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Abstract A hybrid population-based metaheuristic, Hybrid Canonical Di�eren-
tial Evolutionary Particle Swarm Optimization (hC-DEEPSO), is applied to solve
Security Constrained Optimal Power Flow (SCOPF) problems. Despite the inher-
ent di�culties of tackling these real-world problems, they must be solved several
times a day taking into account operation and security conditions. A combination
of the C-DEEPSO metaheuristic coupled with a multipoint search operator is pro-
posed to better exploit the search space in the vicinity of the best solution found
so far by the current population in the �rst stages of the search process. A simple
diversity mechanism is also applied to avoid premature convergence and to escape
from local optima. A experimental design is devised to �ne-tune the parameters
of the proposed algorithm for each instance of the SCOPF problem. The e�ective-
ness of the proposed hC-DEEPSO is tested on the IEEE 57-bus, IEEE 118-bus
and IEEE 300-bus standard systems. The numerical results obtained by the pro-
posed hC-DEEPSO are compared with other evolutionary methods reported in
this literature to prove the potential and capability of the proposed hC-DEEPSO
for solving the SCOPF at acceptable economical and technical levels.
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1 Introduction

The increasing demand for electric power is one of the main challenges being
faced by many countries in the World. Among other goals, electric companies aim
at supplying power to consumers at a minimal operational cost. In general, this
optimization problem known as Optimal Power Flow (OPF) seeks to optimize the
overall operation cost of generating and transmitting electric power subject to
system constraints and control limits. Many other goals can also be considered in
this problem, such as the minimization of modi�cations in controls, minimization
of the active power losses, minimization of power not supplied when load has to be
curtailed, or even the minimization of the greenhouse gas emissions, just to name
a few [1]. Thus, the software module in Energy Management Systems to solve the
OPF problem plays an important role, as the whole operation of the power system
must be optimized for each time interval.

OPF can be de�ned as a mono-objective problem dealing with the aggrega-
tion of two or more objective functions, or a multiobjective one trying to optimize
each goal separately and simultaneously [2]. Traditionally, the control variables
are the active power production and the voltage set point of generating units, the
positions of transformer taps and the states of shunt compensator's (reactors and
capacitors). The equality constraints stem from the power �ow equations and are
associated with Kirchho�'s current and voltage laws. Operational limits, such as
the active and reactive power boundaries of generators, the bus voltage magnitude
and the apparent power �ow in the lines are modeled as inequality constraints.
Additional security criteria can be included in the OPF problem, such that the
operation of the system is kept within pre-de�ned security margins even when
unplanned outages occur [3]. Usually, OPF is considered as an extremely di�-
cult optimization problem to solve due to its highly dimensionality, non-linearity,
combinatorial, non-convex and multimodal nature [1] [2] [3].

The OPF problem was modeled and solved for the �rst time by Carpertier [4]
using deterministic techniques. The some common deterministic techniques used
to solve this problem are Linear Programming, Quadratic Programming, Gradient
Method, Interior Point Methods, to name a few [1] [2] [5]. Some examples of nonde-
terministic techniques are Genetic Algorithms (GA), Particle Swarm Optimization
(PSO), Ant Colony Optimization (ACO) and Di�erential Evolution (DE) [6]-[13].
Table 1 describes in a simple manner the main advantages and disadvantages of
the most important techniques.

Apart from supplying electric power at minimal operation cost, utilities must
comply with high levels of safety and quality. To ensure adequate continuity and
security of supply, the operator might want that the inequality constrains are
not violated in case of equipment outage (generators, transformers, lines, etc.).
When contingencies of equipment are included in the optimization model, the
problem is known as Security Constrained Optimal Power Flow (SCOPF) [3].
Several research works handling the SCOPF problem can be found in literature,
namely, methodologies that use GA, PSO, ANN, Linear Programming and some
hybrid approaches [14]-[20].

Hybrid optimization techniques have been recently proposed to solve this prob-
lem. Hybrid methods can be de�ned as a combination of deterministic and nonde-
terministic techniques to solve a particular problem. In many cases, hybrid meth-
ods have proven to be more e�cient and lead to faster convergence to the optimal
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Table 1 Summary of solution methods for OPF problems based on [1] [2]

Methods Main principle Advantages Disadvantages

Gradient
Usage of the gra-
dient of the La-
grangian function to
direct the search to-
wards the optimal
solution.

Does not require the
calculation of second
derivatives, making
the method simpler.

Slow convergence;
Di�culties in han-
dling inequality
constraints.

or Dommel-Tinney

Interior points

Start from a point
in the �interior� of
the search space and
transform the in-
equality constraints
into equality con-
straints through
slack variables in
order to build the
Lagrangian func-
tion by adding all
restrictions.

Faster than conven-
tional Linear pro-
gramming methods;
e�cient and robust
on solving linear and
nonlinear problems.

Easily handles in-
equality constraints;
sensitive to ini-
tial conditions;
sometimes requires
linearization.

Linear Programming

Usage of linear or
piecewise linear cost
functions and DC
power �ow instead
of AC power �ow,
which provides a lin-
ear relationship be-
tween injections and
line �ows.

Convergence is guar-
anteed; fast conver-
gence; less compu-
tational e�ort; Eas-
ily handles inequal-
ity constraints.

Inaccuracy due to
linearization of cost
functions and non-
linear constraints.

Quadratic Programing
Usage of a quadratic
objective function;
all constraints are
linear.

Does not require lin-
earization of cost
functions.

Inaccuracy due to
linearization of non-
linear constraints.

Newton-Raphson

Application of a sec-
ond order Taylor se-
ries expansion, us-
ing the Hessian and
gradient matrixes to
build an approxi-
mation of quadratic
function.

Fast convergence
when it is close
to optimum value;
Flexible formu-
lation (Di�erent
applications for
the problem OPF);
e�cient and robust.

Computationally
heavy; highly sen-
sitive to initial
conditions; di�culty
of enforcing inequal-
ity constraints.

Metaheuristics

Genetic algorithms,
Particle Swarm
Optimization, Evo-
lutionary Program-
ming, Ant Colony
optimization.

No linearization
is required; Al-
lows for the use
of non-continuous
functions, not
convex and not
di�erentiable; easy
implementation.

The solution ob-
tained is not guar-
anteed to be optimal
and high time to
obtain solutions.

solution than methods that optimize solely individual components [2]. Hybrid
methods applied to solve the OPF problem are based on the combination of tech-
niques such as GA and PSO, DE as well as PSO, ANN with GA, Interior Point and
PSO, Newton Method, PSO and Arti�cial Bee Colony (ABC), PSO and others
[21]-[30].

Hybrid methods are becoming reliable and e�ective techniques to solve real-
world and complex optimization problems with remarkable performance. For in-
stance, a PSO inspired multi-elitist ABC algorithm named PS-MEABC is proposed
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in [30] for real-parameter optimization. The optimal coordination of directional
overcurrent relays in meshed networks using a hybrid PSO-DE approach is de-
tailed in [31]. The economic dispatch problem of generating units is solved in [32]
once again using a hybrid technique based on PSO and DE.

