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Zhengbing Bian1, Fabian Chudak1, William Macready1, Aidan Roy1,

Roberto Sebastiani2, and Stefano Varotti2

1 D-Wave Systems Inc., Burnaby, Canada
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Abstract. Quantum annealers (QA) are specialized quantum computers that min-

imize objective functions over discrete variables by physically exploiting quan-

tum effects. Current QA platforms allow for the optimization of quadratic ob-

jectives defined over binary variables, that is, they solve quadratic unconstrained

binary optimization (QUBO) problems. In the last decade, QA systems as imple-

mented by D-Wave have scaled with Moore-like growth. Current architectures

provide 2048 sparsely-connected qubits, and continued exponential growth is an-

ticipated.

We explore the feasibility of such architectures for solving SAT and MaxSAT

problems as QA systems scale. We develop techniques for effectively encod-

ing SAT and MaxSAT into QUBO compatible with sparse QA architectures. We

provide the theoretical foundations for this mapping, and present encoding tech-

niques that combine offline Satisfiability and Optimization Modulo Theories with

on-the-fly placement and routing. Preliminary empirical tests on a current gener-

ation 2048-qubit D-Wave system support the feasibility of the approach.

We provide details on our SMT model of the SAT-encoding problem in the hopes

that further research may improve upon the scalability of this application of SMT

technology. Further, these models generate hard SMT problems which may be

useful as benchmarks for solvers.

1 Introduction

Quantum Annealing (QA) is a specialized form of computation that uses quantum me-

chanical effects to efficiently sample low-energy configurations of particular cost func-

tions on binary variables. Currently, the largest QA system heuristically minimizes an

Ising cost function given by

E(z)
def

=
∑

i∈V

hizi +
∑

(i,j)∈E

Jijzizj (1)

argmin
z∈{−1,1}|V |

E(z). (2)

where G = (V,E) is an undirected graph of allowed variable interactions. Ising mod-

els are equivalent to Quadratic Unconstrained Binary Optimization (QUBO) problems,



which use {0, 1}-valued variables rather than ±1-valued variables. 1 The decision ver-

sion of the Ising problem on most graphs G is NP-complete.

Theory suggests that quantum annealing may solve some optimization problems

faster than state-of-the-art algorithms [18]. Quantum effects such as tunneling and su-

perposition provide QA with novel mechanisms for escaping local minima, thereby po-

tentially avoiding suboptimal solutions commonly found by classical algorithms based

on bit-flip operations (such as WalkSAT). Practical QA systems are not guaranteed to re-

turn optimal solutions; however, the D-Wave processor has been shown to outperform a

range of classical algorithms on certain problems designed to match its hardware struc-

ture [16,21]. These results also provide guidance about the kinds of energy landscapes

on which QA is expected to perform well.

Our ultimate goal is to exploit QA as an engine for solving SAT and other NP-

hard problem instances which are relatively small but hard enough to be out of the

reach of state-of-the-art solvers (e.g., SAT problems coming from cryptanalysis). SAT

is the problem of deciding the satisfiability of arbitrary formulas on atomic propositions,

typically written in conjunctive normal form. MaxSAT is an optimization extension of

SAT, in which each clause is given a positive penalty if the clause is not satisfied, and

an assignment minimizing the sum of the penalties is sought.

In principle, converting SAT to optimization of an Ising cost function is straight-

forward. However, practical QA systems such as the D-Wave 2000Q offer sparse con-

nectivity between variables. The connectivity graph G of current D-Wave processors is

shown in Figure 1, and is called the Chimera graph. Further, because the Ising model is

solved on a physical, analog device, it is subject to engineering limitations. The D-Wave

2000Q system currently requires hi ∈ [−2, 2] and Jij ∈ [−1, 1] and there are limits on

the precision to which these parameters may be specified. Parameter imprecisions act

as small additive noise sources on parameter values, and arise from operating quantum

mechanical systems in real-world environments. These real-world practicalities neces-

sitate a carefully defined SAT-to-Ising encoding.

These practical constraints generate a challenging problem because the SAT encod-

ing must be done both effectively (i.e., in a way that uses only the limited number of

qubits and connections available within the QA architecture, while optimizing perfor-

mance of the QA algorithm), and efficiently (i.e., using a limited computational budget

for computing the encoding). In this paper, we formalize this problem and provide prac-

tical algorithms.

A direct formulation of the encoding problem results in a large system of linear

inequalities over continuous- and Boolean-valued variables. This system can be effec-

tively addressed with Satisfiability or Optimization Modulo Theory (SMT/OMT) [3,28]

solvers. Satisfiability Modulo the Theory of Linear Rational Arithmetic (SMT(LRA))
[3] is the problem of deciding the satisfiability of arbitrary formulas on atomic propo-

sitions and constraints in linear arithmetic over the rationals. Optimization Modulo

the Theory of Linear Rational Arithmetic (OMT(LRA)) [28] extends SMT(LRA) by

searching solutions which optimize some LRA objective(s). Efficient OMT(LRA)
solvers like OPTIMATHSAT [29] allow for handling formulas with thousands of Bool-

ean and rational variables [28].

