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Solving SDGE Models:

A New Algorithm for the Sylvester Equation

Ondřej Kamenı́k∗

Abstract

This paper presents a new numerical algorithm for solving the Sylvester equation in-
volved in higher-order perturbation methods developed for solving stochastic dynamic
general equilibrium models. The new algorithm surpasses other methods used so far (in-
cluding the very popular doubling algorithm) in terms of computational time, memory
consumption, and numerical stability.
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Keywords: Dynamic general equilibrium, doubling algorithm, perturbation ap-

proach, recursive algorithm.
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Nontechnical Summary

The perturbation approach to solving stochastic dynamic general equilibrium (SDGE) models
seems very promising in comparison with other methods, since it is able to deal with a large
state space. According to Jin and Judd (2002) and Juillard (2003), the solution of a k-order
approximation consists in finding the non-stochastic steady state and then solving for a k-order
approximation around the steady state. The k-order approximation is found iteratively from
the lower-order approximations. The iterative process begins with a standard solution of a
linear approximation (k = 1). The iterative step consists of a series of ordinary linear systems
and a series of a linear Sylvester equation. While the ordinary linear equations present no
numerical problems, the Sylvester equation is a computational challenge. Although the size
of the input data of all the equations is similar, the Sylvester equation requires the solution of
a large matrix whose size grows exponentially with k and polynomially with the number of
predetermined variables.

The main purpose of this paper is to develop a recursive algorithm for solving the Sylvester
equation involved in the k-order approximations. The algorithm is implemented in C++ and
tested. The efficiency of the recursive algorithm is shown in comparison with two methods
used so far: a method due to Bartels and Stewart (1972) implemented by Michel Juillard,
and a doubling algorithm implemented by me. Since the application of the Bartels–Stewart
approach in the context of SDGE models does not account for the special structure of the
Sylvester equation, it has quadratic complexity both in time and memory. This makes the
method unusable for large models or high-order approximations. The author’s implementation
of the doubling algorithm needs almost three times as much computational time and twice as
much memory as the new recursive algorithm. The superiority of the new recursive approach
is illustrated with the solution to a second-order approximation to the Global Economy Model
(GEM), calibrated for the Czech Republic and the euro area Laxton and Pesenti (2003). In
this particularly difficult model, the doubling algorithm yields a relative error of the equation
residual of order 10−1, whereas the new recursive method is of order 10−14.
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1. Introduction

I examine discrete time models of the form1

Et

(
f(y∗

t−1, yt, y
∗∗
t+1, ut)

)
= 0, (1.1)

where y is a vector of n state variables, from which y∗ denotes m predetermined variables
and y∗∗ denotes an n − m vector of forward looking variables. (I count static variables as
predetermined.) ut is a vector of stochastic shocks. For the sake of the perturbation method, I
write ut as the result of σ-scaling ηt shocks, i.e.,

ut = σηt.

The dynamic equilibrium solution to this model is, in fact, a decision function of the form:

yt = g(y∗
t−1, ut, σ),

which contains the decision rules for the predetermined and forward looking variables, i.e.,

y∗
t = g∗(y∗

t−1, ut, σ)

y∗∗
t = g∗∗(y∗

t−1, ut, σ).

The original model can be then expressed as having the only reference to the unknown future
through serially uncorrelated shocks ut+1; this is

0 = Et

(
F (y∗

t−1, ut, σ, ut+1)
)

= Et

(
f
(
y∗

t−1, g(y∗
t−1, ut, σ), g∗∗(g∗(y∗

t−1, ut, σ), ut+1, σ
)
, ut

))
. (1.2)

Now suppose that I have already found the model’s steady state ȳ, and the solution to the linear
approximation. The latter includes Jacobians of g∗ and g∗∗ with respect to y∗ and u. The goal
of the k-order perturbation method at this point is to obtain the k-order derivatives of g with
respect to y∗, u, and σ, including all possible cross derivatives.

In order to handle higher dimensional objects like k-order derivatives, I use a tensor bracket
notation. The upper one-dimensional index relates to the derived equation, and the lower
multidimensional index relates to the variables. I also use the Einstein summation nota-
tion, i.e., [[A]γ · [B]γ ]αβ =

∑
γ[A]αγ [B]γβ , and its more general variant

[
[A]γ...γn

∏n
i=1[B]γi

βi

]α
=∑

γ1...γn
[A]αγ1...γn

∏n
i=1[B]γi

βi
.

The Sylvester equations evolve when the derivatives
[
gy∗k

]
and

[
gy∗k−iσi

]
are retrieved. As

shown in Juillard (2003), the derivatives
[
gy∗k

]
are given by[

Fy∗k

]i
α1...αk

= 0, for i = 1, . . . , n, αj = 1, . . . , m,

1 I use the same notation as in Juillard (2003).
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which, after separating the unknowns takes the form:

[fy∗ ]iβ ·
[
g∗

y∗k

]β
α1...αk

+ [fy∗∗ ]iβ ·
[
g∗∗

y∗k

]β
α1...αk

+
[
fy∗∗

+
g∗∗

y∗

]i
β
· [g∗

y∗k

]β
α1...αk

+

[
fy∗∗

+

]i
β
·
[[

g∗∗
y∗k

]
γ1...γk

k∏
j=1

[
g∗

y∗
]γj

αj

]β

= [D]iα1...αk
. (1.3)

If the higher dimensional tensors are unfolded column-wise, I obtain an equation of the form:

AX + BX
(⊗kC

)
= Dk, (1.4)

where

A =
(
fy∗ + fy∗∗

+
g∗∗

y∗ fy∗∗
)

B =
(
0 fy∗∗

+

)
C = g∗

y∗

X =

(
g∗

y∗k

g∗∗
y∗k

)
matrix of unknowns

Dk = right-hand side dependent on k

This equation presents a core for each k-order step of the perturbation approach. The deriva-
tives

[
gy∗k−iσi

]
are obtained as a solution to the same type of Sylvester equation.