This paper proposes a new hybrid approach, the so called Hybrid Canoni-
cal Di�erential Evolutionary Particle Swarm Optimization (hC-DEEPSO), which
combines the C-DEEPSO [18] coupled with a multipoint search operator called
Spiral Search (SLS) to solve the SCOPF problem. The usage of this search op-
erator aims to better exploit the search space in the vicinity of the best solution
found so far by the current population in the �rst stages of the search process. In
addition, a simple diversity mechanism is applied to balance between exploration
and exploitation. That mechanism is able to avoid premature convergence and to
escape from local optima.

The algorithm is tested on three test systems well-known in literature - IEEE
57 bus, IEEE 118 bus and IEEE 300 bus systems - with two di�erent objective
functions: the minimization of active power losses in the transmission network and
the minimization of total cost of electricity production for the expected operation
scenario. In both scenarios, several unplanned outages of equipment are taken into
account, requiring the system operation to be kept within pre-de�ned margins
even in contingency scenarios.

This section has introduced the OPF problem and its SCOPF variation as well
as the current state-of-art methods for solving these problems. The remainder of
the paper is organized as follows: Section 2 deals with the modeling of the SCOPF
problems; Section 3 presents the hybrid algorithm hC-DEEPSO, the problem-
speci�c search operator SLS and the diversity mechanism; Section 4 discusses the
experiments and the results obtained; �nally, Section 5 concludes the work.

1.1 Problem Formulation

The original OPF problem is a mixed-integer non-linear optimization problem.
That formulation does not guarantee that operation of the network remains in a
secure state after a sudden equipment outage. Therefore, an improved formulation
has been proposed: the SCOPF. This model ensures that the power can be suc-
cessfully transferred from generators to loads not only under the expected network
topology, but also for some unplanned outage caused by sudden loss of sections of
the network, such as transmission lines, distribution branches and/or transform-
ers. Therefore, SCOPF problem has a considerable larger number of constraints
than OPF problem.

This paper addresses the SCOPF problem considering two di�erent objective
functions: the minimization of total operation cost, which is known as Optimal
Active Reactive Power Dispatch (OARPD) problem, and the minimization of total
active power losses in the transmission network, known as Optimal Reactive Power
Dispatch (ORPD) problem. These two objective functions can be expressed as
non-linear functions: the OARPD version is a quadratic function of the generators
active power output in $/h while the ORPD version is quadratic function of the
bus voltage magnitudes and of the cosine of the di�erence between bus voltage
angles. Note that the active power production of the power plants in the ORPD
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problem is an input parameter and not a decision variable: the only active power
production to be optimized is that corresponding to the generator in the slack bus.

Both optimization problems can be formulated using three types of variables
- the the control or decision variables, the state variables and the parameters - as
follows:

� Control: active power and voltage magnitude for the generators; tap status of
transformers; switching state of capacitors; power electronic controls and phase
position of transformer taps (when available);

� State: voltage magnitude and angle for all buses;
� Parameters: network topology, resistance, reactance, shunt conductance and
susceptance of transmission lines and transformers, susceptance of shunt ca-
pacitors, physical limits of the control variables, reactive power limits of gener-
ators, apparent power limits of transmission lines and transformers, slack bus,
and set of N-1 contingency scenarios.

SCOPF problem includes security constraints, namely the N-1 criteria, to up-
hold the inequality constrains even in case of failure of a single component. The
two objective functions, which are represented in Eq. (1) as minC in $/h and Ploss

in MW , are solved for the expected scenario of operation, whereas the constraints
are met not only in the case of that scenario but also for all the contingency sce-
narios. Note that these two problems are solved separately using a mono-objective
approach.

minC =
∑NG

i=1 ai + bi × Pgi + ci × Pg2i ,

minPloss =
∑NL

K=1GK [U2
i + U2

j − 2|Ui||Uj | cos(δi − δj)],

s.t. :



Pi = Pgi − Pli =∑NB
j=1 UiUj

[
Gij cos(δi − δj) +Bij sin(δi − δj)

]
,

∀i ∈ NB,∀s ∈ NS;
Qi = Qgi −Qli =∑NB

j=1 UiUj

[
Gij sin(δi − δj) +Bij cos(δi − δj)

]
,

∀i ∈ NB,∀s ∈ NS;
U i 6 Ui 6 U i, ∀i ∈ NB,∀s ∈ NS;∣∣Sij

∣∣ 6 Sij , ∀i ∈ NC, ∀s ∈ NS;∣∣Sji

∣∣ 6 Sij , ∀i ∈ NC, ∀s ∈ NS;
Pgi 6 Pgi 6 Pi,∀i ∈ NG, ∀s ∈ NS;
Qgi 6 Qgi 6 Qi,∀i ∈ NG, ∀s ∈ NS;
ti 6 ti 6 ti,∀i ∈ NOLTC, ti ∈ ∀s ∈ NS;
0 6 qi 6 1,∀i ∈ NSHUNT, qi ∈ Z, ∀s ∈ NS.

(1)

in which Pgi (MW) is the active power generation, Qgi (MVar) is the reactive
power generation, Pl (MW) is the active power load, Ql (MVar) is the reactive
power load, U (kV) is the voltage magnitude, δ (degrees) is the voltage angle, Sij

(MVA) is the apparent power �ow injection at the sending end of the transmission
circuit connecting bus i to bus j whereas Sij (MVA) is the apparent power �ow
injection at the receiving end of the same circuit.

The variable t is the tap setting position of the OLTC (On-LoadTapChanger),
q is a binary variable that represents the state of the capacitor/reactor banks, a
($/h), b ($/MWh) and c ($/MWh2) are cost coe�cients, Y = G + jB is the
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bus admittance matrix, NG is the number of generators, NB is the number of
buses, NC is the number of circuits in the network, NOLTC is the number of
OLTC transformers, NSHUNT is the number of capacitor/reactor banks and
NS is the number of scenarios that represent the expected operation scenario and
contingency states. Note that all constraints must be satis�ed for all scenarios.

In this research work, the active power production at PV buses, the voltage
magnitude at the REF and PV buses, the OLTC tap setting position and the state
of the capacitor banks were modeled as hard constraints, i.e. the limits of these
variables were not allowed to be violated. The algorithm proposed in this paper is
a metaheuristic devised for continuous search spaces, a simple rounding procedure
was used to convert real variables into integer ones.

