2 or k on some structural
graph width parameter, and 5 classes of bipartite graphs. On the right are β-acyclic
CNF formulas and 3 classes of CNF formulas with ps-width varying from linear in the
number of clauses m, to m2 and mk. There is an arc from P to Q if any formula F or
incidence graph I(F ) having property P also has property Q. This is a Hasse diagram,
so lack of an arc in the transitive closure means this relation provably does not hold.

Using the concept of mim-width of graphs, introduced in the thesis of Vatshelle
[37], and the connection between ps-value and mim-value alluded to earlier, we
show that a rich class of formulas, including classes of unbounded clique-width,
have polynomially bounded ps-width and are thus covered by Theorem 4. Firstly,
this holds for classes of formulas having incidence graphs that can be represented
as intersection graphs of certain objects, like interval graphs [4]. Secondly, it holds
also for the much larger class of bipartite graphs achieved by taking bigraph
bipartizations of these intersection graphs, obtained by imposing a bipartition on
the vertex set and keeping only edges between the partition classes. Some such
bigraph bipartizations have been studied previously, in particular the interval
bigraphs. The interval bigraphs contain all bipartite permutation graphs, and
these latter graphs have been shown to have unbounded clique-width [8]. See
Figure 1.

Let us discuss step (1), finding a good decomposition. Note that Theorem 4
assumes that the input formula is given along with a decomposition of some
ps-width k. The value k need not be optimal, so any heuristic finding a reasonable
branch decomposition could be used in practice. Computing decompositions of
optimal ps-width is probably not doable in polynomial-time, but the complexity
of this question is not adressed in this paper. However, we are able to efficiently
decide if a CNF formula has a certain linear structure guaranteeing low ps-
width. By combining an alternative definition of interval bigraphs [18] with a fast
recognition algorithm [24,26] we arrive at the following. Say that a CNF formula



F has an interval ordering if there exists a total ordering of variables and clauses
such that for any variable x occurring in clause C, if x appears before C then
any variable between them also occurs in C, and if C appears before x then x
occurs also in any clause between them.

Theorem 11 F over n variables and m clauses each of at most t literals. In
time O((m+ n)mn) we can decide if F has an interval ordering (yes iff I(F ) is
an interval bigraph), and if yes we solve #SAT and weighted MaxSAT with an
additional runtime of O(min{m2, 4t}(m+ n)m).

Formulas with an interval ordering are precisely those whose incidence graphs
are interval bigraphs, so Theorem 11 encompasses classes of formulas whose
incidence graphs have unbounded clique-width.

Could parts of our algorithms be of interest for practical applications? An-
swering this question is beyond the scope of the present paper. However, we have
performed some limited testing, in particular for formulas with a linear structure,
as a simple proof of concept. All our code can be found online [1]. We have
designed and implemented a heuristic for step (1) finding a good decomposition,
in this case a linear one where the binary tree describing the decomposition
is a path with attached leaves. We have also implemented step (2) dynamic
programming solving #SAT and MaxSAT along such decompositions. We then
run (1) followed by (2) and compare against one of the best MaxSAT solvers
from the Max-SAT-2014 event of the SAT-2014 conference and the latest version
of the #SAT solver called sharpSAT developed by Marc Thurley [36]. These
solvers beat our implementation on most inputs, which is not suprising since our
code does not include any techniques beyond our algorithm. Nevertheless, we
were able to generate some classes of CNF formulas having interval orderings
where our implementation is by far the better. This lends support to our belief
that methods related to ps-value warrants further research to investigate if they
could be useful in practice.

Our paper is organized as follows. In Section 2 we give formal definitions of ps-
value and ps-width of a CNF formula and show the central combinatorial lemma
linking ps-value of a formula to the size of the maximum induced matching in the
incidence graph of the formula. In Section 3 we present dynamic programming
algorithms that given a formula and a decomposition solves #SAT and weighted
MaxSAT, proving Theorem 4. In Section 4 we investigate classes of formulas
having decompositions of low ps-width, basically proving the correctness of the
hierarchy presented in Figure 1. In Section 5 we consider formulas having an
interval ordering and prove Theorem 11. In Section 6 we present the results of
the implementations and testing. We end in Section 7 with some open problems.

2 Framework

We consider propositional formulas in Conjunctive Normal Form (CNF). A literal
is a propositional variable or a negated variable, x or ¬x, a clause is a set of
literals, and a formula is a multiset of clauses. For a formula F , cla(F ) denotes



the clauses in F . The incidence graph of a formula F is the bipartite graph
I(F ) having a vertex for each clause and variable, with variable x adjacent to
any clause C in which it occurs. We consider only input formulas where I(F ) is
connected, as otherwise we would solve our problems on the separate components
of I(F ). For a clause C, lit(C) denotes the set of literals in C and var(C)
denotes the variables of the literals in lit(C). For a formula F , var(F ) denotes
the union

⋃

C∈cla(F ) var(C). For a set X of variables, an assignment of X is a

function τ : X → {0, 1}. For a literal ℓ, we define τ(ℓ) to be 1 − τ(var(ℓ)) if ℓ
is a negated variable (ℓ = ¬x for some variable x) and to be τ(var) otherwise
(ℓ = x for some variable x). A clause C is said to be satisfied by an assignment
τ if there exists at least one literal ℓ ∈ lit(C) so that τ(ℓ) = 1. All clauses an
assignment τ do not satisfy are said to be falsified by τ . We notice that this
means an empty clause will be falsified by all assignments. A formula is satisfied
by an assignment τ if τ satisfies all clauses in cla(F ).

The problem #SAT, given a formula F , asks how many distinct assignments
of var(F ) satisfy F . The optimization problem weighted MaxSAT, given a
formula F and weight function w : cla(F ) → N, asks what assignment τ of
var(F ) maximizes

∑

C w(C) for all C ∈ cla(F ) satisfied by τ . The problem
MaxSAT is weighted MaxSAT where all clauses have weight one. For weighted
MaxSAT, we assume the sum of all the weights are at most 2O(cla(F )), and thus
we can do summation on the weights in time linear in cla(F ).

