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Solving Singular Control from Optimal Switching

Xin Guo∗ Pascal Tomecek†

May 13, 2008

Abstract

This report summarizes some of our recent work (Guo and Tomecek (2008b,a)) on

a new theoretical connection between singular control of finite variation and optimal

switching problems. This correspondence not only provides a novel method for analyz-

ing multi-dimensional singular control problems, but also builds links among singular

controls, Dynkin games, and sequential optimal stopping problems.

1 Introduction

In our recent work (Guo and Tomecek (2008b)), we established a generic theoretical con-

nection between singular control and optimal switching problems: we defined a consistency

property for collections of switching controls, and proved that there is an exact correspon-

dence between the set of finite variation càglàd processes and the set of consistent collections

of switching controls.

This correspondence allows one to analyze multi-dimensional control problem under a

general setting for the regularity properties and the smooth fit principle directly: one can

obtain an integral representation for the value function of a general class of singular control

problem in terms of the values of corresponding optimal switching problems.

As a byproduct, we showed that the value of a Dynkin game can be represented as the

difference between the values of two related switching problems, thereby linking the general

reversible investment problem, the Dynkin game, and the optimal switching problem.

Continuing our analysis on singular control problems with possible non-smooth payoff

functions, we (Guo and Tomecek (2008a)) analyzed a class of singular control problems for

which value functions are not necessarily smooth. Necessary and sufficient conditions for

the well-known smooth fit principle, along with the regularity of the value functions, are

given. Explicit solutions for the optimal policy and for the value functions are provided. In
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particular, when payoff functions satisfy the usual Inada conditions, the boundaries between

action and no-action regions are smooth and strictly monotonic as postulated and exploited in

the existing literature (Dixit and Pindyck (1994); Davis, Dempster, Sethi, and Vermes (1987);

Kobila (1993); Abel and Eberly (1997); Øksendal (2000); Scheinkman and Zariphopoulou

(2001); Merhi and Zervos (2007); Alvarez (2006)). Illustrative examples for both smooth and

non-smooth cases are discussed to highlight the pitfall of solving singular control problems

with a priori smoothness assumptions.

Previous work Singular control problems have been studied extensively in both the math-

ematics and economics, starting from the well-known monotone fuel follower problem, for

which explicit solutions can be found in Bather and Chernoff (1967a,b); Beneš et al. (1980);

Karatzas (1983) and Harrison and Taksar (1983). In mathematical economics, a typical

(ir)reversible investment problem can be formulated as a singular control problem in which

a company, by adjusting its production capacity through expansion and contraction ac-

cording to market fluctuations, wishes to maximize its overall expected net profit over an

infinite horizon. This problem has been investigated by numerous authors (See for instance

Davis et al. (1987); Kobila (1993); Abel and Eberly (1997); Baldursson and Karatzas (1997);

Øksendal (2000); Scheinkman and Zariphopoulou (2001); Wang (2003); Chiarolla and Hauss-

mann (2005); Bank (2005); Guo and Pham (2005), and Merhi and Zervos (2007)). For a

standard reference on irreversible investment, see Dixit and Pindyck (1994).

Our approach of connecting singular control problems and related optimal stopping prob-

lems dates back to the seminal paper of Bather and Chernoff (1967a), and has since been

developed and applied to monotone singular control problems by Karatzas (1983, 1985);

Karatzas and Shreve (1984, 1985, 1986); El Karoui and Karatzas (1988, 1989, 1991), and

Baldursson and Karatzas (1997) 1. Indeed, our integral representation theorem for the

reversible investment problem is in part inspired by the elegant integration arguments of

Baldursson and Karatzas (1997) for irreversible investment. Another closely related body

of work is Boetius and Kohlmann (1998); Boetius (2001, 2003, 2005). However, the connec-

tions between the singular control problem, the entry-exit problem, and Dynkin’s game in

their works are established within the framework of forward backward stochastic differential

equations and require a finite time horizon with the restrictive assumption that the control

has only an additive affect on the diffusion.