Soft constraints, i.e. the constraints that were modeled as penalties to two func-
tions presented in Eq. (1), consist of the active power production of the REF bus,
the voltage magnitude at PQ buses, the apparent power �ow through branches,
and the reactive power generation at REF and PV buses. The deviations from
the limits were computed in per-unit system. The penalty function adopted fp is
described in Eq. (2) :

fp =
[
1 1 1 1

]

max(0, PgREF − PgREF )

2 +max(0, PgREF − PgREF )
2∑NBPQ

i=1 [max(0, Ui − Ui) +max(0, Ui)]
2∑NC

i=1[max(0,
∣∣Sij

∣∣− Sij) +max(0,
∣∣Sji

∣∣− Sij)]
2∑NBREf+PU

i=1 [max(0, Qi −Qi) +max(0, Qi −Qi)]
2

 (2)

The �tness functions used of the individuals computed by our algorithm de-
pends on the penalty function selected and is de�ned as minC and Ploss respec-
tively,

fit = C + 1× 107 × fp, (3)

fit = Ploss + 1× 107 × fp, (4)

in which fp represents the penalty function.

2 hC-DEEPSO with Spiral Search

Evolutionary algorithms (EAs), popular algorithms in optimization research com-
munity, are methods that mimick the processes of Darwinian evolution. In practice,
simple EAs are usually outperformed by hybrid EAs when solving complex opti-
mization problems. The concept of hybridization refers to combine EAs with local
search algorithms or to combine features of di�erent optimization techniques to
produce a more powerful algorithm. In this context, the combination of Di�erential
Evolution (DE) and Particle Swarm Optimization (PSO) represents a promising
way to create superior optimzers [33].

While being similar in terms of basic algorithm features and manipulating
a population of candidate solutions, PSO and DE di�er in terms of population
sampling approach. Sampling in PSO is based on individual cognition and social
collaboration while sampling in DE relies on di�erential mutation and crossover
[33]. The hybrid algorithm, C-DEEPSO [18], creates a vector of di�erences inspired
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by the mutation operator of DE and introduces that vector in the movement
equation pf PSO. Moreover, C-DEEPSO addresess the binomial recombination
operator presented in the DE.

This metaheuristic constitutes an enhancement over Di�erential Evolutionary
Particle Swarm Optimization (DEEPSO) [17] and can be viewed as an evolutionary
algorithm with recombination rules borrowed from PSO or a swarm optimization
method with selection and self-adaptiveness properties inherent from DE algo-
rithm. Table 2 describes the main parameters of the C-DEEPSO algorithm.

Table 2 Parameters in C-DEEPSO.

Parameter Description

t is the current generation;
X is the current solution;
Xgb is the best solution found so far;
V is the velocity of solution;
F is disturbance rate;
∗ indicates a parameter is subjected to the

mutation process;
st is a speci�c strategy by DE algorithm;
C is a diagonal matrix of random

variables sampled at each iteration
(with probability P of communication);

wI , wA, wC are weights on the inertia, memory and
communication in C-DEEPSO, respectively.

C-DEEPSO is based on the concept of biological evolution, in which a popula-
tion of solutions evolves and gradually improves over time according to the adapta-
tion of its individuals to the environment. Selection, recombination and mutation
operators are applied to create new solutions. Recombination in C-DEEPSO is
governed by the so called Movement Rule, which in DEEPSO is given by Eq. (5)
and Eq. (6):

Xt = Xt−1 + Vt, (5)

Vt = w∗
i × Vt−1 + w∗

m × (Xr −Xt−1) + w∗
c × C × (X∗

gb −Xt−1) (6)

in which Xr is an individual di�erent from Xt−1 that can be obtained according
to one of the following four options [34]:

1. Sg: sampled from all individuals in current generation;
2. Pb: sampled from a Memory B of the best individual found so far;
3. Sg-rnd: sampled as an uniform recombination from the individuals of the cur-

rent generation, and;
4. Pb-rnd: sampled as an uniform recombination within Memory B.

Typically, the mutation of a generic weight w of an individual follows a simple
additive rule as described by (7),

w∗ = w + τ ×N(0, 1), (7)

in which τ is the mutation rate that must be set by the user. N(0, 1) is a number
sampled from the standard Gaussian Distribution.
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Note that the mutated weight must not become negative nor greater than 1.
Moreover, not only the weights presented in Eq. (5) are mutated but also Xgb.
This attracting position is slightly moved in the search space using a Gaussian
Distribution to prevent the population from being trapped in a given region of the
search space. This is especially evident in those cases when the cooperation term
becomes more dominating than the other terms. Mutation of Xgb, which is carried
out for every particle, is performed according to the following equation:

X∗
gb = Xgb[1 + τ ×N(0, 1)]. (8)

An analysis of the Movement Rule shows that DEEPSO is best described as a
metaheuristic stemming from swarm intelligence with selection and self-adaptation
abilities rather than from the canonical DE algorithm (see [35]). For the sake of
the clarity, the traditional DE mutation operator is shown in Eq. (9):

vt,i = xt,r1 + F (xt,r2 − xt,r3); r1, r2, r3 ∈ {1, . . . , N}, (9)

in which parameters xt,r1, xt,r2 and xt,r3 are di�erent solutions randomly obtained
from the population and F is a number that belongs to the interval [0, 2], aiming
to control the ampli�cation of di�erential variation. It is easy to see that three
vectors are used in DE mutation process of Eq. 9, while in DEEPSO movement
rule, only two vectors are required, represented by Xr and Xt−1, which are used
in Eq. 6. On the other hand, C-DEEPSO uses the original DE mutation operator,
as described by Eq. (9).

The distinguishing feature of C-DEEPSO is to use instead of the a memory
term, as in the classic PSO, a more general term, called assimilation term. This
term is sensitive to macro-gradients, that lead to improvements in the �tness func-
tion. To obtain the assimilation term, C-DEEPSO relies on a collective memory
instead of multiple and independent memories corresponding to the search expe-
rience of each individual. This memory, called Memory B, contains not only the
position of the individual but also its �tness. A new way to generate Xr is pro-
posed to ensure a better assimilation of the search space. This new strategy, named
SgPb-rnd, is a combination of Sg-rnd and Pb-rnd strategies. In this case, when
using SgPb-rnd, an uniform recombination from the solutions in Memory B and in
the current population is used to obtain Xr. The Movement Rule for C-DEEPSO
is described by Eq. (10) as:

Vt = w∗
IVt−1 + w∗

A(Xst −Xt−1) + w∗
CC(X∗

gb −Xt−1). (10)

The superscript * in Eq (7) indicates that the corresponding parameter/quantity
undergoes evolution under a mutation process. The strategy st used in this paper
is current-to-best [36], which can be expressed by means of Eq. (11),

Xst = Xr + F (Xbest −Xr) + F (Xr1 −Xr2). (11)

In Eq. (10) and Eq. (11), t denotes the current generation, X the current posi-
tion or solution. Morever, Xgb is the best solution ever found by the population,
V is the velocity of the individual, and C represents a n × n diagonal matrix of
Bernoulli random variables that is sampled in every iteration. A communication
rate, P , is applied to generate matrix C. The variables wI , wA and wC are weights
on the inertia, assimilation and communication terms, respectively. The terms Xr1
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and Xr2 are randomly sampled solutions. After the calculation of Xst, the corre-
sponding solution is evaluated. If the �tness of Xst is better than that of Xr, then
Xst receives the value of Xr. This operation is similar to the crossover operator
in DE algorithm (see [35]). The superscript ∗ indicates that the corresponding pa-
rameter/quantity undergoes evolution under a mutation process. Figure 1 shows
a planar (2D) representation of theMovement Rule, with focus on the di�erent
interations between solutions (inertia, cooperation and assimilation). Algorithm 1
describes a pseudo-code for C-DEEPSO.