1 The transformation between zi ∈ {−1, 1} and xi ∈ {0, 1} is zi = 2xi − 1.
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Fig. 1. Example of the Chimera topology: the hardware graph for system of 72 qubits in a 3-

by-3 grid of tiles. (D-Wave 2000Q systems have 2048 qubits in a 16-by-16 grid.) This topology

consists of a lattice of strongly-connected components of 8 qubits, called tiles. Each tile consists

of a complete bipartite graph between two sets of four qubits. One set, the “vertical” set, is

connected to the tiles above and below; the other set, the “horizontal” set, is connected to the tiles

to the left and to the right. Notice that each qubit is connected with at most six other qubits. In

other words, each variable zi in the Ising model (1) has at most 6 non-zero Jij interactions with

other variables.

This monolithic linear programming approach to encoding typically requires the

introduction of additional ancillary Boolean variables, and the resultant SMT/OMT

problem may be computationally harder than the original problem. In contrast, a large

Boolean formula can be scalably converted into an Ising model by decomposing it into

subformulae, converting each subformula into an Ising model (perhaps with introduc-

tion of additional fresh variables), and linking variables from different subformulae.

Unfortunately, in practice this decomposition-based approach requires many auxiliary

variables and connections, which are incompatible with the sparse connectivity restric-

tions imposed by QA architectures.

To cope with these difficulties, we propose a mixed approach, which combines (i)

novel SMT/OMT-based techniques to produce off-line encodings of commonly-used

Boolean subfunctions, with (ii) the usage of function instantiation and placement-and-

routing techniques to combine and place on-the-fly the encoded functionalities within

the QA architecture.
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We have implemented prototype encoders on top of the SMT/OMT tool OPTI-

MATHSAT [29]. As a proof of concept, we present some preliminary empirical evalua-

tion, in which we have executed encoded SAT and MaxSAT problems on a

D-Wave 2000Q system. Although preliminary, the results confirm the feasibility of the

approach. We stress the fact that this paper is not supposed to present a comparison with

respect to state-of-the-art of classic computing. Rather, this is intended as a preliminary

assessment of the challenges and potential of QA to impact SAT and MaxSAT solving.

The rest of the paper is organized as follows. Section 2 presents the theoretical

foundations of this work; Section 3 describes our mixed approach to cope with this

problem; Section 4 presents a preliminary empirical evaluation; Section 5 hints future

developments. A longer and more detailed version of this paper, including a section

that describes related work, is available online [7].

2 Foundations

Let F (x) be a Boolean function on a set of n input Boolean variables x
def

= {x1, ..., xn}.

We represent Boolean value ⊥ with −1 and ⊤ with +1, so that we can assume that

each xi ∈ {−1, 1}. Suppose first that we have a QA system with n qubits defined on a

hardware graph G = (V,E), e.g., G can be any n-vertex subgraph of the Chimera graph

of Fig. 1. Furthermore, assume that the state of each qubit zi corresponds to the value

of variable xi, i = 1, . . . , n = |V |. One way to determine whether F (x) is satisfiable

using the QA system is to find an energy function as in (1) whose ground states z

correspond with the satisfiable assignments x of F (x). For instance, if F (x)
def

= x1⊕x2,

since F (x) = ⊤ if and only if x1 + x2 = 0, the Ising model (z1 + z2)
2 in a graph

containing 2 qubits joined by an edge has ground states (+1,−1) and (−1,+1), that is,

the satisfiable assignments of F .

Because the energy E(z) in (1) is restricted to quadratic terms and graph G is typ-

ically sparse, the number of functions F (x) that can be solved with this approach is

limited. To deal with this difficulty, we can use a larger QA system with a number of

additional qubits, say h, representing ancillary Boolean variables (or ancillas for short)

a
def

= {a1, ..., ah}, so that |V | = n+ h. A variable placement is a mapping of the n+ h
input and ancillary variables into the qubits of V . Since G is not a complete graph, dif-

ferent variable placements will produce energy functions with different properties. We

use Ising encoding to refer to the hi and Jij parameters in (1) that are provided to the

QA hardware together with a variable placement of the variables. The gap of an Ising

encoding is the energy difference between ground states (i.e., satisfiable assignments)

and any other states (i.e., unsatisfiable assignments). An important observation from [5]

is that the larger the gap the better the success rates of the QA process. The encoding

problem for F (x) is to find an Ising encoding with maximum gap.

The encoding problem is typically over-constrained. In fact, the Ising model (1)

has to discriminate between m satisfiable assignments and k unsatisfiable assignments,

with m + k = 2n, whereas the number of degrees of freedom is given by the number

of the hi and Jij parameters, which in the Chimera architecture grows as O(n+ h).
In this section, we assume that a Boolean function F (x) is given and that h qubits

are used for ancillary variables a.

4



2.1 Penalty Functions

Here we assume that a variable placement is given, placing x ∪ a into the subgraph

G. Thus, we can identify each variable zj representing the binary value of the qubit

associated with the jth vertex in V with either an xk or aℓ variable, writing z = x ∪ a.

Then we define penalty function PF (x,a|θ) as the Ising model:

PF (x,a|θ)
def

= θ0 +
∑

i∈V

θizi +
∑

(i,j)∈E

θijzizj , (3)

with the property that ∀x min{a}PF (x,a|θ)

{

= 0 if F (x) = ⊤

≥ gmin if F (x) = ⊥
(4)

where θ0 ∈ (−∞,+∞) (“offset”), θi ∈ [−2, 2] (“biases’) and θij ∈ [−1, 1] (“cou-

plings”), s.t. zi, zj ∈ z, and gmin > 0 (“gap”) are rational-valued parameters. Notice

that a penalty function separates models from counter-models by an energy gap of at

least gmin. We call PF (x,a|θ) an exact penalty function iff it verifies a stronger version

of (4) in which the condition “≥ gmin” is substituted with “= gmin”. To simplify the

notation we will assume that θij = 0 when (i, j) 6∈ E, and use PF (x|θ) when a = ∅.

