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Abstract

This paper concerns the static analysis of programs that perform destructive updating on
heap-allocated storage. We give an algorithm that uses finite shape-graphs to approximate
conservatively the possible “shapes” that heap-allocated structures in a program can take on.
For certain programs, our technique is able to determine such properties as: (i) when the input
to the program is a list, the output is also a list, and (ii) when the input to the program is a tree,
the output is also a tree. For example, the method can determine that “list-ness” is preserved
by (i) a program that performs list reversal via destructive updating of the input list, and (ii) a
program that searches a list and splices a new element into the list. None of the previously
known methods that use graphs to model the program’s store are capable of determining that
“list-ness” is preserved on these examples (or examples of similar complexity).

In contrast with previous work, our shape-analysis algorithm is even accurate for certain
programs that update cyclic data structures, and is able to show that when the input to the
program is a circular list, the output is also a circular list. For example, the shape-analysis
algorithm can determine that the list-insert program preserves “circular list-ness”.

1 Introduction

This paper concerns the static analysis of programs that perform destructive updating on heap-
allocated storage. It addresses problems that can be looked at — depending on one’s point of view
— as pointer-analysis problems, alias-analysis problems, sharing-analysis problems, storage-analysis
problems (also known as shape-analysis problems), or type-checking problems. The information
obtained is useful, for instance, for generating efficient sequential or parallel code.

Throughout most of the paper, we emphasize the application of our work to shape-analysis
problems. The goal of shape analysis is to give, for each program point, a conservative, finite
characterization of the possible “shapes” that the program’s heap-allocated data structures can
have at that point. We illustrate our approach by means of a running example in which we apply
the shape-analysis technique to a program that uses destructive-updating operations to reverse a
list. This example also illustrates the connection between shape analysis and type checking: It
demonstrates how a sufficiently precise shape-analysis algorithm is able to verify that the destructive-
reverse program does indeed return a list whenever its argument is a list. The application of our
work to pointer-analysis and alias-analysis problems is discussed in Section 7.1.

* A preliminary version of this paper appeared in the Conference Record of the Twenty-Third ACM Symposium on
Principles of Programming Languages, ACM, New York, NY, January 1996.
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This paper presents a new shape-analysis algorithm. For certain programs — including ones in
which a significant amount of destructive updating takes place — the algorithm is able to verify such
shape-preservation properties as: (i) when the input to the program is a list, the output is also a
list, and (ii) when the input to the program is a tree, the output is also a tree. For instance, the
method can determine that “list-ness” is preserved by (i) a list-reversal program that performs the
reversal by destructively updating the input list, and (ii) a list-insert program that searches a list
and splices a new element into the list. Furthermore, the shape-analysis algorithm is even accurate
for certain programs that update cyclic data structures, and is able to show that when the input
to the program is a circular list, the output is also a circular list. For example, the shape-analysis
algorithm can determine that the list-insert program preserves “circular list-ness”.

These are rather surprising capabilities. None of the previously developed methods that use
graphs to solve shape-analysis problems are capable of determining that “list-ness” is preserved on
these examples (or examples of similar complexity) [JM81, LH88, CWZ90, Str92, PCK93]. Previ-
ous to this paper, it was an open question whether such precision could ever be obtained by any
method that uses graphs to model storage usage. Furthermore, as far as we know, no other shape-
analysis/type-checking method (whether based on graphs or other principles [HN90, Hen90, LR91,
Deud2, CBC93, Deu94, GHI6)) has the ability to determine that “circular list-ness” is preserved by
the list-insert program.

What does our method do that allows it to obtain such qualitatively better results on the above-
mentioned programs than previous methods? A detailed examination of the differences between our
algorithm and previous algorithms is deferred to Section 8; however, a brief characterization of some
of the differences is as follows:

e Several previous methods have used allocation sites to name shape-nodes [JM82, CWZ90,
PCK93]. Allocation-site information imposes a fixed partition on the memory. In contrast,
our approach deliberately drops information about the concrete locations. There is only an
indirect connection to the run-time locations: Shape-graph nodes are named using a (possibly
empty) set of variables. A shape-node named with variable-set X represents run-time locations
that are simultaneously pointed to by all (and only) the variables in X.

o Like other shape-analysis methods, our method clusters collections of run-time locations into
summary nodes. In our approach, run-time locations that are not pointed to by variables
are clustered into a single summary node. Chase, Wegman, and Zadeck observed that their
shape-analysis method cannot handle programs such as the list-reversal program because it
lacks a way to materialize (“un-summarize”) summary nodes at certain key points of the
analysis [CWZ90, pp. 309]. Our shape-node naming scheme allows our method to materialize
copies of the summary node (as non-summary nodes) whenever a pointer variable is assigned
a previously summarized run-time location.

e In the analysis of an assignment to a component, say z.cdr := nil, our method always removes
z's cdr edges. Previous methods either never remove these edges [Str92] or use some heuristics
to remove such edges under limited conditions {JM81, LH88, CWZ90, PCK93|. (This unusual
characteristic of our method is also a by-product of the node-naming scheme.)

o We use sharing information to increase the accuracy of the primitive operations used by our
method. More specifically, we keep track of shape-nodes that represent cons-cells that may
be the target of more than 1 pointer from fields of cons-cells'. (Sharing through variables —
e.g., when two variables point to the same cons-cell — is represented directly by shape-graph
edges.)

When an unshared list is traversed, say via a loop containing an assignment  := z.cdr, the
sharing information is used to improve the precision of the materialization operation, which
allows the algorithm to determine that z points to an unshared list on every iteration. The

IThroughout the paper, the presentation is couched in terms of the Lisp primitives for manipulating heap-allocated
storage (i.e., nil, cons, car, and cdr). However, this is not due to any basic limitation of the work; the algorithm
extends readily to the case of pointers to user-defined types that have more than two fields.

In the paper, we assume that we are working with an imperative language that meets the following general descrip-
tion: A program consists of assignment statements, conditional statements, loops (while, for, repeat), read statements,
write statements, and goto statements. (The treatment of procedures is discussed in Section 6.4.) The language pro-
vides atomic data {e.g., integer, real, boolean, etc.) and constructor and selector operations (e.g., nil, cons, car, and
cdr), together with appropriate predicates (equal, atom, and null). We assume that a read statement reads just an
atom and not an entire list, tree, or graph.




program reverse(z,y)

begin
/* = points to an unshared, acyclic, singly linked list */
y := nil
while z # nil do
L=y
y:=2z
T = z.cdr
y.cdr =1t
od
t := nil
end

Figure 1: A program to reverse a list.

limited way in which sharing information is utilized in [JM81] and [CWZ90] prevents the
methods described in those papers from determining this fact.

e The shape-node names also provide information that sometimes permits the method to de-
termine that a shared-node becomes unshared (e.g., this occurs in the program that performs
an insertion into a list). With the Chase-Wegman-Zadeck method, once a node is shared it
remains shared forever thereafter. For programs that operate on lists and trees, the non-graph-
based method of Hendren [Hen90] is sometimes able to determine that a shared-node becomes
unshared. However, Hendren’s method does not handle data structures that contain cycles.

An experimental implementation of the shape-analysis method has been created. The examples
presented in the paper have been prepared with the aid of this implementation.

The remainder of the paper is organized as follows: Section 2 provides an overview of the shape-
analysis technique. Section 3 introduces the terminology and notation used in the rest of the paper.
Section 4 presents a concrete collecting semantics for a language with destructive updating, in terms
of “shape-graphs” that represent memory states. Section 5 introduces an abstract domain of “static
shape-graphs” and shows how they can be used to approximate the sets of shape-graphs that arise in
the collecting semantics. Section 6 presents some elaborations and extensions of our basic approach.
Section 7 concerns applications of the shape-analysis method. Section 8 discusses related work. A
proof of correctness, showing that the abstract semantics of static shape-graphs is safe with respect
to the concrete semantics, is presented in Appendix B. Appendix A presents the proof of a key
lemma needed in Appendix B.

2 An Overview of the Method

The shape-analysis algorithm is presented and proven correct using the framework of abstract in-
terpretation [CC77]. Because pointers, heap-allocated storage, and destructive updating are all
mechanisms that introduce aliasing, the formal treatment of shape analysis is notationally some-
what formidable. However, many aspects of the shape-analysis algorithm can be understood at an
intuitive level. In this section, we give such an overview of the algorithm, using a program that
performs a list reversal via destructive updating as a running example.

The list-reversal program is shown in Figure 1. Assuming that variable z initially points to an
unshared list (i.e., a possibly empty, acyclic, singly linked list with no shared cons-cells), after each
iteration, y points to the reversal of a successively longer prefix of the original list. The shape-
analysis algorithm detects (among other things) that at the beginning of each iteration of the loop,
the following properties hold:

Invariant (i) Variable z points to an unshared, acyclic, singly linked list.

Invariant (i) Variable y points to an unshared, acyclic, singly linked list, and variable ¢ may point
to the second element of the y-list (if such an element exists).

Invariant (iii) The lists pointed to by = and y are disjoint.



2.1 Static Shape Graphs

The shape-analysis algorithm is based on an abstraction of memory, called a static shape graph (SSG).
An SSG is a finite labeled directed graph that approximates the actual (or “concrete”) stores that
can arise during program execution. The shape-analysis algorithm itself is an iterative procedure
that computes an SSG at every program point.

In contrast to concrete stores, each SSG in a program is a priori of bounded size. This is
achieved by using a single shape-node to represent multiple cons-cells. In general, a shape-node in
an SSG has the following properties:

(a) A shape-node nz, where Z # ¢, represents a unique cons-cell in any given concrete store —
the cons-cell pointed to by exactly the variables in Z. However, across the collection of SSGs
that are the abstractions of the (several different) concrete stores that arise on different loop
iterations (or during entirely different executions of the program), nz will, in general, denote
different cons-cells. For example, column two of Figure 2 shows the concrete stores that arise
at the beginning of the loop in the list-reversal program when input-list z is a five-element list;
column three shows the corresponding SSGs. Shape-node n(;} represents the cons-cells /1, l2,
I3, ls, and 5 in the concrete stores that arise on iterations 0, 1, 2, 3, and 4, respectively.

(b) In contrast, shape-node ng can represent multiple cons-cells of a single concrete store. (Jocu-
larly, we refer to ng as the “primordial soup”.) For example, in the SSG in column three of the
iteration-0 row, n, represents the cons-cells l3, {3, ls, and 5 of the concrete store in column
two. In the SSG in column three of the iteration-5 row, ng represents the cons-cells I3, 2, and
Iy

(¢) In different SSGs, the same cons-cell may be represented by different shape-nodes. For instance,
consider the $SGs in column three of Figure 2 in top-to-bottom order. Cons-cell I; is repre-
sented by shape-nodes nz}, Ny}, N{e}s N Mo, and ng; cons-cell l3 is represented by ng, ng,
Nz}s Ty} N{t}> and ny; cons-cell l5 is represented by ng, ng, Ng, N, Nz}, and T(y}.

There is an important conclusion to draw from these properties: It is incorrect to think of a
shape-node as representing a fixed partition of memory. Instead, the ideas to keep in mind are the
following:

By going from stores to SSGs, we deliberately drop information about the concrete loca-
tions, but we keep “aliasing-configuration” information that characterizes cons-cells that
are simultaneously pointed to by different sets of variables. A shape-node nx (i.e., with
variable-set X) in the shape-graph for program-point p represents the cons-cells that are
simultaneously pointed to by all (and only) the variables in X when control reaches p.

(The sets of variable names that represent alias configurations are reminiscent of the alias-configurations
tracked by Myers in his algorithm for determining aliasing among (scalar) program variables [Mye81].)

2.2 An Explicit Representation of Sharing

An examination of the iteration-0 row of Figure 2 may lead the reader to think that acyclic structures
are abstracted to cyclic structures (and hence that the abstraction cannot distinguish between cyclic
and acyclic structures). In fact, although SSGs are “cyclic” — in the sense that there are nodes with
paths to themselves — there is an additional component of SSGs that distinguishes the abstractions
of cyclic concrete structures from the abstractions of acyclic concrete structures. In particular, each
shape-node n in an SSG has an associated Boolean flag, denoted by isf(n), that, when true, indicates
that the cons-cells represented by n may be the target of pointers emanating from 2 or more distinct
cons-cell fields. (“is"” stands for “is-shared”.) Edges from variables do not contribute to is? status:
is captures a notion of “heap shared”; sharing through variables is represented explicitly by edges
from variables to shape-nodes.

The SSG in column three of the iteration-0 row of Figure 2 illustrates an important aspect of
the abstraction from concrete stores to SSGs: Because all nodes in the tail of an acyclic list are
represented by summary-node ns, the abstraction of a list (deliberately) loses information about
the length of the list. In this way, we achieve a bounded-size abstract representation and hence a
terminating abstract semantics.
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Figure 2: Columns two and three show the concrete stores and the corresponding SSGs that arise
at the beginning of the loop in the list-reversal program when input-list = is a five-element list. For
each of the shape-nodes in all of the SSGs, the value of ist is false.



The significance of is*(n) = false is that if several car and cdr edges in an SSG point to n, they
represent concrete edges that never point to the same cons-cell in any concrete store that the SSG
represents. For example, in the S8G in column three of the iteration-0 row of Figure 2, because
ist(ng) = false, the two cdr edges from n(;) to ng and from ny to ne cannot represent edges that
point to the same cons-cell in any concrete store that this SSG represents. Thus, despite the fact
that this SSG contains a cycle, it only represents acyclic concrete stores.

An examination of the iteration-3 row of Figure 2 may lead the reader to think that disjoint lists
are abstracted to shared lists (and hence that the abstraction cannot distinguish between disjoint
lists and shared lists). However, the is* values come to the rescue here, too. Because is*(ng) = false,
we know that the two cdr edges from ny,} to ng and from ngy to ng cannot point to the same
cons-cell in any concrete store. Consequently, the abstraction captures the fact that at the beginning
of iteration 3, the lists pointed to by z and ¢t are disjoint. Thus, despite the fact that the tails of the
z-list and the ¢-list are both represented by ng, the SSG only represents concrete stores in which the
z-list and the ¢-list do not share any cons-cells in common.

2.3 An Iterative Algorithm

The shape-analysis method is an iterative algorithm that computes an SSG for every point in the
program. The algorithm operates over the domain of SSGs, with each statement in the program
having an associated SSG-to-SSG transformer. The shape-analysis algorithm is conservative with
respect to the collection of stores that can actually arise during any execution:

o The SSG computed for a program point by the algorithm may have more shape-nodes and
edges than the SSG obtained by abstracting the collection of stores that can actually arise
during execution.

e The SSG for a program point p might have is*(n) = true even though, in the concrete stores
that arise at p, none of the cons-cells that n represents are the target of pointers emanating
from 2 or more distinct cons-cell fields.

For the reverse program from Figure 1, the shape-analysis algorithm uses four iterations over the
program to compute the final S8Gs. The SSGs that arise at each program point during the analysis
are shown in Figure 3. These will be used below, in Section 2.4, to explain how the algorithm is able
to establish information about the possible “shapes” that heap-allocated structures in a program
can take on. (For space reasons, only the SSGs for statements in the loop body are shown. In all of
these SSGs, is" is false for all of the shape-nodes.)