The remainder of the paper is organized as follows: The second section introduces the new
recursive algorithm, solving equation (1.4), and analyzes memory consumption and compu-
tational complexity. The third section compares the recursive algorithm with the Bartels–
Stewart approach and the doubling algorithm. It shows that the recursive algorithm is better
than the two alternatives in terms of time, memory, and numerical stability. The conclusions
are followed by three appendices. The first appendix describes the algorithm used for block
diagonalizing a matrix. The second provides a formal description of the recursive algorithm.
The third discusses the implementation of the Kronecker product used for the recursive and
doubling algorithms.

2. The Recursive Algorithm

2.1 Complexity of the Problem

Before we start with a description of the algorithm, it is useful to assess the computational
complexity of solving (1.4). Recall that n is the number of equations in the model (1.1), and
m is the number of predetermined variables. A and B in (1.4) are (n, n), C is (m, m), and X
and Dk are (n, mk).

To see how large (1.4) can be, take the Czech EU calibration of the GEM as an example,
Laxton and Pesenti (2003). It has n = 244 equations and 49 forward looking variables. After
eliminating static variables from (1.4), one gets m = 88 predetermined dynamic variables.
The following table shows the amount of memory needed for the storage of matrix Dk for
several k’s.
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Order k Memory for Dk

2 14.4 MB
3 1.24 GB
4 109.0 GB

2.2 Preconditioning

The solution to (1.4) is obtained in three steps. First, a suitable linear transformation precon-
ditioning the equation is found, then the transformed equation is solved, and third, an inverse
transformation is applied to obtain the solution to the original system.

The preconditioning step consists in premultiplying by A−1 to obtain

X + A−1BX
(⊗kC

)
= A−1D

and finding real Schur decompositions K = U(A−1B)UT and F = V CV T , giving

Y + KY
(⊗kF

)
= D̄ (2.5)

Y = UX
(⊗kV T

)
(2.6)

D̄ = UA−1D
(⊗kV T

)
.

When (2.2) is solved, the inverse of the linear transformation (2.2) is applied to recover X ,
i.e.,

X = UT Y
(⊗kV

)
. (2.7)

Two issues are noteworthy. The first is the existence and stability of inverse A−1. Its exis-
tence is implied by the fact that, for the first order, gu = −A−1fu. Its numerical stability is
more complex. Basically, if the matrix A is poorly conditioned, the preconditioning step can
introduce severe numerical errors. If this is the case, the model is most likely ill-stated, since
the inverse of A is fundamental in solving the linear approximation. However, the condition
number gives only the upper bound on the numerical errors. In practice, therefore, our imple-
mentation reports the residual relative size of (1.4). The numerical error of A−1B and A−1D
need be checked only if the residual relative size is too large.

The second issue regards the Schur decomposition of C. As will become clear, the recursive
algorithm benefits from a large number of zero elements in the quasi-triangular matrix F .
Additional zero elements can be introduced into F by sacrificing the orthogonality of V , i.e.,
C = V FV −1. However, this departure from orthogonality can introduce large numerical
errors, since the condition number of V is no longer equal to 1 as for orthogonal matrices. In
order to control condition number growth in the similarity decomposition c = V FV −1, the
results of Bavely and Stewart (1979) and Dongarra et al. (1992) are used and the algorithm is
briefly sketched in Appendix A.

2.3 The Recursive Solution

This section gives the core algorithm to solve equation (2.2), which can be vectorized as(
I +

(⊗kF T ⊗K
))

vec(Y ) = vec(D̄). (2.8)
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Although the algorithm works with the vectorized version, the matrix in (2.8) is not stored in
the memory. The basic idea of the recursive algorithm is to obtain the solution at level k with
the solutions for the same problem (or similar) at level k − 1. To simplify the notation, let F [k]

denote ⊗kF T ⊗K. For k = 0, F[k] = K.

Recall that both F and K are quasi-triangular matrices. To describe the recursive approach,
suppose that the first eigenvalue of F is real; let us denote this as r = F11. If we pick y as the
first part of Y (it corresponds to the size of the F[k−1] matrix) and d as the corresponding first
part of D̄, then y is a solution of

(I + r · F[k−1])y = d. (2.9)

Note the similarity to (2.8). If the first eigenvalue is complex, I pick the first two parts of Y
and the first two parts of D̄. The first two parts of Y can then be obtained as a solution of(

I +

(
α β1

−β2 α

)
⊗ F[k−1]

)(
y1

y2

)
=

(
d1

d2

)
, (2.10)

where α, β1, and β2 constitute the first complex eigenvalue block.