The QA hardware is used to minimize the Ising model defined by penalty function

PF (x,a|θ). By (4), a returned value of PF (x,a|θ) = 0 implies that F is satisfiable.

However, if PF (x,a|θ) ≥ gmin, since QA does not guarantee optimality, there is still

a chance that F is satisfiable. Nevertheless, the larger gmin is, the less likely this false

negative case occurs.

The following examples show that ancillary variables are needed, even when G is a

complete graph.

Example 1. The equivalence between two variables, F (x)
def

= (x1 ↔ x2), can be en-

coded without ancillas by means of a single coupling between two connected vertices,

with zero biases: PF (x|θ)
def

= 1 − x1x2, so that gmin = 2. In fact, PF (x|θ) = 0 if

x1, x2 have the same value; PF (x|θ) = 2 otherwise. Notice that PF (x|θ) is also an

exact penalty function. Penalty PF (x|θ) is called a chain of length 2.

Example 2. Consider the AND function F (x)
def

= x3 ↔ (x1 ∧ x2). If x1, x2, x3 could

be all connected in a 3-clique, then F (x) could be encoded without ancillas by setting

PF (x|θ) =
3
2 − 1

2x1 −
1
2x2 + x3 +

1
2x1x2 − x1x3 − x2x3, so that gmin = 2. Since

the Chimera graph has no cliques, so that the above AND function needs (at least) one

ancilla a to be encoded as: PF (x,a|θ) = 5
2 − 1

2x1 − 1
2x2 + x3 + 1

2x1x2 − x1x3 −
x2a− x3a, which still has gap gmin = 2 and is embedded as in Figure 2(a).

Example 3. Consider the XOR function F (x)
def

= x3 ↔ (x1 ⊕ x2). Even within a

3-clique, F (x) has no ancilla-free encoding. Within the Chimera graph, F (x) can be

encoded with three ancillas a1, a2, a3 as: PF (x,a|θ) = 5 + x3 + a2 − a3 + x1a1 −
x1a2 − x1a3 − x2a1 − x2a2 − x2a3 + x3a2 − x3a3, which has gap gmin = 2 and is

embedded as in Figure 2(b).
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(a) x3 ↔ (x1 ∧ x2)
with one ancilla.

(b) x3 ↔ (x1 ⊕ x2)
with three ancillas.

(c) x4 ↔ (x3 ∧ (x1 ⊕ x2))
obtained by combining 2(b) and 2(a).

Fig. 2. Mappings within the Chimera graph, penalty functions use only colored edges. 2(c) com-

bines 2(a) and 2(b) using chained proxy variables y, y′. The resulting penalty function is obtained

by rewriting x4 ↔ (x3 ∧ (x1 ⊕ x2)) into its equi-satisfiable formula (x4 ↔ (x3 ∧ y′))∧ (y′ ↔
y) ∧ (y ↔ (x1 ⊕ x2)).

2.2 Properties of Penalty Functions and Problem Decomposition

After determining a variable placement, finding the values for the θs implicitly requires

solving a set of equations whose size grows with the number of models of F (x) plus a

number of inequalities whose size grows with the number of counter-models of F (x).
Thus, the θs must satisfy a number of linear constraints that grows exponentially in

n. Since the θs grow approximately as 4(n + h), the number of ancillary variables

needed to satisfy (4) can also grow very rapidly. This seriously limits the scalability of

a solution method based on (3)-(4). We address this issue by showing how to construct

penalty functions by combining smaller penalty functions, albeit at the expense of a

reduced gap.

The following two properties can be easily derived from the definition.

Property 1. Let F ∗(x)
def

= F (x1, ..., xr−1,¬xr, xr+1, ..., xn) for some index r. Assume

a variable placement of x into V s.t. PF (x,a|θ) is a penalty function for F (x) of gap

gmin. Then PF∗(x,a|θ) = PF (x,a|θ
∗), where θ

∗ is defined as follows for every

zi, zj ∈ x,a:

θ∗i =

{

−θi if zi = xr

θi otherwise;
θ∗ij =

{

−θij if zi = xr or zj = xr

θij otherwise.

Notice that since the previously defined bounds over θ (namely θi ∈ [−2, 2] and θij ∈
[−1, 1]) are symmetric, if θ is in range then θ

∗ is as well.

Two Boolean functions that become equivalent by permuting or negating some of

their variables are called NPN-equivalent [14]. Thus, given the penalty function for a

Boolean formula, any other NPN equivalent formula can be encoded trivially by apply-

ing Property 1. Notice that checking NPN equivalence is a hard problem in theory, but

it is fast in practice for small n (i.e., less than 16 [20]).