2.4 What the Shape-Analysis Algorithm Achieves and Why

We now consider the main reasons why the shape-analysis algorithm is able to produce accurate
information about the list-reversal program. In particular, we wish to give a feeling for why the
algorithm is able to establish the three invariants mentioned at the beginning of Section 2.

There are three key aspects of the algorithm that contribute to the successful outcome of the
analysis of the list-reversal program. Each of them can be illustrated by the SSG transformations
carried out by the algorithm during its third iteration over the program (see the iteration-3 column
of Figure 3.)

Tracking of aliasing configurations. One aspect involves the tracking of aliasing configurations via
the “names” attached to shape-nodes. This is illustrated by the SSG transformation carried
out at the statements “t := y” and “y := z” during the third iteration. In particular, when the
statement “t := y” is analyzed — producing the second SSG in column 3 of Figure 3 from the
first SSG, there are two issues: (i) the “liquidization” of nyy and (ii) the “renaming” of ngy}.

When “t := y” is encountered in the third iteration, ¢ points to ny:}, which is also pointed
to by nyy}.cdr. This represents a concrete store in which y is the only variable pointing to a
cons-cell [, and [,.cdr points to a cons-cell I;, which is pointed to by ¢t (and no other variable).
After the assignment “t :=y”, l; is not pointed to by any variable, and both ¢t and y point to
ly. The appropriate SSG to represent this store is obtained by “liquidizing” n;: To model the
fact that variable t no longer points to l;, we remove t from the “name” of ny}; because this




Tteration 1

Iteration 2

T .
M=z )
T o {z} @
n{:} @ 1 °
{y}
t=y
T > -
" )
I — . Mz} ¢
"=} ¢ Y — .
it —»
Ty}
yi==z
T —
Y — i -
ey - n{y'z} )
Y — i
Mgz} e p i
Tt {e}
I = T.cdr
T z
Y — * Y — * 1
Ny} N{z} Ty} Nz}
t . *
Mo TL“} g
y.cdr:=1¢
T T
Yy . Y 1 9
" {y} Nz} Ty} n{z}
t—— . .
e n{t} Mg

Iteration 3 Iteration 4
T »> T *
Tz} Mg Nz} T
Y — o t— | | Y —» - S B t
Ty} Tefe} N {y} T {t}
T — .- . T —» - .
Tz} ) =} e
Y J/ Y — 7
t t =
Tiltv} T{t.v}
T —+ T .
Y — - - Y o
y,z} Tty T{y,z} Te
A / t —» 0/
Tt} it}
T T
Y — L p Y~ hd 1
Ty} Tz} " {y} =}
t e »> L, t —~ hd v
Ti{t} U Tty i _
T T
y — L 1’ y 1 ﬂ
Ny} n{z} Ty} Nz}
t —+ . g t —~ ¢ l e
TITEY 3 (e} o t___ ]

Figure 3: The SSGs that arise when the shape-analysis algorithm is applied to the list-reversal

program.




Node Materialization
1s%(ny) = false ist(ng) = true
T — o T —»
Y — Y — ~
{y.=} @ Ny} g
{t} e}
z = T.cdr : T = z.cdr
z T
Yy
y p—— o o [ y o o o
Ty} Nz} Ty Ty} Uz} 2
t —+ o t —+ Z———-—-—-——
Tt} Tit}
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turns the “name” of the shape-node into ¢, it is merged with shape-node ng, which already
has the “name” ¢. (By this means, n, is “liquidized” and falls into the primordial soup.)

In addition, to model the fact that variable ¢ now points to ly, we add ¢ to the “name” of
N{y}, TeNaming n{,} to n{y}- Therefore, after statement “t ;= y” there is a cdr edge from
Nty t0 N (and there is no longer any shape-node known as ny}).

Executing the statement “¢ := y” cannot increase the amount of “sharing” in any concrete
store. That is, it cannot increase the number of cons-cells that are the target of pointers
emanating from 2 or more distinct cons-cell fields. This is reflected in the SSG by the fact that
ist is still false for all shape-nodes in the new SSG. Thus, despite the fact that the tails of the
z-list and y-list are both represented by ne, the SSG captures the fact that the lists pointed
to by y and z remain disjoint. (See Invariant (iii) and the discussion in Section 2.2 above.)

Similarly, when the statement “y := z” is processed (to produce the third SSG from the
second SSG), n(s,y) is renamed to nyy and nyy is renamed t0 M (y }-

“Materialization” of nyzy from ngy. Equally important is the way the algorithm handles the advance-

ment of z down the z-list by “z := z.cdr” (to produce the fourth SSG from the third SSG).

When “z := z.cdr” is encountered in the third iteration, z and y point to shape-node
Ny}, and the cdr field of ngy .} points to summary-node n,. Because is*(ny) = false, this
represents a concrete store in which z and y point to a cons-cell lo, and the cdr field of [y points
to an unshared cons-cell [;, which may, in turn, point to an unshared, acyclic, singly linked list
(made up of la, I3, etc.). After the assignment, only y points to lo, = points to [; (and Iy, I3,
etc. are still not pointed to by any variable). The appropriate SSG to represent this store has
shape-nodes n(y}, n{z}, N{t}s and n, as shown in the fourth SSG in column 3 of Figure 3.

The effect has been to “materialize” a new non-summary shape-node n ;) from summary-
node ny. (We say that “the operation ‘z := z.cdr’ ladles a node out of the primordial soup”.)

Materialization creates an SSG that conservatively covers all the possible new configurations
of storage. For example, had is*(ny) been true in the third SSG, as it is in column two of
Figure 4, then there would have been three additional cdr edges: from ng;y to n(zy, from
nye to Nz}, and from ne to 1y} (When we ladle a node from the primordial soup and
ist(ng) = true, we refer to edges like these as “bits of algae” attached to n(z}.)

Cutting the list. In the analysis of “y.cdr :=t” (which produces the fifth SSG from the fourth SSG),
the cdr edge of shape-node n(,} (which points to n(.} in the fourth SSG) is first removed. This
cuts the y list at the head, separating the first element, n(,, from the tail, which z points to.




A cdr edge from ngy) to ngy is then added, which concatenates shape-node ngy} at the head
of the list that ¢ points to.

Other shape-analysis algorithms handle a statement of the form “y.cdr := ¢” much more
conservatively: They do not, in general, remove the cdr edges emanating from the shape-nodes
that y points to.? Instead, they retain the old edges and add cdr edges from the shape-node
that y points to, to the shape-node that ¢ points to.

The reason our shape-analysis algorithm is able to do a better job is because it conserva-
tively tracks all the possible aliasing configurations via the “names” attached to shape-nodes:
A shape-node nz in the shape-graph for program-point p represents the cons-cells that are
simultaneously pointed to by exactly the variables in Z when control reaches p. If y is in the
name of shape-node nz (i.e., if y € Z), then nz represents only concrete cons-cells whose cdr
field will definitely be overwritten. Therefore, in the interpretation of “y.cdr := ¢”, our method
can always replace the cdr edges of all shape-nodes that y points to by edges to the shape-nodes
that ¢ points to. (In the fourth SSG in column 3 of Figure 3, there is only a single shape-node
that y points to (namely n(y}), and a single shape-node that ¢ points to (namely ny).)

In the shape analysis of the list-reversal program, there is a crucial interaction between these
three aspects.

Suppose, for example, that in the SSG transformation for “z := z.cdr”, shape-node n(,;, was
not materialized out of n4, but instead variable £ was merely set to point to ne. (This is essentially
what other shape-analysis algorithms do, but expressed in our terminology.) At “y.cdr := t”, the
removal of y's cdr edge would still cut the y-list at the head, separating the node that y points to
(ie., ngyy) from the list pointed to by z (which in this case would be represented by ne.). However,
when the cdr edge from ng,; to ngy is added to the SSG, this sets y’s cdr field to ¢, whose cdr field
points to ng, which is what = points to. At this stage, the information that the z-list and the y-list
are disjoint has been lost!

Note how differently things turn out when ng.} is materialized from ny at “z := z.cdr”. At
“y.cdr := t”, T points to n{,}, and thus when y’s cdr field is set to 1y} (whose cdr field points to
ne), © does not point to ne. Although ne occurs in both the tail of z and the tail of y, because
is*(ng) = false we know that the two lists do not share any cons-cells in common; that is, z and y
must point to disjoint acyclic lists.

The operations discussed above — assigning a pointer to a pointer, advancing a pointer down
a list, and cutting a list — are three of the five main operations of list-manipulation algorithms.
The fourth and fifth common list-manipulation operations — splicing a new element into a list and
removing an element from a list — can, in many cases, be handled accurately by our shape-analysis
algorithm, even if shape-nodes temporarily become shared! (This is not illustrated by the list-reversal
program, but is discussed in Section 5.5.) This points up the strength of our approach: Our algorithm
handles all five of the basic list-manipulation operations with a remarkable degree of precision — as
well as similar tree- and circular-list-manipulation operations.

3 Terminology and Notation

A program is represented by a control-flow graph G = (V, A), where V is the set of vertices and
A CV xV is the set of arcs. G has a unique start vertex, which we assume has no predecessors.
The other vertices of the control-flow graph represent the statements and predicates of the program
in the usual way; st(v) denotes the statement or predicate of vertex v.

To simplify the formulation of the analysis method, it will be stated for a single fixed (but
arbitrary) program. The set of pointer variables in this program will be denoted by PVar.

3.1 Normalization Assumptions

For expository convenience, we will assume that programs have been normalized to meet the following
conditions:

¢ Only one constructor or selector is applied per assignment statement.

2In some algorithms, cdr edges emanating from a shape-node that y points to are removed in very limited
circumstances.



o An expression cons(z,y) is executed in three steps: (i) an uninitialized cons cell is allocated
and its address is assigned into a new temporary variable (e.g., “temp := new”); (ii) the car
component of temp is initialized with the value of z (“temp.car := z”); (iii) the cdr component
of temp is initialized with the value of y (“temp.cdr :=y”).

e All allocation statements are of the form z := new, (as opposed to z.sel := new).

o In each assignment statement, the same variable does not occur on both the left-hand and
right-hand side.

¢ Each assignment statement of the form lhs := rhs in which rhs # nil is immediately preceded
by an assignment statement of the form lhs := nil.

o An assignment statement of the form temp := nil is placed at the end of the program for each
temporary variable temp introduced as part of normalization.

Thus, for every vertex v € V in which a pointer manipulation is performed, st(v) has one of the
following forms: z := nil, z.sel := nil, z := new, r 1=y, ¢ := y.sel, or z.sel := y, where y # z.
(In our implementation, the work of putting a program into a form that meets these assumptions is
carried out by a preprocessor.) Note that the number of temporary variables that are introduced to
meet these restrictions is, in the worst case, linear in the size of the original program. O

The normalization assumptions are not essential, but simplify the presentation. For example, the
next-to-last assumption allows the semantics to treat the “kill” aspects of a statement (e.g., z := nil)
separately from the “gen” aspects (e.g., £ := y.sel, assuming that z’s value is nil). (See Figures 6
and 8.)

Example 3.1 Figure 5 shows (a) the normalized version of the list-reversal program, and (b) the
control-flow graph of the program in normalized form. O

3.2 Shape-Graphs

Both the concrete and abstract semantics are defined in terms of a single unified concept of “shape-
graph”, which is defined as follows:

Definition 3.2 A shape-graph is a finite directed graph that consists of two kinds of nodes: vari-
ables (i.e., PVar) and shape-nodes, and two kinds of edges: variable-edges and selector-edges.
A shape-graph is represented by a pair of edge sets, (Ey, E), where
o E, is the graph’s set of variable-edges, each of which is denoted by a pair of the form [z,n],
where x € PVar and n is a shape-node.
o E, is the graph’s set of selector-edges, each of which 1s denoted by a triple of the form (s, sel, t),
where s and t are shape-nodes, and sel € {car, cdr}.
We overload the symbol E, to also mean the function that, when applied to a variable x, returns

z’s E, successors. That is, for x € PVar, we define E,(z) to be E,(z) def {n|[z,n] € E,} Similarly,

for a shape-node s and sel € {car, cdr}, we define Ey(s, sel) to be Eq(s, sel) def {t] (s,sel,t) € Es}.

(The intended meaning of a use of E, or E, will always be clear, according to whether arguments are

supplied or not.) Given SG = (E.,, E,), we define shape_nodes(SG) as follows: shape_nodes(SG) def

{n|lxn]€E,}U{n| (x*n) € E}U{n|(n %) € E}. The class of shape-graphs is denoted by
Sg. a

Note that for a given shape-graph SG, shape.nodes(SG) is uniquely defined: it consists of the
set of non-isolated nodes in SG (i.e., the nodes that are touched by at least one edge). It is for this
reason that we do not explicitly list the node set when specifying a shape-graph.

Remark. We will systematically use the terms “nodes” and “edges” when referring to elements
of shape-graphs, and “vertices” and “arcs” when referring to elements of control-flow graphs. In
general, properties of (or operations on) the shape-graphs used to define the abstract semantics will
be superscripted with f; those used to define the concrete semantics have no superscript. O

The shape-graphs that arise in the concrete semantics for the language have somewhat different
characteristics from the ones that arise in the abstract semantics. However, the fact that both are
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program reverse(z,y)
begin
/* T points to an unshared, acyclic, singly linked list */

{=} iz
y = nil
while z # nil do
t = nil
t:i=y
y :=nil
Y=z
ty = nil
t; ;= x.cdr
z = nil
=1
y.cdr := nil
y.cdr =1
od
t := nil
tl := nil

Y -
iy} Mg
end

(@) ®)

Figure 5: The list-reversal program in normalized form, and the normalized program’s control-flow
graph.

defined from a shared root concept (namely Definition 3.2) helps in defining the abstraction relation
that relates them (see Definition 5.3).

In the concrete semantics, which is given in Section 4, the result of an execution sequence is a
shape-graph that represents the state of heap-allocated storage in memory. In this case, each shape-
node represents a unique cons-cell, and for each variable z, either E,(z) is a singleton set (say {n})
or it is empty. Furthermore, E,(n, car) and E,(n, cdr), which represent the cons-cells pointed to by
the car and cdr fields of n, are also either singleton sets or empty (depending on whether these fields
point to allocated cons-cells or not). Such properties are captured in the following definition:

Definition 3.3 (Deterministic Shape-Graphs) A shape-graph is deterministic if (i) for every
z € PVar, |E,(z)| < 1 and (ii) for every shape-node n and sel € {car, cdr}, |Es(n,sel)] < 1. The
class of deterministic shape-graphs is denoted by DSG. O

The concrete semantics will treat statements as “deterministic-shape-graph transformers”. In
contrast, in Section 5.3, the abstract semantics will use non-deterministic shape-graphs to model
(conservatively) the state of heap-allocated storage. In non-deterministic shape-graphs, quantities
such as E,(z), Es(n, car), and E,(n, cdr) may each yield a set with more than one shape-node.