When obtaining the solution of (2.9) or (2.10), I go through all non-zero elements of F T below
the eigenvalue block (since F T is quasi lower triangular) and eliminate them by updating
subsequent parts of matrix D̄. More precisely, for the real eigenvalue I update

dj ←− dj − F1j · (F[k−1]) y for all j = 2, . . . , m.

And for the complex eigenvalue I update

dj ←− dj − F1j · (F[k−1]) y1 − F2j · (F[k−1]) y2 for all j = 3, . . . , m.

After the eliminations are performed, subsequent parts of Y can be found as a solution to an
equation of type (2.9) (or (2.10) respectively). In this way, the solution Y is obtained.

What remains to be discussed is how the equations for the real (2.9) and complex (2.10) cases
are solved. As noted before, (2.9) is a slight generalization of (2.2) (r = 1). It is clear that
solving (2.9) at level k − 1 in the same way as the original equation (2.2) at level k will result
in cases of both types ( (2.9) and (2.10)) at levels k − 2, k − 3, . . .. For k = 0, the solution
of (2.9) is easy since I + rK is quasi triangular.

Now it suffices to show how (2.10) is solved. As Lemma 1 in Appendix B claims, the solution
of (2.10) is obtained as that for two equations of the form(

I + 2α · F[k−1] + (α2 + β2) · F 2
[k−1]

)
y = d, (2.11)

where F 2
[k] denotes ⊗k

(
F T
)2 ⊗ K2. Note that the eigenvalues of F 2 are the squares of the

eigenvalues of F , and since F is the Schur factor, the order of eigenvalues in F and F 2 is the
same. Therefore, this equation can be solved in a manner very similar to that of equation (2.2).
I simply go through all the diagonal blocks of F (coinciding with blocks of F 2), solving the
appropriate equation, followed by an elimination.
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What are the appropriate equations to be solved during this process? For a real eigenvalue r of
F (corresponding to r2 of F 2), the equation takes the form(

I + 2rα · F[k−2] + r2(α2 + β2) · F 2
[k−2]

)
y = d.

In fact, this is exactly the same as (2.11), so I solve it by recursion. At the bottom of the
recursion (k = 0), I get an equation of the form (I + αK + (α2 + β2)K2)y = d, which is easy
to solve since I + αK + (α2 + β2)K2 is quasi triangular.

For a complex eigenvalue of F corresponding to a 2× 2 block of F T(
γ δ1

−δ2 γ

)
,

one obtains an equation of the form(
I + 2α

(
γ δ1

−δ2 γ

)
⊗ F[k−2] + (α2 + β2)

(
γ δ1

−δ2 γ

)2

⊗ F 2
[k−2]

)(
y1

y2

)
=

(
d1

d2

)
.

Lemma 2 in Appendix B claims that this type of equation can be transformed to the solution of
two systems of two serial equations of the type (2.11). In this way, the recursion is closed. A
formal account is given in Appendix B.

2.4 Memory Consumption

The algorithm given above can be implemented so that its input is overwritten by its output.
Therefore, besides storage for the input/output vector, the algorithm needs memory only for
temporary vectors allocated on the recursion’s stack. These are the modified right-hand sides in
Lemma 1 and Lemma 2 in Appendix B. The memory consumption peak is reached at the bottom
of a recursion having all complex eigenvalues in higher recursion levels. The maximum is

k∑
i=0

nmi = n
mk+1 − 1

m− 1
.

2.5 Numerical Complexity

Unlike memory consumption, numerical complexity is not that simple. Calculating the num-
ber of flops for a solution of the appropriate recursive formulas yields a fairly complicated
result. Without making further assumptions, it is not possible to deduce the dominating terms.
The following table shows the flops complexity for the extreme assumptions of a fully and
moderately filled matrix F . The latter means that there are pm non-zero elements in matrix
F , where p� m. In an implementation, one does not solve for the derivatives of the decision
rules with respect to static variables, because they are zero. Therefore they may be excluded.
Let n1 denote the number of forward looking variables, n1 ≤ n−m.

Assumption Flops complexity
no real eigenvalues, full F Θ(mknn1) + Θ(m2k−2nn1) + Θ(mk+1n)
no real eigenvalues, moderate F Θ(mknn1)
all eigenvalues real, full F Θ(kmk+1n)
all eigenvalues real, moderate F Θ(mknn1) + Θ(kpmkn)
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The computational time can be divided into three parts. The first portion deals with the solution
of bottom quasi triangular systems, the second with the eliminations, and the third with right-
hand side modifications of Lemma 1 and Lemma 2 of Appendix B. When all the eigenvalues
are complex, the right-hand side modification term dominates the overall complexity. For full
F , the term Θ(m2k−2nn1) dominates for k > 2, and for moderate F , the term Θ(mknn1) is
comparable with the term for quasi triangular systems. This assertion is justified by profiling
the code, which shows that approximately half of the computational time is[sjv1] consumed
in the right-hand side modifications. If there are no complex eigenvalues in F , the time is
dominated in most cases by the eliminations.

2.6 Complex Schur Modification

Having studied the computational complexity, a natural question arises. Why we do not
precondition equation (1.4) using a complex Schur decomposition giving strictly triangular
(though complex) matrices K, and F in (2.2)? Then, all the calculations would be much
easier, since the system (2.2) is triangular. There would be no need for the right-hand side
modifications, whose complexity dominates the overall complexity for the general case.