Property 2. Let F (x) =
∧K

k=1 Fk(x
k) be Boolean formula such that x = ∪kx

k, the

x
ks may be non-disjoint, and each sub-formula Fk has a penalty function PFk

(xk,ak|θk)
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with minimum gap gkmin where a = ∪ka
k and the a

ks are all disjoint. Given a list wk

of positive rational values such that, for every zi, zj ∈ x ∪
⋃K

k=1 a
k:

θi
def

=

K
∑

k=1

wkθ
k
i ∈ [−2, 2], θij

def

=

K
∑

k=1

wkθ
k
ij ∈ [−1, 1], (5)

then a penalty function for F (x) can be obtained as:

PF (x,a
1...aK |θ) =

K
∑

k=1

wkPFk
(xk,ak|θk). (6)

This new penalty function evaluates to zero if and only if all its summands do, and oth-

erwise it is at least gmin = minKk=1 wkg
k
min. Thus, in general, the (weighted) sum of the

penalty functions of a set of formulas represents a penalty function for the conjunction

of the formulas.

A formula F (x) can be decomposed (e.g., by a Tseitin transformation) into an

equivalently-satisfiable one F ∗(x,y):

F ∗(x,y)
def

=
m−1
∧

i=1

(yi ↔ Fi(x
i,yi)) ∧ Fm(xm,ym), (7)

where the Fis are Boolean functions which decompose the original formula F (x), and

the yis are fresh Boolean variables each labeling the corresponding Fi. By Property 2,

this allows us to decompose F (x) into multiple Fi(x
i,yi) that can be encoded sepa-

rately and recombined. The problem is to choose Boolean functions Fi(x
i,yi) whose

penalty functions are easy to compute, have a large enough gap, and whose combination

keeps the gap of the penalty function for the original function as large as possible.

Summing penalty functions with shared variables may cause problems with param-

eter ranges: penalty functions that share terms may sum up biases or couplings resulting

in out-of-range values. Using weights, Property 2 can help to mitigate this, but also it is

likely that the gmin of the final penalty function becomes small.

We can cope with this problem by mapping shared variables into distinct qubits and

then linking them together. Consider again F (x) =
∧K

k=1 Fk(x
k) as in Property 2. We

rewrite it into its equi-satisfiable formula

F ∗(x∗)
def

=

K
∧

k=1

Fk(x
k∗) ∧

∧

xi∈x
k∩x

k′

k,k′∈[1..K], k<k′

(xi
k∗ ↔ xi

k′∗
) (8)

where x∗ = ∪kx
k∗ and the xk∗ are all disjoint. Also, as in Property 2, assume we have

PFk
(xk∗

,ak|θk) for each k with disjoint ak. If there is an edge between every two

copies of the same variable xi, we can write a penalty function in the following way

(using the penalty of Example 1):

PF∗(x∗,a|θ) =
K
∑

k=1

PFk
(xk∗,ak|θk) +

∑

xi∈x
k∩x

k′

k,k′∈[1..K], k<k

(1− xi
k∗xi

k′∗
), (9)

7



and the θs stay within valid range because the xk∗s are all disjoint. Thus, we can repre-

sent a single variable xi with a series of qubits connected by strong couplings (1−ziz
′
i).

Figure 2(c) illustrates a simple example. Two observations are at hand. First, the gap

gmin of PF∗(x∗,a|θ) is at least min(minKk=1 wkg
k
min, 2), since each (1−ziz

′
i) penalty

has a gap of 2. Second, not all copies of xi need to be directly adjacent to obtain this

bound: it suffices to use the edges of a tree connecting all copies. More generally, that

tree may contain additional qubits to facilitate connectedness. A tree connecting all the

copies of a variable xi is called a chain and is the subject of the next section.

2.3 Embedding into Chimera Architecture

The process of representing a single variable xi by a collection of qubits connected in

chains of strong couplings is known as embedding, in reference to the minor embedding

problem of graph theory [12,13]. More precisely, suppose we have a penalty function

based on graph G (so xi and xj are adjacent iff θij 6= 0) and a QA hardware graph H .

A minor embedding of G in H is a function Φ : VG → 2VH such that:

– for each G-vertex xi, the subgraph induced by Φ(xi) is connected;

– for all distinct G-vertices xi and xj , Φ(xi) and Φ(xj) are disjoint;

– for each edge (xi, xj) in G, there is at least one edge between Φ(xi) and Φ(xj).

The image Φ(xi) of a G-vertex is a chain, and the set of qubits in a chain are constrained

to be equal using (1− ziz
′
i) couplings as in Figure 2(c).

Embedding generic graphs is a computationally difficult problem [2], although cer-

tain structured problem graphs may be easily embedded in the Chimera topology [8,34]

and heuristic algorithms may also be used [9]. A reasonable goal in embedding is to

minimize the sizes of the chains, as quantum annealing becomes less effective as more

qubits are included in chains [22].

A different approach to use QA for finding models for F , global embedding, is

based on first finding a penalty function on a complete graph G on n + h variables,

and secondly, embedding G into a hardware graph H using chains (e.g., using [8]).

Following [5], global embeddings usually need fewer qubits than the methods presented

in this paper; however, the final gap of the penalty function obtained in this way is

generally smaller and difficult to compute exactly.