4 The Concrete Semantics

In this section, we present a concrete semantics in which deterministic shape-graphs are used to
represent the state of memory, and the meaning of an assignment statement is a deterministic-
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[z = nill(By, B,)) = (E, - {{z. 4]}, E) |
[o.sel = nill (Bo, Ba) (B, By~ {(s.5el,4) | [z] € Eu))
[z = new]((Ey, B)) € (B, U{[z,nneul}, Bo)
2=l B) € (B, U (o] |lnl € BB
[z.sel := yl((Ey, E,)) ff (Ey, By U {(s,sel,t) | [z,3], [y, t] € Ev})
[c:=ysell (v, Es) = (B U{(z,t]|[y,5] € By, (s, 5eh,t) € Bo}, B)

Figure 6: The concrete semantics [st]: DSG — DSG. The shape-graph transformer associated with
all predicates and all assignment statements that do not perform any pointer manipulations is the
identity function. The term nn., denotes an operation that generates a new shape-node (i.e., a new
cons-cell).

shape-graph transformer. This concrete semantics is used to define a concrete collecting semantics
that associates a set of possible concrete stores with each point in the program.

Figure 6 contains the semantic equations of the concrete semantics. The meaning of a statement
st is a function [st]: DSG — DSG. (When examining the last four equations in Figure 6, bear in
mind that, because of the Normalization Assumptions of Section 3.1, before each of the statements
executes it is known that the value of the left-hand side is nil. Thus, the last four equations need
only handle the “gen” aspects of the statements’ semantics. The “kill” aspects are handled by
the first two equations of Figure 6.) The DSG transformers listed in Figure 6 cover the six kinds of
pointer-manipulation statements; all the other DSG transformers — for predicates and for assignment
statements that do not perform any pointer manipulations — are the identity function.

By design, the “concrete” semantics is somewhat non-standard in the following ways:

e The only parts of the store that the concrete semantics keeps track of are the pointer variables
and the cons-cells of heap-allocated storage.

e Rather than causing an “abnormal termination” of the program, dereferences of nil pointers
and uninitialized pointers are treated as no-ops.?

e The concrete semantics does not interpret predicates, read statements, and assignment state-
ments that do not perform pointer manipulations.

These assumptions build a small amount of abstraction into the “concrete” semantics. The con-
sequence of these assumptions is that the collecting semantics may associate a control-flow-graph
vertex with more concrete stores (i.e., DSGs) than would be the case were we to start with a conven-
tional concrete semantics. (These assumptions are patently safe, and so we will not take the space
here to justify them further.)

We now turn to the collecting semantics. For a control-flow-graph vertex v € V, let pathsTo(v)
be the set of paths in the control-flow graph from start to predecessors of v.

Definition 4.1 The collecting semantics cs: V — 2P59 is defined as follows:

es(0) € { [stwo)]( - ([t )] (6, 8))) | [or, - - . vi] € pathsTo(v) }
a

The value of cs(v) represents (a superset of) the concrete stores that could arise just before vertex
v is executed.

Equationally, the collecting semantics can be defined as the least fixed point (under set inclusion)
of the following system of equations in CS., forv € V:

_ ¢ if v = start
¢Sy = { %ft(uﬁ(sc;) | (u,0) € 4,5G € CS.} othermise (1)

3An alternative semantics that returns a special value L if a nil pointer or uninitialized pointer ig dereferenced was
used in {SRW95]. The present formulation has the advantage of being simpler.
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5 The Abstract Semantics

In this section, we present a shape-analysis technique that uses a restricted subset of shape-graphs,
called static shape-graphs, or SSGs for short, to characterize the possible shapes that heap-allocated
storage can take on.

Static shape-graphs are defined in Section 5.1, the abstraction function is defined in Section 5.2,
and the abstract semantics is given in Section 5.3. The reverse program is used as a running example
in these sections. Section 5.4 discusses an interesting aspect of how the abstract semantics treats
statements of the form “z.sel := mnil”. Section 5.5 considers a second example program — a list-
insertion program that may insert a cons-cell at an arbitrary point in a linked list — and shows that
the shape-analysis method is capable of determining that when the argument is an unshared acyclic
list, the result is also an unshared acyclic list.

5.1 Static Shape-Graphs

Unlike the concrete stores of the collecting semantics (i.e., DSGs), the SSGs of the abstract semantics
are non-deterministic: Ey(z), Es(n, car), and E,(n, cdr) may each yield a set with more than one
shape-node. In addition, and again in contrast with DSGs, the SSGs for a given program are a priort
of bounded size. This is achieved by our naming scheme for shape-nodes: the name of a shape-node
is a (possibly empty) set of program variables. In general, the abstraction function clusters infinitely
many concrete cons-cells (from an infinite set of finite DSGs) into a single SSG shape-node.

Definition 5.1 A static shape-graph is a pair (SG*,is"), where
o SG" is a shape-graph.
e The set shape_nodes(SG") is a subset of {nx | X C PVar}.
e is" is a function of type shape.nodes(SG") -+ {false, true}.
The class of static shape-graphs is denoted by SSG. O

In the following definition, we impose an order on SSGs where SG & SGh if SG% contains at
least the edges of SGH:

Definition 5.2 Let SG} = ((Ef'v,Efys),is’{) and SGY = <<E§‘U,E§,s>, ish). We define the following
ordering on SSG: SG’{ C SG% if and only if all of the following conditions hold

.« E{,CE,

o B}, C B,

o For everyn € shape-nodes(SG”), isg (n) = isg(n).

The domain SSG is a complete join semi-lattice with a join operator U defined by:
def . .
SGlusGh ¥ (B UEL, B} UEL,) sl vish).

5.2 The Abstraction Function

Our task in this section is to define the abstraction function that relates the domains 2DSY and SSG.
The abstraction function « is defined in Definition 5.3; a is defined in terms of the auxiliary functions
7, which establishes the relationship between the nodes of a DSG and their corresponding nodes in
the SSG, and 8, which is an overloaded symbol denoting a family of functions defined inductively
on the structure of elements that make up a DSG.
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Definition 5.3 (The Abstraction Function) Let SG = (E,, E;) be a shape-graph in DSG, and
let 1, I, and lo be shape-nodes in shape_nodes(SG). The function T[E (1), from shape_nodes(SG) to
9PVar identifies the set of variables that point to a given cons-cell I. It is defined as follows:

(B0 % {2 € PVar | [,1] € E.}.

(When E, is understood, we will write w[E,](1) as 7(l).)

The function is[Es)(l), from shape_nodes(SG) to {false,true}, checks whether a cons-cell | is the
target of pointers emanating from 2 or more distinct cons-cell fields. (“tis” stands for “induced-is-
shared”.) It is defined as follows:

iis(E) () {0 ) € B} 2 2
(When E, is understood, we will write iis(E,|(l) as dis(l).)
The collection of functions B[E,] (abbreviated as B in all but the last case below) is defined as follows:

B(l) def T [Eu (1)
8 ) % (e80)
BE)  (8(lz, ) | [z, 0] € B}
B({h,sel b)) = (B(1), sel, BL2))
B(E,) % (B, sel, o)) | (1, sel, 1) € Ex}
BUE.EY) & (BIEJE)BENE), .\ s[E0)

{UB(B}(h=n}
The abstraction function a: 2P%9 — SSG is defined by:

o) || BIEICE, B,
(Eyv.Es)ES
a

The core components of Definition 5.3 are the operations n[E,](!) and B(l) = nag,))- The
function 7[E,](l) establishes the relationship between a DSG shape-node [ and the name of the SSG
shape-node that represents {. For example, consider the iteration-0 row of Figure 2 (see page 5).
In column two, DSG node [; is pointed to by variable z and is mapped by 8 to SSG node 8{l) =
Nx(E)() = Nz} (see column three). DSG nodes I, I3, {4, and [5, which are not pointed to (directly)
by any variables, are mapped by 8 to SSG node ny. In general, w[E,] generates a finite set of
SSG node names from the a priori unbounded number of DSG nodes in the DSGs in S. Auxiliary
function 3 then collapses SG onto the smaller set of nodes, while preserving many aspects of SG’s
structure. We say that an SSG shape-node n represents a DSG shape-node lin SG = (E,,E,) if
BIE)(1) =n.

The function 4is[E,](l) checks whether a cons-cell [ is the target of pointers emanating from 2
or more distinct cons-cell fields. Because of the indexed-or performed with respect to the set of
cons-cells that 8 maps to nx, ist(nx) is true if any of the cons-cells in SG that ny represents is the
target of pointers emanating from 2 or more distinct cons-cell fields in SG. (This aspect of 3 and
m(E,] is not illustrated by the SSGs that appear in Figure 2.) On the other hand, if 3 sets is*(nx)
to false, this means that the cons-cell (or cells) that nx represents all have at most one predecessor.
For example, consider the iteration-0 row of Figure 2. In the SSG in column three, n, represents the
cons-cells ls, I3, L4, and l5, each of which has exactly one predecessor in the DSG shown in column
two. Consequently, is*(ny) = false.

In Section 5.3 and Appendix B, it is convenient to work with an alternative, but equivalent,
definition of dis{E,]:

Definition 5.4
iis(E]() L 30y, 0y, sely, sely -
(1y, sely, 1), (lo, sela, 1) € Eg A (1 #12V sely # sels)
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It may not be immediately apparent why sharing information is represented explicitly in SSGs.
The reason is that only very conservative information about sharing could be inferred directly from
an SSG if there was no explicit is* function. For example, without the is* function, it would not be
possible to distinguish acyclic lists from cyclic lists. Suppose that SG* is an SSG that arises from an
application of abstraction-function a to DSG SG, and that n is a shape-node of SG* that represents
a shared shape-node [ of SG. Note only is ist(n) = true, but one or more of the following conditions
must hold in SG*:

o There exists a selector-edge from ny to n. This reflects the fact that n, can represent multiple
cons-cells, and thus the single SSG edge (ng4, sel,n) can represent two or more selector-edges
in SG.

e There exist two selector-edges to n from different SSG shape-nodes, say, nz, and nz,, where
Z, N Zy = ¢. In this case, the two SSG edges represent two different selector-edges to [ in
SG — one from the cons-cell pointed to by the set of variables Z; and one from the cons-cell
pointed to by the set of variables Zs.

¢ There exist two selector-edges to n, with different selectors, from a single shape-node in SG.
In this case, the two SSG edges represent two different selector-edges in SG.

The reason why explicit sharing information is maintained in SSGs is that the converse of the
above observation need not hold. For example, in the SSG in column three of the iteration-0 row
of Figure 2, there exist two selector-edges to ny from different shape-nodes, ny (i.e., nz;) and nyz}
(i.e., nz,) such that Z; N Zy = ¢ N {z} = ¢. However, the value of is*(ny) is false. (The fact that
is¥(ny) = false is what indicates that ny's incoming edges represent edges that never point to the
same cons-cell in any concrete store.)

As defined in Definition 5.3, the abstraction of a set of DSGs S results in a single SSG, a(S). Even
though abstraction function a combines information from several applications of 3, we can sometimes
recognize that particular pairs of elements in an SSG represent features that can only come from
different DSGs. In particular, a shape-node nz represents cons-cells that are simultaneously pointed
to by all (and only) the variables in Z. In a given DSG, each program variable points to at most
one cons-cell. Therefore, two different shape-nodes nx and ny such that X # Y and X N Y #£ ¢,
represent incompatible configurations of variables: They cannot possibly represent cons-cells that are
in the same DSG. This means that the following structural property holds for an S5G ((E%, EY),is%)
that arises from an application of abstraction function a:

Compatibility of Edge End-Points: For all {nx,sel,ny) € E!, either X =Y or XNY =¢.

Example 5.5 For example, in the SSG at the top of column two in Figure 10 (see page 20), the
selector-edge (n(y}, cdr,nyy) satisfies {y}N {t} = ¢. This SSG could not contain any of the following
selector-edges: (n(}, car, n{”l}), (N{z} cdr, niz.e,})s (N{z,t1}s car,ngzy), and Nz}, cdr,ngzy). O

The SSG transformers of the abstract semantics make use of several properties similar to the
“compatibility-of-edge-end-points” property to determine that certain combinations of shape-node
elements cannot possibly coexist in the same concrete store (see Figures 9 and 11). This is one of
the key reasons why our shape-analysis method is able to carry out accurate “node materialization”
on many programs (and consequently why it is more precise than competing methods on many of
these programs).

Because abstraction function a distributes over U (i.e., union of sets of DSGs), the unique con-
cretization function ~ such that o and + form a Galois connection can be defined as follows:

Definition 5.6 (The Concretization Function). Let SG* be a shape-graph in SSG. Concretiza-
tion function v:SSG — 205G 45 defined as follows:

+(SG" % [5G € DSG | B(SG) T SG*).
|

A data type is a collection of DSGs. Definition 5.6 provides a way for certain data types, including
linked lists, trees, and arbitrary graphs, to be characterized by SSGs:

Definition 5.7 Let SG* be a shape-graph in SSG. SG! characterizes the data type 7(SG"). O

15



[ 1] ]
L ' u
L™ ”
= — . {=} Ty
{z} ® o | o R
EIL.LT I SCE I
(a) A singly linked list (b) A tree {(c¢) An arbitrary graph
I
T —w»
. Tz} | s
T - L4 r
n{:z:} 1 ps n{r} t o Nnij =
(d) A possibly cyclic list (e) A possibly cyclic list (f) A possibly cyclic list
of length > 2 of length > 1 of length > 1 (see Section 6.3)

Figure 7: SSGs that characterize five kinds of data types. For each of the shape-nodes in all of the
SSGs but (c), the value of is* is false. In (c), the value of is* is true for both shape-nodes.

Example 5.8 Figures 7(a)-7(e) show the shape-graphs that characterize five kinds of data types.
(For the moment. ignore Figure 7(f).)

The shape-analysis algorithm is conservative with respect to the concrete semantics, and thus the
shape-graphs produced may have superfluous edges. Therefore, when the shape-analysis algorithm
reports that a variable points to a circular list, it may actually point to a non-circular list; however.
when the algorithm reports that a variable points to a non-circular list, it will never point to a circular
list. This kind of conservative approximation is appropriate for use, for example, in parallelizing
compilers [HHN92, HG92]. (An extension of our basic technique allows SSGs to characterize some
kinds of definitely circular data types, including definitely circular lists. See Section 6.3.) O

Remark. The reader may wonder why we do not use an abstraction function that uses a set of
SSGs to represent the set of stores that can arise at a control-Aow-graph vertex, such as

~ def |,
&(S) E {BIE(Ey. Ea)) | (Bw, Es) € S}
Using such an abstraction function would have certain advantages:

o In general, it would lead to a shape-analysis algorithm that is more accurate than the method
described in this paper.

e It would allow us to give simpler definitions for the transfer functions of the abstract semantics
(cf. Figure 8). In particular, there would be no need to use the compatibility-of-edge-end-points
property.