Our contribution Compared to all previous works and approaches, the correspondence

between singular controls and switching controls in our paper does not depend on the specific

form of the control problem. Thus, our methodology may be applied to cases for which the

underlying randomness is not necessarily captured by a diffusion and the payoff function is

not necessarily smooth.

1Recently, Hamadène and Hassani (2006) observed that both the Dynkin game and the two regime optimal

switching problem lead to BSDE’s with two reflecting barriers.
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2 Correspondence between Singular Controls and Switch-

ing Controls

The correspondence established in Guo and Tomecek (2008b) is analogous to the well-known

correspondence between a non-decreasing, F-adapted, càglàd singular control (ξt)t≥0 and a

collection of stopping times (τ ξ(z))z∈R, given by

τ ξ(z) = inf{t ≥ 0 : ξt > z}, and ξt = sup{z ∈ R : τ ξ(z) < t}.

2.1 Definitions

Let (Ω,F , P ) be a complete probability space and F = {Ft; 0 ≤ t < ∞} a filtration satisfying

the usual hypotheses. Let I ⊂ R be an open (possibly unbounded) interval, and Ī be its

closure.

Definition 2.1. Given y ∈ Ī, an admissible singular control is a pair (ξ+
t , ξ−t )t≥0 of F-

adapted, non-decreasing càglàd processes such that ξ+(0) = ξ−(0) = 0, Yt := y + ξ+
t − ξ−t ∈

Ī,∀t ∈ [0,∞), and dξ+, dξ− are supported on disjoint subsets.

We denote here Ay to be the set of admissible strategies corresponding to an initial

capacity level of y.

Since dξ+, dξ− are supported on disjoint subsets, ξ+ and ξ− are the positive and negative

variation of Y , respectively. By the uniqueness of the variation decomposition, there is a

one-to-one correspondence between strategies (ξ+, ξ−) ∈ Ay and F-adapted càglàd finite

variation processes Y with Y0 = y and Yt ∈ Ī for all t.

Throughout the paper, (Yt)t≥0 is a finite variation control process with Y0 = y.

Definition 2.2. A switching control α = (τn, κn)n≥0 consists of an increasing sequence

of stopping times (τn)n≥0 and a sequence of new regime values (κn)n≥0 that are assumed

immediately after each stopping time.

When there are only two distinct regimes, an optimal switching problem is often referred

to as the starting and stopping problem (Brekke and Øksendal (1994); Hamadène and Jean-

blanc (2004), etc.) or the entry and exit problem (Boetius (2003); Duckworth and Zervos

(2000), etc.). Following convention, we label the two regimes 0 and 1.

Definition 2.3. A switching control α = (τn, κn)n≥0 is admissible if the following hold

almost surely: τ0 = 0, τn+1 > τn for n ≥ 1, τn → ∞, and for all n ≥ 0, κn ∈ {0, 1} is Fτn

measurable, with κn = κ0 for even n and κn = 1 − κ0 for odd n.

Alternatively, an admissible switching control has a more mathematically convenient

representation given by its regime indicator function.
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Proposition 2.4. There is a one-to-one correspondence between admissible switching con-

trols and the regime indicator function It(ω), which is an F-adapted càglàd process of finite

variation, so that It(ω) : Ω × [0,∞) → {0, 1}, with

It :=
∞

∑

n=0

κn1{τn<t≤τn+1}, I0 = κ0. (1)

Definition 2.5. Let y ∈ Ī be given, and for each z ∈ I, let α(z) = (τn(z), κn(z))n≥0 be a

switching control. The collection (α(z))z∈I is consistent if

α(z) is admissible for Lebesgue-almost every z ∈ I, (2)

I0(z) := κ0(z) = 1{z≤y}, for Lebesgue-almost every z ∈ I, (3)

and for all t < ∞,

∫

I

(I+
t (z) + I−

t (z))dz < ∞, almost surely, and (4)

It(z) is decreasing in z for P ⊗ dz-almost every (ω, z). (5)

Here It(z), I+
t (z) and I−

t (z) are It = κ0 + I+
t − I−

t , and I+
t (I−

t ) is the positive (negative)

variation of the corresponding regime indicator function such that

I+
t :=

∞
∑

n>0,κn=1

1{τn<t}, I+
0 = 0 and I−

t :=
∞

∑

n>0,κn=0

1{τn<t}, I−
0 = 0.