For a set A, with elements from a universe U we denote by A the elements in
U \A, as the universe is usually given by the context.

2.1 Cut of a formula

In this paper, we will solve MaxSAT and #SAT by the use of dynamic pro-
gramming. We will be using a divide and conquer technique where we solve the
problem on smaller subformulas of the original formula F and then combine
the solutions to each of these smaller formulas to form a solution to the entire
formula F . Note however, that the solutions found for a subformula will depend
on the interaction between the subformula and the remainder of the formula. We
use the following notation for subformulas.

For a clause C and set X of variables, by C|X we denote the clause {ℓ ∈
C : var(ℓ) ∈ X}. We say C|X is the clause C induced by X. Unless otherwise
specified, all clauses mentioned in this paper is from the set cla(F ) (e.g., if we
write C|X ∈ cla(F ′), we still assume C ∈ cla(F )). For a formula F and subsets
C ⊆ cla(F ) and X ⊆ var(F ), we say the subformula FC,X of F induced by C
and X is the formula consisting of the clauses {Ci|X : Ci ∈ C}. That is, FC,X is
the formula we get by removing all clauses not in C followed by removing each
literal of a variable not in X. For a set C of clauses, we denote by C|X the set
{C|X : C ∈ C}. As with a clause, for an assignment τ over a set X of variables,
we say the assignment τ induced by X ′ ⊆ X is the assignment τ |X′ where the
domain is restricted to X ′.

For a formula F and sets C ⊆ cla(F ), X ⊆ var(F ), and S = C ∪X, we call
S a cut of F and note that it breaks F into four subformulas FC,X , FC,X , FC,X ,



and FC,X . See Figure 2. One important fact we may observe from this definition
is that a clause C in F is satisfied by an assignment τ of var(F ), if and only if
C (induced by X or X) is satisfied by τ in at least one of the formulas of any
cut of F .

2.2 Projection satisfiable sets and ps-value of a formula

For a formula F and assignment τ of some of the variables in var(F ), we denote
by sat(F, τ) the inclusion maximal set C ⊆ cla(F ) so that each clause in C is
satisfied by τ . If for a set C ⊆ cla(F ) we have sat(F, τ) = C for some τ over all
the variables in var(F ), then C is known as a projection (see e.g. [21,33]) and
we say C is projection satisfiable in F . We denote by PS(F ) the family of all
projection satisfiable sets in F . That is,

PS(F ) = {sat(F, τ) : τ is an assignment of the entire set var(F )}.

The cardinality of this set, |PS(F )|, is referred to as the ps-value of F .
To get a grasp of the structure of formulas having low ps-value we consider

induced matchings in the incidence graph of a formula. The incidence graph
of a formula F is the bipartite graph I(F ) having a vertex for each clause and
variable, with variable x adjacent to any clause C in which it occurs. An induced
matching in a graph is a subset M of edges with the property that any edge of
the graph is incident to at most one edge in M . In other words, for any 3 vertices
a, b, c, if ab is an edge in M and bc is an edge then there does not exist an edge
cd in M . The number of edges in M is called the size of the induced matching.
The following result provides an upper bound on the ps-value of a formula in
terms of the maximum size of an induced matching of its incidence graph.

Lemma 1. Let F be a CNF formula with no clause containing more than t
literals, and let k be the maximum size of an induced matching in I(F ). We then
have |PS(F )| ≤ min{|cla(F )|k + 1, 2tk}.

Proof. We first argue that |PS(F )| ≤ |cla(F )|k + 1. Let C ∈ PS(F ) and Cf =
cla(F ) \ C. Thus, there exists a complete assignment τ such that the clauses
not satisfied by τ are Cf = cla(F ) \ sat(F, τ). Since every variable in var(F )
appears in some clause of F this means that τ |var(Cf ) is the unique assignment

of the variables in var(Cf ) which do not satisfy any clause of Cf . Let C
′

f ⊆ Cf be

an inclusion minimal set such that var(Cf ) = var(C
′

f ), hence τ |var(Cf ) is also the
unique assignment of the variables in var(Cf ) which do not satisfy any clause

of C
′

f . An upper bound on the number of different such minimal C
′

f , over all

C ∈ PS(F ), will give an upper bound on |PS(F )|. For every C ∈ C
′

f there is a

variable vC appearing in C and no other clause of C
′

f , otherwise C
′

f would not be
minimal. Note that we have an induced matching M of I(F ) containing all such
edges vC , C. By assumption, the induced matching M can have at most k edges
and hence |C

′

f | ≤ k. It is easy to show by induction on k that there are at most

|cla(F )|k + 1 sets of at most k clauses and the lemma follows.



We now argue that |PS(F )| ≤ 2tk. As the maximum induced matching has
size k there is some set C of k clauses so that var(C) = var(F ). As each clause
C ∈ C has |var(C)| ≤ t, we have |var(F )| = |var(C)| ≤ tk. As there are no more
than 2|var(F )| assignments for F , the PS-value of F is upper bounded by 2tk. ⊓⊔

2.3 The ps-width of a formula

We define a branch decomposition of a formula F to be a pair (T, δ) where
T is a rooted binary tree and δ is a bijective function from the leaves of T
to the clauses and variables of F . If all the non-leaf nodes (also referred to
as internal nodes) of T induce a path, we say that (T, δ) is a linear branch
decomposition. For a non-leaf node v of T , we denote by δ(v) the set {δ(l) :
l is a leaf in the subtree rooted in v}. Based on this, we say that the decomposi-
tion (T, δ) of formula F induces certain cuts of F , namely the cuts defined by
δ(v) for each node v in T .

