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Abstract. We introduce a new numerical solution method for semi-infinite optimization prob-
lems with convex lower level problems. The method is based on a reformulation of the semi-infinite
problem as a Stackelberg game and the use of regularized nonlinear complementarity problem func-
tions. This approach leads to central path conditions for the lower level problems, where for a given
path parameter a smooth nonlinear finite optimization problem has to be solved. The solution of
the semi-infinite optimization problem then amounts to driving the path parameter to zero.

We show convergence properties of the method and give a number of numerical examples from
design centering and from robust optimization, where actually so-called generalized semi-infinite
optimization problems are solved. The presented method is easy to implement, and in our examples
it works well for dimensions of the semi-infinite index set at least up to 150.
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1. Introduction. In this article we introduce a bi-level solution method for so-
called generalized semi-infinite optimization problems. These problems have the form

GSIP : minimize f(x) subject to x ∈M

with

M = {x ∈ R
n| gj(x, y) ≤ 0, y ∈ Y (x), j ∈ J}

and

Y (x) = {y ∈ R
m| v�(x, y) ≤ 0, � ∈ L} .

All defining functions f, gj , j ∈ J = {1, . . . , p}, v� , � ∈ L = {1, . . . , s} , are assumed
to be real-valued and d times continuously differentiable on their respective domains
with d ≥ 2.

As opposed to a standard semi-infinite optimization problem SIP, the possibly
infinite index set Y (x) of inequality constraints is x-dependent in a GSIP. For surveys
about standard semi-infinite optimization we refer to [10, 18, 37].

Engineering applications that give rise to generalized semi-infinite optimization
problems include robot design [12, 19], reverse Chebyshev approximation [29], time-
optimal control [31], and design centering [35, 36]. In finite optimization with uncer-
tainty about parameters y from a fixed set Y , the robust (i.e., worst-case) formulation
of inequality constraints gives rise to a standard semi-infinite problem [1]. If the set
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770 OLIVER STEIN AND GEORG STILL

of uncertain parameters is state-dependent, then the worst-case formulation takes the
form of GSIP. Furthermore, min-max problems can be reformulated as either stan-
dard or generalized semi-infinite programs, depending on whether the feasible set of
the maximization (inner) problem depends on the minimization (outer) variable.

The growing interest in GSIP over recent years has resulted in various contribu-
tions on the structure of the feasible set M [25, 41, 48, 49, 50, 57] and on first and
second order optimality conditions [19, 25, 29, 40, 51, 53, 57]. The articles [55] and [57]
investigate how the known methods from SIP have to be modified in order to cover
the more general situation of GSIP. The Newton-SQP approach, which works well in
standard semi-infinite programming (see, e.g., [13]), can be transferred to GSIP if the
so-called reduction ansatz holds. In [16] such a Newton-type method is applied to the
terminal variational problems from [29]. Since the reduction ansatz is of local nature,
also generalizations of the discretization and exchange methods from SIP are desired.
In [55] it is shown that discretization methods converge if the x-dependent grid points
are chosen such that they depend continuously on x. Moreover, [56] studies how for
a discretization method the rate of convergence depends on a consistent treatment of
the boundary points of Y (x).

As these generalized discretization methods are not easy to implement, in the
present article we concentrate on the case of convex lower level problems. Based upon
the observation that, under natural assumptions, GSIP can be reformulated as a spe-
cial Stackelberg game (cf. also [54]), we design a numerical solution method, which
exploits the lower level convexity. As opposed to the exchange and discretization
methods presented in [55], this approach is not a generalization of known methods
from standard semi-infinite programming, but it provides a new and different way
of numerical treatment. Moreover, as standard semi-infinite programming is a spe-
cial case of GSIP, as a by-product we obtain a new solution method for standard
semi-infinite optimization problems, too. Our point of view also was implicitly taken
in [33], where a branch and bound method is developed for generalized semi-infinite
optimization problems with linear-quadratic lower level problems and additional con-
vexity in the upper level. An approach using exact penalization to transform GSIP
to SIP is given in [32].

We remark that the inclusion of equality constraints in the definitions of M and
Y (x), as well as a j-dependence of the index set Y (x), is straightforward and will not
be considered here for ease of presentation.

The article is organized as follows. In section 2 we recall the so-called reduction
ansatz and the resulting first order optimality condition for GSIP. Furthermore, we
give analogous results under a convexity assumption and recall the concept of non-
linear complementarity problem (NCP) functions. Section 3 presents the numerical
method, and in section 4 we study its convergence properties. A number of numerical
results conclude the article in section 5.

2. Preliminaries.

2.1. The reduction ansatz. In this section we briefly recall the reduction
ansatz and explain the concept of Fritz John points for GSIP. Since optimality condi-
tions are well known for points from the topological interior ofM , in the following we
focus our attention on a given feasible boundary point ofM , i.e., a point x̄ ∈M∩∂M ,
where ∂M denotes the topological boundary of M .

Recall that the set-valued mapping Y is called locally bounded around x̄ if there
exists a neighborhood U of x̄ such that the set ∪x∈UY (x) is bounded.
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SOLVING SEMI-INFINITE OPTIMIZATION PROBLEMS 771

Assumption 1 (local boundedness). The set-valued mapping Y is locally bounded
around x̄.

Let Assumption 1 hold throughout this article, and fix U to be some corresponding
bounded open neighborhood of x̄.

The n-parametric so-called lower level problems of GSIP are given by

Qj(x) : maximize gj(x, y) subject to y ∈ Y (x)
with j ∈ J . Associated with Qj(x) are its optimal value function

ϕj(x) =

{
max

y∈Y (x)
gj(x, y) if Y (x) 	= ∅,

−∞ else

and, in case of solvability, its solution set

Y j
	 (x) = {y ∈ Y (x)| gj(x, y) = ϕj(x)}.

It is easily seen that M and the set {x ∈ R
n| ϕj(x) ≤ 0 , j ∈ J} coincide.

Since the defining functions of Y (x) are continuous, the set-valued mapping Y is
closed. Together with Assumption 1 this means that Y is upper semicontinuous in
the sense of Berge [2] around x̄. As a consequence (cf., e.g., [21]), the ϕj , j ∈ J, are
upper semicontinuous on U . From this it is not hard to derive that the sets M ∩ U
and {x ∈ U | ϕj(x) ≤ 0 , j ∈ J0(x̄)} coincide (possibly after shrinking U), where
J0(x̄) = {j ∈ J | ϕj(x̄) = 0} denotes the set of active indices at x̄. Since for j ∈ J0(x̄)
the problem Qj(x̄) has vanishing optimal value, the set of its solution points can be
described as

Y j
	 (x̄) = Y j

0 (x̄) = {y ∈ Y (x̄)| gj(x̄, y) = 0},
and we have j ∈ J0(x̄) if and only if Y j

0 (x̄) 	= ∅.
Next, we give a local description of M by finitely many smooth constraints for

the case when certain regularity assumptions hold in the lower level problems.
The linear independence constraint qualification (LICQ) is said to hold at a point

ȳ ∈ Y (x̄) if the family of vectors Dyv�(x̄, ȳ), � ∈ L0(x̄, ȳ), is linearly independent, and
the weaker Mangasarian–Fromovitz constraint qualification (MFCQ) holds if there
exists some vector η ∈ R

m such that Dyv�(x̄, ȳ) η < 0, � ∈ L0(x̄, ȳ). Here L0(x̄, ȳ) =
{� ∈ L| v�(x̄, ȳ) = 0} denotes the set of lower level active indices, and Dyv� stands for
the row vector of partial derivatives of v� with respect to y .