However, our belief is that an approach based on a set of SSGs per control-flow-graph vertex is not
likely to be feasible in practice. The number of shape-nodes associated with a single control-flow-

graph vertex can grow to be very large — in the worst case, doubly exponential in the number of
. . PVar . . .
program variables (i.e., 22" !). Using a single SSG per control-flow-graph vertex avoids the space

blow-up.* In addition, the operations needed by a fixed-point-finding algorithm — join of SSGs,

4The number of shape-nodes in a single SSG is bounded by olPVar|  although with our shape-analysis algorithm,
the number of shape-nodes can actually grow to be this large for some pathological programs, our limited experience
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equality of SSGs, and applications of the transfer functions of the abstract semantics — can usually
be carried out more efficiently for a method based on one SSG per vertex. For these reasons, we
believe that the use of a single SSG per vertex is more likely to provide a practical shape-analysis
algorithm, and that the additional notational complexity required to define the transformers of ‘the
abstract semantics is warranted. O

5.3 The Abstract Interpretation

The abstract meaning function []*: S§G — SSG for the pointer-manipulation statements is given
in Figure 8. The operations presented in Figure 8 manipulate variable-edges, selector-edges, and
sharing information, as well as the alias information that is maintained in the shape-node names of
SSGs. As we shall see, this meaning function is conservative with respect to the concrete semantics
defined in Figure 6 (see Theorems 5.13 and 5.14).

The key property of the abstract semantics is that each abstract assignment operation creates an
SSG that conservatively covers all the possible new configurations of variable sets whose members all
point to the same cons-cell (i.e., DSG shape-node). The formal definition of the abstract semantics,
given in Figure 8, uses two basic mechanisms:

e In many of the cases, the “names” of SSG shape-nodes are adjusted by performing operations
on the variable sets that “name” SSG shape-nodes, e.g., nz becomes nzy(z} OF Nz {z}-

o The cases of the abstract semantics use “abstract predicates” over SS8G shape-graph elements.
These provide safe tests for corresponding “concrete predicates” on DSG shape-graphs.

Figure 9 lists four of the abstract predicates that are used in the abstract semantics and the corre-
sponding concrete predicates.

Each of the abstract predicates p* in Figure 9 has the property that if the concrete property p
holds on the elements of a given DSG SG, then p* holds on the corresponding elements of B(SG).
Therefore, the abstract semantics can use p! = false as a safe test of whether p holds on the
corresponding elements in any of the DSGs in ¥(SG*): If p* equals false (on specific elements of
an SSG SG"), then p does not hold on the corresponding elements in any of the DSGs in ~v(SG*).
For example, when iis*[E%](nx) does not hold, we conclude that iis[E;] does not hold on any of the
cons-cells represented by nx (i.e., none of the cons-cells represented by nx are shared). In the SSG
transformer for a statement of the form “z.sel := nil”, which removes the selector-edges emanating
from all shape-nodes ny with z in their name, the abstract semantics can determine whether it is
safe to set ist(ny) to false by testing the value of iis*(nx).

This relationship is captured by the following lemma about the properties listed in Figure 9:

Lemma 5.9 Let SG = (E,,E;) be some DSG in DSG, let I, Iy, ls, .., l, be shape-nodes in
shape_nodes((E,. Es)), and let B denote B[E,].

(i) compatible(ly,.. ,ln) = compatz‘blej(ﬁ(ll), ()]

(il) & =l = B8(l) = B(la)

(iii) {1 # 12 = B(l) #* B(l2)

(iv) is[E)(l) = is*[B(E-)](B(0)

Proof: The abstract properties are derived from the concrete ones using the following observations:

(i) A shape-node nz represents cons-cells that are simultaneously pointed to by all (and only) the
variables in Z. In a given DSG, each program variable points to at most one cons-cell. Conse-
quently, two different shape-nodes nz, and nz; such that Z;NZ; # ¢, represent incompatible
configurations of variables: They cannot possibly represent cons-cells that are in the same
DSG. Therefore, two different SSG shape-nodes nz, and nz, can represent cons-cells in the
same DSG only if Z; N Z; = ¢.

to date suggests that this is unlikely to arise in practice. The blow-up problem can also be mitigated by using widening
(see Section 6.2).
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[z = nil (B}, B, is") E ((EY B2, is"), where

fo(nw) = nw_(s)
Ei' = {ly fonw)] | ly.nw] € BE Ay # 2}
EY = {(fo(nv),sel, folnw)) | (nv,sel.nw) € EY}
ist(nz) = ist(nz)V i8* (nzuqz))
[o.sel := nil]!((E2, E2), is?)) (B2, EY), is""), where
EY = E'—{(nx,sel,x)|z€ X}
isi'n) = { zs‘:(n) Aust[EY)(n) if 3nx : [z.nx] € B} A{nx,sel,n) € EY
15°(n) otherwise

[z := new]*(((E!, EY). is*)) (B U {2, niay]} BY, istlngay — false])

[ = y* (B2, Ef), is%)) & (B, E¥'), is"), where

_ nzu{z} fyeZz
gz y(nz) = { nz otherwise

EY' = {[z.0:4(n2)]|[z.n2) € BL}U{[z, gz5(n2)] | [y, nz] € BT}
EY = {(gey(nz)) sel, gz y(nz,)) | (nz,,sel.nz,) € EY}
ist'(ng) = is'(nz_{z})

[z.sel := yJ (B, B2, %)) (B2, EY),is?"), where
Eg' = E'U{{nx,sel,ny)|[z,nx],[y,ny] € E} A compatible’ (nx ., ny)}
L | istm) v us*[EY)(n) if [y,n] € E}
1s° (n) = . § )
ist(n) otherwise

[o = y.selF (B3, B2, is%)) % (B3, EY),is""), where

hz(nz) = mnzu(s)
Eg U U[yvnY}EEav(nY-Sehnz)EEE{[I‘h‘r(nZ)}}

El =
u [UvnY}EES.(nY.Sel.nz)EEi,[:\nZ]EEe’{[3?h’L‘(nZ)}}
B = (Bf = {({ny,sel,x) [y eY})
’ Y [yvnylEE‘J,,(ny,sel,nz)EEs aSSlgn(hz-y, ny.sel.nz)
'iSﬁ/(nz) = iSﬁ(nz_{I})
{{nw, sel', hy(nz)) | compatin®([y, ny]. (ny, sel.nz). (nw,sel'.nz))}
assign(h,y,ny, sel,ng) = U {(hm(nz), sel’.hm(nz)) ] compat_self“([y, ny], <rLy, sel. nZ), <nZ‘ sel’. ”Z))}
U {(hs(nz),sel',nw) | compat-out*([y, ny}, (ny.sel,nz), (nz.sel' . nw))}

Figure 8: The abstract semantics [1: 588G — SSG for the six kinds of statements that manipulate
pointer variables. (By convention, is*(n) = false if n ¢ shape-nodes(SG”).)
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Concrete Predicate Abstract Predicate
Usage Meaning Usage Meaning
compatible(ly, . .. le) | true compatible’(nz,, ...nz,) | Vi,) Zi=2Z,V Z;: N Z = o
Iy =1 =1 nz, = nz, Zi=2»
L # 1 L # 1 nz, # nz, 2 E 72N = 2 =5
dnz,,nz
311,12, 1 g».
Jsely, selq : dsely, sela : et
us{EL](]) Iy, selr,!l) € E, usi[EY(nz) compatible (nzl,n?,nz)
A {2, sela,l) € Es A {nz,,seli,nz) € Ej
A (L #£ 2V sely # sels) A (nz,, selz,nz) € E}
A (nz, # nz, V sel, # sels)

Figure 9: The basic concrete and abstract properties used in the abstract semantics.

(i) A given cons-cell in SG is represented by a unique SSG shape-node in 3(SG). Therefore,
predicate nz, =* nz, tests whether nz, and nz, are the same.

(ii) Different cons-cells in SG are either represented in 3(SG) by different SSG shape-nodes or else
both are represented by summary node ne.

(iv) Let [y, l2, sely, and sel, be elements of SG that satisfy the conditions of the existential quantifiers
in column two of the case for iis[E,](l) in Figure 9. We have

true = compatible(l;,l2,1) Figure 9
= compatible*(3(11), B(l2), B(1)) Case (i) above
{1y, sely, 1) € E, (B(ly), sel1, B(1)) € B(Es)
A (s, sely, 1) € Es = A (B(y),sels, 3(1)) € B(ES) Definition 5.3
A Iy # 2V sely # sely) A (I # oV sely # sela)
(B(l1), sely, B(L)) € B(Es)
= A (B(la), sely, B(1)) € B(E) Case (iii) above
A (B(l1) #* B(l2) V sely # sels)

This shows that there exist elements 3(11), 5(/
A (B(Ly), sely, 3(1)) € B(ES) A (B(l2), sela, B(L
fore, iis*[E!](3(1)) holds.

1) € B(E,) A (B(Iy) # B(la) V sel; # selz). There-

d

The above four predicates are examples of a more general principle:

Definition 5.10 Let p be any predicate on various DSG components (i.e.. shape-nodes, variable-
edges, selector-edges, etc.). Similarly, let p* be a predicate on the corresponding kinds of SSG compo-
nents. We say that p* is a safe approximation of p (denoted by p =3 p*) if for every (E,,E;) € DSG
and components 4, B, ... of (Ey, Es),

p(4,B....) = p'(B[E](A), BlE(B), - ).
a

The case of the abstract semantics that handles statements of the form “z := y.sel” make use
of three additional abstract predicates: compat_in®, compat-self", and compat.out®. These will be
discussed in detail later in the section.

We now discuss the individual cases of the abstract meaning function (Figure 8), illustrating the
most important features using Figure 10, which shows the final SSGs computed for each program
point by abstract interpretation of the destructive list-reversal program. Each block of Figure 10
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Figure 10: The final SSGs computed for each control-flow-graph vertex by abstract interpretation

of the destructive list-reversal program. For each of the sha

is* is false.
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indicates the shape of memory just before the program-point label that appears at the bottom of the
block. The set listed at the top of each block indicates the vertex (or vertices) in the control-fow
graph and the action(s) taken there. For example, the block labeled vi5 (see the lower right-hand
corner of Figure 10) indicates that vertex v;5’s one predecessor is the statement ¢, := nil at v,.

o For an assignment statement of the form z := nil, z is “liquidized” from all shape-nodes that
have variable z in their “name”. That is, r is removed from the name of all such shape-node
names, which may cause what were formerly distinct shape-nodes to be merged.

Example. In the transition between block v7 and block vg of Figure 10, the assign-
ment t, := nil causes ¢; to be removed from the “name” of shape-node nyy, ;¢ }-
Shape-nodes 1y ;.¢,} and nyy, ;) are then merged. O

e For an assignment statement of the form z.sel := nil, the SSG transformer given in Figure 8
removes all of the sel selector-edges in shape-nodes that have r in their “name”. This is safe
because the variable set of a shape-node in the SSG for a program-point consists of variables
that all point to the same cons-cell; therefore, all shape-nodes that have z in their name
represent cons-cells whose sel field will be overwritten. (Conversely, if it is possible for a
concrete cons-cell [ that is not pointed to by variable z to arise at this statement, then {’s sel
field will not be overwritten; [ will be represented in the SSG by a shape-node that does not
have z in its “name”.) See also the discussion of “strong nullification” in Section 5.4.

Example. In Figure 10, the transition between v;; and v, removes selector-edge
(ngyy, cdringzy). O

The other important aspect of the SSG transformer for z.sel := nil is the way information
in shape-node names is used to reset sharing information. This is based on the observation that
it is safe to reset is*(n) to false whenever is*(n) is false. (The resetting of sharing information
by the SSG transformer is not illustrated by the list-reversal program since is' is false for all
shape-nodes in all shape-graphs that arise. The issue of resetting sharing information to false
is discussed in detail in Section 5.5.)

e For an assignment statement of the form z := new, a new unshared node n¢,) is created. All
other shape-nodes are unaffected.

e For an assignment statement of the form r := y, the shape-node names are changed to reflect
the fact that whatever y was pointing to before is now also pointed to by z. In addition. new
variable-edges are added to reflect the assignment of y to z.

Example. See the transition between block vs and block v7 of Figure 10. O

e For an assignment statement of the form z.sel := y, sel selector-edges are added between
shape-nodes pointed to by z and compatible shape-nodes pointed to by y.

Example. See the transition between block vi» and block v» of Figure 10. O

In addition, shape-nodes that are pointed to by y may have their is* values adjusted if the
concrete cons-cells they represent could have become shared.

e The SSG transformer for an assignment statement of the form z := y.sel is the most elaborate
operation. The reason for this is that the SSG transformer has to create an SSG that con-
servatively covers all the possible new configurations of variable sets whose members all point
to the same cons-cell after the assignment: In particular, if y.sel points to nz. then a copy
of nz is “materialized” — producing a “new” node nzysz) from “old” node nz. In defining
the materialization operation, the goal is to cover conservatively all the possibilities, yet at the
same time not introduce too many superfluous edges that prevent the abstract semantics from
being able to verify interesting properties.

Example. See the transition between block vs and block vy of Figure 10, in which
the assignment ¢; := z.cdr causes node ny; } to be materialized from n,. U
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Concrete Predicate

Abstract Predicate

Usage Meaning Usage Meaning
compatible’ (ny . nz.nw)
A ly.ny) € ES
» [y,ll], A [(gi,lg]ele.lf)ue E, ‘ [y,ny], A (ny,sel,nz> € E!
. compat.in (ll,sel;l-z), N Us sel 1) € E compat_in® | (ny,sel.nz), A {nw.sel',nz) € E!
(I, sel', 12) Al ;é I : s (nw,sel’,nz) A nz # nw
A ((ny = nw A sel = sel')
vis*(nz))
compatible’ (ny,nz)
ly, ], ly, 1] € Ey [y, nv], ALyl € B f
compat.self { (I, sel,l2), A (l1,sel,l2) € Es compat_self* | (ny,sel,nz), " (ny,sel;nz) ¢ Esn
(s, sel’, I2) A g sel',lp) € E, (nz. sel'\nz) A (nz,sel’,nz) € B
A ((ny =" nz A sel = sel’)
vis'(nz))
compatible® (ny . nz, nw)
[v,11] € Ev A lyiny] € B
I, ) )
sompat_out [<-’2’;,1SL1’12>1 > A (usella) € Bl gt [(ziwn’ys]el’m)’ A (nv,selnz) € EEu
{l2, sel', l3) //2 glz‘ sel' . ls) € Es (nz,sel nw) A (nz,sel',nw) € Ei
3 # b2 A nz# nw
A (ny # nz V sel # sel’)

Figure 11: Properties used in the "z := y.sel” case of the abstract semantics.

In what follows, let ny be a shape-node that y points to, and let nz be one of the shape-
nodes that y.sel points to (i.e., there is a selector-edge (ny, sel,nz)). Bear in mind that

~ y.sel may have selector-edges to many shape-nodes, and

— y.sel may have a selector-edge to n,, which in general represents many concrete cons-cells
in a single DSG.