For a formula F and branch decomposition (T, δ), for each node v in T , by Fv

we denote the formula induced by the clauses in cla(F ) \ δ(v) and the variables
in δ(v), and by Fv we denote the formula on the complement sets; i.e. the clauses
in δ(v) and the variables in var(F ) \ δ(v). In other words, if δ(v) = C ∪X with
C ⊆ cla(F ) and X ⊆ var(F ) then Fv = FC,X and Fv = FC,X . To simplify the
notation, we will for a node v in a branch decomposition and a set C of clauses
denote by C|v the set C|var(Fv). We define the ps-value of the cut δ(v) to be

ps(δ(v)) = max{|PS(Fv)|, |PS(Fv)|}

We define the ps-width of a branch decomposition to be

psw(T, δ) = max{ps(δ(v)) : v is a node of T}

We define the ps-width of a formula F to be

psw(F ) = min{psw(T, δ) : (T, δ) is a branch decomposition of F}

Note that the ps-value of a cut is a symmetric function. That is, the ps-value
of cut S equals the ps-value of the cut S. See Figure 2 for an example.

3 Dynamic programming for MaxSAT and #SAT

Given a branch decomposition (T, δ) of a CNF formula F over n variables and m
clauses and of total size s, we will give algorithms that solve MaxSAT and #SAT

on F in time O(psw(T, δ)3m(m+n)). Our algorithms are strongly inspired by the
algorithm of [33], but in order to achieve a runtime polynomial in ps-width, and
also to solve MAXSAT, we must make some crucial changes. In particular, we
must index the dynamic progranming tables by PS-sets rather than the ’shapes’
used in [33].
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Fig. 2. On top is a branch decomposition of a formula F with var(F ) =
{x1, x2, x3, x4, x5} and the 4 clauses cla(F ) = {c1, c2, c3, c4} as given in the boxes.
The node v of the tree defines the cut δ(v) = C ∪ X where C = {c1, c3} and
X = {x1, x2}. There are 4 subformulas defined by this cut: FC,X , F

C,X , F
C,X , F

C,X .
For example, F

C,X = {{x1,¬x2}, {x2}} and F
C,X = {∅, {¬x4, x5}}. We have

Fv = F
C,X and Fv = F

C,X with projection satisfiable sets of clauses PS(Fv) =
{{c2|v}, {c4|v}, {c2|v, c4|v}} and PS(Fv) = {∅, {c3|v}} and the ps-value of this cut is
ps(δ(v)) = max{|PS(Fv)|, |PS(Fv)|} = 3.

Special terminology. In this dynamic programming section, we will combine
partial solutions to subformulas into solutions for the input formula F . To improve
readability we introduce notation PS′ and sat′ that allows us to refer directly to
the clauses of F , also when working on the subformulas. Thus, for a formula F
and branch decomposition (T, δ), for each node v in T , and induced subformula
Fv of F , by PS′(Fv) we denote the subsets of clauses C from cla(F ) \ δ(v) so that
PS(Fv) = C|var(Fv). Similarly, for an assignment τ over var(Fv), by sat′(Fv, τ)
we denote the set of clauses C from cla(F ) \ δ(v) so that sat(Fv, τ) = C|var(Fv).
Note that |PS′(Fv)| = |PS(Fv)| and |sat

′(Fv, τ)| = |sat(Fv, τ)|. We take the
liberty to call also these sets projection satisfiable and refer to them as ’PS-sets’
in the text, but it will be clear from context that we mean clauses of cla(F ) and
not cla(Fv).

Implementation details. We regard PS-sets as boolean vectors of length |cla(F )|,
and assume we can identify clauses and variables by integer numbers. So, checking



if a clause is in a PS-set can be done in constant time, and checking if two PS-sets
are equal can be done in O(|cla(F )|) time. To manage our PS-sets, we use a
binary trie datastructure (see [15]). We can add and retrieve a PS-set to and
from a trie in O(|cla(F )|) time. Trying to add a PS-set to a trie already
containing an equivalent PS-set will not alter the content of the trie, so our
trie’s will only contain distinct PS-sets. As retrieval of an element in our trie
takes O(|cla(F )|) time, by assigning a distinct integer to each PS-set at the time
it is added to the trie, we have a O(|cla(F )|)-time mapping from PS-sets to
distinct integers. This will be used implicitly in our algorithms when we say we
index by PS-sets; when implementing the algorithm we will instead index by the
according distinct integer the PS-set is mapped to.

In a pre-processing step we will need the following which, for each node v
in T computes the sets of projection satisfiable subsets of clauses PS′(Fv) and
PS′(Fv) of the two crossing subformulas Fv and Fv.

Theorem 2. Given a CNF formula F with a branch decomposition (T, δ) of
ps-width k, we can in time O(k2m(m+n)) compute the sets PS′(Fv) and PS′(Fv)
for each v in T .

Proof. We notice that for a node v in T with children c1 and c2, we can express
PS′(Fv) as

PS′(Fv) =

{

(C1 ∪ C2) ∩ cla(Fv) :
C1 ∈ PS′(Fc1), and
C2 ∈ PS′(Fc2)

}

.

Similarly, for sibling s and parent p of v in T , the set PS′(Fv) can be expressed as

PS′(Fv) =

{

(Cp ∪ Cs) ∩ cla(Fv) :
Cp ∈ PS′(Fp), and
Cs ∈ PS′(Fs)

}

.

By transforming these recursive expressions into a dynamic programming
algorithm, as done in Procedure 1 and Procedure 2 below, we are able to
calculate all the desired sets as long as we can compute the sets for the base
cases PS′(Fl) when l is a leaf of T , and PS′(Fr) for the root r of T . However,
these formulas contain at most one variable, and thus we can easily construct
their set of projection satisfiable clauses in linear amount of time for each of
the formulas. For the rest of the formulas, we construct the formulas using
Procedure 1 and Procedure 2. As there are at most twice as many nodes in
T as there are clauses and variables in F , the procedures will run at most
O(|cla(F )|+ |var(F )|) times. In each run of the algorithms, we iterate through
at most k2 pairs of projection satisfiable sets, and do a constant number of set
operations that might take O(|cla(F )|) time each. This results in a total runtime
of O(k2|cla(F )|(|cla(F )|+ |var(F )|)) = O(k2m(m+ n)) for all the nodes of T
combined. ⊓⊔

We now move on to the dynamic programming proper. We first give the
algorithm for MaxSAT and then briefly describe the changes necessary for
solving weighted MaxSAT and #SAT.