Fig. 1 Illustration of the movement equation for C-DEEPSO, showing similarity with PSO,
however not having a memory term as attractor.

begin
Step 1: Set values of control parameters of C-DEEPSO - Population size NP ,
Mutation rate τ , Communication rate P , Memory rate MB, Generations limits for
Local Search, Ngl, given a γ rate of occurrence and Dimension (D) ;
Step 2: Set the generation number t = 0 and randomly initialize a population of NP ;
Step 3: Evaluate the current population, NP ;
Step 4: Update the global best solution, Xbg ;

1 while stopping criterion is not satis�ed do

2 for each individual i that belongs to population NP do

Calculate Xr using the strategy, SgPB-rnd;
Copy the current individual Xt−1;
Mutate the strategy parameters wI , wA, wC using Eq. (7);
Mutate X∗

gb using Eq. (8) ;

Apply movement rule in current solution using Eq. (10);
Evaluate the current solution and your copy;
Update the Xbest position;
Select the individual with better �tness to proceed to next population
(NP + 1). *Using for example Stochastic Tournament;

end

Update the best individual Xbg and memory MB;
Execute Algorithm 2 until t =< Ngl;
t = t+ 1

end

end Algorithm 1: Pseudo-code of hC-DEEPSO.
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2.1 The Multipoint Search Operator and the Diversity Mechanism

Some real-world optimization problems present a high number of variables to op-
timize and, in this case, the domain search increases exponentially with the di-
mension size. Algorithms for solving these types of problems need to be carefully
designed and more e�cient than the ones applied to low dimensional problems.
Due to the high dimensionality of SCOPF problems, the evolutionary algorithm
will bene�t from a inclusion of a multipoint search operator. The proposed search
operator is inspired by the Spiral Optimization Algorithm (SOA) [37]. SOA is
based on multipoint search for n dimensions applied to the solution of problems
that have continuous characteristics, based on an analogy of the spiral shape nat-
ural phenomena. The basic idea is to explore the search space using logarithmic
spiral shape, which can be observed in nature, such as in shells, some �owers, for-
mation of cyclones and even galaxies [38]. The logarithmic spiral trajectory model,
centered at x∗ ∈ Rn, starting with an arbitrary point, is given by:

x(k+1) = rM(θ) · x(k) − (rM(θ)− In) · x∗, (12)

in which the rotation angle θ belongs to the range [0, 2π] around the origin in
each k. The radius r, 0 < r < 1 is a convergence rate of the distance between the
current point and the origin, for each k. In is the n-dimensional identity matrix
and M(θ) is the rotation matrix.

A general rotation in the n-dimensional space can be seen as the rotation of an
axis i in direction to an axis j. The plane described by axis i and j is the rotation

plane and the general matrix for main rotation, M
(n)
i,j (θi,j), is given by,

M
(n)
i,j (θi,j) =



1

. . .

cos(θi,j) · · · − sin(θi,j)

.

.

.
. . .

.

.

.
sin(θi,j) · · · cos(θi,j)

. . .

1


, (13)

in which the blank elements are equal to zero.

It is worthwhile to observe that M
(n)
i,j (θi,j) is almost an identity matrix except

in the intersection of columns i and j with rows i and j, meaning that only the

coordinates i and j will change after a M
(n)
i,j (θi,j) rotation. This is consistent with

the bi-dimensional and tri-dimensional cases. Since there are
(
n
2

)
main planes in

a n-dimensional space, this corresponds to the number of possible main rotations
in that space. The rotation matrix in the n-dimensional space is obtained by the
composition of all (n(n− 1)/2) existing combinations [39]. Therefore, Mn(θ) can
be de�ned by Eq. (14), in which n is the number of dimensions:

M (n)(θ) =
∏
i<j

M
(n)
i,j (θi,j). (14)

The n-dimensional logarithmic spiral model is given by,

x(k+1) = rM (n)(θ) · x(k) − (rM (n)(θ)− In) · x∗, (15)
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in which the rotation angle θ belongs to the range [0, 2π] around the origin in
each k. The radius r, 0 < r < 1 is a convergence rate of the distance between the
current point and the origin, for each k. In is the n-dimensional identity matrix
and the M(θ) is the rotation matrix. In a 3-dimensional space, Figure 2 shows the
trajectory of 50 points starting at x0 = (10, 10, 10) and using Eq. (15).

Fig. 2 Examples of logarithmic spiral trajectories using Eq. (12). Di�erent values of conver-
gence rate r produce distinct spiral shape behaviours. (a) trajectory using r = 0.95; θ = π/4
and (b) trajectory using r = 0.90; θ = π/4. The right-hand side column shows a rotated version
of the corresponding spiral.

It is important to notice that the choice of the number of points used to build
the spiral, the radius and angle of the rotation matrix a�ect the shape of the
logarithmic spiral. Four di�erent spirals are shown in Figure 3. Each spiral is
constructed using the parameters given in Table 3.

Table 3 Ilustration parameters

(a) r = 0.95 θ = π/4 popsize = 25
(b) r = 0.95 θ = π/4 popsize = 50
(c) r = 0.80 θ = π/4 popsize = 25
(d) r = 0.95 θ = π/7 popsize = 25

Such, for coupling the idea inspired on SOA as a local search operator inside
C-DEEPSO, some de�nitions must be given:

� Given an occurrence rate (γ), the new local search operator will be run every
generation, until a speci�ed generation Ngl;

� Radius and angle are randomly chosen and the number of points to be used to
construct the spiral is given by the user;

� The number of generated points is directly related to the initialization param-
eters used in SOA. For convenience, the number of points generated will be
the same as the population started in C-DEEPSO;
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Fig. 3 Examples of logarithmic spiral trajectories using Eq. (12). Di�erent values of conver-
gence rate r produce distinct spiral shape behaviours. (a) trajectory using r = 0.95, θ = π/4
and popsize = 25, (b) r = 0.95, θ = π/4 and popsize = 50, (c) r = 0.80, θ = π/4, popsize = 25
and (d) r = 0.95, θ = π/7 and popsize = 25.

� The center point of the logarithmic spiral is Xbest since the main idea of the
local search operator is to widen the search around a promising space region.
Preliminary experiments were conducted using di�erent point as center point
of the logarithm spiral and the results showed that using Xbest as the center
point the multipont search is more e�ective;

� An additive inverse logarithmic spiral is introduced with respect to Xbest, to
intensify the exploration of possible individuals close to Xbest;

In this new approach, a sampled set of individuals, totally randomized of log-
arithmic spirals is generated, allowing to name this new local search operator as
Spiral Search (SLS). For purposes of illustration of a spiral and its additive inverse
used in the SLS operator, Figure 4 shows two spirals starting at point at points
x0+ = (10, 10, 10) and x0− = (−10,−10,−10).