However, this “trick” will not improve the overall computational time, because the true com-
plexity lies in preconditioning (2.2) and recovering (2.7). The complexity of these steps is
Θ(m2knn1). The time for these steps can be four times longer than that for the same calcula-
tions dealing only with real numbers.

3. Comparison with Other Solution Methods

3.1 Bartels–Stewart Approach

The approach suggested by Bartels and Stewart (1972) is applicable for solving a more general
equation than (2.2), i.e.,

X + SXT = D, (3.12)

where S and T are square matrices and T (without loss of generality) is block upper triangular
with m×m square blocks. Note that T is not required to have the form of a Kronecker product
as in (2.2). Let Tij denote a block of T , and let X and D be partitioned according to a column
partitioning of T . The main idea of this approach is to decompose the equation (3.12) into a
number of smaller Sylvester equations as follows:

X1 = D1 − SX1T11

Xj = Dj − S

j−1∑
k=1

XjTkj − SXjTjj for j = 2, . . . , m.

Note that both equations take the form of (3.12), as the sum in the second equation is known.
Also note that if T is a real Schur factor, then each Tjj is either 1× 1, or 2× 2.

Here we consider an implementation of this method as described in Juillard (2003). Recall
equation (1.4), which solves for the k-th derivatives of the policy rules g with respect to
the state variables y. The derivatives make a multidimensional symmetric matrix, and when
unfolded column-wise, some columns are repeated in both X and Dk. When the repeated
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columns are deleted, the resulting matrices X̂ and D̂k have (m+k−1)!/(k!(m−1)!) columns.
These deletions must also be projected in the Kronecker power⊗kC, giving a matrix Ck, which
no longer has the form of a Kronecker product. Thus, one obtains

AX̂ + BX̂Ck = D̂k (3.13)

This system is first preconditioned in a manner similar to that for the recursive algorithm. We
obtain a quasi triangular Fk = VkCkV

T
k , and the equation takes the form

Ŷ + KŶ Fk = Êk. (3.14)

This is solved in the fashion described above.

First, let us compare the memory consumption of the two algorithms. Recall that the memory
required for the recursive algorithm is approximately nmk. To make the following expressions
more intuitive, I compare the memory requirements relative to the size of the real algorithm
input, which is n(m + k − 1)!/(k!(m − 1)!).2 In our framework, k is much smaller than m,
so this can be approximated as nmk/k!. The relative memory consumption of the recursive
algorithm is then k!. The Bartels–Stewart algorithm allocates memory for the full matrix Vk

and the quasi triangular matrix Fk. The memory required for these matrices is approximately
3
2
(mk/k!)2, and if we divide by the size of the input, we get 3

2
mk/(nk!).

For a fixed-order k, the recursive algorithm is linear in memory consumption, while the
Bartels–Stewart algorithm is polynomial of k-th order with respect to m. The implications
of this conclusion are clear when the above results are applied to the GEM (recall n = 244,
m = 88), as shown in the following table:

absolute relative
Recursive k = 2 14.58 MB 2.00
Bartels–Stewart k = 2 175.5 MB 24.07
Recursive k = 3 1.25 GB 5.86
Bartels–Stewart k = 3 154.24 GB 722.21

When estimating the number of flops needed for the Bartels–Stewart algorithm, we have to
add the flops from the Schur decomposition of Ck and the solution of (3.14). The Schur
real decomposition has cubic complexity with respect to the size of the matrix, so we get
O(m3k/(k!)3).

3 Supposing that Fk is not block diagonalized, we get a number of flops for the Bartels-Stewart
algorithm of Θ(nn1m

k/k!) + Θ(nm2k/(k!)2). Even if we abstract from the severe complexity
of the large Schur decomposition, the Bartels-Stewart approach is still worse by m2/n1 than
the recursive algorithm, whose worst case dominating flops term is Θ(nn1m

2k−2).

There are a few variants of the Bartels–Stewart approach. One of them avoids the multiplica-
tion in (3.13) by A−1 in the preconditioning using the generalized Schur decomposition of A

2 This is the size of the D̂k matrix; we neglect the size of the A, B, and C matrices.
3 Here we write O instead of Θ to express that the complexity can be better, for instance C k might already be in
the Schur form by some lucky accident.
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and B. Another uses the Hessenberg decomposition of A−1B instead of the Schur decompo-
sition in the preconditioning. This method is known as the Hessenberg–Schur algorithm and
can be found in Golub and Loan (1996) and Anderson et al. (1996).

3.2 Doubling Algorithm

The most popular algorithm for solving equation (2.2) is the doubling algorithm – see Ander-
son et al. (1996). The doubling algorithm is formulated in a vectorized form here for ease of
comparison with the recursive algorithm. The choice of formulation method clearly has no
impact on the implementation efficiency.

The doubling algorithm exploits the property that all eigenvalues of both A−1B and C have
modulus smaller than one. This implies that matrix F [k] = ⊗kF T ⊗K in equation (2.8) has all
its eigenvalues with modulus less than one and thus (F [k])

i converges to 0 as i→∞. Now we
can use a classical result of linear algebra:

(I + F[k])
−1 =

∞∑
i=0

(−1)i(F[k])
i,

and the sum can be written as a product, i.e.,

(I + F[k])
−1 = (I − F[k])

∞∏
j=1

(I + (F[k])
2j

).