In what follows, let v be the column vector of the functions v� , � ∈ L = {1, . . . , s},
let diag(γ) stand for the (s, s)-diagonal matrix with diagonal vector γ ∈ R

s, and let
j ∈ J0(x̄). Since each ȳ ∈ Y j

0 (x̄) is a solution of Qj(x̄), upon definition of the lower
level Lagrange function

Lj(x, y, γ) = gj(x, y)− γ�v(x, y)
the Karush–Kuhn–Tucker theorem states that the following system of equalities and
inequalities has a solution γ if the MFCQ holds at such a ȳ :

D�
y Lj(x̄, ȳ, γ) = 0,(2.1)

−diag(γ) v(x̄, ȳ) = 0,(2.2)

γ ≥ 0,(2.3)

−v(x̄, ȳ) ≥ 0.(2.4)
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772 OLIVER STEIN AND GEORG STILL

Note that γ is uniquely determined under the LICQ. We denote the set of Kuhn–
Tucker multipliers corresponding to x̄ and ȳ ∈ Y j

0 (x̄) by

KT j(x̄, ȳ) = {γ ∈ R
s| γ satisfies (2.1)–(2.4)}.

The point ȳ is said to satisfy the strict complementary slackness (SCS) condition
if γ� > 0 , � ∈ L0(x̄, ȳ).

Under the LICQ the tangent space to Y (x̄) at ȳ can be described as TȳY (x̄) =

{η ∈ R
m| Dyv�(x̄, ȳ) η = 0 , � ∈ L0(x̄, ȳ)}. Let ȳ ∈ Y j

0 (x̄) and let γ̄ be the correspond-
ing solution of (2.1)–(2.4). The point ȳ is said to satisfy the second order sufficiency
condition (SOSC) if the matrix D2

yLj(x̄, ȳ, γ̄)|TȳY (x̄) possesses only negative eigenval-

ues. Here, D2
yLj = DyD

�
y Lj denotes the Hessian matrix of Lj with respect to y, and

D2
yLj(x̄, ȳ, γ̄)|TȳY (x̄) = V �D2

yLj(x̄, ȳ, γ̄)V for any matrix V of m-vectors which form
a basis of the tangent space TȳY (x̄).

Definition 2.1. Let x̄ ∈ ∂M ∩M and j ∈ J0(x̄). A point ȳ ∈ Y j
0 (x̄) is called

the nondegenerate global maximizer of Qj(x̄) if the LICQ holds at ȳ and if SCS and
the SOSC are valid with the vector γ from (2.1)–(2.4).

Assumption 2 (reduction ansatz). For each j ∈ J0(x̄) all global maximizers of
Qj(x̄) are nondegenerate.

The reduction ansatz was originally formulated for standard semi-infinite opti-
mization problems in [58, 17] under weaker regularity assumptions and was transferred
to generalized semi-infinite optimization problems in [19]. For standard semi-infinite
optimization problems the reduction ansatz is a natural assumption in the sense that
for problems with defining functions in general position it holds at each local mini-
mizer (cf. [59, 47]). For GSIP this result could be transferred to local minimizers x̄
with

∑
j∈J0(x̄) |Y j

0 (x̄)| ≥ n in [49]. Moreover, in [54] it is shown that it holds in the
“completely linear” case, i.e., when all defining functions f , gj , j ∈ J , v� , � ∈ L, of
GSIP are affine linear on their respective domains.

As under Assumption 2 the global maximizers of Qj(x̄) are isolated points in
Y (x̄), and the latter set is compact, there are only finitely many global maximizers,
say

Y j
0 (x̄) = {ȳj,k, k ∈ Jj

0 (x̄)}
with |Jj

0 (x̄)| <∞ . An application of the implicit function theorem (cf. [7]) shows that

for each ȳj,k with k ∈ Jj
0 (x̄) and corresponding multiplier vector γ̄j,k there are locally

defined Cd−1-functions yj,k and γj,k with yj,k(x̄) = ȳj,k and γj,k(x̄) = γ̄j,k such that
yj,k(x) is the locally unique local maximizer of Qj(x) with multiplier γj,k(x). Hence,
we may introduce the locally defined optimal value functions

ϕj,k(x) = gj(x, y
j,k(x)) , k ∈ Jj

0 (x̄) , j ∈ J0(x̄).

Lemma 2.2 (cf., e.g., [24]). The functions ϕj,k are of differentiability class C
d,

and their gradients satisfy

Dϕj,k(x̄) = DxLj(x̄, ȳ
j,k, γ̄j,k) .

The next result follows from a more general reduction lemma that we shall prove
in section 4 (cf. Lemma 4.2).

Theorem 2.3 (reduction lemma; cf. [19, 47]). Let Assumption 2 be satisfied at
x̄. Then the sets M and

Mx̄ = {x ∈ U | ϕj,k(x) ≤ 0, k ∈ Jj
0 (x̄) , j ∈ J0(x̄)}
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SOLVING SEMI-INFINITE OPTIMIZATION PROBLEMS 773

coincide locally around x̄ .
Theorem 2.3 shows that under the reduction ansatz the original problem GSIP is

locally equivalent to the reduced problem min f |Mx̄
. Hence, local optimality condi-

tions from finite optimization may be applied to yield results for the semi-infinite case.
In particular, we obtain a Fritz John–type first order necessary optimality condition
(cf. [23]).

Theorem 2.4. Let x̄ be a local minimizer of GSIP, and let Assumption 2 hold.
Then there exist multipliers κ ≥ 0, λj,k ≥ 0, k ∈ Jj

0 (x̄) , j ∈ J0(x̄), not all vanishing,
such that

κDf(x̄) +
∑

j∈J0(x̄)

∑
k∈Jj

0 (x̄)

λj,kDxLj(x̄, ȳ
j,k, γ̄j,k) = 0.(2.5)

Note that in Theorem 2.4 we do not need to impose a complementarity condition
since all appearing constraints are active by definition. Moreover, recall that due to
Carathéodory’s theorem at most n + 1 nonvanishing multipliers λj,k are required in
(2.5). In what follows we will call each point x̄ that satisfies the reduction ansatz and
the necessary optimality condition from Theorem 2.4 a Fritz John point for GSIP.

2.2. Convex lower level problems. We call a problem Qj(x), j ∈ J, convex
if the functions −gj(x, ·) , v�(x, ·), � ∈ L, are convex on R

m. The main assumption of
the present article is the following.

Assumption 3. The lower level problems Qj(x), j ∈ J, are convex for all x ∈ R
n.