The procedure of SLS operator corresponds to the generation of spiral samples
starting at Xbest. A population sampled by the obtained spiral is evaluated on
the original objective function and the individual who has lowest objective func-
tion value is named XSLS . The SLS operator is elitist, meaning that the worst
individual, Xworst, in the current population of C-DEEPSO, is replaced by XSLS .

The proposed search operator helps C-DEEPSO algotithm to �nd a local op-
timum in the �rst generations of the search. Not only the usual selection pressure
pushes C-DEEPSO to focus more and more on already discovered better regions,
but also does the search operator in-depth. As a result, population diversity de-
clines and premature convergence may occur. Although premature convergence is
not caused by the diversity loss, maintaining a certain degree of diversity is widely
believed to help to avoid entrapment in non-optimal solutions. Having that in
mind, a simple diversity mechanism is proposed. This diversity mechanism uses a
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Fig. 4 An example of reverse spiral additive, in a 3-dimensional space, starting at x0+ =
(10, 10, 10) and x0− = (−10,−10,−10).

distance-to-best measure to alternate between exploration and exploitation. The
distance to an average-point, Xd, amongst the population individuals and Xbest,
is obtained:

Xd =
1

NP

NP∑
i=1

√√√√ N∑
j=1

(xij − xbest)2, (16)

in which NP is the population size and N is the problem dimension. New indi-
viduals Xd+ = X +Xd and Xd− = X −Xd are generated and, then, evaluated on
the original objective function. The best NP individuals are then selected for the
next generation. Algorithm 2 presents the pseudo-code of the search algorithm,
SLS, and the diversity mechanism proposed in this work.

if rand( ) > γ then
if (t ≤ Ngl) then

Step 1: Initialize the number of m search points as m = #NP , generate a random
value for θ in the range [0, 2π], generate a random value for r in the range [0, 1] to

rM(n)(θ) ;
Step 2: Generate m individuals (a sample population spiral and your inverse) from
Xbest using Eq. (15);
Step 3: Evaluate the population m;
Step 4: Replace in NP : XSLS by Xworst;

else

1 for each individual i that belongs to population NP do

Calculate Xd using Eq. (16) in each dimension;
Generate Xd+ = X(i) +Xd and Xd− = X(i) −Xd;

Evaluate populations Xd+ e Xd−;
Sort Xd+, Xd− e NP ;
Replace new population #NP by the best �tness individuals from the
previous step;

end

end

end

Algorithm 2: Pseudo-code of Spiral Local Search (SLS) operator.

According to [40], it is now well established that pure population-based algo-
rithms are not well suited to re�nement of complex combinatorial spaces and that
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hybridization with other techniques can signi�cantly improve search e�ciency. In
this way, the proposed algorithm unites di�erent concepts of evolutionary opti-
mization in order to be a viable approach to solve real world problems. The pro-
posed algorithm, the C-DEEPSO coupled with the search operator and diversity
mechanism, is called Hybrid Canonical Di�erential Evolutionary Particle Swarm
Optimization (hC-DEESPO).

3 Simulation Results and Discussion

In this section, the performance of the hC-DEEPSO for solving SCOPF problems
is evaluated on the IEEE Test Beds. The three IEEE test systems in the ORPD
and OARPD are presented and discussed. The experimental setup is divided into
the following case studies:

1. to verify the performance of hC-DEEPSO in the preliminary experiment using
benchmark functions by literature to compare our algorithm with the canonical
PSO and DE methods.

2. the e�ect of the cannonical DE mutation operator in and the multipoint search
operator insertion in the hC-DEEPSO algorithm are analyzed;

3. a parameter �ne-tuning for the hC-DEEPSO, regarding the mutation and com-
munication rates, is conducted; and

4. a statistical comparison of the results obtained by hC-DEEPSO, in its best pa-
rameters, with three benchmark algorithms available in the literature - DEEPSO,
ICDE and MVMO - is performed.

3.1 Preliminar experiment

A preliminary experiment using two benchmark functions of literature - Rastringin
and Rosenbrock - was realized. The goal for this experiment was verify the results
obtained in hC-DEEPSO in a comparison with the results of canonical PSO and
DE algorithms presented in [41] The initialization parameters that hC-DEEPSO
used was: Mutation rate 0.5 and Communication rate 0.9. The number of total
�tness values was set at 1× 105. For each dimension (30, 50, 100) the algorithms
tested using the population size (30, 50, 100) respectively and was tested 30 times.
The Eq. (17) and Eq. (18) shows the benchmark functions:
-Rastringin function - Multimodal - Goal = 0,

f(x) =
D∑
i=1

[x2i − 10cos(2πxi) + 10]. (17)

-Rosenbrock function - Unimodal - Goal = 0,

f(x) =

D−1∑
i=1

[100(x2i − xi+1)
2 + (xi − 1)2]. (18)

Table 4 shows the results of the PSO, DE and hC-DEEPSO algoritmhs. The
results showed that hC-DEEPSO obtained a good performance in relationship
to canonical DE and PSO algorithms in to solve the Rastringin and Rosenbrock
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functions in di�erent dimensions. Thus, it is possible show that hC-DEEPSO is
able to overcome the results of the base algorithms used for its design in continuous
problems.

Table 4 Mean and standard values for PSO, DE and hC-DEEPSO on Rastringin and Rosen-
brock functions in 30, 50 and 100 dimensions.

D = 30 Rastringin Rosenbrock
Algorithm Mean Std Mean Std
PSO 37.81 7.45 81.27 41.21
DE 2.53 5.19 31.13 17.12
hC-DEEPSO 0.00 0.00 15.99 1.90

D = 50 Rastringin Rosenbrock
PSO 75.30 19.55 174.22 113.63
DE 41.47 8.80 50.33 16.85
hC-DEEPSO 0.00 0.00 38.90 2.54

D = 100 Rastringin Rosenbrock
PSO 186.04 4.93 250.68 24.64
DE 261.19 1.64 91.23 3.82
hC-DEEPSO 0.00 0.00 89.60 1.90

3.2 IEEE Test Systems - study cases

Three well-known IEEE test systems - 57 bus, 118 bus and 300 bus - in the ORPD
and OARPD problems are presented. The IEEE 57 bus test and the IEEE 118 bus
test represent a portion of the American Electric Power System, in the Midwestern
US, as it was in the early 1960's. The IEEE 300 bus test was developed, in 1993,
by the IEEE Test System Task force. Figure 5 shows a single-line diagram of each
system. IEEE 57 bus system has 25 optimization variables in ORPD, comprising
7 continuous variables associated to generator voltage set-points, 15 discrete vari-
ables associated to stepwise adjustable on-load transformer tap positions, and 3
binary variables associated to switchable shunt compensation devices. On the other
hand, the number of optimization variables in OARPD is 31, in which the extra 6
continuous variables correspond to the active power production of generators. In
both problems, in addition to the expected operation scenario, two contingency
scenarios are considered (N-1 criterion) corresponding to the outage of branches 8
and 50. The number of constraints is 178 for non-contingency conditions, and 177
for each N-1 condition.