For It(z) to be decreasing in z for P ⊗ dz-almost every (ω, z), it means there exists a set

E ⊂ Ω × Ī such that P ⊗ dz(E) = 0 and if (ω, z0), (ω, z1) ∈ (Ω × Ī)\E with z0 ≤ z1, then

It(ω, z0) ≥ It(ω, z1).

2.2 Bijection

The bijection between the singular control and the switching control was established based

on a relatively old result in analysis (Evans and Gariepy, 1992, Theorem 5.5.1).

Proposition 2.6 (From Singular Controls to Switching Controls). Given (ξ+, ξ−) ∈ Ay, de-

fine a switching control α(z) = (τn(z), κn(z))n≥0 for each z ∈ I through the regime indicator

function It(z) := lims↑t 1{Ys>z}. Then, the resulting collection (α(z))z∈I of switching controls

is consistent.

Proposition 2.7 (From Switching Controls to Singular Controls). Given y ∈ Ī and a

consistent collection of switching controls (α(z))z∈I, define two processes ξ+ and ξ− by setting

ξ+
0 = 0, ξ−0 = 0, and for t > 0: ξ+

t :=
∫

I
I+
t (z)dz, ξ−t :=

∫

I
I−
t (z)dz. Then

1. The pair (ξ+, ξ−) ∈ Ay is an admissible singular control,
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2. Up to indistinguishability,

Yt = y +

∫ ∞

y

It(z)1{z∈I}dz +

∫ y

−∞

(It(z) − 1)1{z∈I}dz, and

3. For all t, we almost surely have

Yt = ess sup{z ∈ I : It(z) = 1} = ess inf{z ∈ I : It(z) = 0},

where ess sup ∅ := inf I and ess inf ∅ := sup I.

Proposition 2.8 (One-to-One Mapping). The mapping from consistent collections of switch-

ing controls to singular controls defined by Proposition 2.7 is one-to-one.

Theorem 2.9 (Bijection). The mappings in Propositions 2.6 and 2.7 define a bijection

between admissible singular controls (ξ+, ξ−) ∈ Ay and consistent collections of switching

controls (up to equivalence).

Given this correspondence, we shall use the following terminology in the sequel. Given a

singular control (ξ+, ξ−) ∈ Ay, the corresponding collection of switching controls (α(z))z∈I

refers to the one defined in Proposition 2.6; given a consistent collection of switching controls,

the corresponding singular control refers to that in Proposition 2.7.

2.3 Change of Variable Formula

With the bijection established in Theorem 2.9, we established a change of variable formula

for integration with respect to the variation of a singular control.

Proposition 2.10. Let (ξ+, ξ−) ∈ Ay be an admissible singular control and (α(z))z∈I be

the corresponding collection of switching controls. For every càdlàg process g : Ω× [0,∞] →
[0,∞) with g(∞) ≡ 0,

∫

[0,∞)

g(t)dξ+
t =

∫

I

∑

n>0
κn=1

g(τn(z))dz, a.s.,

and

∫

[0,∞)

g(t)dξ−t =

∫

I

∑

n>0
κn=0

g(τn(z))dz, a.s.