Under Assumption 3 a set Y (x) with x ∈ R
n is said to satisfy the Slater condition

if there exists y	 such that v�(x, y
	) < 0 for all � ∈ L .

Assumption 4. The sets Y (x) are bounded and satisfy the Slater condition for
all x ∈ R

n.
Under Assumptions 3 and 4 the sets Y j

	 (x) are nonempty and locally bounded
around each x̄ ∈ R

n (cf. [22, Lemma 2]), so that the optimal value functions
ϕj(x) = maxy∈Y (x) gj(x, y) , j ∈ J, are well defined and continuous on R

n [22].
Hence, the feasible set M is closed, and as in section 2.1 we have that M and the set
{x ∈ R

n| ϕj(x) ≤ 0 , j ∈ J0(x̄)} coincide around each boundary point x̄.
For the next theorem, which is a slight generalization of [42, Theorem 4.2], recall

that the sets KT j(x̄), j ∈ J0(x̄), do not depend on the variable y in the convex case
(cf., e.g., [11]). Without loss of generality we set J0(x̄) = {1, . . . , p0}.

Theorem 2.5. Let x̄ be a local minimizer of GSIP and let Assumptions 3 and
4 be satisfied. Then for each selection (γ̄1, . . . , γ̄p0) ∈ KT 1(x̄)× · · · ×KT p0(x̄) there
exist yj,k ∈ Y j

0 (x̄), k = 1, . . . , pj , j ∈ J0(x̄),
∑

j∈J0(x̄) pj ≤ n + 1, and multipliers
κ ≥ 0 , λj,k ≥ 0 , not all equal to zero, such that

κDf(x̄) +
∑

j∈J0(x̄)

pj∑
k=1

λj,kDxLj(x̄, yj,k, γ̄j) = 0 .

If, in addition to Assumptions 3 and 4, the reduction ansatz (Assumption 2) also
holds, then the sets KT j(x̄) = {γ̄j} and Y j

0 (x̄) = {ȳj}, j ∈ J0(x̄), are singletons. In
this case, Theorems 2.4 and 2.5 obviously simplify to the following result.

Corollary 2.6. Let x̄ be a local minimizer of GSIP and let Assumptions 2, 3,
and 4 be satisfied. Then there exist multipliers κ ≥ 0 , λj ≥ 0 , j ∈ J0(x̄), not all equal
to zero, such that

κDf(x̄) +
∑

j∈J0(x̄)

λj DxLj(x̄, ȳj , γ̄j) = 0 .
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774 OLIVER STEIN AND GEORG STILL

The following lemma is well known. A short proof can be found in [52].
Lemma 2.7. Let Assumptions 3 and 4 be satisfied. Then a point ȳj is a

nondegenerate global maximizer of Qj(x̄) with corresponding multiplier vector γ̄j if
and only if (2.1)–(2.4) hold and if the Jacobian of (2.1), (2.2) with respect to (yj , γj),

Aj = Aj(x̄, ȳj , γ̄j) =

(
D2

yLj(x̄, ȳ
j , γ̄j) −D�

y v(x̄, ȳ
j)

−diag(γ̄j)Dyv(x̄, ȳ
j) −diag(v(x̄, ȳj))

)
,

is nonsingular.

2.3. NCP functions. A function ψ : R
2 → R with

ψ(a, b) = 0 if and only if a ≥ 0 , b ≥ 0 , ab = 0

is called an NCP function. Let us remark that the existence of a C∞-NCP function
is clear from a theorem by Whitney [3]. However, as smooth NCP functions are
degenerate at the origin, in the following we will work with the nonsmooth NCP
functions

ψNR(a, b) =
1

2

(
a+ b−

√
(a− b)2

)
and

ψFB(a, b) = a+ b−
√
a2 + b2 .

The function ψNR is the so-called natural residual or min-function since it coincides
with min(a, b), and ψFB is known as the Fischer–Burmeister function [8].

For numerical purposes one can regularize these nondifferentiable NCP functions.
The so-called Chen–Harker–Kanzow–Smale function [4, 27, 46] is given by

ψNR
τ (a, b) =

1

2

(
a+ b−

√
(a− b)2 + 4τ2

)
,

whereas the so-called smoothed Fischer–Burmeister function is

ψFB
τ (a, b) = a+ b−

√
a2 + b2 + 2τ2 .

Obviously, ψNR
τ and ψFB

τ are continuously differentiable for all τ 	= 0, and for τ = 0
they coincide with ψNR and ψFB , respectively. Moreover, both functions share the
following important properties.

Lemma 2.8. Let τ 	= 0, and let ψτ denote one of the functions ψ
NR
τ and ψFB

τ .
Then the following assertions hold:

(i) We have ψτ (a, b) = 0 if and only if a > 0 , b > 0 , ab = τ2.
(ii) For a zero (a, b) of ψτ the gradient Dψτ (a, b) does not explicitly depend on τ

and is given by (a+ b)−1 (b, a).
Proof. Part (i) was observed in [27], and part (ii) is easily verified.
In what follows we mainly need the results of Lemma 2.8, so we will not distinguish

between ψNR
τ and ψFB

τ but simply write ψτ .

3. The numerical approach. The aim of our numerical method is to replace
GSIP by a sequence of finite nonlinear programming problems which are numerically
tractable and whose solutions or stationary points converge to a solution or a sta-
tionary point of GSIP, respectively. Unlike other numerical methods for semi-infinite
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SOLVING SEMI-INFINITE OPTIMIZATION PROBLEMS 775

programming, our approach does not discretize the index set Y (x), but we take ad-
vantage of the fact that the solution set of a regular convex lower level problem is
characterized by its first order optimality condition. Thus, let Assumptions 3 and 4
hold throughout this section.

In a first step we reformulate GSIP as a special Stackelberg game:

SG : min
x,y1,...,yp

f(x) subject to (s.t.) gj(x, y
j) ≤ 0 , and yj solves Qj(x), j ∈ J.

Note that the SG possesses two special features: its objective function f does not
depend on the variables yj , j ∈ J , and its upper level inequality constraint functions
coincide with its lower level objective functions. In [54] it is shown that GSIP and
SG are equivalent problems whenever the index set Y (x) is nonempty for all x ∈ R

n.
The latter is the case under Assumption 4. We point out that for Y (x) = ∅ the point
x would be feasible for GSIP but infeasible for SG.

Next, since the problems Qj(x) are convex, we may replace the restrictions
“yj solves Qj(x)” in SG equivalently by their first order optimality conditions: for
each j ∈ J there is a solution γj of (2.1)–(2.4). The latter statement is true un-
der Assumption 4, since Slater’s condition guarantees the existence of Kuhn–Tucker
multipliers. However, unlike in the case of the LICQ, these multipliers are not neces-
sarily uniquely determined. By this reformulation, SG is equivalent to the following
mathematical programming problem with equilibrium constraints:

MPEC : min
x,y1,γ1,...,yp,γp

f(x) s.t. gj(x, y
j) ≤ 0,

D�
y Lj(x, y

j , γj) = 0,
−diag(γj) v(x, yj) = 0,

γj ≥ 0,
−v(x, yj) ≥ 0, j ∈ J.