Procedure 1: Generating PS′(Fv)

input: PS′(Fc1) and PS′(Fc2) for children c1 and c2 of v
in branch decomposition

output: PS′(Fv)

L← empty trie of projection satisfiable clause-sets
for each (C1, C2) ∈ PS′(Fc1)× PS′(Fc2) do

add (C1 ∪ C2) ∩ cla(Fv) to L
return L

Procedure 2: Generating PS′(Fv)

input: PS′(Fs) and PS′(Fp) for sibling s and parent p of v
in branch decomposition

output: PS′(Fv)

L← empty trie of projection satisfiable clause-sets
for each (Cs, Cp) ∈ PS′(Fs)× PS′(Fp) do

add (Cs ∪ Cp) ∩ cla(Fv) to L
return L

Our algorithm uses the technique of ’expectation’ introduced in [10,11]. Some
partial solutions might be good when combined with certain partial solutions, but
bad when combined with others. In the technique of ’expectation’ we categorize
how partial solutions can interact, and then optimize our selection of partial
solutions based on the ’expectation’ that this interaction occurs. In our dynamic
programming algorithm for MaxSAT, we apply this technique by making expec-
tations on each cut regarding what set of clauses will be satisfied by variables of
the opposide side of the cut.

For a node v in the decomposition of F and PS-sets C ∈ PS′(Fv) and
C ′ ∈ PS′(Fv), we say that an assignment τ of var(F ) meets the expectation
C and C ′ if sat′(Fv, τ |v) = C and sat′(Fv, τ |v) = C ′. For each node v of
the branch decomposition, our algorithm uses a table Tabv that for each pair
(C,C ′) ∈ PS′(Fv)×PS

′(Fv) stores in Tabv(C,C
′) the maximum number of clauses

in δ(v) that are satisfied, over all assignments meeting the expectation of C and
C ′. As the variables in var(F ) \ δ(v) satisfy exactly C ′, for any assignment that
meets this expectation, an equivalent formulation of the content of Tabv(C,C

′)
is that it must satisfy the following constraint:

Over all assignments τ of var(F ) ∩ δ(v) such that sat′(Fv, τ) = C ,

Tabv(C,C
′) = max

τ
{ | (sat′(F, τ ′) ∩ δ(v)) ∪ C ′ | }

(1)

By bottom-up dynamic programming along the tree T we compute the tables
of each node of T . For a leaf l in T , generating Tabl can be done easily in linear
time since the formula Fv contains at most one variable. For an internal node
v of T , with children c1, c2, we compute Tabv by the algorithm described in
Procedure 3. There are 3 tables involved in this update, one at each child and



one at the parent. A pair of entries, one from each child table, may lead to an
update of an entry in the parent table. Each table entry is indexed by a pair, thus
there are 6 indices involved in a single potential update. A trick first introduced
in [11] allows us to loop over triples of indices and for each triple compute the
remaining 3 indices forming the 6-tuple involved in the update, thereby reducing
the runtime.

Procedure 3: Computing Tabv for inner node v with children c1, c2

input: Tabc1 , Tabc2
output: Tabv

1. initialize Tabv : PS
′(Fv)× PS′(Fv)→ {−1}

2. for each (Cc1 , Cc2 , C
′
v) in PS′(Fc1)× PS′(Fc2)× PS′(Fv) do

3. C ′
c1
← (Cc2 ∪ C ′

v) ∩ δ(c1)
4. C ′

c2
← (Cc1 ∪ C ′

v) ∩ δ(c2)
5. Cv ← (Cc1 ∪ Cc2) \ δ(v)
6. t ← Tabc1(Cc1 , C

′
c1
) + Tabc2(Cc2 , C

′
c2
)

7. if Tabv(Cv, C
′
v) < t then Tabv(Cv, C

′
v)← t

8. return Tabv

Lemma 3. For a CNF formula F of m clauses and an inner node v, of a
branch decomposition (T, δ) of ps-width k, Procedure 3 computes Tabv satisfying
Constraint (1) in time O(k3m).

Proof. We assume Tabc1 and Tabc2 satisfy Constraint (1). Procedure 3 loops over
all triples in PS′(Fc1) × PS′(Fc2) × PS′(Fv). From the definition of ps-width of
(T, δ) there are at most k3 such triples. Each operation inside an iteration of the
loop take O(m) time and there is a constant number of such operations. Thus
the runtime is O(k3m).

Before we show the correctness of the output, let us look a bit at the workings
of Procedure 3. For any assignment τ over var(F ), and cut, the assignment τ will
only meet the expectation of a single pair of PS-sets. Let (X1, X

′
1), (X2, X

′
2) and

(Xv, X
′
v) be the pairs an assignment τ meets the expectation for with respect to

the cuts induced by c1, c2, and v, respectively. We notice that

Xv = sat′(Fv, τ |v)

= sat′(Fv, τ |c1 ⊎ τ |c2)

= sat′(Fv, τ |c1) ∪ sat
′(Fv, τ |c2)

= (sat′(Fc1 , τ |c1) \ δ(v)) ∪ (sat′(Fc2 , τ |c2) \ δ(v))

= (X1 \ δ(v)) ∪ (X2 \ δ(v))

= (X1 ∪X2) \ δ(v).

(2)

This can also be seen from Figure 3. By symmetry, we find similar values for
X ′

1 and X ′
2; namely X ′

1 = (X2 ∪ X ′
v) ∩ δ(c1) and X ′

2 = (X1 ∪ X ′
v) ∩ δ(c2). So,

these latter three sets will be implicit based on the three former sets with respect
to the cuts induced by v, c1 and c2. We will therefore, for convenience of this



clauses in cla(F ) \ δ(v)

clauses in δ(c2)
clauses in δ(c1)

= X1 = sat
′(Fc1

, τ |c1)

= X2 = sat
′(Fc2

, τ |c2)

= Xv = sat
′(Fv, τ |v)

Fig. 3. As shown by the chain of equalities in (2) in the proof of Lemma 3, the clauses
in sat′(Fv, τ |v) are precisely the clauses in (sat′(Fc1 , τ |c1) ∪ sat′(Fc2 , τ |c2)) \ δ(v).

proof, say that an assignment τ meets the expectation of a triple (C1, C2, C
′) of

PS-sets, when τ meets the expectation of the implicit three pairs on each of their
respective cuts. We notice that for each choice of triples of PS-sets (Cc1 , Cc2 , C

′
v)

Procedure 3 computes the implicit three other sets and names them C ′
c1
, C ′

c2

and Cv accordingly.