For every node nz pointed to by y.sel, we materialize a new node nzy(;) and direct the
following variable-edges to nz(z}:

— Old variable-edges that point to nz before the assignment. (This does not occur in the
transition between block vg and block vg of Figure 10.)

— A new variable-edge from z. (See variable-edge [t1, n(:,}] in block ve of Figure 10.)

In Figure 8, the process of determining the selector-edges that are to be directed to and from
nzu{c} is divided into three cases, based on three additional abstract predicates. compat_in®,

compat_selfn, and compat_out®, defined in columns three and four of Figure 11.

— The property compat.in® describes when two selector-edges whose targets are both nz
can possibly represent edges that coexist in the same concrete store. In particular, if an
edge (nw,sel’,nz) is compatible with (ny, sel,nz), the abstract semantics for r := y.sel
generates an old — new selector-edge from the old node nyw into the new node nzy{:}-

Example. Selector-edge (ny z}, ¢dr;ne) in block vg of Figure 10 is a compatible

incoming edge with respect to itself. This generates edge (n{y.c}: cdr.ngy) in

block vg. O
Note that if is?(nz) = false, all of nz’s incoming edges — other than (ny, sel, nz) itself
— are incompatible with (ny,sel,nz). In this case, the only old -+ new edge generated
is (ny, sel,nzu(e)). (This situation is illustrated by the above example.)

When y.sel points to ne, if ny has a direct cycle of the form (ns, sel' \ne), this also
counts as an “incoming” edge of ny. If is*(ng) = true, such an edge will be “materialized”
in two ways: as an edge (ng, sel’,n{;}) and as a direct cycle (nyzy, sel',n(zy). (The latter
is handled by the set former that uses predicate compat.self 1. see the discussion below.)
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Example. In block vs of Figure 10, is*(ng) = false, and so the direct cycle
(ng, cdr,ne) is incompatible with (n(y .} cdr.n,). Consequently, a selector-édge
(ng, cdr,ng,)) is not generated when ny,,y is materialized from n, in the transi-
tion from block vg to block vg. U

— The property compat_self ¥ is used to define when a direct cycle (nz, sel’, nz) is material-
ized as a direct cycle (nzyu(z}, sel'snzu(s))- If the edges (nz,sel',’nz) and (ny,sel.nz)
represent a direct cycle and an edge that can possibly coexist in the same concrete store,
the abstract semantics for z := y.sel generates a new — new selector-edge from the new
node nzy(z} t0 nzu{z}. Note that if ist(nz) = false, all of nz’s incoming self edges are
incompatible with (ny, sel,nz), unless ny and nz are the same shape-node and sel’ = sel.

Example. Selector-edge (ng, cdr,ng) in block vg of Figure 10 is an incompat-
ible self edge with respect to edge (n(y:},cdr,ne), and hence a selector-edge
(nge,y, cdr, n{t,}) is not generated when ny, } is materialized from n in the tran-
sition from block vg to block ve. O

— The property compat-out* describes when an outgoing selector-edge (nz, sel’, nw) of nz
represents an edge that can possibly coexist in the same concrete store with an edge rep-
resented by selector-edge (ny,sel,nz). If (nz, sel'. nw) and (ny, sel,nz) are compatible,
the abstract semantics for z := y.sel generates a new — old selector-edge from the new
node nzy(} to the old node nw .

Example. Selector-edge (no, cdr, ns) in block vg of Figure 10 is a compatible out-
going edge of n, with respect to edge (n(y z}. cdr, ne), and hence a selector-edge
(Nt} cdr,ng) is generated when ng,y is materialized from ng in the transition
from block vg to block vg. O

Because each field of a concrete cons-cell can have only a single outgoing edge, if ny = nz,
then sel' # sel (or equivalently, ny # nz V sel’ # sel).

Note that all of the operations of the abstract semantics preserve the *compatibility” property
for the variable-set names of selector-edge end-points described in Section 5.2.

The shape-analysis algorithm itself is an iterative procedure that computes an SSG, SG*, for
each control-flow graph v, as the least fixed point (under the ordering defined in Definition 5.2) of
the following system of equations in SGh:

(&, @), An.false) if v = start ‘
G} = { W vyea ﬁst(u)]}”(SGi) otherwise (2)

The iteration starts from the initial assignment SG, = ((¢.0), An.false) for each control-flow-graph
vertex w.

Example 5.11 The final abstract values for all of the control-flow-graph vertices of the normalized
list-reversal program are shown in Figure 10. Among other things, this information tells us that if
z's value is a list at the beginning of the program (see block vy) then y’s value is a list at the end of
the program (see block vy5).

Block v, of Figure 10 shows the final SSG computed for vertex v, of the list-reversal program.
The elements of this graph can be interpreted as follows:

o There are two shape-nodes that represent the head of the list that r points to: n(;} and
N{z.t,}- Shape-node n(,} represents the situation where z is the only variable pointing to the
head of the list (which only happens before the first iteration of the loop). Shape-node ng; ¢}
represents the situation where z and ¢ both point to the head of the list. Shape-node ngy}
represents the head of the reversed list that y points to. Shape-node ny, represents the head of
the list that t points to, which is a sublist of the list that y points to. Shape-node n, represents
all of the cons-cells in the tails of the lists that z, ¢;, and ¢ point to.

e For each of the shape-nodes in the graph, the value of is? is false. The fact that is*(n,) = false
tells us a number of interesting things about the memory state produced by any execution
sequence that ends at vertex vp: (1) It implies that the cdr-edges from the cons-cells that z
and t point to cannot point to the same cons-cell (and consequently that the tails of the z-list
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and the t-list cannot share any cons-cells in common). (2) Similarly, for everv pair of different
cons-cells in the tail of = (respectively, t), the cdr-edges from these cons-cells cannot point to
the same cons-cell. Consequently, the z-list (respectively, ¢-list) is an acyclic list.

)

Termination and safety of the shape-analysis algorithm are argued in the standard manner [CC77].
For a given program P, we work with the domain of SSGs in which PVar consists of the program
variables in P. This domain is finite and hence of finite height. Termination is assured because the
semantic equations of Figure 8 are monotonic:

Proposition 5.12 (Monotenicity of [1%) For all assignment statements st, and for each pair of
SSGs SG! and SGY such that SGY T SGY, [st](SGY) £ [st]*(SGY). O

The heart of the safety argument involves showing that each semantic equation of the abstract
semantics is conservative with respect to the corresponding equation of the concrete semantics:

Theorem 5.13 (Local Safety Theorem) For all assignment statements st, and for every SG €
DSG, 3([st](SG)) T [st]H(B(SG))-
Proof: See Appendix B. O

Finally, we have

Theorem 5.14 (Global Safety Theorem) For every control-flow-graph vertez v, afcs(v)) C
SGE.

Proof: Immediate from Proposition 5.12 (Monotonicity) and Theorem 5.13 (Local Safety), using
Theorem T2 of [CCT7, pp. 252]. O

5.4 Strong Nullification

The key property of the abstract semantics is that each abstract assignment operation creates an
SSG that conservatively covers all the possible new configurations of variable sets whose members
all point to the same cons-cell. This permits statements of the form z.sel := nil to be treated in an
unusual manner — unusual for a static-analysis algorithm, that is. When the algorithm processes
such a statement, it always removes the sel edges emanating from the shape-nodes that r points to
(i.e., the shape nodes nx such that z € X). We call this operation strong nullification.

Example 5.15 Figure 12 shows a simple example that illustrates why strong nullification is possible.
After the statement z := y in the then-branch of the conditional, z and y point to the same cons-cell
and z points to a different cons-cell. Similarly, after the statement I := = in the else-branch of the
conditional, z and z point to the same cons-cell and y points to a different cons-cell. Thus, in the
SSG after the conditional statement, = and y both point to shape-node nz .,y and z points to ny.)
(reflecting the state of memory after the then-branch is executed); in addition. r and z both point
to shape-node n(; .} and y points to n(y} (reflecting the state of memory after the else-branch is
executed).

The abstract semantics for the statement z.cdr := nil eliminates the edges (N{z.y}> cdrong) and
(N{z,z}, cdr,ng). This is safe because n, ,) represents only cons-cells that are pointed to by both r
and y (which occurs only on some execution sequences), and n(, .} represents only cons-cells that
are pointed to by both r and z (which also occurs only on some execution sequences).

The abstract semantics for z.cdr := nil retains the edges (n(}, cdr,ne) and (ngy}. cdr,ng). This
correctly captures the fact that in the collecting semantics after z.cdr = nil, there is a DSG that
contains a cons-cell pointed to by y alone with an outgoing cdr-edge (to l3), as well as a DSG that
contains a cons-cell pointed to by z alone with an outgoing cdr-edge (to ly). O

Other shape-analysis algorithms do not perform strong nullification for a statement of the form
“r.sel := nil”, except under very limited circumstances (JM81, LH88, Lar89, CWZ90, PCK93]. The
reason for this is that, after the conditional statement in Example 5.15, they perform actions that
(in our terminology) are equivalent to merging n{y} and n(g .y} into one shape-node. When this is
done, it is not safe to perform strong nullification — i.e., to remove the shape-node’s outgoing cdr

24




[ Program } Collecting semantics Abstract semantics |
q
y R * . Y -
3. 2 \\
n '3 Ty} *
L™
z . . 2
"'2 54 n{:}
if ---thenz:=y
else r =z
fi
I —
T el
Y — . * ¥ A\
zl 53 n{xvy}
Z - ‘ . ~ “\\ .
ng [ TL(:}
T
y -
i l o .
T
il ZS {v}
T — /
* ° "
z TP
5 13 {z:2}
z.cdr .= nil
miE . AU IO
L'l 53 n{r,y}
- z — “
Z . Nl
3 t sy . ’
o
Y . ‘
—ped L
1)
il [3 {y}
T et
T - . . Z *
2z~ s
t i frs)

Figure 12: A program that illustrates strong nullification.

edge — because it would lose the information that y can, in fact, point to a cons-cell that has an
outgoing cdr-edge.

In contrast, our shape-analysis algorithm always performs strong nullification. However, we are
not claiming that our method is somehow “able to treat all statements precisely”. With our method,
the inevitable loss of precision intrinsic to static-analysis occurs in the treatment of statements of
the form “z := y.sel”, rather than in statements of the form “z.sel := nil”. In particular, in the SSG
transformer for z := y.sel, node materialization creates shape-nodes that conservatively cover all the
possible new configurations of variable sets whose members could all point to the same cons-cell.
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On the other hand, in comparing the capabilities of our method with those of other graph-based
shape-analysis algorithms, it would be wrong to think that we have just shifted the place where
imprecision is introduced from the treatment of statements of the form “r.sel := nil” to statements of
the form “z := y.sel”. Not only do other shape-analysis algorithms use less precise SSG transformers
for z.sel := nil (i.e., performing strong nullification only under very limited circumstances). they
also use less precise SSG transformers for statements of the form z := y.sel; namely, they merely
advance z to point to whatever shape-node (or shape-nodes) y.sel points to. In the case where y.sel
points to ne, this advances z into the primordial soup!

5.5 Insertion into a List

Whereas the previous sections have all considered the actions of the shape-analysis algorithm on the
list-reversal program, this section considers a second example program, the list-insertion program
shown in Figure 13, which may insert a cons-cell at an arbitrary point in a linked list. For this
program, the shape-analysis algorithm is able to establish the following properties:

o “List-ness” is preserved by the list-insert program. That is, when the initial value of variable z
is an unshared acyclic list, the value of y at the end of the program is also an unshared acyclic
list.

o “Circular list-ness” is also preserved by the list-insert program. More precisely, if at the
beginning of the list-insert program z is a possibly cyclic list of length > 1 (see Figure 7(e)),
then at the end of the program, z is a possibly cyclic list of length > 2 (see Figure 7(d)). (For
details, see Appendix B of [SRW95].)

The list-insert program also illustrates an interesting capability of the shape-analysis algorithm
that does not arise with the list-reversal program: In certain circumstances, information in shape-
node names can be used to reset a shape-node’s sharing information from true to false. In the case of
the list-insert program, this feature plays a crucial role in the ability of the shape-analysis algorithm
to determine that the program preserves both “list-ness” and “circular list-ness”.

Assume that at the beginning of the list-insert program, z points to an unshared list of length
1 or more and that e points to the new element to be inserted. The key SSGs are those that arise
at vertices vy, U2, and vz of the control-flow graph, where the new element is spliced into the list.
The crucial step is the transition from vy @ y.cdr := nil to vy3 (see Figures 14(b) and 14(c)). In the
immediately preceding transition, from vy, to vz (see Figures 14(a) and 14(b)), e.cdr is assigned
the value ¢, which adds a new selector-edge into n() and causes is“(n{t}) to be set to true in the
shape-graph for via.

The strong nullification performed in the transition from vy to vz removes the selector-edges
(ngzyy cdrongey) and (n{z.y}. cdr,ng;y). Thus, in the SSG for vertex vis, shape-node ng.) retains
only a single incoming selector-edge, namely (n{ey, cdr,ngy). In the SSG transformer given in
Figure 8 that covers the assignment y.cdr := nil, the fact that predicate us® is a safe approximation
to s is used to reset sharing information. In this case, because the value of 'iz‘s‘[Egl](n{t}) at vys 1S
false, the SSG transformer for the control-flow graph arc from v to vy3 determines that it is safe
to set is*(ny)) to false in the SSG for vertex viz. (See Figure 14(c).)

Remark. It is interesting to note that if the assignment at vy were e.cdr := nil, rather than
y.cdr = nil, is”(n{t}) would still be set to false at vy3, even though there would be two incoming
selector-edges to shape-node ¢} (nyz y}s cdr,ngy) and (nyg,y}, car. n{:)). Because these two edges
are incompatible — they do not represent edges that can simultaneously coexist in a single concrete
store — the value of iis”[Egl](n{t}) would again be false at vertex vy, and so is*(ny;)) would be
false at vertex vyz. O

6 Extensions

This section discusses several variations on the basic method that has been presented above. Due to
space limitations, they will only be sketched out below.

6.1 More Summary Shape-Nodes

The major source of inaccuracy in our method is attributable to the fact that, in general, summary
shape-node ngy represents a number of unrelated cons-cells. This is particularly a problem when
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program insert(z, €)
begin

Y=z

while y.cdr # nilA ... do

y = y.cdr

od

t:=y.cdr

e.cdr =1t

y.cdr:=e

t:= mnil

e := nil

y = nil

program insert(z,e)
begin

Tiry Mo
y = nil
y:=2z
while y.cdr # nilA ... do
= nil
= y.cdr
= nil

—

o

t := nil

t = y.cdr
e.cdr = nil
e.cdr :=
y.cdr ;= nil
y.cdr:=e

t ;= nil

;= nil

= nil

:= nil

N <@ 0

n{,,} Tt
end

(b)

Figure 13: (a) A program that searches a list and splices a new element into the list. (b) The
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normalized program. (c) The normalized program’s control-flow graph.
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(b) The shape-graph for vertex via. In this graph, 1s%(nys}) = true (shown in bold).
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(c) The shape-graph for vertex vy3. In this graph, is’(_n{t}) = false.