Notice that each multiplication in the product doubles the number of summands in the sum,
hence the name “doubling” algorithm.

When these ideas are applied in solving (2.8), one gets the following iterative process:

y0 = vec(D̄k)

M1 = F[k]

y1 = y0 −M1y0

Mj = Mj−1Mj−1 for j = 2, . . .

yj = yj−1 + Mjyj−1 for j = 2, . . .

This iterative process is stopped when Mjyj−1 becomes smaller than some user given toler-
ance, which means that subsequent yj will not change more than the tolerance. In the doubling
algorithm, we do not calculate Mj but calculate Fj = F 2j

and Kj = K2j
iteratively, and then

evaluate Mjyj−1 = (⊗kF T
j ⊗Kj)yj−1. The implementation of this operation is described in

Appendix C.

Let us look at the memory requirements. At each step, the algorithm updates the current
solution by addition. This implies that two copies of the current solution are needed, meaning
that the memory consumption is 2nmk. However, if F is successfully block diagonalized,
careful implementation can update the appropriate part of the solution vector block by block,
reusing previously allocated memory. So, if m1 ≤ m denotes the size of the largest diagonal
block of F , then the memory consumption is (1 + m1/m)nmk.
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It is not difficult to calculate the number of flops for the doubling algorithm. Let mf denote
the number of non-zero elements in F . The number of flops per iteration is Θ(nn1m

k
f ). If ν

denotes the number of iterations, the overall complexity is Θ(νnn1m
k
f ). Recall that if we take

the most unfavorable case for the recursive algorithm, where F has all complex eigenvalues
and mf = m2/2, the dominating term in the flops complexity is Θ(nn1m

k−1
f ), which is νmf

times better than the doubling algorithm.

The following table shows the computational times (in seconds) for three models. The first is
the GEM of Laxton and Pesenti (2003), and the other two are optimal portfolio problems with
12 and 4 assets respectively. The table also shows how many doubling steps were needed to
obtain the size of the Mj+1yj contribution less than the tolerance 10−30.

recursive doubling
GEM (k=2) 6.2 16.2 (9 steps)
Portfolio 12 (k=3) 6.9 19.7 (12 steps)
Portfolio 4 (k=5) 15.5 26.2 (8 steps)

Since the doubling algorithm employs very efficient matrix–matrix products (see Appendix C),
its performance is much better than the number of flops derived above. However, it is still
worse than the recursive algorithm. The time of the recursive algorithm does not depend on
the data, but that of the doubling algorithm does. The closer the maximum eigenvalue size is
to 1, the more steps are needed for the doubling algorithm to converge.

One more issue should be brought in. Consider the case where the input/output vector vec(D̄k)
of (2.8) is so large that it cannot fit into the physical memory. In this situation, the number of
vector touches is often more critical for performance than flops. By a vector touch I mean a
transport of a data chunk between processor and memory. Obviously, a vector touch can be
very costly if all the data cannot fit into the memory.

It is easy to assert that one iteration of the doubling algorithm has approximately the same
number of vector touches as the whole recursive algorithm, since the data are traversed in a
similar manner. Therefore, for really large problems that do not fit into the memory, one can
expect the doubling algorithm to need ν times more disk loads and stores.

A much more serious (and often overlooked) issue is the roundoff properties of the doubling
algorithm. The algorithm employs square powers of matrices applied repeatedly. Recall that
the forward componentwise error E of such an operation satisfies |E| ≤ nu

1−nu
|A| · |A|, where n

is the matrix dimension and u is the computer unit roundoff. If there is a significant rounding
error in the first step of the algorithm, and the large elements causing this error are far from the
diagonal, then further steps can magnify this error before these elements are cut down. This
problem can be discovered by evaluating the residual matrix R of equation (1.4). The Czech-
EU calibration of the GEM of Laxton and Pesenti (2003) suffers from this problem. The
following table shows the relative residual sizes in a few norms of the doubling and recursive
algorithms for the second-order simulation.
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recursive doubling
‖R‖1/‖Dk‖1 5.635× 10−15 0.2394
‖R‖∞/‖Dk‖∞ 1.045× 10−13 0.1458
‖R‖F /‖Dk‖F 1.366× 10−14 0.1956
‖ vec(R)‖1/‖ vec(Dk)‖1 2.408× 10−14 0.1088
‖ vec(R)‖∞/‖ vec(Dk)‖∞ 2.419× 10−14 0.3911

A further analysis of this particular case shows that the matrix F is a significant source of
roundoff error. The maximum eigenvalue size is 0.9508, not an unusual value for models of
this type. However, the sizes of matrices |F 2j | · |F 2j | remain high for j = 1, . . . , 5. This
indicates high rounding errors in the evaluations of the powers of F . The recursive algorithm
does not have this problem, since it evaluates only the second powers of the matrices. This
shows that the doubling algorithm is unusable for this problem.