We will now show that for all pairs (C,C ′) ∈ PS′(Fv)× PS′(Fv) the value of
Tabv(C,C

′) is correct. Let τ0 be an assignment over var(F ) that satisfies the
maximum number of clauses, while meeting the expectation of C and C ′. Thus,
the value of Tabv(C,C

′) is correct if and only if it stores exactly the number of
clauses from δ(v) that τ0 satisfies.

Let (C1, C
′
1) and (C2, C

′
2) be the pairs of PS-sets that τ0 meet the expectation

of for the cut (δ(c1), δ(c1)) and (δ(c2), δ(c2)), respectively. As τ0 meets these
expectations, the value of Tabc1(C1, C

′
1) and Tabc2(C2, C

′
2) must be at least

as large as the number of clauses τ0 satisfies in δ(c1) and δ(c2), respectively.
Thus, the number of clauses τ0 satisfies in both δ(c1) and δ(c2) is at most as
large as the sum of these two entries. Since Procedure 3, in the iteration where
C ′

v = C ′, Cc1 = C1 and Cc2 = C2, ensures that Tabv(C,C
′) is at least the sum

of Tabc1(C1, C
′
1) and Tabc2(C2, C

′
2), we know Tabv(C,C

′) is at least as large as
the correct value.

Now assume for contradiction that the value of the cell Tabv(C,C
′) is too

large. That means that at some iteration of Procedure 3 it is being assigned the
value Tabc1(Cc1 , C

′
c1
) + Tabc2(Cc2 , C

′
c2
) when this sum is too large. Let τ1 and

τ2 be the assignments of var(F ) meeting the expectation of Cc1 and C ′
c1

and
meeting the expectation of Cc2 , C

′
c2
, respectively, where the number of clauses of

δ(c1) and δ(c2), respectively, equals the according table entries of Tabc1 and Tabc2 .
If we now take the assignment τx = τ1|c1 ⊎ τ2|c2 ⊎ τ0|v, we have an assignment
that meets the expectation of C and C ′, and who satisfies more clauses in δ(v)
than τ0, contradicting the choice of τ0. So Tabv(C,C

′) can be neither smaller
nor larger than the number of clauses in δ(v) τ0 satisfies, so it is exactly the
same. ⊓⊔



Theorem 4. Given a formula F over n variables and m clauses, and a branch
decomposition (T, δ) of F of ps-width k, we solve MaxSAT, #SAT, and weighted
MaxSAT in time O(k3m(m+ n)).

Proof. To solve MaxSAT, we first compute Tabr for the root node r of T . This
requires that we first compute PS′(Fv) and PS′(Fv) for all nodes v of T , and then,
in a bottom up manner, compute Tabv for each of the O(m+ n) nodes in T . The
former part we can do in O(k2m(m+n)) time by Theorem 2, and the latter part
we do in O(k3m(m+ n)) time by Lemma 3.

At the root r of T we have δ(r) = var(F ) ∪ cla(F ). Thus Fr = ∅ and Fr

does not have any variables, so that PS(Fr)×PS(Fr) contains only (∅, ∅). As all
assignments over var(F ) meet the expectation of ∅ and ∅ on the cut (δ(r), δ(r)),
and cla(F ) ∩ δ(r) = cla(F ), by Constraint (1) the value of Tabr(∅, ∅) is the
maximal number of clauses in F any assignment of var(F ) satisfies. And hence,
this number is the solution to MaxSAT.

For a weight function w : cla(F )→ N, by redefining Constraint (1) for Tabv
to maximize w(sat′(F, τ) ∩ δ(v)) instead of |sat′(F, τ)∩)|, we are able to solve
the more general problem weighted MaxSAT in the same way.

For the problem #SAT, we care only about assignments satisfying all the
clauses of F , and we want to decide the number of distinct assignments doing
so. This requires a few alterations. Firstly, alter the definition of the contents of
Tabv(C,C

′) in Constraint (1) to be the number of assignments τ over var(F )∩δ(v)
where sat′(Fv, τ) = C and all clauses in δ(v) is either in C ′ or satisfied by τ .
Secondly, when computing Tabl for the leaves l of T , we set each of the entries
of Tabl to either zero, one, or two, according to the definition. Thirdly, we alter
the algorithm to compute Tabv (Procedure 3) for inner nodes. We initialize
Tabv(C,C

′) to be zero at the start of the algorithm, and substitute lines 6 and
7 of Procedure 3 by the following line which increases the table value by the
product of the table values at the children

Tabv(Cv, Cv)← Tabv(Cv, Cv) + Tabc1(Cc1 , Cc1) · Tabc2(Cc2 , Cc2)

This will satisfy our new constraint of Tabv for internal nodes v of T . The value
of Tabr(∅, ∅) at the root r of T will be exactly the number of distinct assignments
satisfying all clauses of F . ⊓⊔

The bottleneck giving the cubic factor k3 in the runtime of Theorem 4 is the
number triples in PS′(Fv)×PS

′(Fc1)×PS
′(Fc2) for any node v with children c1 and

c2. When (T, δ) is a linear branch decomposition, it is always the case that either
c1 or c2 is a leaf of T . In this case either |PS′(Fc1)| or |PS

′(Fc2)| is a constant.
Therefore, for linear branch decompositions PS′(Fv) × PS′(Fc1) × PS′(Fc2) will
contain no more than O(k2) triples. Thus we can reduce the runtime of the
algorithm by a factor of k.