In particular, when Y is non-decreasing (i.e. ξ− ≡ 0), Ī = [0,∞) and y ≥ 0, we have

τn(z) ≡ 0 for all n > 1, and for n = 1 when z ≤ y. In this case, our change of variable

formula reduces to the one for monotone controls in Baldursson and Karatzas (1997), after

adjusting for notational differences,

∫

[0,∞)

g(t)dξ+
t =

∫ ∞

y

g(τ1(z))dz.
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3 Application I: Analysis of a Class of Singular Control

Problems

Having established the correspondence between singular controls and consistent collections

of switching controls, we showed how this theory can be applied to analyzing singular control

problems.

3.1 The Singular Control Problem

Consider the following class of singular control problems from economics named reversible

investment problem: a company adjusts its reversible production capacity (or investment)

level by proper controls of expansion and contraction in the presence of a stochastic economic

environment. The net profit of such an investment depends on the running production

function of the actual capacity, the economic uncertainty such as price or demand for the

product, the benefits of contraction (e.g. via spinning off part of the business), and the cost

of expanding and reducing the capital. The company’s objective is to maximize the expected

profit over an infinite time horizon by controlling expansion and contraction.

More specifically, the instantaneous operating profit of the company is a function of the

production capacity and random variables representing the uncertain economic environment:

Π(ω, t, z) : Ω × [0,∞) × Ī → R. (6)

The unit cost of increasing the capacity at time t is γ+(ω, t) : Ω × [0,∞) → R, and the unit

cost of decreasing capacity is γ−(ω, t) : Ω × [0,∞) → R, where both γ+ and γ− are adapted

to F.2

The control of the production capacity Yt is represented by a pair (ξ+
t , ξ−t )t≥0 of F-adapted,

non-decreasing càglàd processes such that

ξ+(0) = ξ−(0) = 0, (7)

Yt = y + ξ+
t − ξ−t ∈ Ī, ∀t ∈ [0,∞). (8)

Here, ξ+
t and ξ−t represent the cumulative expansion and reduction of capital until time t

respectively. We say the policy (ξ+, ξ−) is integrable if the integrability condition is satisfied

for the initial capacity level y. That is,

E

[
∫ ∞

0

|Π(t, Yt)|dt +

∫

[0,∞)

|γ+(t)|dξ+
t +

∫

[0,∞)

|γ−(t)|dξ−t

]

< ∞. (9)

We denote A′
y ⊂ Ay as the set of integrable strategies.

2When there is no risk of ambiguity, we suppress the dependence of the profit and cost functions on ω,

writing Π(t, z), γ+(t) and γ−(t)
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Faced with these profit and cost functions, the company must choose an investment

strategy of capacity expansion and reduction which produces the following expected payoff

over an infinite horizon:

J(y, ξ+, ξ−) := E

[
∫ ∞

0

Π(t, Yt)dt −
∫

[0,∞)

γ+(t)dξ+
t −

∫

[0,∞)

γ−(t)dξ−t

]

. (10)

The objective is to maximize over all integrable policies (ξ+, ξ−) ∈ A′
y. Accordingly, the

value function is defined as:

V (y) := sup
(ξ+,ξ−)∈A′

y

J(y, ξ+, ξ−). (11)

Note that for any y ∈ Ī, A′
y is not empty, as the expected profit of not investing at all (i.e.

ξ+ ≡ 0 ≡ ξ−) is finite and is given by

R(y) := J(y, 0, 0) = E

[
∫ ∞

0

Π(t, y)dt

]

. (12)

Standing assumptions

A1. Π is concave in y and continuous at the boundary of I, so that for y1 < y2 ∈ Ī,

Π(t, y2) − Π(t, y1) :=

∫ y2

y1

π(t, z)dz, (13)

where π is decreasing in z a.s. and adapted to F. Furthermore,

E

[
∫ ∞

0

|Π(t, z)|dt

]

< ∞, ∀z ∈ Ī, (14)

E

[
∫ ∞

0

|π(t, z)|dt

]

< ∞, ∀z ∈ I. (15)

This assumption implies that the value function is well defined and although it may

take values of +∞, it is never −∞ since V (y) ≥ R(y) > −∞ by (14).