Figure 14: The SSGs at vertices vi1, V12, and vy3 of the list-insert program. These illustrate how
L‘s‘(n(t}) is reset to false in the transition from vz to vi3.

isi(ng) = true. For example, in a program that uses both a list and a graph, the tail of the list
is abstracted to the same summary node as (most of) the graph’s nodes. Consequently, the shape-
analysis algorithm imprecisely identifies both structures as graphs: Variables that actually point into
the list appear to point to some kind of shared graph structure.

There are several simple ways to improve the accuracy of shape analysis by introducing more
summary nodes, including:

e Using allocation-sites to identify shape-nodes [JM82, CWZ90]. This can be incorporated into
our method as an “orthogonal dimension” of shape-node names — e.g., shape-nodes would
have names such as n, x, where s is an allocation site and X is a set of program variables.

e Using some type information, e.g., have one n, node for every declared data type.

However, even these extensions do not help solve the following kind of accuracy problem:
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Figure 15: An artificial program for which an SSG with 2" shape-nodes arises.

Example 6.1 At vertex vy of the list-insert program, the shape-graph computed by our shape-
analysis algorithm indicates that variables y and z can point to a cyclic list (see Figure 14(a)). Note
that during an execution of the program, at v1, variables y and z point into the middle of the (acyclic)
list that z points to. The reason for the inaccuracy in the structure reported at v;; by the shape-
analysis algorithm is that n, does double duty: (i) it represents the segment of the list in between
and y (cf. the selector-edges (n(y, cdr, ne) and (ng, cdr,ng; ,1)); (il) it also represents the segment
of the list beyond what y points to (cf. the selector-edges (n(. 4}, cdr,n{}) and (n(}. cdr, ng)). This,
combined with the fact that is”(nm) = true, causes it to appear that y and z may be pointing to a
cyclic list. O

In the case of the insert program, this temporary inaccuracy does not cause our algorithm any
problems: In going from the SSG shown in Figure 14(b) to the one shown in Figure 14(c), the
(apparent) cycle is broken, and thus the algorithm is still able to determine that at the end of
the program z points to an acyclic list. However, for other programs we are not so fortunate. For
example, in Lindstrom scanning of a tree [Lin73] (also known as the Deutsch-Schorr-Waite algorithm
for traversing a tree without a stack [Knu73, pp. 417]) this kind of inaccuracy prevents us from finding
that, after traversing a tree, we still have a tree.

It is possible to avoid this sort of inaccuracy by introducing additional summary nodes (with
an appropriate naming scheme) to discriminate between cons-cells that are transitively pointed to
by different collections of variables or via different selectors. We have developed several alternative
abstract semantics based on this idea.

6.2 Reducing the Number of Shape-Nodes

The number of shape-nodes in an SSG is bounded by 2!7¥e7l. Unfortunately, for some pathological
programs the number of shape-nodes can actually grow to be this large. For example, the number of
shape-nodes in the SSG that arises at the end of the program shown in Figure 15 is 2". Our limited
experience to date suggests that this is unlikely to arise in practice, the main reason being that the
number of possible aliasing configurations is normally small.

It is possible to change the shape-analysis algorithm to use widening to eliminate the possibility
of exponential blow-up and to guarantee that a conservative solution to Equation (2) of Section 5.3
can be found in polynomial time. The basic idea is to reduce the number of shape-nodes that
can arise, by discarding an arbitrary amount of “simultaneously-points-to” information at certain
shape-nodes, thereby trading off accuracy for efficiency. For instance, at various points in the shape-
analysis algorithm (e.g., at loops) we can widen an SSG into a less precise, but usually more compact,
SSG by merging shape-nodes, say nz, and ngz,, into nz,nz, and giving nz,nz, all the variable- and
selector-edges that were incident on nz, and nz,.

Formalizing this notion involves changing the SSG domain by weakening what has (up to now)
been a fundamental condition on variable-sets in shape-node names. In particular, we now allow the
name of a shape-node to be any subset of the variables pointing to it:

As before, the SSG for program point p represents, in general, a number of DSGs. An
SSG shape node nz, where Z # ¢, represents the (at most one) cons-cell in each DSG
that is simultaneously pointed to by all the variables in Z. In addition, if w is a variable
not in Z. but the SSG has a variable-edge [w, nz], then variable w may or may not point
to that same cons-cell.
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For SSGs that are in the image of abstraction-function o (Definition 5.3). we have the property:
For every ¢ € PVar and nx € shape_nodes(SG*), r € X if and only if [z,nx]| € E,.

For SSGs on which widening has been performed, we have the weaker property:
For every = € PVar and nx € shape_nodes(SG*), if z € X then [z,nx] € E,.

The relation T’ on the extended domain of SSGs captures the fact that the widened SSGs are
less accurate than the original SSGs, i.e., a widened SSG denotes more DSGs than the original SSG.
Formally, C' is a pre-ordering on the extended domain of SSGs, defined as follows:

Definition 6.2 Let SG! = ((E} , B ).ist) and SG} = ((E} . B8 ,),is}). SG| C' SG} if and only
if there ezists a mapping piQPVar _y 9PVar o oh that for all X C PVar, 1(X) C X, and

e For every [z,nx] € E! . [z.nnx)) € Eél
e For every (ns, sel.np) € Ef's, (nr(s): el ne(1)) € Egs

o For everyny € sh,ape-nodes(SG[{), ist(nx) = ish(nex))
O

In Definition 6.2. function r has the ability to discard an arbitrary amount of “simultaneously-
points-to” information at any shape-node. Note that we can still use graph union as a confluence
operator.

We have been careful to write the abstract semantics given in Figure 8 so that it does not have
to be changed when widening is employed. For example, z.sel := nil removes z’s sel selector-edges
from a shape-node nz only when z € Z. Thus, if [z.nz] € E, but z & Z, the abstract semantics
does not remove nz's outgoing sel edges: This would not be safe because we do not know that nz
represents a cons-cell that = must point to. Note that we still do perform a strong nullification of
nz’s outgoing sel edges for assignments of the form z.sel := nil, where z € Z, because nz represents
only cons-cells whose sel field will definitely be overwritten. (In Section 6.2.2, we define an operation
that can be used to materialize shape-nodes in order to guarantee that if (z.nz] € E, then z € Z.
By applying this operation prior to nullification, we can still always perform strong nullification,
even if the shape-analysis algorithm performs widening.)

This observation is captured in the following proposition:

Proposition 6.3 (Generalized Monotonicity of [|*) For all assignment statements st, and for
each pair of SSGs SG' and SGY such that SG' T’ SGY, [st]*(SGY) [st]*(SG3). O

The following generalization of Theorem 5.13 is an immediate corollary:

Corollary 6.4 For all assignment statements st, for every SG € DSG. and for every SG* such that
3(SG) T SG*, B([st](SG)) T’ [st](SGY.
Proof: B([st](SG)) C [st]*(8(SG)) E' [st]*(SG"). O

6.2.1 Strategies for Merging Nodes

There are many possible strategies for reducing the number of shape-nodes through widening. Dif-
ferent widening policies may lead to shape-analysis algorithms that differ in accuracy and efficiency.
For example, we may decide to forget an arbitrary variable z € PVar by widening ((E%, E?), is%)
into ((EE,I.Egl),isjl> where

f:(lnw) = nw-{:}

Eﬁ = {[.%f:(nw)] l [yvn‘/V] € Eg}

EY = {{f:(w), sel, f(nw)) | (nv, sel,nw) € Ei}
is' (nw) = ist(nw) Vis*(nwugsy)
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By definition, ((EZ, EY),is%) C' ((E1'.EY),is*). It is possible to use this widening operator to
guarantee that a conservative solution to Equation (2) of Section 5.3 can be found in polynomial
time. It simply has to be applied whenever necessary to limit the cardinality of shape-nocie name
sets to some chosen constant. (This is similar in spirit to k-limiting [JM81}, but it is likely to produce
much better results because limiting the cardinality of name sets still preserves most of the structural
information about the graph.)

Example 6.5 In the SSG shown in the vs box of Figure 10, we can eliminate ¢, from the name sets
to get:

ty - . .

I -
Tz} o

Y — . et
Ty} M {t}

In this case, widening amounts to not distinguishing between the store that arises just before the
first iteration, and the stores that arise on each succeeding iteration. Because ¢; is not live at vy, and
because there are no structural differences between the store that arises just before the first iteration
and the ones that arise subsequently, widening does not lead to a loss of accuracy in this case. &

As mentioned earlier, another possible widening strategy is to merge shape-nodes ny and nz into
a shape-node n(ynz). This would seem to make the most sense when ¥ and Z have many variables
in common.

Experimentation is necessary to determine what kind of widening works best in practice.

6.2.2 Materializing Shape Nodes Via Narrowing

It is interesting to note that if widening has been performed we can also narrow an SSG into one
that denotes the same DSGs but in some sense is more “precise”. This operation may be employed
gainfully just before the interpretation of statements of the form z.sel := nil to allow the abstract
semantics to always be able to perform strong nullification (i.e., to always remove z’s sel selector-
edges), even if the shape-analysis algorithm has widened the SSG with respect to variable z. The

narrowing operation converts an SSG ((E}, E?),is") into an SSG ((EY EYY,is"") defined by

o — nwu(z} [T, nw] € E}
fIE(nw) = { nw otherwise
EY = {[znz]| [z.nz] € Ei Az # 2} U {[z fIEH(n2)] | [2.n7] € B}
/ EY U {(f[EY(ny), sel',nw) | (nv, sel' . nw) € E}
Eg = U {(TL sel' [E”](nw N1 {ny, sel’ ,nw) € E*}
U {(f{E”](ﬂv ), sel!, f[EE)(nw)) | (nv, sel'.nw) € EZ}
St . , 3
c ! ) _ ( W) (TLW {I}) reWA [I,nw_{r}] S El.
is* (nw) - { st (nw) otherwise
The narrowing operation materializes at most | E,(z)| shape-nodes and guarantees that r is in the

name of all the shape-nodes that z points to. This permits the interpretation of z.sel := nil to
nullify the sel field of all shape-nodes that z points to.

Example 6.6 Applying this narrowing operation to the SSG in Example 6.5 yields back the SSG
shown in the vs box of Figure 10. In general, however, narrowing a widened graph may yield an SSG
that is less precise than the original SSG. O

6.3 Refining the Concrete Semantics

In this paper, we have tried to simplifv the presentation of our ideas both by choosing a small
programming language and by using a “concrete semantics” that has a small amount of abstraction
built into it already. The following are some possible refinements of the concrete semantics that
would lead to slightly different abstract semantics (with somewhat different powers):

31



o Shape-nodes that are not reachable from variables are not removed by the operational semantics
shown in Figure 6. For certain programs, this may lead to loss of accuracy. This can be
overcome by working with concrete and abstract semantics that incorporate garbage-collection
operations (see [SRW95]).

o In the way shape graphs were defined in Section 3.2, there are no shape-graph elements that
represent uninitialized fields of cons-cells or fields whose value is either an atom or nil. One
consequence of this is that the shape-analysis algorithm is only able determine rather weak
data-type properties. As pointed out in Example 5.8, when the algorithm reports that a
variable points to a circular list, it may actually point only to a non-circular list. That is, the
type “circular list” really means “possibly circular list”.

By introducing three additional nodes, natom; Mnil, 0d Nuninit, Much more accurate type
properties can be obtained in many cases. We impose the invariant on shape-graphs that
all fields of shape-nodes have at least one outgoing selector-edge (possibly to Tatom, 7nil, OF
Nuninit). This modified domain of SSGs is capable of characterizing some definitely cyclic data
structures.

For example, with this extended definition of shape-graphs, the SSG shown in Figure 7(d)
characterizes the definitely cyclic lists of length > 2 (modulo the absence of edges from the car
fields t0 Tatom D the two shape-nodes); Figure 7(e) characterizes the definitely cyclic lists of
length > 1; and Figure 7(f) characterizes the possibly cyclic lists of length > 1.

6.4 Interprocedural Analysis

The shape-analysis algorithm can also be extended to handle procedure calls. Two fundamental
problems need to be resolved:

e Representing multiple occurrences of the same local variable in (mutually) recursive procedures.

e Accounting for the different calling contexts in which a procedure can occur.

To approximate the local variables of recursive calls, we introduce an extra variable T for every
local variable z. Variable T is used as a representative for all copies of z in other scopes. Shape-nodes
whose name sets contain only barred variables are a new kind of “summary node”. Like ng, they
can represent multiple cons-cells of a single concrete store. Using these ideas, we have extended the
abstract semantics to handle procedure calls and returns.

The second problem can be resolved using one of the known interprocedural techniques of Sharir
and Pnueli [SP81]. For example, a simple conservative solution is to consider a procedure call as a
goto to the called procedure and a return from a procedure P as a goto to all the statements that
follow an invocation of P. A more accurate solution can be determined by tabulating a “shape-
graph-transformation” function for each procedure.

An alternative is to use Hendren’s tabulation method for interprocedural analysis [Hen90].

7 Applications

The algorithm developed in Section 5 produces an SSG SG* for every program point v. This SSG
provides an approximation to the set of stores (DSGs) that can possibly occur in any execution of
the program that ends at v. Therefore, many interesting questions about the stores at v can be
answered (conservatively) by investigating SG*. In this section, we present two such applications of
$SGs. The information that these techniques provide is useful both in optimizing compilers and in
software-engineering tools.

7.1 Finding May-Aliases

We say that two access paths, e; and e2 are may-aliases at a program point v if there exists an
execution sequence leading to v that produces a store in which both e; and e point to the same
cons-cell. The may-alias problem is a fundamental problem in optimizing compilers generating code
for scalar, superscalar, and parallel architectures. It is also useful in software-engineering tools.

A special case of the may-alias problem concerns whether two pointer variables z and y are may-
aliases just before a given program-point v. It is possible to use the results of our shape-analysis
algorithm to give a conservative answer to this question by testing whether z and y point to a
common shape-node in the SSG SG;",. If £ and y do not point to a common shape-node, we conclude
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that they cannot be may-aliases; otherwise, we conservatively conclude that there may exist an
execution sequence in which they point to the same cons-cell.

The more general complex question is whether two access paths e, and e, are may-aliases. There
are several different possible tests:

e A simple test is to check if there are common shape-nodes accessible from both e, and e».
If there are no such nodes, we can conclude that e; and e» are definitely not may-aliases.
Otherwise, we conservatively conclude that e; and e; are may-aliases.

Example. In the v, box of Figure 10, this test yields that z.cdr and y.cdr are
may-aliases. This is obviously a superfluous may-aliases because ng is not shared. O

e Sharing information can be used to reduce the number of superfluous may-aliases reported for
two given access paths. The main idea is that directed paths in SG* that lead to unshared
nodes do not create aliases. To test whether e; and e> are may-aliases just before program-
point v, we test whether there exist two (possibly empty) directed selector-paths m; and 2 in
SG* leading to a common SSG node such that the following conditions hold:

— For every node nx that appears more than once along m; (resp., my), either X = ¢ or
is(nx).