4. Conclusions

A core step toward a higher-order approximation to the solution of the SGDE model is a
Sylvester equation. I present a new recursive algorithm for the Sylvester equation that exploits
a particular structure appearing in the context of the perturbation method. I have also com-
pared the algorithm with the Bartels–Stewart approach and the doubling algorithm. The new
recursive algorithm is seen to be better in terms of computational time, memory usage and
numerical stability. It has also been shown that the doubling algorithm can completely fail to
provide a satisfactory solution, due to roundoff errors. Extreme caution, therefore, should be
exercised before using the doubling algorithm.
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A. Block Diagonalization Algorithm

I describe here the algorithm used for block diagonalizing the matrix C. It employs a similarity
transformation C = V FV −1, where F is a block diagonal matrix with quasi-triangular blocks.
The smaller the block sizes, the more zeros there are above the diagonal in F . The initial step
of the block diagonalization algorithm is the real Schur decomposition C = V1F1V

T
1 .

For the following steps, consider a similarity transformation of a block triangular matrix:

(
I Q
0 I

)(
R S
0 T

)(
I −Q
0 I

)
=

(
R S + QT −RQ
0 T

)
.

If a solution Q to the Sylvester equation S = RQ − QT is found, then the above similarity
transformation breaks the block triangular matrix into a block diagonal matrix. Therefore,
the following steps Fi = Vi+1Fi+1V

−1
i+1 correspond to the above equation. In general, at each

step we choose a diagonal block of Fi and break it by solving the above Sylvester equation
for Q. Using Q I form Vi+1 (and V −1

i+1), and when the process is finished, V is a product
of all Vi (V −1 likewise). However, Q as the solution of S = RQ − QT can be very large,
making Vi+1 and V −1

i+1 ill conditioned. The large size of Q is implied by the large S and by
the insufficiently separated R and T . The latter can be improved by a different eigenvalue
ordering. The eigenvalue reordering can be done by an orthogonal similarity transformation
that does not worsen the condition number of the resulting V .

Intuitively, an eigenvalue reordering, besides separating R and T , also changes the size of S,
so it is very difficult to algorithmically predict the size of Q. Because it is not feasible to try
all possible orderings, the heuristics due to Bavely and Stewart (1979) is used. I take the first
eigenvalue (1 × 1 block for real, 2 × 2 for complex) as matrix R, and T as the rest. Then I
calculate Q. If the greatest absolute value of Q’s elements is less than a user-given threshold,
I break the matrix and carry on with T . Otherwise, I select a suitable eigenvalue from T and
incorporate it into R by eigenvalue reordering. Another attempt to break the matrix is then
made. The eigenvalue suitable to be selected is the one whose size is closest to the average
eigenvalue size of matrix R, since it is likely that such an eigenvalue is guilty of bad separation.

It is difficult to link the user-given threshold for element size in Q with the condition number
of the resulting V . Therefore, in my implementation, the error of the similarity transformation
C = V FV −1 is reported to provide feedback on the threshold to the user.

A comment must be made here regarding eigenvalue swapping. As discussed in Dongarra
et al. (1992), swapping ill-conditioned eigenvalues (or two close ones) may not be possible
with respect to computer precision. In this case, such eigenvalues are brought into R together,
avoiding their unstable swaps. Another difficulty pointed out by Dongarra et al. (1992) is that
a swap can turn an ill-conditioned complex eigenvalue into two real ones. In the extreme,
swapping two complex eigenvalues can yield four real ones. In such cases, the algorithm
proceeds normally, but the implementation must be able to recognize it.



14 Ondřej Kamenı́k

B. The Recursive Algorithm in Detail

Lemma 1. For any n× n matrix A and β1β2 > 0, if there is exactly one solution for(
I2 ⊗ In +

(
α β1

−β2 α

)
⊗ A

)(
y1

y2

)
=

(
d1

d2

)
,

then it can be obtained as solution of(
In + 2αA + (α2 + β2)A2

)
y1 = d̂1(

In + 2αA + (α2 + β2)A2
)
y2 = d̂2,

where β =
√

β1β2, and(
d̂1

d̂2

)
=

(
I2 ⊗ In +

(
α −β1

β2 α

)
⊗ A

)(
d1

d2

)
.

Proof. Since(
α β1

−β2 α

)(
α −β1

β2 α

)
=

(
α −β1

β2 α

)(
α β1

−β2 α

)
=

(
α2 + β2 0

0 α2 + β2

)
,

it is easy to see that if the equation is multiplied by

I2 ⊗ In +

(
α −β1

β2 α

)
⊗ A

we obtain the result. We only need to prove that the matrix is regular. But this is clear because
matrix (

α −β1

β2 α

)
collapses an eigenvalue of A to −1 iff the matrix(

α β1

−β2 α

)
does. 	


Lemma 2. For any n× n matrix A and δ1δ2 > 0, if there is exactly one solution for(
I2 ⊗ In + 2α

(
γ δ1

−δ2 γ

)
⊗A + (α2 + β2)

(
γ δ1

−δ2 γ

)2

⊗ A2

)(
y1

y2

)
=

(
d1

d2

)
,

it can be obtained as(
In + 2a1A + (a2

1 + b2
1)A

2
) (

In + 2a2A + (a2
2 + b2

2)A
2
)
y1 = d̂1(

In + 2a1A + (a2
1 + b2

1)A
2
) (

In + 2a2A + (a2
2 + b2

2)A
2
)
y2 = d̂2,
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where(
d̂1

d̂2

)
=

(
I2 ⊗ In + 2α

(
γ −δ1

δ2 γ

)
⊗ A + (α2 + β2)

(
γ −δ1

δ2 γ

)2

⊗ A2

)(
d1

d2

)
and

a1 = αγ − βδ

b1 = αδ + γβ

a2 = αγ + βδ

b2 = αδ − γβ

δ =
√

δ1δ2.