A2. γ+ and γ− are adapted to F, γ±(∞) := 0 and

γ+(t) + γ−(t) > 0, for all t, a.s. (16)

This restriction eliminates the opportunity of making profit by simply switching regimes

and immediately switching back.

A3. • If I is not bounded above, then γ+(t) ≥ 0 for all t almost surely. And,

• if I is not bounded below, γ−(t) ≥ 0 for all t almost surely.

This is to ensure that when the domain is unbounded, an arbitrarily large profit is not

obtainable by arbitrarily large changes in the capacity level.
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A very special case for the above problem (11) is Π(ω, t, z) = e−ρt(Xx
t (ω))λzβ, where the

randomness in the economy is captured by the price process X of the commodity, and X is

modelled by a geometric Brownian motion dXx
t = bXx

s dt +
√

2σXx
s dWs, with X0 = x > 0.

The cost functions are γ+(ω, t) = e−ρtK1, γ−(ω, t) = e−ρtK0 for some constant ρ > 0, K0, K1.

This is an example first analyzed with explicit solutions by Merhi and Zervos (2007).

3.2 Optimal Control from its Corresponding Optimal Switching

Problem

The key to using the connection between singular controls and switching controls to solve

problem (11) in Section 3.1 is to write the payoff of this problem in terms of the payoffs of

its corresponding optimal switching problems.

3.2.1 Switching Controls from Singular Controls

First, given the running profit and cost functions from the singular control problem (11),

define a collection of optimal switching problems, indexed by z ∈ I.

Definition 3.1. The switching cost process γ : Ω × [0,∞) × {0, 1} → R is given by

γ(t, κ) := γ+(t)1{κ=1} + γ−(t)1{κ=0}.

Here γ(t, κ) represents the cost of switching to regime κ at time t.

Next,

Proposition 3.2. Assume (ξ+, ξ−) ∈ A′
y. Let (α(z))z∈I be the corresponding consistent

collection of switching controls with regime indicator functions I(z), then

J(y, ξ+, ξ−) − R(y) =

∫ ∞

y

m+(z, α(z))1{z∈I}dz +

∫ y

−∞

m−(z, α(z))1{z∈I}dz.

Where

m+(z, α) := E

[

∫ ∞

0

π(t, z)Itdt −
∞

∑

n=1

γ(τn, κn)

]

∈ (−∞,∞), (17)

and m−(z, α) := E

[

∫ ∞

0

−π(t, z)(1 − It)dt −
∞

∑

n=1

γ(τn, κn)

]

∈ (−∞,∞). (18)

Here m+(z, α),m−(z, α) are two expected payoffs for the switching controls for each z ∈ I
and α ∈ B, with κ0 = k ∈ {0, 1}.
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3.2.2 Representation Theorem

Now, for each z ∈ I, the optimal switching control problem is to maximize the expected

payoff over possible switching controls α ∈ B such that κ0 = k ∈ {0, 1}. This leads to the

value functions given by

m∗
+(z, k) := sup

α∈B

κ0=k

m+(z, α), (19)

m∗
−(z, k) := sup

α∈B

κ0=k

m−(z, α), (20)

where m+(z, α) and m−(z, α) are given by (17) and (18).

In fact, these two value functions (19) and (20) are essentially the same as shown in the

following lemma.

Lemma 3.3. The value functions m∗
+(z, k) and m∗

−(z, k) in (19) and (20) satisfy, for k ∈
{0, 1},

m∗
+(z, k) − m∗

−(z, k) = E

[
∫ ∞

0

π(t, z)dt

]

.

In addition, for fixed k ∈ {0, 1}, each switching control α ∈ B that is optimal for (19) will

also be optimal for (20) and vice versa.