Theorem 5. Given a formula F over n variables and m clauses, and a linear
branch decomposition (T, δ) of F of ps-width k, we solve #SAT, MaxSAT, and
weighted MaxSAT in time O(k2m(m+ n)).



4 CNF formulas of polynomial ps-width

In this section we investigate classes of CNF formulas having decompositions with
ps-width polynomially bounded in the total size s of the formula. In particular,
we show that this holds whenever the incidence graph of the formula has constant
mim-width (maximum induced matching-width, introduced by Vatshelle [37]).
We also show that a large class of bipartite graphs, using what we call bigraph
bipartizations, have constant mim-width.

In order to lift the upper bound of Lemma 1 on the ps-value of F , i.e |PS(F )|,
to the ps-width of F , we use mim-width of the incidence graph I(F ), which is
defined using branch decompositions of graphs. A branch decomposition of the
formula F , as defined in Section 2, can also be seen as a branch decomposition
of the incidence graph I(F ). Nevertheless, for completeness, we formally define
branch decompositions of graphs and mim-width.

A branch decomposition of a graph G is a pair (T, δ) where T is a rooted
binary tree and δ a bijection between the leaf set of T and the vertex set of G.
For a node w of T let the subset of V (G) in bijection δ with the leaves of the
subtree of T rooted at w be denoted by Vw. We say the decomposition defines the
cut (Vw, Vw). The mim-value of a cut (Vw, Vw) is the size of a maximum induced
matching of G[Vw, Vw]. The mim-width of (T, δ) is the maximum mim-value over
all cuts (Vw, Vw) defined by a node w of T . The mim-width of graph G, denoted
mimw(G), is the minimum mim-width over all branch decompositions (T, δ) of G.
As before a linear branch decomposition is a branch decomposition where inner
nodes of the underlying tree induces a path.

Since a decomposition of I(F ) of can be seen also as a decomposition of F ,
we immediately get from Lemma 1 the following corollary.

Corollary 6. For any CNF formula F over m clauses, with no clause containing
more than t literals, the ps-width of F is at most min{mk + 1, 2tk} for k =
mimw(I(F )).

Many classes of graphs have intersection models, meaning that they can be
represented as intersection graphs of certain objects, i.e. each vertex is associated
with an object and two vertices are adjacent iff their objects intersect. The objects
used to define intersection graphs usually consist of geometrical objects such as
lines, circles or polygons. Many well known classes of intersection graphs have
constant mim-width, as in the following which lists only a subset of the classes
proven to have such bounds in [4,37].

Theorem 7 ([4,37]). Let G be a graph. If G is a:
interval graph then mimw(G) ≤ 1.
circular arc graph then mimw(G) ≤ 2.
k-trapezoid graph then mimw(G) ≤ k.

Moreover there exist linear decompositions satisfying the bound, that can be found
in polynomial time (for k-trapezoid assume the intersection model is given).

Let us briefly mention the definition of these graph classes. A graph is an
interval graph if it has an intersection model consisting of intervals of the real



line. A graph is a circular arc graph if it has an intersection model consisting
of arcs of a circle. To build a k-trapezoid we start with k parallel line segments
(s1, e1), (s2, e2), ..., (sk, ek) and add two non-intersecting paths s and e by joining
si to si+1 and ei to ei+1 respectively by straight lines for each i ∈ {1, ..., k − 1}.
The polygon defined by s and e and the two line segments (s1, e1), (sk, ek) forms
a k-trapezoid. A graph is a k-trapezoid graph if it has an intersection model
consisting of k-trapezoids. See [7] for information about graph classes and their
containment relations.

Combining Corollary 6 and Theorem 7 we get the following

Corollary 8. Let F be a CNF formula containing m clauses with maximum
clause-size t. If I(F ) is a:

interval graph then psw(F ) ≤ min{m+ 1, 2t}.
circular arc graph then psw(F ) ≤ min{m2 + 1, 4t}.
k-trapezoid graph then psw(F ) ≤ min{mk + 1, 2tk}.

Moreover there exist linear decompositions satisfying the bound, that can be found
in polynomial time (for k-trapezoid assume the intersection model is given).

The incidence graphs of formulas are bipartite graphs, which is not the case
for the majority of graphs in the above-mentioned graph classes. In the following
we show how to extend the results of Corollary 8 to large classes of bipartite
graphs. For a graph G and subset of vertices A ⊆ V (G) the bipartite graph
G[A,A] is the subgraph of G containing all edges of G with exactly one endpoint
in A. For any graph G and A ⊆ V (G) we call G[A,A] a bigraph bipartization of
G, and note that G has a bigraph bipartization for each subset of vertices. For a
graph class X we define the class of X bigraphs as the bipartite graphs H for
which there exists G ∈ X such that H is isomorphic to a bigraph bipartization
of G. For example, a bipartite graph H is an interval bigraph if there is some
interval graph G and some A ⊆ V (G) with H isomorphic to G[A,A].

The following result will allow us to lift the results of Corollary 8 from the
given graphs to the bigraph bipartizations of the same graphs.

Theorem 9. Assume that we are given a CNF formula F of m clauses and
maximum clause-size t, a graph G, a subset A ⊆ V (G), and (T, δG) a (linear)
branch decomposition of G of mim-width k. If I(F ) is connected and isomorphic
to G[A,A] (thus I(F ) a bigraph bipartization of G) then we can in linear time
produce a (linear) branch decomposition (T, δF ) of F having ps-width at most
min{mk + 1, 2tk}

Proof. Since each variable and clause in F has a corresponding node in I(F ),
and each node in I(F ) has a corresponding node in G, by defining δF to be the
function mapping each leaf l of T to the variable or clause in F corresponding to
the node δG(l), we get that (T, δF ) is a branch decomposition of F . Consider a
cut (B,B) induced by a node of (T, δF ). Note that the mim-value of G[B,B] is at
most k. I(F ) is connected which means that we have either A or A corresponding
to the set of variables of F . Assume wlog the former. Thus C = A ∩B ⊆ cla(F )
are the clauses in B, with C = cla(F ) \ C and X = A ∩ B ⊆ var(F ) are



the variables in B, with X = var(F ) \ X. The mim-values of G[C,X] and
G[C,X] are at most k, since these are induced subgraphs of G[B,B], and taking
induced subgraphs cannot increase the size of the maximum induced matching.
Hence by Lemma 1, we have |PS(FC,X)| ≤ |cla(F )|k + 1, and likewise we have

|PS(FC,X)| ≤ |cla(F )|k + 1, with the maximum of these two being the ps-value
of this cut. Since the ps-width of the decomposition is the maximum ps-value of
each cut the theorem follows. ⊓⊔

Combining Theorems 9 and 7 we immediately get the following.