— There exists a possibly empty common suffix A of e; and ez (ie., €1 = e;A and ey = e5A)
such that ¢/ and e} lead to a common node n and either (i) e, and eh is a simple variable,
or (ii) is(n) = true.

Example. In the v, box of Figure 10, none of the shape nodes are shared. Therefore,
the only detected may-aliases are the ones induced by variables, e.g., y.cdr.cdr and
t.cdr are may-aliases. O

e The node-compatibility conditions can be used to trim out some additional superfluous aliases.
The main idea is that directed paths that go through different shape-nodes that have common
variables in their name can only come from different DSGs. Therefore, we can safely say that
these kind of paths do not indicate may-aliases.

7.2 Detecting Shared Data Structures

SSGs can also be used to determine if there is possible sharing between components of two heap-
allocated data structures, which is precisely the kind of information needed to be able to compile
programs to take advantage of coarse-grained parallelism. The sharing problem is a natural gener-
alization of the may-aliases problem in which we quantify over access paths. Therefore, the three
aforementioned approaches can be adapted to provide a solution to the sharing problem. For ex-
ample, the second approach implies that if all shape-nodes n accessible from both z and y have the
value is%(n) = false, there cannot possibly be any sharing between the data structures pointed to by
r and y.

8 Related Work

The shape-analysis problem was first investigated by Reynolds, who studied it in the context of a
Lisp-like language with no destructive updating [Rey68]. Reynolds treated the problem as one of
simplifying a collection of set equations. A similar shape-analysis problem. but for an imperative
language supporting non-destructive manipulation of heap-allocated objects. was formulated inde-
pendently by Jones and Muchnick, who treated the problem as one of solving (i.e., finding the least
fixed point of) a collection of equations using regular tree grammars [JM81]. Follow-on work on this
kind of shape-analysis problem includes [Mog88, Mog89, Hei92, Rep95].

In [JM81], Jones and Muchnick also began the study of shape analysis for languages with de-
structive updating. To handle such languages, they formulated an analysis method that associates
program points with sets of finite shape-graphs.® To guarantee that the analysis terminates for

51n this section, we use the term “shape-graph” in the generic sense, meaning any finite graph structure used to
approximate the shapes of run-time data structures.
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programs containing loops, the Jones-Muchnick approach limits the length of acyclic selector paths
by some chosen parameter k. All nodes beyond the “k-horizon” are clustered into a summary node.
The Jones-Muchnick formulation has two drawbacks: )

e The analysis yields poor results for programs that manipulate cons-cells beyond the k-horizon.
For example, in the list-reversal program of Figure 3, little useful information is obtained. The
analysis algorithm must model what happens when the program is applied to lists of length
greater than k. However, the tail of such a list is treated conservatively, as an arbitrary, and
possibly cyclic, data structure.

o The analysis may be extremely costly because the number of possible shape-graphs is doubly
exponential in k.

In addition to Jones and Muchnick’s work, k-limiting has also been used in a number of subsequent
papers (e.g., [HPR89]).

Whereas Jones and Muchnick use sets of shape-graphs (in [JM81]), our work follows Jones and
Muchnick [JM82], Larus and Hilfinger [LH83, Lar89], Chase, Wegman, and Zadeck [CWZ90], and
Stransky [Str92] who developed shape-analysis methods that associate each program point with a
single shape-graph. The use of a single shape-graph is possibly less accurate than a method based
on sets of graphs, and, compared with a method that uses sets of graphs, working with a single
graph complicates the abstract semantics. However, for reasons mentioned in Section 5.2, the use of
a single graph seems necessary for the pragmatic reason that it is more likely to lead to a practical
shape-analysis algorithm.

Jones and Muchnick [JM82], Chase, Wegman, and Zadeck [CWZ90], and Stransky [Str92] present
similar methods in which the shape-nodes correspond to a program'’s allocation sites. These methods
are more efficient than the methods discussed earlier, both from a theoretical perspective [CWZ90]
and from an implementation perspective [AW93].

The algorithm presented by Chase, Wegman, and Zadeck is based on the following ideas:

e Sharing information, in the form of abstract heap reference counts (0, 1, and o0), is used to

characterize shape-graphs that represent list structures.’

o Several heuristics are introduced to allow several shape-nodes to be maintained for each allo-
cation site.

e For an assignment to z.sel, when the shape-node that r points to represents only concrete
cons-cells that will definitely be overwritten, the sel field of the shape-node that z points to
can be overwritten (a so-called “strong update”).

The Chase-Wegman-Zadeck algorithm is able to identify list-preservation properties in some cases;
for instance, it can determine that a program that appends a list to a list preserves -list-ness”.
However, as noted by Chase, Wegman, and Zadeck, allocation-site information alone is insufficient
to determine interesting facts in many programs. For example, it cannot determine that “list-ness”
is preserved for either the list-reversal program or the list-insert program. In particular, in the list-
reversal program, the Chase-Wegman-Zadeck algorithm reports that y points to a possibly cyclic
structure and that the structures that z and y point to might share cons-cells in common.

There are three major technical differences between our algorithm and the Chase-Wegman-Zadeck
algorithm that lead to the improvements in accuracy obtained by our algorithm:

Tracking of aliasing configurations. The sets of variable names attached to shape-nodes track pos-
sible aliasing configurations: A shape-node nz represents cons-cells that are simultaneously
pointed to by exactly the variables in Z. The abstract semantics tracks possible aliasing con-
figurations by performing operations on the variable sets that name SSG shape-nodes.

“Strong nullification” For an assignment of the form z.sel :=y, the Chase-Wegman-Zadeck method
ordinarily performs a “weak update” (i.e., selector-edges emanating from the shape-nodes that
£ points to are accumulated). It performs a strong update only under certain specialized
conditions.

In our algorithm, because of the Normalization Assumptions of Section 3.1, an assignment
statement z.sel := y is transformed into two statements: z.sel := nil, followed immediately
by z.sel := y. When our algorithm processes the first of these statements, it (always) removes

6The idea of augmenting shape-graphs with sharing information also appears in the earlier work of Jones and
Muchnick [JM81].
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the sel edges emanating from the shape-nodes that z points to. We have called this operation
“strong nullification”, by analogy with “strong update”. When the algorithm processes the
second statement, it introduces sel edges that emanate from the shape-nodes that z points to.
Taken together, the effect is to overwrite the sel edges emanating from the shape-nodes that
z points to. In other words, for a statement in the original program of the form z.sel := y,
our algorithm always performs a strong update, even when z does not point to a unique SSG
shape-node.

Materialization In an assignment statement of the form z := y.sel, our algorithm materializes new
shape-nodes that conservatively cover all the possible new configurations of variable sets whose
members all point to the same cons-cell. For example, when y.sel points to ng, our algorithm
materializes a new node ng,} out of ng. Furthermore, if is*(ny) = false, this information is
used to exclude both of the two possible selector-edges from ng to ny;}, as well as both of
the two possible selector-edges from ny;y to ny;). In programs that use a loop containing an
assignment z := z.cdr to traverse an unshared linked list, this technique permits our method
to determine that r points to an unshared list element on every iteration.

The Chase-Wegman-Zadeck algorithm lacks a node-materialization operation (although
they did recognize that the lack of one was a stumbling block to the accuracy of their method [CWZ90,
pp. 309)).

Chase, Wegman, and Zadeck use reference-count values 0, 1, and oo, whereas we use a Boolean-
valued function is®. However, this does not represent a significant difference because in our SSGs
the selector-edges allow recovering the distinction between 0 (no incoming edges) and 1 (at least one
incoming selector-edge, but is*(n) = false).

Our method has been presented within the framework of abstract interpretation, which allows
us to prove that the algorithm obtained is conservative with respect to the concrete semantics.
Chase, Wegman, and Zadeck give only informal arguments about the correctness of their algorithm.
Because of several ad hoc features of the Chase-Wegman-Zadeck method, several changes would be
necessary to reformulate it as an abstract interpretation. For instance, the rules they give for the
“join” operation are complicated by the fact that the result of “joining” two shape-graphs depends
on the program point at which the operation is applied. (For this reason, “join” is a misnomer in
the lattice-theoretic sense.) In contrast, our join operation, which is essentially graph union, is the
join operation in the lattice of SSGs defined in Section 5.1.

Plevyak. Chien, and Karamcheti describe a shape-analysis algorithm that is similar to the Chase-
Wegman-Zadeck method [PCK93]. Their algorithm inherits most of the drawbacks of the original
Chase-Wegman-Zadeck algorithm.

Larus and Hilfinger [LH88, Lar89] devised a shape-analysis algorithm that is based on somewhat
different principles from the aforementioned work. As with our algorithm, shape-nodes are labeled
with some auxiliary information. At first glance, their node-labeling scheme appears to be more
general than ours: Whereas we use a set of variables to label each node, they use a regular expression
(limited to be no longer than some chosen constant k) representing pointer-access paths that may
lead to an instance of the node. However, their shape-node labels do not add any information to
their representation because the pointer-access expressions can always be reconstructed from the
graph stripped of node labels. In contrast, our labels — which in some sense represent degenerate
regular expressions of length 1 — do contribute essential information to our representation: When
z is in the variable-set of shape-node ny, we know that a strong nullification {and hence a strong
update) can be performed on the selector-edges emanating from nx.

It is possible that it would be worthwhile to extend our technique to use more complicated
shape-node names of the kind that Larus and Hilfinger use. However, on many interesting examples,
even with our “length-1 labels”, our algorithm achieves greater accuracy than the Larus-Hilfinger
algorithm does, no matter what value of k is chosen: For example, the Larus-Hilfinger algorithm
is not able to determine that programs such as the list-reversal and list-insert programs preserve
“list-ness” .

There are also several algorithms that are not based on shape-graphs for finding may-alias in-
formation for pointer variables. The most sophisticated ones are those of Landi and Ryder [LR91]
and Deutsch [Deu94]. Deutsch’s algorithm is particularly interesting because, for certain programs
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that manipulate lists, it offers a way of representing the exact (infinite set of) may aliases in a com-
pact way. It can be shown that, for the list-reversal program, Deutsch’s algorithm yields may-alias
information that is equivalent to that produced by the algorithm of Section 5.1. However, both the
Landi-Ryder and Deutsch algorithms do not determine that either “list-ness” or “circular list-ness”
is preserved by the insert program of Figure 14. The reason is that, due to the lack of a strong-
nullification operation, these algorithms cannot infer that the assignment y.cdr = nil in the program
shown in Figure 13(b) cuts the list pointed to by = (see Figures 14(b) and (c)). (We do not mean
to imply that our method always dominates the Landi-Ryder and Deutsch algorithms; there exist
programs for which Deutsch’s algorithm is more accurate than our algorithm.)

A different approach was taken by Hendren and Nicolau, who designed an algorithm that handles
only acyclic data structures [HN90, Hen90]. Because of the decision to work with programs that
only manipulate acyclic structures, the algorithm does not have to have a way of representing cycles,
even conservatively. For this alias-analysis problem, they have given an efficient algorithm that
manipulates matrices that record access paths that are aliases.

To the best of our knowledge, the Hendren-Nicolau algorithm is the only algorithm besides
ours that can detect that insertion of an element into a list (respectively, tree) preserves the list
(tree) structure. However, by design, their algorithm cannot determine such structure-preservation
properties for programs that handle cyclic lists.

Myers presented an algorithm for interprocedural bit-vector problems that accounts for alias-
ing [Mye81]. Like our shape-analysis algorithm, his algorithm also keeps track of sets of aliased
variables. He conjectured that in practice the sizes of the alias sets remain small. However, Myers’s
work does not handle heap-allocated storage and destructive updating. Therefore, his algorithm is
significantly simpler and he is even able to show that it is precise. In contrast, it is undecidable to
give a precise solution to our problem, even in the absence of procedure calls [Lan92, Ram94].
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A Proof of Three Safe-Approximation Properties

In the proof of Theorem 35.13, the case for statements of the form “z := y.sel” (Lemma B.1) relies
on Lemma A.l of Section 5.3, which states that the abstract predicates compat_in?, compat_self*,
and compat.out® are a safe approximation of the corresponding concrete properties compat._in.
compat_self , and compat_out (see Figure 11). In this appendix, we prove Lemma A.1.

Lemma A.1l

(i) compat.in =g compat._in®

(il) compat_self =3 compat_self*
(iii) compat_out =3 compat_out?

Proof: Let SG = (E,, E,) be 2 DSG in DSG, let 3 denote 3(E,], and let iis denote us{Es).

Proof of (i). Suppose that {1, l2, and [3 are shape-nodes in shape.nodes(SG) such that
compat_in([y, 1], (I, sel, 12), (3, sel’, l2)) holds, ie., [y,l1] € Ey, (l1,sel.la) € Es, (I3, sel',1») € E;,
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and 3 # l. Using Definitions 5.3 and 5.4 and Lemma 5.9. we have

true = compatible(ly,l2,!3) Figure 11
= compatible“(;?(ll),,5(12),13(13)) Lemma 5.9 (i)
whl€B = [v,80) € 3(E) Definition 5.3
(Iy,sel,l2) € B, = (B(L), sel, B(I2)) € 3(Es) Definition 5.3
(I3, sel', l3) € E; = (B(l3), sel', B(l2)) € B(E,) Definition 5.3
I3 £l = B(l)# 8(s) Lemma 5.9 (iii)
(I, sel,lz) € Es, (4, sel, ;) € E,,

U

3, sel’ zo> ¢ E,,

true = (—iis(la) V tis(ly
("1123([0 iis(l2)) (miis(l) ()

(I3, sel', l2) € € E,
{1y, sel,l3) € Es,
(I3, sel' | 13) € Ej,
and Definition 5.4
= (B(y) =* B(3) A sel = sel’) v iis(ls) Lemma 5.9 (ii)

= (B(l)) =" B(l3) A sel = sel') vis*(B(l2)) Definition 5.3

Therefore, compat-in®([y, 3(11)], (3(L1), sel. B(l2)), (8(ls), sel’, B(l2))) holds.

Proof of (ii). Suppose that [; and [, are shape-nodes in shape_nodes( SG) such that
compat_self ([y, 1], (1, sel, l2), (12, sel’, 1)) holds, ie., [y, 1) € Ey, {l1,sel,l3) € E,, and (lo, sel’, 1) €
E,. Using Definitions 5.3 and 5.4 and Lemma 5.9, we have

= (I, =3 A sel = sel') Vv iis(ls)

true = compatzble( o) Figure 11
= compatzble ( (1), B(2)) Lemma 5.9 (i)
[y, h)€ B, = [y,3(l)] € B(Ey) Definition 3.3
(ll,sel LYe Es = (B(l),sel,B(l2)) € B(E,) Definition 5.3
Iy, sel' ls) € E; = (B(L ) sel’ Bl2)) € 8(Es) Definition 5.3
(I, sel,ls) € E g,
(i, sel, 1) € Bs, = la, sel',l5) € Es, true = (—us(la) V iis(la))

; (
{lo, sel o) € B (-—.ns(lq) V iis(ls))

(ll,sel,lg) € E,,
(Io, sel', 15) € E‘
and Deﬁmm on 5.4
Lemma 5.9 (ii)
Definition 5.3

= (I = Iy A sel = sel') V iis(ls)
= (B(l) = B(le) A sel = sel') V iis(l2)
= (8(ly) = B(l2) A sel = sel') V is*(B(l2))

L3(I0)], (B(1), sel, B(12)), (B(l2), sel’, (1)) holds.