At this point, GSIP has been replaced by an equivalent finite nonlinear program-
ming problem. However, numerical standard software cannot be expected to solve
this problem since due to the appearance of complementarity conditions the MFCQ
is violated at all points of the feasible set of MPEC (cf. [43]). In [26, 38] it is shown
that the MFCQ is a necessary condition for the stability of smooth nonlinear pro-
grams under data perturbations and thus for the stability of numerical methods in
the presence of round-off errors.

Given an NCP function ψ and a, b ∈ R
s we define the vectorization

Ψ(a, b) = (ψ(a1 , b1), . . . , ψ(as , bs))
�

so that MPEC can be equivalently rewritten as

P : min
x,y1,γ1,...,yp,γp

f(x) s.t. gj(x, y
j) ≤ 0,

D�
y Lj(x, y

j , γj) = 0,
Ψ(γj ,−v(x, yj)) = 0, j ∈ J.

We now apply an interior point approach to the lower level problems Qj(x).
For j ∈ J we replace the Karush–Kuhn–Tucker system (2.1)–(2.4) at yj and its
corresponding multiplier vector γj by the perturbed system

D�
y Lj(x, y

j , γj) = 0,(3.1)
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776 OLIVER STEIN AND GEORG STILL

−diag(γj) v(x, yj) = τ2 es,(3.2)

γj ≥ 0,(3.3)

−v(x, yj) ≥ 0,(3.4)

depending on τ ∈ R (and on x). Here we set es = (1, . . . , 1)� ∈ R
s. With one

of the regularized NCP functions Ψτ in vector form, P is thus embedded into the
parameterized family of optimization problems



Pτ : min

x,y1,γ1,...,yp,γp
f(x) s.t. gj(x, y

j) ≤ 0,

D�
y Lj(x, y

j , γj) = 0,
Ψτ (γ

j ,−v(x, yj)) = 0, j ∈ J,
(3.5)

with P0 = P . We note that a similar approach for the solution ofMPEC s is presented
in [6].

The following proposition shows that problem Pτ is numerically tractable in the
sense that the inherent singularity in the equality constraints of problem P has now
been removed. Its proof follows straightforwardly from Lemma 2.8(ii). We remark
that more detailed proofs of this and the following results can be found in [52].

Proposition 3.1. Let τ 	= 0 and let (x, y1, γ1, . . . , yp, γp) be a feasible point of
Pτ such that for each j ∈ J the matrix

Aj = Aj(x, yj , γj) =

(
D2

yLj(x, y
j , γj) −D�

y v(x, y
j)

−diag(γj)Dyv(x, y
j) −diag(v(x, yj))

)

is nonsingular. Then the gradients of the equality constraints of Pτ are linearly inde-
pendent in (x, y1, γ1, . . . , yp, γp) .

We now recall the connection of the perturbed Karush–Kuhn–Tucker systems
(3.1)–(3.4) with the barrier problems

Qj
τ (x) : max

y
bjτ (x, y) := gj(x, y) + τ

2
∑
�∈L

ln(−v�(x, y))

(depending on x and τ) for j ∈ J . A necessary and in the convex case also sufficient
optimality condition for Qj

τ (x) is

0 = Dyb
j
τ (x, y) = Dygj(x, y) +

∑
�∈L

τ2

v�(x, y)
Dyv�(x, y) .

Furthermore, the Hessian of bjτ (x, y) with respect to y reads as

D2
yb

j
τ (x, y) = D2

ygj(x, y) +
∑
�∈L

τ2

v�(x, y)
D2

yv�(x, y)

−
∑
�∈L

τ2

[v�(x, y)]2
D�

y v�(x, y)Dyv�(x, y) .D
ow
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SOLVING SEMI-INFINITE OPTIMIZATION PROBLEMS 777

Lemma 3.2. Let j ∈ J and τ 	= 0.
(i) The point yj is a solution of Qj

τ (x) if and only if (yj , γj) with
γj� = −τ2/v�(x, y

j), � ∈ L, is a solution of (3.1)–(3.4). Moreover, for the
latter solutions D2

yb
j
τ (x, y

j) is nonsingular if and only if Aj(x, yj , γj) is non-
singular.

(ii) If at least one of the matrices D2
y gj(x, y

j), D2
y v�(x, y

j), � ∈ L, is nonsingular,
then Aj(x, yj , γj) is nonsingular, too.

Proof. The first part of (i) is evident from a comparison between the relations
DyLj(x, y

j , γj) = 0 and Dyb
j
τ (x, y

j) = 0 . For the second part note that in view
of Lemma 2.8(i) the matrix diag(v(x, yj)) is nonsingular so that Aj = Aj(x, yj , γj) is
nonsingular if and only if the Schur complement Sj of diag(v(x, yj)) in Aj is nonsin-
gular. This Schur complement is just Sj = D2

yb
j
τ (x, y

j) .

Due to our convexity assumptions (Assumption 3) it is easily seen that Sj is the
sum of negative semidefinite matrices. Under the assumption of part (ii), at least
one of the matrices D2

ygj(x, y
j), −D2

y v�(x, y
j), � ∈ L, is actually negative definite

and, since all numbers τ2/v�(x, y
j), � ∈ L, are negative, Sj is negative definite, too.

Together with part (i) this shows the assertion of part (ii).
A different proof for a weaker result related to part (ii) of the preceding lemma

can be found in [28]. Let us point out that Lemma 3.2 provides sufficient conditions
for the assumption of nonsingular matrices Aj(x, yj , γj), j ∈ J , in Proposition 3.1.
From Lemma 2.7 and a simple continuity argument it follows that Aj(x, yj , γj) is also
nonsingular if (x, yj , γj) is sufficiently close to a point (x̄, ȳj , γ̄j) such that ȳj is a
nondegenerate solution of Qj(x̄) with corresponding multiplier vector γ̄j .

The ideas presented so far lead to a simple continuation method for the numerical
solution of GSIP which is easy to implement and can be given conceptually in the
following form.

Numerical method.
Step 1. Choose a sequence {τν} of nonzero reals with limν→∞ τν = 0 and a

starting point x0 ∈ R
n.

Step 2. Compute a starting point (x0,0, y1,0,0, γ1,0,0, . . . , yp,0,0, γp,0,0) of Pτ0 and
set ν = 0 .

Step 3. Find a solution (xν,	, y1,ν,	, . . . , γp,ν,	) of Pτν .
Step 4. Set (xν+1,0, y1,ν+1,0, . . . , γp,ν+1,0) = (xν,	, y1,ν,	, . . . , γp,ν,	), ν := ν+1,

and go to Step 3.
In Step 2, we clearly choose x0,0 = x0. In order to obtain the corresponding

values (y1,0,0, . . . , γp,0,0) numerically, one might try to find a zero of(
D�

y Lj(x
0, yj , γj)

Ψτ0(γ
j ,−v(x0, yj))

)

for each j ∈ J . Another method will be given below.
Step 3 is a “black box” which stands for any standard solution method for non-

linear finite optimization problems. In view of Steps 2 and 4, a minimal requirement
is that the method should be able to process infeasible starting points.