Fig. 5 Diagram systems by IEEE 57, 118 and 300 bus.



16 Carolina Marcelino et al.

IEEE 118 bus system has 77 optimization variables in ORPD, comprising 54
continuous variables associated to generator bus voltage set-points, 9 discrete vari-
ables associated to stepwise adjustable on-load transformer tap positions, and 14
binary variables associated to switchable shunt compensation devices. The di�er-
ence between ORPD and OARPD is the additional number of control variables
(total of 130) that represent the active power production of generators. In both
problems, considered contingency scenarios result from outages in branches 21, 50,
16, and 48 were considered. The number of constraints is 492 for non-contingency
conditions, and 491 for each N-1 condition.

Finally, IEEE 300 bus system has 145 variables in ORPD, comprising 69 contin-
uous variables associated to generator bus voltage set-points, 62 discrete variables
associated to stepwise adjustable on-load transformers and 14 binary variables
associated to switchable shunt compensation devices. The total number of con-
trol variables in the OARPD problem is 213. Table 5 presents a summary of all
characteristics for each system. In both problems, three contingency scenarios are
considered as a result of outages at branches 187, 176, and 213. The number of
constraints is 651 for non-contingency conditions, and 950 for each N-1 condition.

Table 5 Summary of characteristics presented by IEEE 57, 118 and 300 bus systems. The
number of additional security constraints is indicated between bracktes (index - 1:ORDP and
2:OARDP).

571 572 1181 1182 3001 3002
Continuous 7 13 54 107 69 137
Variables
Discreet 15 15 9 9 62 62
Variables
Binary 3 3 14 14 14 14
Variables
Dimension 25 31 77 130 145 213
Constraints 178 178 492 492 651 651

+(354) +(354) +(1473) +(1473) +(1900) +(1900)

3.3 Study on E�cacy of Hybrid C-DEEPSO

The di�erence between DEEPSO and C-DEEPSO lies in the usage of the cannon-
ical DE mutation operator inside the Movement Rule. Despite the good perfor-
mance of DEEPSO when applied to SCOPF problem, the e�cacy of hC-DEEPSO
needs to be assessed. For that, it is necessary to investigate the bene�ts of the
inclusion of the cannonical DE operator when applied to the SCOPF problems.
Moreover, the performance of the Multipoint Search insertion must be analysed.
For assessing the performance of DEEPSO, C-DEEPSO and hC-DEEPSO when
applied to SCOPF problems, an experiment using the IEEE 57 bus system was
conducted. To have a fair comparison, all initialization parameters were the same:
NP = 60; MB = 6; γ = 0.5; Ngl = 20; Mutation = 0.6; Communication = 0.2;
Maximum number of function evaluations = 5×103. Each algorithm was executed
31 times. Figure 6 presents the mean convergence line for DEEPSO, C-DEEPSO
and hC-DEEPSO throughout the 5× 103 function evaluations.
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Fig. 6 Mean convergence line for the IEEE 57 bus system/ ORDP. The x-axis represents the
function evaluations and the y-axis the mean value of the objective function over the 31 runs.

Analysing Figure 6, it indicates the hC-DEESPO is the �rst algorithm to con-
verge followed by C-DEEPSO. The magni�ed area shows the mean value of each
algorithm obtained in a speci�c range of function evaluation counter. The obtained
mean value for hC-DEEPSO was 25.91 MW while the obtained mean values of
C-DEEPSO and DEEPSO were 4456 MW and 927.6 MW, respectively. The fact
indicates the multipoint search operator, SLS operator, plays an important role
in the convergence velocity when compared. Figure 7 illustrates the experimental
results (corresponding to the total operation cost) of the 31 runs using boxplots
for the three algorithms. The Figure 7 shows that hC-DEEPSO performed better
as compared to DEEPSO and C-DEEPSO.

Fig. 7 Comparison of hC-DEEPSO, C-DEEPSO and DEEPSO - IEEE 57 bus system/ ORDP.

This behaviour can be statistically assessed via an ANOVA followed by a Tukey
test. The p-value, claculated using a 5% signi�cancy level, was 6.19× 10−13. Fig-
ure 8 shows the Tuckey test results. The result indicates the hC-DEEPSO presents
a lower mean value of the total operation cost when compared to C-DEEPSO and
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DEEPSO and C-DEEPSO presents a lower mean value of the total operation cost
when compared to DEEPSO. In this way, it is possible to state that the usage of
the cannonical DE mutation operator and the multipoint search operator enhances
the performance of the algorithm when applied to IEEE 57 bus system. The main
idea behind the multipoint search operator is to sample the search space more
e�ectively, exploring some neighbors of the best solution. In large scale optimiza-
tion problem context, such as SCOPF problems, a more e�ective search space
sampling is a key feature to overcome the dimensionality curse when designing
powerful algorithms.

Fig. 8 Tucky Test for each algorithm using IEEE 57 bus system/ ORDP.

3.4 Parameter Fine-Tuning

To determine the optimum value of mutation rate and communication probability,
the Response Surface Methodology has been chosen as the experimental setup to
perform the �ne-tuning of the parameters. This methodology is a collection of
mathematical and statistical techniques that are useful for modeling and analysis
in applications in which the output variable is in�uenced by many variables and the
goal is to optimize that output variable [42]. Using a speci�c design of experiments,
the goal is to optimize the response (output variable) of the hC-DEEPSO algorithm
which, in this work, is in�uenced by two input variables,the mutation rate and the
communication probability.

Making some changes on mutation rate and communication probability, it is
possible to identify the corresponding changes in the output response. In this case,
each output response corresponds to each objective function regarding minimiza-
tion of total system losses and total cost of production. Each objective function
f then is a function of mutation (τ) and communication (P ) levels. The response
expected by the function f(τ, P ) can be represented graphically in the three-
dimensional space and is called the response surface. The goal is to �nd the best
parameter values, τ and P , that minimize each objective function.

To construct an approximation model that captures the interaction between
those input variables, τ and P , a factorial experiment is necessary [42]. In simple
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words, in a factorial experiment the input variables are varied at the same time
instead of one at a time. The lower and the upper bounds for mutation and com-
munication rates are empirically set to [0.2, 0.9]. Each input variable is de�ned
at only the upper and down level bounds at each discretization of the prede�ned
range. In total, hC-DEEPSO is run 1984 times for each test problem.

Using the input variable values and the corresponding value for each objective
function and test scenario in SCOPF, a second-order model for the response surface
can be �tted. All executions were performed on a small Cent-OS Cluster composed
by 32 Intel Xeon E5-1650 3.5GHz cores and 32GB of RAM memory. The other
initialization parameters, empirically chosen, are shown in Table 6. Figure 9 shows
the response surfaces, and their corresponding contour plots, obtained using the
mean and best objective function values found on ORDP problem - IEEE 57 bus
system.