Proof of (iii). Suppose that (y, l2, and /3 are shape-nodes in shape- nodes(SG) such that
compat_out([y, 1], (1, sel, l2), (I, sel’, l3)) holds, i.e., [y,! 1) € Ey, (L1, sel,l2) € Eg, (l2, sel'.l3) € Es,
and (3 # l5. Using Definitions 5.3 and 5.4 and Lemma 5.9, we have

Therefore, compat.self*([y

true compatible(ly,la,l3) Figure 11
compatible*(B(l1), B(l2), 8(l3)) Lemma 5.9 (i)
ly.Li] € By [y, B(h)] € EY Definition 5.3

Definition 5.3
Definition 3.3
Lemma 5.9 (iii)

(l, sel,lz) € Es (B(l1), sel, B(l2)) € E!
(Iy, sel',I3) € E, (B(l2), sel, B(l3)) € E?

I3 # 1o B(l3) #* B(la)

The restrictions on the number of outgoing selector-edges that a field of a DSG shape-node can have,
given in Definition 3.3, can be expressed in alternative form as follows:

s e il

Observation A.2 Suppose (¢, sely,cs) and (cz, sela, cg) are selector-edges in E; such that (ci. sely,c3) #
(o, 8ela,cq). Then ¢y # ca V sely # sels.

In our case, we have

(Ly, sel, 1) € Eq,
(I, sel' 13) € Es, =
I3 # 12

<ll, Sel,b) # <l2, sel’, l3>

Observation A.2
Lemma 5.9 (iii)

= 1, # 1V sel # sel
= OB(ly) #* B(l2) V sel # sel’
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(Eu, Eo) o (B3, E3), is%)
|

[st] [[gt]]ﬁ
5E!, l
| (B, EY) JELE) |C | e B s

N

Figure 16: The direction of the proof of the safety relationship between the DSG meaning function
and the SSG meaning function.

Combined with the properties shown above, this shows that compat_out?([y, B(1)], (B(L1), sel, B(I2)), (B(la). sel’, B(I3)))
holds. O

B Local Safety of the Abstract Semantics

In this appendix, we show that the abstract semantics of static shape-graphs is safe with respect to
the concrete semantics.

Theorem 5.13(Local Safety Theorem) For all assignment statements st, and for every SG €
DSG, 3([stl(SG)) C [st]*(B(SG)).

Proof: Let SG = (E..E,) and define (E., E.), ((E, EY),is?), and (B}, E¥),is"") as follows (in
accordance with the diagram shown in Figure 16):

(BB € [stl(E,. Ea)

(EL ED,ish) % BE)(E,. E.)
(EY BT ist) S [stl(((EL, B, ist))

—~ o~ e~
Dt ok W
[N

Throughout the rest of the proof, (E,, Es) and (E!,E') are understood. We will use 7 as a
shorthand for n[E,] and =’ as a shorthand for 7[E!]. Similarly, 3 is a shorthand for 3[E,] and 3’ is
a shorthand for 8[E,].

We need to show that 3'((E., E')) T ((EY' E',ist"). This amounts to showing the following:

v !

i eE, = Fl)eE (6)
Usel V) € By, = B'((L,sel',l) € EY (7)
us|EN() = st (B'(1) (8)

In some cases it is more convenient to use the set form of (7), i.e.,
8'(E) C EY (9)

The cases of st = z := nil, st = z := new, and st = ¢ := y are left to the reader. The cases
of st = z := y.sel, st = z.sel := nil, and st = z.sel := y are shown below in Lemmas B.1, B4,
and B.6, respectively. In all cases, the direction of the argument of the proof follows the arrow shown
in Figure 16. O

Lemma B.1 3([z := y.5el](SG)) C [z := y.sel]*(3(SG)).
Proof: Let us define X, s to be the cons-cell pointed to by y.sel in (E,, Es), Le.,

Xy o {0 1] € Bu, Ly, sel, 1) € B} (10)

Because (E,, E,) is a DSG, Xy ;o is either the empty set or a singleton set. We observe that the
operational semantics of z := y.sel, defined in Figure 6, guarantees that the following observations
hoid:
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Observation B.2 For every | € shape_nodes((Ev, Es)) — Xy ety
(z,ll€ B, < |[zllek, (11)
g = B (12)
Observation B.3 Forl € Xy s, '(l) = n(l) U {z}.
We now show that (6), (7), and (8) hold for st = z := y.sel.

Part L. In this part we show that (6) holds. Let [z,!] € E,. There are two cases to consider:
Case 1: | € Xy sels

[z,l|€ E, = [zllek, Observation B.2, (11)
= B([z,l]) € E}  Definition 5.3
= [2,3(1)] € E}  Definition 5.3
= [2,8(l)] € EY' Figure 8
= [2.8()] € E}' Observation B.2, (12)
= 3'([z,1]) € EY' Definition 5.3

Case 2: | € X, s By (10), there exist [y,l,] € E, and (I, sel,l) € E,. Because [y,ly] € E., we
have:
[y,l,) € E. = 3(ly.Ly)) € E?! Definition 5.3
= [y,3(l,)] € E} Definition 5.3
Because (ly, sel.l) € E;, we have:
(l,,sel,l) € Es = 3((ly,sel,)) € E! Definition 5.3
= (B(l,),sel,3(1)) € E} Definitiori 5.3
= (B(l,), sel,n.)) € B! Definition 5.3
There are two subcases to consider:
Case 2.1: [2,l] € E,.

[z, € B, = 3(z1])€E} Definition 5.3
= [z,8(D)) € E! Definition 5.3
= [z,n.p) € B} Definition 5.3
= [z, nxuiz}] € EY [y, 8(1,)] € B A (B(ly), sel, nxy) € Ei A Figure 8
= [z,no] € EY Observation B.3
= [58(0)]cEY Definition 5.3
= 3'(z.1) € BY Definition 5.3
Case 2.2: [z,l]€ E, - Ey.
z,l€eE,-E, = z=z% Figure 6
! .
= [T, nayuis}) elEﬁ [y, B(1,)] € EL A (B(Ly). sel.nnqy) € EY A Figure 8
= [z,nm@) € EY Observation B.3
= [z,8() e EY Definition 5.3
= B(zl) e BY Definition 5.3

End of Part I.
Part II. In this part we show that (7) holds. Let ([, sel',l'y ¢ EL. We have:
(I,sel'\I'Y e E, = (1,sel',l') € E; Figure 6
= (B(),sel', B(1") € E! Definition 5.3
Therefore, there are four cases to consider:
Case 1: [,I' € X, . First, observe that because (E,, E;) is deterministic. it cannot be that
[y,l] € E, and sel’ = sel. Therefore, we have:

(B(L), sel’, B(I") € BiA (ney, sel’, B(1)) € EIA

~([y, ] € Ey A sel’ = sel) = =(y € w(l) A sel' = sel) Definition 5.3
= (naq,sel’,3(1") € EY Figure 8
= (3(1), sel', B(I") € EY Definition 5.3
= (B'(l),sel',B'(1")) € EY  Observation B.2, (12)
= 3, sel' l")) € EY Definition 5.3
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Case 2: | € Xy set, I' € Xy se1. Let [y be the unique cons-cell such that [, € E.(y), which must exist
because ' € Xy set-

Case 3: [ € Xy ses I & Xy sl

because | € X sel.

v ly) € By
sell)

{ly
(l sel’
I #1

)

€
€

E,
E

4

R 2R

4

LU ey

[y, ly}v
compat_in { (ly, sel, '),
{1, sel', 1"

13([y71y])a
compat.in* | B((ly, sel,l')),

8
compa.tt_z'n"z (

compat_in® (
(B(1), sel’ T ,,))

(3(1). sel',nrqyugz}) € EY
(B(), sel' a1y € EY
(B(1), sel', B'(I") € Eg’
(3'(1), sel!, 3' (1)) € EY
8({, sel' ")) € EY

rg(l ) sel Ty l’))v >

Figure 11

Lemma A.l (i)

Definition 5.3

Definition 5.3

Figure 8

Observation B.3
Definition 5.3
Observation B.2, (12)
Definition 5.3

Let [, be the unique cons-cell such that [, € E,(y), which must exist

ly, Ly,
compat_out | (ly,sel, ),
{, sel’. ’)

v, B(ly)

3([y
compat_out? < B y,se l >
3, Sel’ '

compat_out® | (B(ly). sel 3(1)),
(B,
ly, B(ly)
compat_out® | (B(ly), sel Nl
(Mg, sel’, 81 )

<nn(l)u{r}»sel /3( /)> E Eul
(o, sel’, B(1") € EY
(ﬂ’(l) sel’ 3" € E""
(8'(1), sel', 3'(I") € ES
B'({, sel',I'y € BY
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)
)

Figure 11

Lemma A.1 (iii)

Definition 5.3

Definition 5.3

Figure 8
Observation B.3
Definition 5.3
Observation B.2 (12)
Definition 3.3




Case 4: [,I' € X, set. Because (B, E;) is deterministic { = {'. Let {, be the unique cons-cell such
that I, € E,(y), which must exist because € Xy sel:

{y! ] E E {y!lyL
(ly, sel IYe E;, = compatself | (ly,sel, l) Figure 11
(, sel’ Iy e E, l sel’
= compat.self* < sel l > Lemma A.1 (ii)
3( l sel'
v, d(
= compat_self* | (B(ly), sel 31, Definition 5.3
(B(1), Sel B0
ly, B
= compat_self* <ﬁ sel Nr(l))s Definition 5.3
sel n,,(l)
SN l)u{,}, sel' Ny ,,U{I} € En Figure 8
= <n ) sel' ) € E“ Observation B.3
= (§ sel’ 3'(1)) € EY Definition 5.3
= muww»em’ Definition 5.3

End of Part IL

Part IIL In this part we show that (8) holds. Note that E, = E; and shape-nodes((E,, E)) =
shape. nodes((Ev,E )). Let | € shape-nodes((E.. E,)) and suppose that 5[ E,](l) holds. By Defini-
tion 5.3, is*(3(1)) holds. There are two cases to consider:

Case 1: [ € Xy set-

1 (3(0) = is’l(ﬁ(l)) Figure 8
= ist'(3'(1)) Observation B.2, (12)
Case 2: | € X, ;. By (10), there exist ly.ly] € E, and (Iy, sel,l) € Es. Because [y,l,] € E,. we

have:
[y,l)) € E. = 3([y,ly]) € Ef Definition 5.3
= [y,B(l,)] € E Definition 5.3
Because ([, sel,l) € E;. we have:

Iy, sel.ly € Es = B({ly,sel,1)) € EX Definition 5.3
= (B(l,),sel,B(1)) € E* Definition 5.3
= (B(ly),sel,nxy) € E" Definition 5.3

Finally, because is*(3(l)) holds, we have:

Sn(ﬁ(l» = iSn(n"(z)) Definition 5.3
= st (neugey) [0 € B2 A (B(L), sel.nqqyy) € E3 A Figure 8
= 5! (nw) Observation B.3
= is'(8'(1)) Definition 5.3

End of Part III. O

Lemma B.4 3([z.sel := nil](SG)) C [z.sel := nil]*(3(5G)).

Proof: Because the set of vanable—edges is unchanged in the transformers for statements of the
form z.sel := nil in both the operational and the abstract semantics. (6) trivially holds. Also, the
following observation holds:

Observation B.5 E! = E, and therefore 3' =

We now show that (7) and (8) hold for st = r.sel := nil.
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Part L. In this part we show that (7) holds.

{1, sel' I'y € EA

{1, sel',l') € E, = (1] € Ey A sel’ = sel) Figure 6

B(({l, sel', ")) € EIA N
= [z, 0] € By A sel’ = sel) Definition 5.3
(B(1), sel', B(I")) € ELA .
= “(lz.1] € Ey A sel' = sel) Definition 5.3
(g, sel’, (") € EIA .
= ﬂ([m | € E, A sel' = sel) Definition 5.3
(nay, sel’, BU)) € EIN .
= _,(z € (1) A sel' = sel) Definition 5.3
= (naq, sel', B(1") € EY Figure 8
= (B(1), sel', B(1") € B Definition 5.3
= (A1), sel', 3 (1) € E§ Observation B.5
= 8({l, sel',l') € EY Definition 5.3

End of Part I.

Part II. In this part we show that (8) holds. Suppose that is[E'](l) holds. By Figure 8, to prove
that is* (8'(1)) holds, it is sufficient to show that: (a) is*(3({)) holds, and (b) 153 E1)(B'(1)) holds.
Proof of (a)

is[EY(l) = iis[E,](I) Figure 6, E; C E,
1s*(3(l)) Definition 5.3
is'(3'(1)) Observation B.5

4

Proof of (b)

is(E() = usl@(ED)(F(1) Lemma 5.9 (iv)
= ust[EY)(5'() Part I and the fact that is?[E¥] is monotonic in E%

s

End of Part II. O

Lemma B.6 8([z.sel := y](SG)) C [z.sel := y]"(B(SG)).

Proof: Because the set of Varlable edges is unchanged in the transformers for statements of the form
z.sel 1= y in both the operational and the abstract semantics, (6) trivially holds. Also, the following
observation holds:

Observation B.7 E! = E, and therefore A= 3.

We now show that (7) and (8) hold.
Part I. In this part, we show that (7) holds. Let (l, sel',l') be a selector edge in E;. By Figure 6,
there are two cases to consider:
Case 1: (I,sel',l') € E,

(L,sel' I € E, = B, sel',l) € E*  Definition 5.3
= B'({,sel', ) € E" Observation B.7

Case 2: [z,l], ]y, l'] € E,

(z.0),[y,l'] € Ey 3([z, 1)), B(ly, ') € EY Definition 5.3
[z, 8(1)], [y, B(1")] € E}  Definition 5.3
(3(1), sel, B(1")) € Bt Figure 8

(8 (1), sel, 3'(I") € E“' Observation B.7

3, sel, ")) € EY Definition 5.3

IR

End of Part 1.

42




Part II. In this part we show that (8) holds. Let | € shape_nodes((E,. E)) such that is[E'](l).
There are two cases to consider. ‘
Case 1: iis[E,}(])-

iis[E,)(1) = is'(B(1))  Definition 5.3
= is¥'(8(l)) Figure 8
= s'(8'(1)) Observation B.7

Case 2: —iis[E,](l). In this case, by Figure 6, [y,!] € E, and therefore, by Definition 5.3, ly,3() €
E!. Also,

(B = sflB(ED)(B'()) Lemma 5.9 (iv)
= ust[EY)(8'() Part I and the fact that iss*[E!] is monotonic is E?
= st (3 () Figure 8

End of Part II. O
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