Proof. The matrix can be written as(
I2 ⊗ In + (α + iβ)

(
γ δ1

−δ2 γ

)
⊗ A

)(
I2 ⊗ In + (α− iβ)

(
γ δ1

−δ2 γ

)
⊗A

)
.

Note that both matrices are regular since their product is regular. For the same reason as in the
previous proof, the following matrix is also regular(

I2 ⊗ In + (α + iβ)

(
γ −δ1

δ2 γ

)
⊗ A

)(
I2 ⊗ In + (α− iβ)

(
γ −δ1

δ2 γ

)
⊗A

)
,

and we may multiply the equation by this matrix, obtaining

d̂1 and d̂2. Note that the four matrices commute, that is why we can write the whole product as(
I2 ⊗ In + (α + iβ)

(
γ δ1

−δ2 γ

)
⊗A

)
·
(

I2 ⊗ In + (α + iβ)

(
γ −δ1

δ2 γ

)
⊗ A

)
·(

I2 ⊗ In + (α− iβ)

(
γ δ1

−δ2 γ

)
⊗ A

)
·
(

I2 ⊗ In + (α− iβ)

(
γ −δ1

δ2 γ

)
⊗ A

)
=(

I2 ⊗ In + 2(α + iβ)

(
γ 0
0 γ

)
⊗A + (α + iβ)2

(
γ2 + δ2 0

0 γ2 + δ2

)
⊗A2

)
·(

I2 ⊗ In + 2(α− iβ)

(
γ 0
0 γ

)
⊗ A + (α− iβ)2

(
γ2 + δ2 0

0 γ2 + δ2

)
⊗ A2

)
.

The product is a diagonal consisting of two n× n blocks, which are the same. The block can
be rewritten as product:

(In + (α + iβ)(γ + iδ)A) · (In + (α + iβ)(γ − iδ)A)·
(In + (α− iβ)(γ + iδ)A) · (In + (α− iβ)(γ − iδ)A),

and after reordering

(In + (α + iβ)(γ + iδ)A) · (In + (α− iβ)(γ − iδ)A)·
(In + (α + iβ)(γ − iδ)A) · (In + (α− iβ)(γ + iδ)A) =

(In + 2(αγ − βδ)A + (α2 + β2)(γ2 + δ2)A2)·
(In + 2(αγ + βδ)A + (α2 + β2)(γ2 + δ2)A2).



16 Ondřej Kamenı́k

Now it suffices to compare a1 = αγ − βδ and verify that

b2
1 = (α2 + β2)(γ2 + δ2)− a2

1 =

= α2γ2 + β2γ2 + α2β2 + β2δ2 − (αγ)2 + 2αβγδ − (βδ)2 =

= (βγ)2 + (αβ)2 + 2αβγδ =

= (βγ + αβ)2

For b2 it is done in the same way. 	


Here I describe the recursive algorithm, solving (2.2) in more technical detail. I define three
functions (which recursively call each other) of which vec(Y ) = solv1(1, vec(D̂), k) provides
the solution Y .

In the following text, m denotes the dimension of F and n that of K. Let mc be the number of
complex eigenvalue pairs of F , and mr the number of real eigenvalues; thus m = mr + 2mc.
Fj denotes the j-th diagonal block of F T , this is a 1× 1 or 2× 2 matrix, depending on the j-th
eigenvalue of F for j = 1, . . . , mc+mr. For a fixed j, let j̄ denote the index of the first column
of Fj in F T . Finally, whenever I write something like (Imk⊗In +r ·F[k])y = d, y and d denote
column vectors of appropriate dimensions, and y j̄ is the j̄-th partition of y (similarly for d j̄). If
the j-th eigenvalue is real, yj denotes yj̄, and if it is complex, yj denotes a double-size vector
of stacked vectors yj̄ and yj̄+1. Similarly for d.

Function solv1.

The function y = solv1(r, d, k) solves the equation

(Imk ⊗ In + r · F[k]) y = d.

The function proceeds as follows:

1. If k = 0, the equation is solved directly; K is an upper quasi-triangular matrix, so this
is easy.

2. If k > 0, then go through all diagonal blocks Fj for j = 1, . . . , mr + mc and perform

(a) If Fj = (fj̄j̄) = (f), return yj = yj̄ = solv1(rf, dj̄, k − 1). Then precalculate
z = r·F[k−1]yj, and eliminate elements below Fj . That is, for each ı̄ = j̄+1, . . . , m,
put

dı̄ = dı̄ − fj̄ı̄z.

(b) If Fj =

(
α β1

−β2 α

)
, return yj = solv2(rα, rβ1, rβ2, dj, k−1). Then precalculate

z1 = r · F[k−1]yj̄, and z2 = r · F[k−1]yj̄+1

and eliminate elements below Fj . That is, for each ı̄ = j̄ + 2, . . . , m put

dı̄ = dı̄ − fj̄ı̄z1 − fj̄+1ı̄z2
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Function solv2.

The function y = solv2(α, β1, β2, d, k) solves equation(
I2 ⊗ Imk ⊗ In +

(
α β1

−β2 α

)
⊗ F[k]

)
y = d.