Corollary 10. Let F be a CNF formula containing m clauses with maximum
clause-size t. If I(F ) is a:

interval bigraph then psw(F ) ≤ min{m+ 1, 2t}.
circular arc bigraph then psw(F ) ≤ min{m2 + 1, 4t}.
k-trapezoid bigraph then psw(F ) ≤ min{mk + 1, 2tk}.

Moreover there exist linear decompositions satisfying the bound.

In the next section we address the question of finding such linear decomposi-
tions in polynomial time. We succeed in the case of interval bigraphs, but for
circular arc bigraphs and k-trapezoid bigraphs we must leave this as an open
problem.

5 Interval bigraphs and formulas having interval orders

We will in this section show that for formulas whose incidence graph is an interval
bigraph we can in polynomial time find linear branch decompositions having
small ps-width. Let us recall the definition of interval ordering. A CNF formula
F has an interval ordering if there exists a linear ordering of variables and clauses
such that for any variable x occurring in clause C, if x appears before C then
any variable between them also occurs in C, and if C appears before x then x
occurs also in any clause between them. See Figure 4 for an example.

By a result of Hell and Huang [18] it follows that a formula F has an interval
ordering if and only if I(F ) is a interval bigraph.

Theorem 11. Given a CNF formula F over n variables and m clauses each
of at most t literals. In time O((m+ n)mn) we can decide if F has an interval
ordering (yes iff I(F ) is an interval bigraph), and if yes we solve #SAT and
weighted MaxSAT with an additional runtime of O(min{m2, 4t}(m+ n)m).

Proof. Using the characterization of [18] and the algorithm of [26] we can in
time O((m + n)mn) decide if F has an interval ordering and if yes, then we
find it. From this interval ordering we build an interval graph G such that I(F )
is a bigraph bipartization of G, and construct a linear branch decomposition
of G having mim-width 1 [4]. From such a linear branch decomposition we get
from Theorem 9 that we can construct another linear branch decomposition of
F having ps-width O(m). We then run the algorithm of Theorem 5. ⊓⊔
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c3 = {x3, x4, x5}

Fig. 4. A CNF formula having an interval ordering. Its incidence graph is an interval
bigraph, since it is isomorphic to the bigraph bipartization, defined by the blue intervals,
of the interval graph with intersection model on the left.

6 Experimental results

We present some simple experimental results, intended as proof of concept. It
is our belief that some of the ideas behind our algorithms, like the notion of
ps-value, are useful in practice, but it will require a thorough investigation to
confirm such a belief. Our results indicate that the worst-case runtime bounds of
the dynamic programming, Theorems 4 and 5, are probably higher than what
would commonly be seen in practice.

In the past decade, SAT solvers have become very powerful, and are cur-
rently able to handle very large practical instances. Techniques from these SAT
solvers have been applied to develop relatively powerful MaxSAT and #SAT

solvers [6]. In our experiments we compare implementations of our algorithms
against state-of-the-art MaxSAT and #SAT solvers. We do not enhance our
implementations with any other techniques, not even simple pre-processing, and
on the vast majority of instances our implementations fall far behind in a com-
parison. However, when focusing on formulas with a certain linear order our
implementations compare favorably.

As explained in Section 1, there are two steps involved: (1) find a good
decomposition of the input CNF formula F , and (2) perform DP (dynamic
programming) along the decomposition. Let us start by describing a very simple
heuristic for step (1). It takes as input the bipartite graph I(F ) with vertex set
cla(F ) ∪ var(F ), and outputs a linear order σ on the vertex set. The below
heuristic GreedyOrder is a greedy algorithm that for increasing values of i chooses
σ(i) to be a vertex having the highest number of already chosen neighbors, and
among these choosing one with fewest non-chosen neighbors. This defines a linear
branch decomposition (T, δ) of the CNF formula F , with non-leaf nodes of the



binary tree T inducing a path, with T rooted at one end of this path, and with δ
mapping the ith leaf encountered by a breadth-first search starting at the root of
T to the clause or variable σ(i), for all 1 ≤ i ≤ |cla(F ) ∪ var(F )|.

Algorithm GreedyOrder
input: G = (V,E), a (bipartite) graph
output: σ, a linear ordering of V

L = ∅, R = V , i = 1
for all v ∈ V set Ldegree(v) = 0
while R is not empty do

choose v: from vertices in R with max Ldegree take one of smallest degree
set σ(i) = v, increment i, add v to L and remove v from R
for all w ∈ R with vw ∈ E increment Ldegree(w)

All our implementations can be found online [1]. We have implemented
GreedyOrder in Java, together with a straight-forward implementation of the
DP algorithm of Theorem 5.

Given a CNF formula, this allows us to solve MaxSAT and #SAT by first
running GreedyOrder and then the DP. We compare our implementation to the
best solvers we could find online, respectively CCLS-to-akmaxsat [22] which
was among the best solvers of the MaxSAT Evaluation competition in 2014 [2],
and the latest version of the #SAT solver called sharpSAT developed by Marc
Thurley [35,36]. These solvers handily beat our implementation on most inputs.
We have therefore generated some CNF formulas having interval orderings, as
in Theorem 11, to check if at least on these instances we do better. Note that
for step (1) we have not implemented the polynomial-time algorithm recognizing
formulas having interval orders, relying instead on the GreedyOrder heuristic.