3 Solving the Encoding Problem

3.1 Encoding Small Boolean Functions

Computing Penalty Functions via SMT/OMT(LRA). Given x
def

= {x1, ..., xn},

a
def

= {a1, ..., ah}, F (x) as in Section 2.1, a variable placement in a Chimera subgraph

s.t. z = x ∪ a, and some gap gmin > 0, the problem of finding a penalty function

8



PF (x,a|θ) as in (3) reduces to solving the following SMT(LRA) problem:

Φ(θ)
def

=
∧

zi∈x,a

(−2 ≤ θi) ∧ (θi ≤ 2) ∧
∧

zi,zj∈x,a
i<j

(−1 ≤ θij) ∧ (θij ≤ 1) (10)

∧
∧

{x∈{−1,1}n|F (x)=⊤}

∨

a∈{−1,1}h

(PF (x,a|θ) = 0) (11)

∧
∧

{x∈{−1,1}n|F (x)=⊤}

∧

a∈{−1,1}h

(PF (x,a|θ) ≥ 0) (12)

∧
∧

{x∈{−1,1}n|F (x)=⊥}

∧

a∈{−1,1}h

(PF (x,a|θ) ≥ gmin). (13)

Consequently, the problem of finding the penalty function PF (x,a|θ) that maximizes

the gap gmin reduces to solving the OMT(LRA) maximization problem 〈Φ(θ), gmin〉.
Intuitively: (10) states the ranges of the θ; (11) and (12) state that, for every x satis-

fying F (x), PF (x,a|θ) must be zero for at least one “minimum” a and nonnegative for

all the others; (13) states that for every x not satisfying F (x), PF (x,a|θ) must greater

or equal than the gap. Consequently, if the values of the θ in PF (x,a|θ) satisfy Φ(θ),
then PF (x,a|θ) complies with (4).

Notice that Φ(θ) grows exponentially with |x|+|a|, and no longer contains Boolean

atoms. Notice also that, if a = ∅, the OMT(LRA) maximization problem 〈Φ(θ), gmin〉
reduces to a linear program because the disjunctions in (11) disappear.

To force PF (x,a|θ) to be an exact penalty function, we conjoin to Φ(θ) the follow-

ing:

... ∧
∧

{x∈{−1,1}n|F (x)=⊥}

∨

a∈{−1,1}h

(PF (x,a|θ) = gmin). (14)

Here, (14) forces PF (x,a|θ) to be exactly equal to the gap for at least one “minimum”

a. Exact penalty functions can be used to encode (weighted) MaxSAT instances. Sup-

pose we partition a formula into the conjunction of its soft constraints Ci each of weight

wi ≥ 0. Then for each Ci we find an exact penalty function of (10)-(14) for Ci imposing

a gap gi proportional to wi, and we combine the result as in Property 2.

Improving Efficiency and Scalability using Variable Elimination As before, assume

that the variable placement is fixed and consider the SMT/OMT(LRA) formulation

(10)-(13). Notice the exponential dependency on the number of hidden variables h. For

practical purposes, this typically implies a limit on h of about 10. Here, we describe

an alternative formulation whose size dependence on h is O(h2tw), where tw is the

treewidth of the subgraph of G spanned by the qubits corresponding to the ancillary

variables, Ga. For the Chimera graph, even when h is as large as 32, tw is at most 8 and

therefore still of tractable size.

The crux of the reformulation is based on the use of the variable elimination tech-

nique [15] to solve an Ising problem on Ga. This method is a form of dynamic pro-

gramming, storing tables in memory describing all possible outcomes to the problem.
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When the treewidth is tw, there is a variable elimination order guaranteeing that each ta-

ble contains at most O(2tw) entries. Rather than using numerical tables, our formulation

replaces each of its entries with a continuous variable constrained by linear inequalities.

In principle, we need to parametrically solve an Ising problem for each x ∈ {−1, 1}n,

generating O(2nh2tw) continuous variables. However, by the sequential nature of the

variable elimination process, many of these continuous variables are equal, leading to a

reduced (as much as an order of magnitude smaller) and strengthened SMT formulation.

See [5] for more details.

Placing Variables & Computing Penalty Functions via SMT/OMT(LRIA∪UF ).

The formula Φ(θ) in (10)-(14) can be built only after a variable placement, so that each

variable zj ∈ x ∪ a has been previously placed in some vertex vj ∈ V . There are

many such placements. For example, if n + h = 8 and we want to encode the penalty

function into a 8-qubit Chimera tile, then we have 8! = 40320 candidate placements.

Exploiting symmetry and the automorphism group of G, one can show that most of

these placements are equivalent.

Alternatively, we can combine the generation of the penalty function with an auto-

matic variable placement by means of SMT/OMT(LRIA∪ UF), LRIA∪ UF being

the combined theories of linear arithmetic over rationals and integers plus uninterpreted

function symbols. This works as follows.

Suppose we want to produce the penalty function of some relatively small function

(e.g., so n+ h ≤ 8, which fits into a single Chimera tile). We index the n+ h vertices

in the set V into which we want to place the variables as V
def

= {1, ..., n+ h}, and we

introduce a set of n + h integer variables v
def

= {v1, ..., vn+h} s.t. each vj ∈ V repre-

sents (the index of) the vertex into which zj is placed. (For example, “v3 = 5” means

that variable z3 is placed in vertex #5.) Then we add the standard SMT constraint

Distinct(v1, ..., vn+h) to the formula to guarantee the injectivity of the map. Then,

instead of using variables θi and θij for biases and couplings, we introduce the un-

interpreted function symbols b : V 7−→ Q (“bias”) and c : V × V 7−→ Q (“cou-

pling”), so that we can rewrite each bias θj as b(vj) and each coupling θij as c(vi, vj)
s.t vi, vj ∈ [1, .., n+ h] and Distinct(v1, ..., vn+h).