Conceptually, termination criteria might be the relative error of optimal points or
of optimal values, as well as the error in the first order optimality condition for GSIP
(cf. Corollary 2.6) and combinations thereof. We emphasize that the availability
of an easily checkable first order optimality condition is crucial for the numerical
performance of the method.
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778 OLIVER STEIN AND GEORG STILL

4. Convergence results. Recall that in section 3 we reformulated GSIP equiv-
alently first as an SG and then as a finite optimization problem P. Then we embedded
P in the parametric family Pτ with τ ∈ R. Let us now clarify what the equivalent
embedding for GSIP is. Throughout this section, let Assumptions 3 and 4 hold.

With the observations in section 3 the problem Pτ with τ 	= 0 can equivalently
be written in the form of an SG :

SGτ : min
x,y1,...,yp

f(x) s.t. gj(x, y
j) ≤ 0 , and yj solves Qj

τ (x), j ∈ J.

Under the reduction ansatz, locally near a feasible point x̄ of GSIP (i.e., for τ̄ = 0)
there exists a unique solution of (3.1)–(3.4) with τ 	= 0.

Proposition 4.1. Let x̄ ∈M and j ∈ J be given. Assume that ȳj is a solution of
Qj(x̄) with corresponding multiplier vector γ̄j such that Aj(x̄, ȳj , γ̄j) is nonsingular.
Then there exist neighborhoods U of x̄ and T of τ̄ = 0 as well as Cd−1-functions
yj : V → R

m, γj : V → R
s (V := U × T ) such that yj(x̄, 0) = ȳj, γj(x̄, 0) = γ̄j and

such that for all (x, τ) ∈ V (yj(x, τ), γj(x, τ)) is the unique solution of (3.1)–(3.4).
Proof. The proof follows directly by applying the implicit function theorem to

the system of equations (3.1), (3.2), and using that Aj(x̄, ȳj , γ̄j), its Jacobian with
respect to (y, γ) at (x̄, ȳj , γ̄j , τ̄), is nonsingular. Note that (3.3) and (3.4) hold thanks
to continuity arguments.

Under the reduction ansatz (Assumption 2) the assumptions of Proposition 4.1
are satisfied for j ∈ J0(x̄) due to Lemma 2.7. Because of Lemma 3.2(i) for all x ∈ U ,
τ ∈ T the condition

gj(x, y
j) ≤ 0 and yj solves Qj

τ (x)

is equivalent with

gj(x, y
j(x, τ)) ≤ 0.

Note that under Assumptions 3 and 4 for j ∈ J \ J0(x̄) the value function ϕ̃j(x, τ) of
Qj

τ (x) is continuous in the neighborhood U×T of (x̄, 0) . So for all τ ∈ T the problem
Pτ , locally restricted to x ∈ U , is equivalent to the reduced problem

GSIPτ (x̄) : min
x∈U

f(x) s.t. gj(x, y
j(x, τ)) ≤ 0 for all j ∈ J0(x̄).

Summarizing, we have obtained the following reduction lemma, which provides the
basis for our convergence analysis.

Lemma 4.2 (parametric reduction lemma). Let the reduction ansatz hold at a
point x̄ ∈M . Then locally in a neighborhood U × T of (x̄, 0) (cf. Proposition 4.1) the
problems Pτ and GSIPτ (x̄) are equivalent in the sense that for all τ ∈ T the vector
xτ ∈ U is a solution of GSIPτ (x̄) if and only if (xτ , y

1, . . . , yp) with xτ ∈ U solves
SGτ . In particular, problem GSIP0(x̄) is locally in U equivalent with SG0 = SG
and, hence, with GSIP.

The above lemma yields local reductions for all problems Pτ when (x, τ) is suffi-
ciently close to (x̄, 0), which shows that the parametric reduction lemma implies the
reduction lemma (Theorem 2.3).

The following theorem is related to a result by Shimizu and Aiyoshi [45] about
the convergence behavior of the solutions of SGτ for τ → 0. However, our proof relies
only on the parametric reduction lemma and some well-known results from parametric
optimization.
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SOLVING SEMI-INFINITE OPTIMIZATION PROBLEMS 779

Theorem 4.3. Let (τν)ν∈N be a sequence with limν→∞ τν = 0, and let
(xν , y1,ν , γ1,ν , . . . , yp,ν , γp,ν)ν∈N be a sequence of global solutions of Pτν , ν ∈ N (cf.
(3.5)). If x	 is an accumulation point of the sequence (xν)ν∈N such that Assumption 2
holds at x	 and such that the MFCQ holds at some solution of GSIP0(x

∗) , then x	

is a global solution of GSIP.
Proof. Without loss of generality, let (xν , τν) converge to (x	, 0) for ν → ∞. By

Proposition 4.1 for the solutions yj,ν , j ∈ J0(x
∗), we have (for sufficiently large ν)

yj,ν = y(xν , τν) , and x
ν is a solution of GSIPτν (x

∗). By continuity x∗ is feasible
for GSIP0(x

∗) = GSIP (locally in U). As the MFCQ holds at some solution of
GSIP0(x

	), by a result due to Gauvin and Dubeau [9] the value function ω(τ) of
GSIPτ (x

	) is continuous in τ . Consequently ω(τν) = f(xν) → ω(0) and x	 is a
solution of GSIP.

Theorem 4.3 is primarily of theoretical interest, as numerical standard software
may usually not find global solution points of the problems Pτν , ν ∈ N. One can at
most expect a point which satisfies a first order optimality condition like the one of
Fritz John. Consequently, a numerical solution method for GSIP can also only be
expected to find Fritz John points in the sense of section 2.

In the following we study how Fritz John points of the finite problems Pτ (τ 	= 0)
are related to the Fritz John points of GSIPτ (x̄) and GSIP.

Lemma 4.4. Let the reduction ansatz hold at a point x̄ ∈ M , and let
(x, y1, γ1, . . . , yp, γp) be a Fritz John point of Pτ (cf. (3.5)) with (x, τ) sufficiently
close to (x̄, 0). Moreover, let the matrices

Aj =

(
D2

yLj(x, y
j , γj) −D�

y v(x, y
j)

−diag(γj)Dyv(x, y
j) −diag(v(x, yj))

)
, j ∈ J \ J0(x̄) ,

be nonsingular. Then x is a Fritz John point of GSIPτ (x̄) .
Proof. It is not hard to see that x is feasible for GSIPτ (x̄) . The feasibility

of (x, y1, γ1, . . . , yp, γp) for Pτ implies particularly that yj solves Qj
τ (x). Since the

matrices Aj are nonsingular for all j ∈ J , for (x, τ) sufficiently close to (x̄, 0) the point
yj coincides with the unique solution yj(x, τ) of Qj

τ (x) (cf. Proposition 4.1). These
observations, together with some simple continuity arguments, yield the reduction of
the Fritz John condition of Pτ to the one of GSIPτ (x̄) .