According to Lemma 1, the function returns

y =

(
solv2p(α, β1β2, d̂1, k)

solv2p(α, β1β2, d̂2, k)

)
,

where d̂1, and d̂2 are partitions of d̂ from the lemma.

Function solv2p.

The function y = solv2p(α, β2, d, k) solves equation(
Imk ⊗ In + 2αF[k] + (α2 + β2)F 2

[k]

)
y = d.

The function proceeds as follows:

1. If k = 0, the matrix In + 2αK + (α2 + β2)K2 is calculated and the solution is obtained
directly.

2. If k > 0, note that the diagonal blocks of F 2T are of the form F 2
j , since if the F T is

block partitioned according to diagonal blocks, then it is lower triangular. So go through
all the diagonal blocks Fj , for j = 1, . . . , mr + mc, and perform:

(a) If Fj = (fj̄j̄) = (f), then the j-th diagonal block of

Imk ⊗ In + 2α · F[k] + (α2 + β2) · F 2
[k]

takes the form

Imk−1 ⊗ In + 2αf · F[k−1] + (α2 + β2)f 2 · F 2
[k−1]

and one can have yj = yj̄ = solv2p(fα, f 2β2, dj, k − 1).
To eliminate the elements below Fj precalculate

z = 2α · F[k−1]yj , and w = (α2 + β2) · F 2
[k−1]

yj

and eliminate. That is, for all ı̄ = j̄ + 1, . . . , m put

dı̄ = dı̄ − fj̄ı̄z − gj̄̄ıw,

where gj̄̄ı denotes the element of F 2T at position (̄ı, j̄).
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(b) If Fj =

(
γ δ1

−δ2 γ

)
, then the j-th diagonal block of

Imk ⊗ In + 2α · F[k] + (α2 + β2) · F 2
[k]

takes the form

Imk−1 ⊗ In + 2α

(
γ δ1

−δ2 γ

)
F[k−1] + (α2 + β2)

(
γ δ1

−δ2 γ

)2

F 2
[k−1]

.

According to Lemma 2, one must calculate d̂j̄, and d̂j̄+1, and a1, b1, a2, b2 to obtain

yj̄ = solv2p(a1, b
2
1, solv2p(a2, b

2
2, d̂j̄, k − 1), k − 1)

yj̄+1 = solv2p(a1, b
2
1, solv2p(a2, b

2
2, d̂j̄+1, k − 1), k − 1)

To eliminate elements below Fj, first precalculate

z1 = 2α · F[k−1]yj̄ z2 = 2α · F[k−1]yj̄+1

w1 = (α2 + β2) · F 2
[k−1]yj̄ w2 = (α2 + β2) · F 2

[k−1]yj̄+1.

Then go through all ı̄ = j̄ + 2, . . . , m and put

dı̄ = dı̄ − fj̄̄ız1 − fj̄+1ı̄z2 − gj̄̄ıw1 − gj̄+1ı̄w2.

C. Implementation of Kronecker Product

The performance of the doubling algorithm and partly of the recursive algorithm depends on
how the operation P · (Q1⊗ . . .⊗Qk) is implemented. This appendix describes the algorithm
used in non-vectorized form. Everything that follows can be equivalently written in vectorized
form; the only reason for choosing the non-vectorized form is notational convenience.

The implementation depends on the matrix memory storage mode. I assume here a column
major storage mode, that is, the matrix is stored column by column in the memory. Moreover,
I assume that there is no skip between columns, in other words, the leading dimension is equal
to the number of rows. This assumption implies that one can reshape a matrix by stacking
subsequent columns into new columns (or breaking a column into new columns) at zero costs.

Using a fundamental property of the Kronecker product, the product operation can be written
as

P · (Q1 ⊗ . . .⊗Qk) = P · (Q1 ⊗ I) · . . . · (I ⊗Qi ⊗ I) · . . . · (I ⊗Qk),

where the identity matrices (all written as I) have different dimensions. One can choose a
different order of matrices on the right- hand side, implying different dimensions of the identity
matrices.

The algorithm consists of k steps. Each step performs one of the three operations. These have
the form: B · (A⊗ I), B · (I ⊗ A⊗ I), and B · (I ⊗ A). Their implementations are:
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1. B · (A⊗ I): Let m be the number of rows of B, (n, p) be the dimensions of A, and q be
the dimensions of I . It is easy to see that

B · (A⊗ I) = reshape(reshape(B, mq, n) · A, m, pq),

where the operator reshape(M, r, s) reshapes the data of matrix M to r rows and s
columns. This step is, in fact, one matrix–matrix product.

2. B · (I ⊗ A): Let m, n, p, q be the same as in the previous paragraph. If B is partitioned
as B = [B1 B2 . . . Bq], then the product is

B · (I ⊗A) = [B1A B2A . . . BqA].

This step corresponds to q matrix–matrix products.

3. B · (I ⊗ A ⊗ I): Let m, n, p be the same as in the first paragraph, and let q be the
dimension of the first identity matrix and r that of the second one. Then, in a similar
way as in the previous paragraph, one gets

B · (I ⊗A⊗ I) = [B1 · (A⊗ I) B2 · (A⊗ I) . . . Bq · (A⊗ I)].

Each of the partition products corresponds to one matrix–matrix product, thus this step
corresponds to q matrix–matrix products.
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