Theorem 3.4 (Representation). Fix y ∈ Ī, let V (y) and R(y) be given from (11), m∗
+(z, k)

and m∗
−(z, k) be given by (19) and (20), and (ξ̂j+, ξ̂j−) ∈ Ay be the corresponding singu-

lar control as per Proposition 2.7. Assume there is a sequence of consistent collections of

switching controls (αj(z))z∈R so that as j → ∞,
∫ ∞

y

m+(z, αj(z))1{z∈I}dz +

∫ y

−∞

m−(z, αj(z))1{z∈I}dz

→
∫ ∞

y

m∗
+(z, 0)1{z∈I}dz +

∫ y

−∞

m∗
−(z, 1)1{z∈I}dz.

Assume also (ξ̂j+, ξ̂j−) ∈ A′
y for all j. Then,

V (y) − R(y) =

∫ ∞

y

m∗
+(z, 0)1{z∈I}dz +

∫ y

−∞

m∗
−(z, 1)1{z∈I}dz.

Moreover, with stronger assumptions, one can further establish the existence of an opti-

mal control strategy.

Assumption 3.5.

1. [Existence of consistent controls] Fix y ∈ Ī and let m∗
+(z, k) and m∗

−(z, k) be given

by (19) and (20). For almost all z ∈ I, there exists an optimal admissible switching

control α(z) ∈ B such that

m∗
+(z, 0) = m+(z, α(z)), for z > y,

and, m∗
+(z, 1) = m+(z, α(z)), for z ≤ y.

Furthermore, the collection (α(z))z∈R is consistent.

9



2. [Integrability of singular control] Let (ξ̂+, ξ̂−) ∈ Ay be the corresponding singular control

as per Proposition 2.7, then (ξ̂+, ξ̂−) ∈ A′
y.

Theorem 3.6 (Representation and Existence). Under Assumption 3.5, the Representation

Theorem 3.4 holds. Moreover, the strategy (ξ̂+, ξ̂−) is optimal.

Although establishing simpler conditions for the consistency of the switching controls re-

quires more structure for the control problem, the equally technical integrability assumption

on the singular controls can be reduced to easily verifiable ones when I is bounded. These

extra assumptions are in line with some of those in Merhi and Zervos (2007).

Theorem 3.7 (Sufficient Condition for Integrability). Let I be bounded, assume 3.5.1 and let

(ξ̂+, ξ̂−) be the corresponding singular control as per Proposition 2.7. Furthermore, suppose

1. sup0≤t≤T supz∈I |Π(ω, t, z)| < ∞, almost surely, for all T > 0,

2. lim supT→∞ E [|γ+(T )| + |γ−(T )|] < ∞, and

3. For every strategy (ξ+, ξ−) ∈ Ay, either (ξ+, ξ−) ∈ A′
y; Or, there exists an F-adapted

process Z such that U· ≤ Z· almost surely, E[|ZT |] < ∞ for all T ≥ 0, and

lim supT→∞ E[ZT ] = −∞, where

UT (y, ξ+, ξ−) :=

∫ T

0

Π(t, Yt)dt −
∫

[0,T )

γ+(t)dξ+
t −

∫

[0,T )

γ−(t)dξ−t . (21)

Then (ξ̂+, ξ̂−) ∈ A′
y. Hence Assumption 3.5 holds, yielding Theorem 3.6.

Note that when I is unbounded, integrable consistent controls may not exist under these

extra conditions. Nevertheless,

Corollary 3.8. If I is unbounded, the assumptions of Theorem 3.7 yield Theorem 3.4.

3.3 Regularity of the Value Function and Dynkin’s Game

Based on the representation theorem, we provided conditions under which the value function

of the switching controls is not only continuous, but also continuously differentiable.

Theorem 3.9 (Regularity). Suppose that for some open interval J ⊂ I and any y ∈ J ,

lim
z→y

E

[
∫ ∞

0

|π(t, z) − π(t, y)|dt

]

= 0. (22)

Suppose also that on J , the value function has the representation

V (y) − R(y) =

∫ ∞

y

m∗
+(z, 0)1{z∈I}dz +

∫ y

−∞

m∗
−(z, 1)1{z∈I}dz.