This rewrites the SMT(LRA) problem (10)-(13) into the SMT/OMT (LRIA ∪
UF) problem (15)-(26). Equation (19) must be used iff we need an exact penalty func-

tion. (Notice that (22) is necessary because we could have c(vi, vj) s.t. vi > vj .) By

solving 〈Φ(θ0, b, c,v), gmin〉 we not only find the best values of the biases b and cou-

plers c, but also the best placement v of the variables into (the indexes of) the qubits.

3.2 Encoding Larger Boolean Functions

As pointed out in Section 2.2, encoding large Boolean functions using the SMT for-

mulations of the previous section is computationally intractable, so other methods must

be used. One sensible approach is to pre-compute a library of encoded Boolean func-

tions and decompose a larger Boolean function F (x) into a set of pre-encoded ones
∧K

k=1 Fk(x
k). The penalty models PFk

(xk,ak|θk) for these pre-encoded functions

may then be combined using chains as described in Section 2.3. This schema is shown
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Φ(θ0, b, c,v)
def
= Range(θ0, b, c,v) ∧ Distinct(v) ∧ Graph() (15)

∧
∧

{x∈{−1,1}n|F (x)=⊤}

∧

a∈{−1,1}h

(PF (x,a|θ0, b, c,v) ≥ 0) (16)

∧
∧

{x∈{−1,1}n|F (x)=⊤}

∨

a∈{−1,1}h

(PF (x,a|θ0, b, c,v) = 0) (17)

∧
∧

{x∈{−1,1}n|F (x)=⊥}

∧

a∈{−1,1}h

(PF (x,a|θ0, b, c,v) ≥ gmin) (18)

∧
∧

{x∈{−1,1}n|F (x)=⊥}

∨

a∈{−1,1}h

(PF (x,a|θ0, b, c,v) = gmin) (19)

Range(θ0, b, c,v)
def
=

∧

1≤j≤n+h

(1 ≤ vj) ∧ (vj ≤ n+ h) (20)

∧
∧

1≤j≤n+h

(−2 ≤ b(j)) ∧ (b(j) ≤ 2) (21)

∧
∧

1≤j≤n+h

(c(j, j) = 0) ∧
∧

1≤i<j≤n+h

(c(i, j) = c(j, i)) (22)

∧
∧

1≤i<j≤n+h

(−1 ≤ c(i, j)) ∧ (c(i, j) ≤ 1) (23)

Distinct(v1, ..., vn+h)
def
=

∧

1≤i<j≤n+h

¬(vi = vj) (24)

Graph()
def
= ∧

∧

1≤i<j≤n+h
〈i,j〉6∈E

(c(i, j) = 0) (25)

PF (x,a|θ0, b, c,v)
def
= θ0 +

∑

1≤j≤n+h

b(vj) · zj +
∑

1≤i<j≤n+h

c(vi, vj) · zi · zj . (26)

Offline process

On-the-fly process

Standard cell
mapping

Library

Preprocessing
SAT

problem

Pre-encodingBoolean
functions

Placement
and routing

Ising
model

D-Wave
QA Solution

Fig. 3. Graph of the encoding process.

in Figure 3. This is not the only possible method, but it is a natural choice for SAT and

constraint satisfaction problems, and in terms of QA performance it has been shown

experimentally to outperform other encoding methods for certain problem classes [6].

In this section, we describe each of the stages in turn.

Pre-encoding. In this stage, we find effective encodings of common small Boolean

functions, using the SMT methods in Section 3.1 or by other means, and store them in

a library for later use. Finding these encodings may be computationally expensive, but
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this task may be performed offline ahead of time, as it is independent of the problem

input, and it need only be performed once for each NPN-inequivalent Boolean function.

Preprocessing. Preprocessing, or Boolean formula minimization, consists of simplify-

ing the input formula F (x) to reduce its size or complexity in terms of its graphical

representation (typically and-inverter graphs). This is a well-studied problem with ma-

ture algorithms available [23,25].

Standard cell mapping. In the standard cell mapping phase, F (x) is decomposed into

functions
∧K

k=1 Fk(x
k) that are available in the library. To minimize the size of the final

Ising model, K should be as small as possible. For SAT or constraint satisfaction prob-

lems, this mapping may be performed naı̈vely: given a set of constraints {Fk(x
k)}Kk=1

on the variables, each Fk(x
k) is found in the library (possibly combining small con-

straints into larger ones [5]). However, more advanced techniques have been devised in

the digital logic synthesis literature. For example, technology mapping is the process of

mapping a technology-independent circuit representation to the physical gates used in a

digital circuit [17,24]. Usually technology mapping is used to reduce circuit delay and

load, and performs minimization as an additional step. Delay and load do not play a

role in the context of QA, but minimization is important to simplify the placement and

routing phase that follows.

Placement and routing. Once F (x) is decomposed into functions
∧K

k=1 Fk(x
k) with

penalty models PFk
(xk,ak|θk), it remains to embed the entire formula onto the QA

hardware as in equation (9). This process has two parts: placement, in which each

PFk
(xk,ak|θk) is assigned to a disjoint subgraph of the QA hardware graph; and rout-

ing, in which chains of qubits are built to ensure that distinct qubits xi and x′
i repre-

senting the same variable take consistent values (using penalty functions of the form

1−xix
′
i). Both placement and routing are very well-studied in design of digital circuits

[4]. Nevertheless, this stage is a computational bottleneck for encoding large Boolean

functions.