Now we can prove the main result of this section.
Theorem 4.5. Let (τν)ν∈N be a sequence with limν→∞ τν = 0, and let

(xν , y1,ν , γ1,ν , . . . , yp,ν , γp,ν) be Fritz John points of Pτν , ν ∈ N (cf. (3.5)), with an
accumulation point (x	, y1,	, γ1,	, . . . , yp,	, γp,	). Let the reduction ansatz (Assump-
tion 2) hold at x	, and let the matrices

Aj =

(
D2

yLj(x
	, yj,	, γj,	) −D�

y v(x
	, yj,	)

−diag(γj,	)Dyv(x
	, yj,	) −diag(v(x	, yj,	))

)
, j ∈ J \ J0(x

	) ,

be nonsingular. Then x	 is a Fritz John point of GSIP .
Proof. For sufficiently large ν ∈ N all assumptions of Lemma 4.4 are satisfied

so that xν is a Fritz John point of GSIPτν (x
	) . By a continuity argument and

Lemma 2.2 x	 is thus a Fritz John point for GSIP in the sense of Corollary 2.6.
The following proposition gives a criterion for the existence of an accumulation

point in the assumption of Theorem 4.5.
Proposition 4.6. Let (τν)ν∈N be a sequence with limν→∞ τν = 0, and let

(xν , y1,ν , γ1,ν , . . . , yp,ν , γp,ν) be feasible points of Pτν , ν ∈ N (cf. (3.5)). Moreover,
let x	 be an accumulation point of the sequence (xν)ν∈N such that the LICQ holds
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780 OLIVER STEIN AND GEORG STILL

everywhere in Y (x	). Then the sequence (xν , y1,ν , γ1,ν , . . . , yp,ν , γp,ν)ν∈N possesses
an accumulation point (x	, y1,	, γ1,	, . . . , yp,	, γp,	).

Proof. After taking a subsequence, let xν → x	 for ν → ∞. For ν ∈ N the
feasibility of (xν , y1,ν , γ1,ν , . . . , yp,ν , γp,ν) for Pτν implies ψτν (γ

j,ν
� ,−v�(xν , yj,ν)) = 0

and thus, by Lemma 2.8(i), v�(x
ν , yj,ν) < 0 for all � ∈ L, j ∈ J . Hence, yj,ν ∈ Y (xν),

j ∈ J , and the upper semicontinuity of Y yields that an accumulation point yj,	 of
yj,ν , ν ∈ N, exists and is contained in Y (x	), j ∈ J .

Next assume that for some j ∈ J the sequence (γj,ν)ν∈N is unbounded. Then
for sufficiently large ν we can consider the vectors ‖γj,ν‖−1γj,ν , which converge to a
vector ηj with ‖ηj‖ = 1, possibly after taking a subsequence.

The feasibility of (xν , y1,ν , γ1,ν , . . . , yp,ν , γp,ν) for Pτν yields

Dygj(x
ν , yj,ν)− γj,νDyv(x

ν , yj,ν) = 0(4.1)

and, by Lemma 2.8(i),

−γj,ν� · v�(xν , yj,ν) = τ2
ν , � ∈ L .(4.2)

Division of (4.2) by ‖γj,ν‖ and taking the limit for ν → ∞ yields ηj� = 0 for
� ∈ L \ L0(x

	, yj,	). However, in the same way (4.1) then implies that the LICQ
is violated at yj,	 in Y (x	), contradicting our assumptions. Consequently, for each
j ∈ J the sequence (γj,ν)ν∈N is bounded and, thus, has an accumulation point.

The existence of some accumulation point x	 in the assumption of Proposition 4.6
can of course be guaranteed if an additional restriction x ∈ X is incorporated into
GSIP, with X nonempty and compact.

We end this section with a result on the rate of convergence of the method.
Lemma 4.7. For x̄ ∈ M and j ∈ J let yj be a nondegenerate solution of Qj(x̄),

and let (yj(x, τ), γj(x, τ)) denote the locally unique solution of (3.1)–(3.4) around
(x̄, 0). Then we have (

Dτy
j(x, 0)

Dτγ
j(x, 0)

)
=

(
0
0

)

for x sufficiently close to x̄ .
In the following proposition we call x̄ ∈ M a nondegenerate solution of GSIP if

the reduction ansatz holds at x̄ and if x̄ is a nondegenerate local minimizer for the
locally reduced problem GSIP0(x̄) .

Proposition 4.8. Let the assumptions of Theorem 4.3 hold, and let the solution
x	 of GSIP be nondegenerate. Then for each subsequence of (xν)ν∈N that converges
to x	, the optimal values of Pτν satisfy

f(xν)− f(x	) = O(τ2
ν ).

Proof. Let ω(τ) denote the optimal value of Pτ . In the proof of Theorem 4.3 we
have seen that ω(τ) coincides with the optimal value of GSIPτ (x

	) if τ is sufficiently
close to zero. Now Lemma 2.2, Lemma 4.7, and a Taylor expansion of ω around 0
yield the assertion.

5. Numerical examples. For the numerical illustrations we implemented the
method from section 3 in Matlab 5.3 and used the routine fmincon from its Opti-
mization Toolbox 2.0, i.e., an SQP method with BFGS updates for the Hessian of the
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SOLVING SEMI-INFINITE OPTIMIZATION PROBLEMS 781

Lagrangian, to replace the “black box” in Step 3 of the method. All examples were
run on an 800 MHz Linux PC.

In Step 2 we do not solve the nonlinear problems(
D�

y Lj(x
0, yj , γj)

Ψτ0(γ
j ,−v(x0, yj))

)
= 0 , j ∈ J ,

since an appropriate starting point for an iteration procedure is not at hand. Instead
we solve the unconstrained, concave problems

Qj
τ0(x

0) : max
y

gj(x
0, y) + τ2

0

∑
�∈L

ln(−v�(x0, y)) , j ∈ J ,

by the routine fminunc to obtain yj,0,0, j ∈ J, and put

γj,0,0� = − τ2
0

v�(x0, yj,0,0)
, � ∈ L , j ∈ J .

Here the problem of finding an appropriate starting point is solved easily by the
determination of some Slater point of the set Y (x0). The latter task can be fulfilled
by solving the convex problem

min
y,η

η s.t. v�(x
0, y)− η ≤ 0 , � ∈ L ,

where the choice of a starting point is obvious.
As an a priori τ -sequence we use τν = 10 ·100−ν , ν ∈ N. The iteration terminates

if either the relative error in the optimal point or in the optimal value is less than
10−6. If the method is provided with the gradients of f , g, and v with respect to
x, then also the first order condition for GSIP from Corollary 2.6 is checked (in the
Euclidean norm).

5.1. Design centering in two dimensions. The general design centering
problem (see also [14]) consists of maximizing some measure, e.g., the volume, of
a parameterized body B(x) which is contained in a second body G :

max
x∈Rn

Vol(B(x)) s.t. B(x) ⊂ G .