6.1 Generation of instances

Before presenting our results, let us describe the generation of the set of instances,
which are of three types. We start with type 1. The generation of these formulas
is based on the definition of interval orderings given by the interval bigraph
definition, see e.g. the left side of Figure 4. To generate a formula of type 1 with n
variables and m clauses, we generate n+m intervals of the real line by iterating
through points i from 1 to 2(n+m) as left and right endpoints of the intervals:

– At step i, check which of the 4 cases below are legal (e.g. 3 is legal if there
exists a live variable, i.e. with left endpoint < i and no right endpoint) and
randomly make one of those legal choices:
1. start interval of new variable with left endpoint i
2. start interval of new clause with left endpoint i



3. end interval of randomly chosen live variable by right endpoint i
4. end interval of randomly chosen live clause by right endpoint i

Towards the end of the process boundary conditions are enforced to reach
exactly m clauses, with n expected to be slightly smaller than m. For each clause
interval we randomly choose each variable having overlapping interval as being
either positive or negative in this clause. The resulting CNF formula will have
an interval ordering given by the rightmost endpoints of intervals. To hide this
ordering the clauses and variables are randomly permuted to make the final CNF
formula.

The formulas of type 2 are generated in a very similar fashion as type 1,
except we guarantee that all clauses have the same size t, which by Lemma
1 could be of big help. The only change is to case 4 above which instead of
being a choice becomes enforced for a live clause that at step i has accumulated
exactly t overlapping variable intervals. We also let each clause interval represent
4 clauses over the same variable set but on randomly chosen literals, at the aim
of increasing the probability of each instance not being satisfiable.

The formulas of type 3 are the CNF-representation of a conjunction of XOR
functions where each XOR has a fixed number t of literals and the variables of
the XOR functions overlap in such a way that the incidence graph will be the
bipartization of a circular arc graph.

A formula of type 3 is generated from three input parameters n, t, s. It has n
variables represented by successive points 1 to n on the circle. The first XOR
function has interval from 1 to t thus containing variables with points 1 to t, the
second has interval s + 1 to s + t, and in general the ith has interval i ∗ s + 1
to i ∗ s+ t, with appropriate modulo addition and some boundary condition at
the end to ensure n/s XOR functions. Variables are chosen randomly to appear
positive or negative in each XOR. Each XOR is then transformed in the standard
way to a CNF formula with 2t−1 clauses to give us a resulting CNF formula with
n/s ∗ 2t−1 clauses. Again, variables and clauses are randomly permuted to hide
the ordering giving the circular arc bigraph representation.

Note that all the resulting formulas have a quite simple structure, and that a
state-of-the-art SAT solver, like lingeling [5], handles all generated instances
within a few seconds.

6.2 Results

We are now ready to present our results. We ran all the solvers on a Dell Optiplex
780 running Ubuntu 12.04 64-Bit. The machine has 8GB of memory and an Intel
Core 2 Quad Q9650 processor with OpenJDK java 6 (IcedTea6 1.13.5).

For instances of type 1 the GreedyOrder heuristic fails terribly and becomes
a huge bottleneck. The greedy choice based on degrees of vertices in I(F ) is
too simple. However, when given the correct interval order to our solver(s) they
performed better.

Instances of type 2 are generated similar to those of type 1 but all clauses
have small size, which by Lemma 1 could be of help. In this case the number of



clauses is approximately four times the number of variables, and as a consequence
a great number of the instances were not satisfiable, making the work of the
#SAT-solvers easier than that of the MaxSAT solvers. All generated instances of
type 2 were solved within seconds by sharpSAT, see Figure 5. As the size of the
instances grow, we see a clear tendency for the runtimes of CCLS to akmaxsat

to increase much more rapidly than both our solvers. The runtimes of our two
solvers were almost identical. The GreedyOrder heuristic on these instances seems
to produce decompositions/orders of low PS-width.
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Fig. 5. Runtimes of instances of type 2. Here our MaxSAT solver is clearly faster than
CCLS to akmaxsat. The vertical axis represents time in seconds. Runs taking more than
600 seconds were stopped before completion and are drawn on the dotted line.

The type 3 instances shown in Figure 6 were generated with k = 5 and s = 3.
All instances are satisfiable, which may explain why CCLS to akmaxsat is very
fast. Choosing k = 3 and s = 2 there will be some not satisfiable instances and
CCLS to akmaxsat would then often spend more than 600 seconds and time out.
As the size of the instances grow, we see a clear tendency for the runtimes of
sharpSAT to increase much more rapidly than our solvers. The runtimes of our
two solvers were almost identical.

7 Conclusion

In this paper we have proposed a structural parameter of CNF formulas, called
ps-width or projection-satisfiable-width. We showed that weighted MaxSAT and
#SAT can be solved in polynomial time if given a decomposition of the formula
of polynomially bounded ps-width. Using the concept of interval bigraphs we also
showed a polynomial time algorithm that actually finds such a decomposition, for
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Fig. 6. Runtimes of instances of type 3. Here our #SAT solver is clearly faster than
sharpSAT. The vertical axis represents time in seconds. Runs taking more than 600
seconds were stopped before completion and are drawn on the dotted line.

formulas having an interval ordering. Could one devise such an algorithm also for
the larger class of circular arc bigraphs, or maybe even for the even larger class of
k-trapezoid bigraphs? In other words, is the problem of recognizing if a bipartite
input graph is a circular arc bigraph, or a k-trapezoid bigraph, polynomial-time
solvable?

It could be of practical interest to design a heuristic algorithm which given a
formula finds a decomposition of relatively low ps-width, as has been done for
boolean-width in [19]. One could then check if benchmarks covering real-world
SAT instances have low ps-width, and perform a study on the correlation between
low ps-width and their practical hardness by MaxSAT and #SAT solvers, as
has been done for treewidth and SAT solvers [23]. We presented some simple
experimental results, but it will require a thorough investigation to check if ideas
from our algorithms could be useful in practice. Finally, we hope the essential
combinatorial result enabling the improvements in this paper, Lemma 1, may
have other uses as well.
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