During placement, chain lengths can be minimized by placing penalty functions that

share common variables close together. Heuristic methods for doing this include sim-

ulated annealing [31], continuous optimization [10], and recursive min-cut partitioning

[27]. These algorithms can be applied in the present context, but require some modifi-

cation as current QA architectures do not distinguish between qubits used for penalty

functions and qubits used for chains.

During routing, literals are chained together using as few qubits possible. Finding an

optimal routing is NP-hard, but polynomial-time approximation algorithms exist [19].

In practice, heuristic routing algorithms scale to problem sizes much larger than current

QA architectures [11,26,33].

4 Preliminary Experimental Evaluation

In this section, we offer preliminary empirical validation of the proposed methods for

encoding [Max]SAT by evaluating the performance of D-Wave’s 2000Q system in solv-

ing certain hard SAT and MaxSAT problems.
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Remark 1. To make the results reproducible to those who have access to a D-Wave

system, we have set a website [1] where the problem files, translation files and demon-

stration code can be accessed. We also provide contact information for D-Wave 2000Q

system access.

Due to the limitations in size and connectivity of current QA systems, we require

[Max]SAT problems that become difficult with few variables. To this end we modified

the tool sgen [30], which has been used to generate the smallest unsolvable problems in

recent SAT competitions. In particular, we modified sgen to use 2-in-4-SAT constraints

instead of at-most/at-least 1-in-5-SAT constraints, as 2-in-4-SAT is particularly suitable

to encoding with Ising models (see [7] for details). We generated 100 problem instances

for various problem sizes up to 80 variables, the largest embeddable with current hard-

ware. At 260 variables, these problems become unsolvable within 1000 seconds with

state-of-the-art SAT solvers on standard machines [7].

Another important consideration in solving [Max]SAT instances using QA is that

the QA hardware cannot be made aware of the optimality of solution; for example,

QA cannot terminate when all clauses in a SAT problem are satisfied. In this way, QA

hardware behaves more like an SLS [Max]SAT solver than a CDCL-based SAT solver.

Propositional Satisfiability (SAT). To solve these SAT instances using QA, we encode

and embed them as in Section 3 and then draw a fixed number of samples at an anneal-

ing rate of 10 µs per sample. Table 1(a) shows the results from the QA hardware. The

QA hardware solves almost all problems within 50 µs of anneal time, and the rates of

sampling optimal solutions remain relatively stable at this scale of problem.

In order to evaluate the significance of the testbed, we solved the same problems

with the UBCSAT SLS SAT solver using the best performing algorithm, namely SAPS

[32]. Table 1(b) shows that the problems are nontrivial despite the small number of

variables, and the run-times increase significantly with the size of the problem.

Remark 2. The results shown are not intended as a performance comparison between

D-Wave’s 2000Q system and UBCSAT. It is difficult to make a reasonable comparison

for many reasons, including issues of specialized vs. off-the-shelf hardware, different

timing mechanisms and timing granularities, and costs of encoding. Instead we aim

to provide an empirical assessment of QA’s potential for [Max]SAT solving, based on

currently available systems.

Weighted MaxSAT sampling. One of the strengths of D-Wave’s processor is its ability

to rapidly sample the near-optimal solutions: current systems typically anneal at a rate

of 10 µs or 20 µs per sample and are designed to take thousands of samples during each

programming cycle. As a result, the first practical benefits of QA will likely come from

applications which require many solutions rather than a single optimum. To demon-

strate the performance of QA in this regime, we generated MaxSAT instances that have

many distinct optimal solutions. These problems were generated from the 2-in-4-SAT

instances described above by removing a fraction of the constraints and then adding

constraints on single variables with smaller weight (details in [7]).

Table 2 summarizes the performance of the D-Wave processor in generating a single

optimal MaxSAT solution, as well as the run-times for various high-performing SLS
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D-Wave 2000Q

Problem size # solved
% optimal

samples

32 vars 100 97.4

36 vars 100 96.4

40 vars 100 94.8

44 vars 100 93.8

48 vars 100 91.4

52 vars 100 93.4

56 vars 100 91.4

60 vars 100 88.2

64 vars 100 84.6

68 vars 100 84.4

72 vars 98 84.6

76 vars 99 86.6

80 vars 100 86.0

(a)

UBCSAT (SAPS)

Problem size Avg time (ms)

32 vars 0.1502

36 vars 0.2157

40 vars 0.3555

44 vars 0.5399

48 vars 0.8183

52 vars 1.1916

56 vars 1.4788

60 vars 2.2542

64 vars 3.1066

68 vars 4.8058

72 vars 6.2484

76 vars 8.2986

80 vars 12.4141

(b)

Table 1. (a) Number of problem instances (out of 100) solved by the QA hardware using 5 sam-

ples and average fraction of samples from the QA hardware that are optimal solutions. Annealing

was executed at a rate of 10 µs per sample, for a total of 50 µs of anneal time per instance. Total

time used by the D-Wave processor includes programming and readout; this amounts to about

150 µs per sample, plus a constant 10ms of overhead. (b) Run-times in ms for SAT instances

solved by UBCSAT using SAPS, averaged over 100 instances of each problem size. Computa-

tions were performed using an 8-core Intel R© Xeon R© E5-2407 CPU, at 2.20GHz.

MaxSAT solvers. The QA hardware solves almost all problems within 1ms of anneal

time. (Remark 2 also applies here.)