Table 6 Initialization parameters

IEEE Bus Systems
Parameters 571 572 1181 1182 3001 3002
NP 60 80 80 140 150 200
MB 6 8 8 14 15 20
Ngl 10 10 10 10 10 10
γ 0.5 0.5 0.5 0.5 0.5 0.5
MaxFitEval 5× 103 1× 105 3× 105

Fig. 9 Response surfaces, and their corresponding contour plots, obtained using the mean
and best objective function values of IEEE 57 Bus System in ORPD problem.

It can be observed that the best set of parameters obtained for mutation and
communication is [τ , P ] =[0.6, 0.2] with a mean value of total active power loss
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equal to 24.7286 MW . Furthemore, using the response surface generated via the
best objective function values, the best set of parameters is [τ , P ] = [0.4, 0.3],
resulting in a total active power loss of 24.606 MW . Similarly, hC-DEEPSO is
used to solve OARDP problems, whose objective is to minimize the total cost of
energy production. Figure 10 shows the response surfaces, and their corresponding
contour plots, obtained using the mean and best objective function values found
on OARDP problem for the IEEE 57 bus system scenario.

Fig. 10 Response surfaces, and their corresponding contour plots, obtained using the mean
and best objective function values of IEEE 57 Bus System in OARPD problem.

In OARPD problem it can be observed that the best set of parameters ob-
tained for mutation and communication is [τ , P ] =[0.9, 0.7] with an mean value
of total cost of energy production equal to 41691.5 $/h. Using the response sur-
face generated via the best objective function values, the best set of parameters is
[τ ,P ] = [0.3, 0.3], resulting in a total cost of energy production of 41686.9 $/h.

Same methodology was applied to IEEE 118 bus system and IEEE 300 bus
system using ORDP and OARDP problems. In all cases, the response surfaces
and this corresponding contour plots were generated using the mean and the best
objective function values. Similar response surfaces were obtained and the best
con�guration is [τ , P ] = [0.9, 0.4] for a mean result of 117.9 MW regarding the
total active power losses and, when using the best objective function values, [τ ,
P ] = [0.6, 0.4] resulting in a total active power losses equal to 117.4 MW .

For OARDP within IEEE 118 bus system scenario and using the mean objec-
tive function values, the best parameter con�guration is [τ , P ] = [0.7, 0.2] result-
ing in 135560.03 $/h of a total cost of energy production. Using the best objective
function values, the best parameter con�guration is [τ , P ] = [0.7, 0.2] resulting
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in 722160.00 $/h of total cost of energy production. The best set of parameters
obtained for mutation and communication is [τ , P ] =[0.8, 0.3] with an mean value
of total active power losses equal to 394.048MW . Furthermore, using the response
surface generated via the best objective function values, the best set of parameters
is [τ , P ] = [0.9, 0.6], resulting in a total active power loss of 387.09 MW .

The obtained results in factorial experiment show that the hC-DEEPSO algo-
rithm performs best when the mutation rate used is greater than 0.5 in all cases
and that the communication rate was always lower than the communication rate.
It can be concluded that the DE mutation operator incorporated the motion equa-
tion of hC-DEEPSO produced a bene�cial e�ect to the algorithm. In addition, it
is conclusive that the global optimum information at each iteration is not an ef-
fective measure since the communication rates were always less than 0.5 (except
for IEEE 57 bus system - OARPD).

3.5 Performance Analysis

After having the best parameter con�guration, τ and P , for hC-DEEPSO to solve
ORDP and OARDP problems in the considered test scenarios, it is necessary to
evaluate its performance analysis comparing with some available state-of art algo-
rithms. For this task, three di�erent algorithms, DEEPSO [17], MVMO [19] and
ICDE [43] in their best over�t initialization parameters, are chosen. These algo-
rithms were used to solve SCOPF problems and were extracted from Competition
on Application of Modern Heuristic optimization algorithms for solving optimal
power �ow problems [44]. The competition represents an initiative for development
of power system optimization test beds, providing some comparative analysis, in
the �eld of heuristic optimization. Preliminary tests proved that all test cases are
solvable however �nding feasible solutions has proven to be a hard-to-solve task.

Although MVMO was not a participant algorithm, it was used to produce
reference results for comparisons. It is worthwhile to notice that DEEPSO was
the winner of the 2014 Competition. The other algorithms participating on that
competition have not been considered in this comparison, because they violated
the restrictions of the given problem and given their inferior performance. It is
important to highlight that some algorithms in the competition are tailor-made
while others utilize specialized mechanism to handle the continuous and discrete
variables.

In the experimental setting, the SCOPF problems were treated as black-box
task which should be solved for the test cases. Final results for each optimization
test bed over 31 independent runs were used in the statistical test to assess the
algorithm performance. The only stopping criteria is the completion of the maxi-
mum number of function evaluations: in the IEEE 57 bus system, the maximum
number of function evaluation is set to 50000, in IEEE 118 bus system it is set to
100000 and, in the IEEE 300 bus system, the maximum number of function eval-
uations is set to 300000. All the algorithms extracted from the competition have
been �ne-tuned. So, the best parameters for mutation rate and communication
probability obtained in each test case were used in hC-DEEPSO. Table 7 shows
the results of the three algorithms used to solve SCOPF problems [44] and results
for hC-DEEPSO.
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Table 7 Mean and standard values for hC-DEEPSO, DEEPSO, ICDE and MVMO on ORDP
and OARDP problems using the three test scenarios.

IEEE 57 bus ORDP (MW ) OARDP ($/h)
Algorithm Mean Std Mean Std
hC-DEEPSO 24.7286 0.1064 41691.4521 2.804

DEEPSO 25.5725 0.4125 41697.58 7.9393
ICDE 25.0414 0.42956 41739.81 27.6884
MVMO 24.8172 0.12504 41707.6893 10.5581
IEEE 118 bus ORDP (MW ) OARDP ($/h)
hC-DEEPSO 117.9541 0.3048 135560.03 320
DEEPSO 119.2799 1.7131 135890.716 221.991
ICDE 128.3549 2.4535 154234.873 12324.2502
MVMO 117.862 0.42379 135050.21 27.5014

IEE 300 bus ORDP (MW ) OARDP ($/h)
hC-DEEPSO 394.0480 3.8037 722160.00 533.3307

DEEPSO 414.6239 42.0460 724041.13 2669.9100
ICDE 8669.8730 15255.7100 740013.64 6205.4528
MVMO 394.1294 8.2219 722323.24 869.3588

The mean values and standard deviation, for all the runs, are shown and, since
it is a minimzation problem, lower mean values are preferable over the higher ones.
The best mean and standard deviation values are marked in boldface. In a very
raw analysis, the hC-DEEPSO shows better results than the DEEPSO and ICDE
algorithms, when compared in terms of mean values in all the three test scenarios
for the ORDP problem. The same can be seen for OARDP problem, except in
IEEE 118 bus system scenario. In this case, MVMO has a better mean value when
compared to hC-DEEPSO.