In the first examples we let G = {y ∈ R
2| g(y) ≤ 0} with

g(y) =


 −y1 − y2

2

y1/4 + y2 − 3/4
−y2 − 1


 .

The two-dimensional volume of the resulting body is easily calculated to be 20/3. An
equivalent formulation of the general design centering problem as GSIP is

max
x∈Rn

Vol(B(x)) s.t. g(y) ≤ 0 for all y ∈ B(x) .

Problem 1. We look for the largest ball with free center and radius that is con-
tained in G. Thus, we have n = 3 and

B(x) = {y ∈ R
2| (y1 − x1)

2 + (y2 − x2)
2 − x2

3 ≤ 0} , Vol(B(x)) = π x2
3 .
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782 OLIVER STEIN AND GEORG STILL

Table 1
Approximation of G with ψNR.

Problem ov εov εop εFOC CPUinit CPUiter #iter
1 1.8606 2.5596e-06 � � 2.94 1.04 3
2 3.4838 � � 4.8781e-06 2.96 3.55 4
3 3.7234 � � n.a. 3.31 7.50 4
4 3.0792 3.9278e-06 � 2.1812e-06 3.76 1.85 3

As an initial point we use the infeasible point x0 = (0, 0, 1)�.
Problem 2. We search the largest ellipsoid with free center and axis lengths that

is contained in G. The axes are supposed to be parallel to the coordinate axes. We
have n = 4 and

B(x) =

{
y ∈ R

2

∣∣∣∣∣ (y1 − x1)
2

x2
3

+
(y2 − x2)

2

x2
4

− 1 ≤ 0

}
, Vol(B(x)) = π x3x4 .

The initial point is x0 = (0, 0, 1, 1)�.
Problem 3. Now the ellipsoid from Problem 2 is allowed to have axes in arbitrary

position, and with n = 6 we can set

B(x) =

{
y ∈ R

2

∣∣∣∣∣(
y −

(
x1

x2

))�((
x3 x4

x5 x6

)(
x3 x5

x4 x6

))−1(
y −

(
x1

x2

))
− 1 ≤ 0

}
.

Then we have

Vol(B(x)) = π

∣∣∣∣det
(
x3 x4

x5 x6

)∣∣∣∣ ,
and we choose the initial point x0 = (0, 0, 1, 0, 0, 1)�.

Problem 4. In this problem we inscribe the largest box with sides parallel to the
coordinate axes into G. For n = 4 we have

B(x) = {y ∈ R
2| y1 − x1 ≤ 0, y2 − x2 ≤ 0, −y1 + x3 ≤ 0, −y2 + x4 ≤ 0}

with

Vol(B(x)) = (x1 − x3) · (x2 − x4) ,

and we choose the infeasible initial point x0 = (1, 1,−1,−1)�.
The columns of the following tables are labeled as follows: ov, optimal value; εov,

relative error in optimal value; εop, relative error in optimal point; εFOC, error in first
order optimality condition; CPUinit, CPU time for initialization step in seconds;
CPUiter, CPU time for iterations in seconds; #iter, number of outer iterations. If
(relative) errors are below 10−6, we replace the actual number by the symbol “5”. In
Problem 3 the gradients entering the first order optimality condition are not available
for the method, so this criterion is not checked.

For the results in Table 1 we used the natural residual function ψNR as the NCP
function. In this example the performance of the method does not change significantly
if the NCP function ψNR is replaced by ψFB (see [52] for more details).
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SOLVING SEMI-INFINITE OPTIMIZATION PROBLEMS 783

Concerning the solution of Problem 4 it is worth mentioning, as expected, we
have x	4 = −1. This means that the method converges although Q3(x	) clearly is a
degenerate problem. In fact, the computed “maximal box” in G is the set B(x	) =
[−0.024, 3.619] × [−1,−0.155], so that the solution set of Q3(x	) coincides with the
facet [−0.024, 3.619] × {−1} of B(x	). From all these optimal points the method
chooses their “midpoint” as y3,	 = (1.7975,−1). In fact, in our approach the lower
level linear problems are solved by the central path method. It is well known in linear
programming that under weak assumptions the interior point sequence converges to
the so-called analytic center of the optimal facet (cf. [39]).

5.2. Robust optimization. Robustness questions arise when an optimization
problem is subject to uncertain data. If an inequality constraint function g(x, y)
depends on some uncertain parameter vector y ∈ Y ⊂ R

m, then the “most cautious”
way to deal with this constraint is to use its worst-case reformulation

g(x, y) ≤ 0 for all y ∈ Y ,
which is clearly of semi-infinite type. When the uncertainty set Y also depends on
the state variable x, we arrive at a generalized semi-infinite constraint.

The following robust optimization problem is studied in [1] for elliptic uncertainty
sets. In the case of ellipticity the lower level optimal value functions can be computed
explicitly in such a way that the semi-infinite problem is reduced to a nonsmooth
finite problem which can be tackled by SDP methods (cf. [1] for details). We will
show that our numerical method solves not only this specially structured problem but
also two nontrivial generalizations.

Let 1 euro be invested in a portfolio comprised of N shares. At the end of a given
period the return per 1 euro invested in share i is yi > 0. The goal is to determine the
amount xi to be invested in share i, i = 1, . . . , N , so as to maximize the end-of-period
portfolio value y�x.

If the vector y was certain, the solution of this optimization problem would be
evident. A more realistic assumption is that y varies in some nonempty compact set
Y ⊂ R

N . Upon moving the objective function to the constraint set we obtain the
following standard semi-infinite optimization problem with n = N + 1 and m = N :

max
x,xN+1

xN+1 s.t. xN+1 − y�x ≤ 0 , y ∈ Y ,
N∑
i=1

xi = 1 , x ≥ 0.

Apart from its special structure used in [1] for the case of an ellipsoidal set Y , this
is also a linear semi-infinite optimization problem, meaning that the semi-infinite
constraint function is linear in the variable (x, xN+1). Solution methods for these
types of problems are described, e.g., in [10, 20]. Note, however, that the index set of
the semi-infinite constraint is N -dimensional, where N might be a large number.

Problem 5. In [1] the set Y has the form

Y =

{
y ∈ R

N

∣∣∣∣∣
N∑
i=1

(yi − ȳi)2
σ2
i

≤ θ2

}
,

where ȳi is some “nominal” value of yi, σi is a scaling parameter, i = 1, . . . , N , and θ
measures the risk aversion of the decision maker. With the particular choices

ȳi = 1.15 + i · 0.05
N

, i = 1, . . . , N,
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784 OLIVER STEIN AND GEORG STILL

Table 2
Optimal portfolio with ellipsoidal uncertainty and ψNR.

N ov εov εop εFOC CPUinit CPUiter #iter
10 1.15 � 1.3693e-03 3.0860e-05 1.55 3.71 3
50 1.15 � 5.4195e-05 6.6652e-05 7.24 27.23 4
100 1.15 � 3.3458e-05 7.5987e-05 66.27 241.6 4
150 1.15 � 1.9149e-05 4.1678e-05 272.94 884.22 4

Table 3
Optimal portfolio with ellipsoidal uncertainty and ψFB.