Table 3 considers generating distinct optimal solutions. For each solver and prob-

lem size, the table indicates the number of distinct solutions found in 1 second, averaged

across 100 problem instances of that size. For the smallest problems, 1 second is suffi-

cient for all solvers to generate all solutions, while the diversity of solutions found varies

widely as problem size increases. Although the D-Wave processor returns a smaller

fraction of optimal solutions for MaxSAT instances than for the SAT instances, it is still

effective in enumerating distinct optimal solutions because its rapid sampling rate.

5 Ongoing and Future Work

Future QA architectures will be larger and more connected, enabling more efficient en-

codings of larger and more difficult SAT problems. Faster and more scalable SMT-based

encoding methods for small Boolean functions is currently an important direction of re-

search. The ability to increase the number of ancillary variables can lead to larger gaps,

which in turn can make QA more reliable. Among the encoding challenges presented

in this paper, a few are of particular interest and relevance to SMT research:
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D-Wave 2000Q

Problem size # solved
% optimal

samples

32 vars 100 78.7

36 vars 100 69

40 vars 100 60.2

44 vars 100 49.9

48 vars 100 40.4

52 vars 100 35.2

56 vars 100 24.3

60 vars 100 22.3

64 vars 99 17.6

68 vars 99 13

72 vars 98 9.6

76 vars 94 6.6

80 vars 93 4.3

(a)

MaxSAT solvers: avg time (ms)

Problem size g2wsat rots maxwalksat novelty

32 vars 0.02 0.018 0.034 0.039

36 vars 0.025 0.022 0.043 0.06

40 vars 0.039 0.029 0.056 0.119

44 vars 0.049 0.043 0.07 0.187

48 vars 0.069 0.054 0.093 0.311

52 vars 0.122 0.075 0.115 0.687

56 vars 0.181 0.112 0.156 1.319

60 vars 0.261 0.13 0.167 1.884

64 vars 0.527 0.159 0.207 4.272

68 vars 0.652 0.21 0.27 8.739

72 vars 0.838 0.287 0.312 14.118

76 vars 1.223 0.382 0.396 18.916

80 vars 1.426 0.485 0.43 95.057

(b)

Table 2. (a) Number of problem instances (out of 100) solved by the QA hardware using 100 sam-

ples, and average fraction of samples from the QA hardware that are optimal solutions. Annealing

was executed at a rate of 10 µs per sample, for a total of 1ms of anneal time per instance. (b) Time

in ms taken to find an optimal solution by various inexact weighted MaxSAT solvers, averaged

over 100 MaxSAT instances of each problem size. Classical computations were performed on

an Intel i7 2.90GHz × 4 processor. The solvers gw2sat, rots, and novelty are as implemented in

UBCSAT [32]. All classical algorithms are performed with the optimal target weight specified;

in the absence of a target weight they are much slower.

D-Wave 2000Q

Size anneal only wall-clock

32 vars 448.5 443.9

36 vars 607 579.9

40 vars 1007.9 922

44 vars 1322.6 1066.6

48 vars 1555.4 1111.8

52 vars 3229 1512.5

56 vars 2418.9 1147.4

60 vars 4015.3 1359.3

64 vars 6692.6 1339.1

68 vars 6504.2 1097.1

72 vars 3707.6 731.7

76 vars 2490.3 474.2

80 vars 1439.4 332.7

(a)

MaxSAT solvers

Size g2wsat rots maxwalksat novelty

32 vars 448.5 448.5 448.5 448.5

36 vars 607 606.9 606.9 606.8

40 vars 1007.7 1006.3 1005.3 1005

44 vars 1313.8 1307.1 1311.7 1255.5

48 vars 1515.4 1510.7 1504.9 1320.5

52 vars 2707.5 2813 2854.6 1616.2

56 vars 2021.9 2106.2 2186.6 969.8

60 vars 2845.6 3061.7 3289 904.4

64 vars 3100 4171 4770 570.6

68 vars 2742.2 3823.3 4592.4 354.8

72 vars 1841.1 2400.2 2943.4 212.6

76 vars 1262.5 1716 2059.2 116.4

80 vars 772.2 1111.1 1363.9 66.7

(b)

Table 3. Number of distinct optimal solutions found in 1 second by various MaxSAT solvers,

averaged across 100 instances of each problem size. (a) “anneal only” accounts for only the 10 µs
per sample anneal time used by the D-Wave processor. “wall-clock” accounts for all time used

by the D-Wave processor, including programming and readout. (b) Classical computations were

performed as in Table 2(b).
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– Variable placement. Methods for simultaneously placing variables and computing

penalty functions are currently less scalable, and have been less studied, than those

for fixed variable placements.

– Augmenting penalty models. For large Boolean functions, generating penalty mod-

els directly from SMT becomes difficult because the number of constraints grows

much more quickly than the number of available parameters. Function decomposi-

tion and chains provide one way around this, but chains limit the resulting energy

gaps. There may be other methods of recombining a decomposed function that are

not so restrictive. Alternatively, it may be possible to augment an existing penalty

model with additional qubits for the purposes of increasing its energy gap. SMT

formulations of these problems have not yet been explored.

– Better function decompositions. While Boolean function decomposition and mini-

mization are mature classical subjects, those algorithms can probably be improved

by taking into consideration the specifics of the embedding (placement and routing

onto a QA hardware graph) that follow them.

Furthermore, we believe the problems presented here are not only practical, but

also complex enough to be used to challenge new SMT solvers. To encourage the use

of these problems as SMT benchmarks, we have provided example .smt files on the

website of supplementary material [1].
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