For assessing the statistical signi�cance of the results, it is necessary to perform
an statistical inference on the di�erence between each pair of mean values. A T-test
[42] can be performed to compare more e�ectively the obtained results. Such test
can be used if one wants to compare results of population samples on a "two by
two" basis. The null hypothesis adopted in this work is the equality of means, so the
experiment is designed to detect whether this hypothesis is rejected or not using
a signi�cance value α = 5%. If the null hypothesis is reject, a post hoc comparison
can be done to determine which one is the best algorithm. Tables 8 and 9 show
the results of the T-test, using the P-Value calculated, and the results after the
post hoc comparison for ORDP and OARDP problems, respectively. Blank values
mean that the post hoc comparison is not able to detect any statistical di�erence
between the algorithms.

Analyzing ORDP problem results, T-test indicated that, with 95% of con-
�dence, hC-DEEPSO shows better results compared to DEEPSO, ICDE and
MVMO in IEEE 57 bus system. For IEEE 118 bus system and IEEE 300 bus
system scenarios, hC-DEEPSO is better than DEEPSO and ICDE. However, the
statistical test is not able to detect any di�erence between hC-DEEPSO and
MVMO. Examining OARDP problem results, the T-test indicated that, with 95%
of con�dence, hC-DEEPSO shows better results compared to DEEPSO, ICDE and
MVMO in IEEE 57 bus system. For IEEE 118 bus system and IEEE 300 bus sys-
tem scenarios, hC-DEEPSO is better than DEEPSO and ICDE. However, MVMO
is better than hC-DEEPSO in IEEE 118 bus system and the statistical test is not
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Table 8 Comparing results using T-test and a post hoc comparison in ORDP problems

ORDP
IEEE 57 bus P-Value Action Winner

hC-DEEPSO x DEEPSO 4.44E-16 reject hC-DEEPSO
hC-DEEPSO x ICDE 2.18E-04 reject hC-DEEPSO
hC-DEEPSO x MVMO 3.87E-04 reject hC-DEEPSO
IEEE 118 bus P-Value Action Winner

hC-DEEPSO x DEEPSO 2.77E-05 reject hC-DEEPSO
hC-DEEPSO x ICDE 00E+00 reject hC-DEEPSO
hC-DEEPSO x MVMO 0.329 not reject -
IEEE 300 bus P-Value Action Winner

hC-DEEPSO x DEEPSO 8.67E-03 reject hC-DEEPSO
hC-DEEPSO x ICDE 3.70E-03 reject hC-DEEPSO
hC-DEEPSO x MVMO 0.960 not reject -

Table 9 Comparing results using T-test and a post hoc comparison in OARDP problems

OARDP
IEEE 57 bus P-Value Action Winner

hC-DEEPSO x DEEPSO 1.23E-03 reject hC-DEEPSO
hC-DEEPSO x ICDE 1.58E-13 reject hC-DEEPSO
hC-DEEPSO x MVMO 1.22E-10 reject hC-DEEPSO
IEEE 118 bus P-Value Action Winner

hC-DEEPSO x DEEPSO 1.55E-11 reject hC-DEEPSO
hC-DEEPSO x ICDE 8.94E-12 reject hC-DEEPSO
hC-DEEPSO x MVMO 1.85E-12 reject MVMO
IEEE 300 bus P-Value Action Winner

hC-DEEPSO x DEEPSO 2.92E-04 reject hC-DEEPSO
hC-DEEPSO x ICDE 00E+00 reject hC-DEEPSO
hC-DEEPSO x MVMO 0.3764 not reject -

able to detect any di�erence between hC-DEEPSO and MVMO in IEEE 300 bus
system.

The experimental results showed indicates that the proposed hC-DEEPSO was
able of operating and controlling the operation of large power systems successfully,
in an economical and technical solution for optimizing the fuel generation cost and
power losses and voltage pro�le. In particular, if we make a future projection of the
economy for the dispatch in the IEEE 300 bus system, it is possible to observe an
economy of approximately $1.4 million using hc-DEEPSO instead of MVMO for
the period of one year.The proposed hC-DEEPSO demonstrated the e�ectiveness
comparable or better than those presented by algorithms in the literature. The hC-
DEEPSO has complied with all restrictions imposed by the problems if it shows
a safe approach to the operation.

4 Conclusion

The competitive structure of modern energy available resources. Following this,
new techniques are being developed for optimization of the operation in large scale
networks. In this paper, a hybridization of DE and PSO coupled with a special-
ized search operator was presented for solving the non-linear, highly constrained,
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mixed-integer, multimodal Optimal Power Flow problems. To ensure adequate
continuity and security of the energy supply, some contingencies of equipment are
included in the model in order to preserve the inequality constraints in case of
any equipment outage. In this case, the problem is known as Security Constrained
Optimal Power Flow problem. The proposed hC-DEEPSO, a hybrid metaheuris-
tic that incorporates distinct features of DE and PSO, is applied to solve SCOPF
problems, ORPD and OARPD. Due to a large number of constraints and con-
tingencies in SCOPF problems, the mathematical solution to these problems can
become hard to �nd and �nding a feasible solution is a very hard task. To over-
come the inherent di�culties of these problems, a multipoint search operator is
proposed aiming to �nd a local optimum in the beginning of the search and, to
maintain a certain degree of diversity, a simple diversity mechanism is also ap-
plied. The proposed multipoint search operator, in order to carry out an in-depth
investigation from the best individual in the population, guarantees hC-DEEPSO
to achieve a better performance than its original version.

The e�ectiveness of the proposed algorithm was investigated through a com-
parative study using the algorithm version without the canonical DE mutation
operator and the multipoint search operator. Using a test case, the proposed hC-
DEEPSO has been proven to be more e�cient when compared with the previous
version. A parameter �ne-tunning for hC-DEEPSO was also carried out using the
Response Surface procedure and, using the optimal parameters, hC-DEEPSO was
tested against three di�erent algorithms, DEEPSO, ICDE nd MVMO, to solve
SCOPF problems using three test scenarios. Experimental results showed that
hC-DEEPSO obtained competitive results with those present in the literature.
According to statistical comparison, the results for IEEE 57 bus system showed
that, with 95% signi�cance level, hC-DEEPSO proven to be better than ICDE,
DEEPSO and MVMO algorithms in all test cases. In ORDP problem, for IEEE
118 bus system and IEEE 300 bus system scenarios, hC-DEEPSO was better than
DEEPSO and ICDE. However, the statistical test was not able to detect any dif-
ference between hC-DEEPSO and MVMO in both scenarios. In OARDP problem,
for IEEE 118 bus system and IEEE 300 bus system scenarios, hC-DEEPSO was
better than DEEPSO and ICDE. However, MVMO was better than hC-DEEPSO
in IEEE 118 bus system and the statistical test was not able to detect any dif-
ference between hC-DEEPSO and MVMO in IEEE 300 bus system. Therefore,
hC-DEEPSO is a relevant hypothesis tested in this research as a method of good
performance and suitable to be used to solve problems of this nature.
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