N ov εov εop εFOC CPUinit CPUiter #iter
10 1.15 � 7.7231e-04 2.8254e-05 1.53 3.68 4
50 1.15 � 5.4165e-05 5.5333e-05 7.21 34.52 4
100 1.15 � 4.7199e-05 1.5974e-04 65.17 333.8 5
150 1.15 � 4.7277e-05 3.7021e-04 271.49 912.72 4

σi =
0.05

3N

√
2N(N + 1)i , i = 1, . . . , N,

θ = 1.5,

one can show that the optimal policy is to invest equally in all shares, i.e., xi =
1/N , i = 1, . . . , N , with optimal value 1.15 . We use the starting point x0 =
(1, 0, . . . , 0) in R

N+1.
Having the large dimensions of Y in mind, the method performs very well when

ψNR is used (cf. Table 2). In the case of ψFB as the NCP function, the “black box”
part of the method (i.e., the Matlab routine fmincon) does not converge for N = 100
(cf. Table 3), so that we solved this particular problem with the a priori sequence
τν = 10−ν , ν ∈ N.

Problem 6. A more general choice of Y is

Yδ = { y ∈ R
N | ‖diag(σ)−1(y − ȳ)‖δ ≤ θ }

with δ ∈ [1,∞]. Whereas Y2 is the ellipsoid from Problem 5, the sets Y1 and Y∞
are polytopes. For all other choices of δ we still obtain a nonempty compact convex
set Yδ . As polytopes can be considered as ellipsoidal sets in the sense of [1], let us
use our method for a nonellipsoidal set like Y10 . Tables 4 and 5 show the results for
the starting point x0 = 1/N · (1, . . . , 1, 0). The method performs well for dimensions
up to N = 150. In this example the initialization phase takes about as long as the
main iterations. Note that for increasing dimensions the attainment of the first order
condition becomes worse when the method terminates because of a small relative error
in the optimal value.

Problem 7. Finally, since our method works for x-dependent sets Y , we can also
consider the case in which the risk aversion of the decision maker depends on the
point x. If for instance his risk aversion increases when the values xi deviate from
1/N , i = 1, . . . , N , we can replace θ by the expression

Θ(x) = θ ·
(
1 +

N∑
i=1

(
xi − 1

N

)2
)

and obtain the generalized semi-infinite optimization problem

max
x,xN+1

xN+1 s.t. xN+1 − y�x ≤ 0 , y ∈ Y (x) ,
N∑
i=1

xi = 1 , x ≥ 0,
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SOLVING SEMI-INFINITE OPTIMIZATION PROBLEMS 785

Table 4
Optimal portfolio with nonellipsoidal uncertainty and ψNR.

N ov εov εop εFOC CPUinit CPUiter #iter
10 1.1190 � 7.8075e-05 1.5139e-03 2.82 5.63 3
50 1.1155 � 1.5402e-05 6.1081e-02 21.36 41.14 3
100 1.1151 � 9.0467e-06 6.0789e-02 246.35 231.22 3
150 1.1150 � 2.4410e-05 2.0368e-01 809.94 708.99 3

Table 5
Optimal portfolio with nonellipsoidal uncertainty and ψFB.

N ov εov εop εFOC CPUinit CPUiter #iter
10 1.1190 � 5.4529e-04 1.1783e-03 2.81 5.58 3
50 1.1155 � 4.3946e-04 6.0965e-02 21.26 41.71 3
100 1.1151 � 1.5527e-05 5.7950e-02 241.95 228.89 3
150 1.1150 � 1.0349e-05 2.1809e-01 811.68 703.06 3

Table 6
Optimal portfolio with state-dependent uncertainty and ψNR.

N ov εov εop εFOC CPUinit CPUiter #iter
10 0.7033 � � 6.9574e-06 2.81 1.45 4
50 0.9638 � 1.1912e-05 1.1828e-03 14.78 5.49 4
100 1.0259 � 2.5937e-05 5.5778e-03 132.54 37.05 3
150 1.0535 � 7.0987e-06 2.3336e-03 643.39 73.96 3

Table 7
Optimal portfolio with state-dependent uncertainty and ψFB.

N ov εov εop εFOC CPUinit CPUiter #iter
10 0.7033 � 1.3743e-05 1.8857e-04 2.77 1.53 4
50 0.9638 � 3.7616e-05 3.7318e-03 14.76 4.84 3
100 1.0259 � 4.5000e-05 9.6580e-03 133.00 20.48 3
150 1.0535 � 3.6030e-05 1.1934e-02 642.96 58.05 3

with

Y (x) =

{
y ∈ R

N

∣∣∣∣∣
N∑
i=1

(yi − ȳi)2
σ2
i

≤ Θ(x)2

}
.

The choice σi = 1, i = 1, . . . , N , prevents the solution of the original Problem 5 to
be xi = 1/N , i = 1, . . . , N , so that the modified term Θ(x) can take effect, and we
observe a good performance of our method in Tables 6 and 7 up to dimensionN = 150.
Note, however, that in this example the initialization phase takes considerably longer
than the main iterations.

6. Final remarks. The essential idea behind the numerical method presented
in section 3 is to reformulate the generalized semi-infinite optimization problem as
a Stackelberg game and to make use of the convexity in the lower level problems.
Starting at this point, there are several possible routes to the design of a numerical
method.

First, there are other ways to treat the convex lower level problems than the one
used in this article, e.g., penalty, barrier, or cutting plane methods. Furthermore, if
one decides to replace the convex optimization problems by their first order optimal-
ity conditions and obtain a mathematical program with equilibrium constraints, this
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786 OLIVER STEIN AND GEORG STILL

program does not necessarily have to be solved with regularized NCP functions. In-
stead, the exact penalization approaches from [34, 44] or nonsmooth Newton methods
(see, e.g., [30]) could be promising alternatives. Finally, in the case when one uses
NCP functions, there are a multitude of functions other than the natural residual and
the Fischer–Burmeister function to choose from. For a survey see, e.g., [5].

Further questions concern the required accuracy for the solution of the auxiliary
problems by the “black box” method, the implementation of an active set strategy,
and the design of a pathfollowing method (cf. [15]) to solve the finite parametric
optimization problems Pτ for parameter values tending to τ = 0. Let us point out,
however, that the resulting numerical method will then not just solve a sequence of
finite dimensional optimization problems that are easily constructed from the problem
data, so that the implementation effort for the user increases drastically.

Moreover, generalizations of the convergence proofs from section 4 to cases such
as convex lower level problems in which the reduction ansatz is not necessarily satis-
fied (recall Problem 4 in section 5.1) will be the subject of future research. We finally
remark that a direct application of the presented ideas to semi-infinite optimization
problems with nonconvex lower level problems results, in general, only in a relaxation
of the original problem, since lower level optimality can then not be replaced equiva-
lently with a first order optimality condition. However, our method can then still be
used to obtain lower bounds for the optimal value of GSIP.

Acknowledgment. We express our thanks to the referee, whose precise and
substantial remarks led to an improved version of the article.
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