Then V is C1 on J . And for any y ∈ J ,

V ′(y) = E

[
∫ ∞

0

π(t, y)dt

]

+ m∗
−(y, 1) − m∗

+(y, 0) = m∗
+(y, 1) − m∗

+(y, 0).
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Note that our result generalizes previous ones of Karatzas and Wang (2001) and Boetius

(2001, 2003, 2005) on the differentiability of the value function for the (ir)reversible invest-

ment problem. Another major difference is that the derivative in their work is in terms of

the value of a Dynkin game, whereas the derivative here is the difference between the value

functions of an optimal switching problem. In fact, our regularity results demonstrate that

optimal switching problems provide a “missing link” between Dynkin games and singular

control problems.

3.3.1 Dynkin Games

A Dynkin game is a game of timing between two players, whom we call MAX and MIN,

following Boetius (2005). We fix some level z ∈ I. While the game is in progress, MIN

pays MAX at rate π(t, z) and the game ends when one player chooses to stop. Thus, MAX

and MIN each chooses strategies on when to exit the game (the stopping times σ− and σ+

respectively). The player to exit first receives an amount from her opponent equal to γ−(σ−)

if MAX exits first, and γ+(σ+) if MIN exits first. If both players exit at the same time, we

treat it as though MIN exited first. Furthermore, each player may choose never to exit, i.e.

σ = ∞. MAX chooses her strategy σ− to maximize her payoff, and MIN chooses σ+ in order

to minimize MAX’s payoff.

This game is formally described below. To ensure that the payoff of the game is well

defined, we assume in this section that for every stopping time σ, E[|γ−(σ)|] < ∞ and

E[|γ+(σ)|] < ∞.

Definition 3.10. Given z ∈ I and F-stopping times σ− and σ+, the payoff of the Dynkin

game is

D(σ−, σ+; z) =

∫ σ−∧σ+

0

π(t, z)dt + γ+(σ+)1{σ+≤σ−} − γ−(σ−)1{σ−<σ+}.

The game has a value if

sup
σ−

inf
σ+

E [D(σ−, σ+; z)] = inf
σ+

sup
σ−

E [D(σ−, σ+; z)] .

we have,

Theorem 3.11. Given any z ∈ I such that conditions (15) and (16) hold, the value of the

Dynkin game exists, and is equal to

m∗
+(z, 1) − m∗

+(z, 0) = sup
σ+

inf
σ−

E [D(σ−, σ+; z)] = inf
σ−

sup
σ+

E [D(σ−, σ+; z)] .

Furthermore,

Corollary 3.12. If (15) and (16) hold and π(t, z) is decreasing in z, then m∗
+(z, 1)−m∗

+(z, 0)

is decreasing in z.

11



That is, when the marginal payoff is decreasing in the capacity level z, the added benefit

of being invested in the project at level z is also decreasing in z. The economic interpretation

is that there are decreasing returns to scale.

Note that for simplicity, we considered only infinite-horizon Dynkin game with no termi-

nal payoff. With a slight modification, our arguments can be adapted for the finite horizon

case.

4 Explicit Solutions and Smooth Fit Principle

To further analyze regularity properties and establish necessary and sufficient conditions

for the smooth fit principle, we (Guo and Tomecek (2008a)) studied the following specific

problem:

V (x, y) := sup
(ξ+,ξ−)∈A′

y

J(x, y; ξ+, ξ−), (23)

with

J(x, y; ξ+, ξ−) := E

[
∫ ∞

0

e−ρtH(Yt)X
x
t dt −

∫ ∞

0

e−ρtK1dξ+
t −

∫ ∞

0

e−ρtK0dξ−t

]

,

subject to

Yt := y + ξ+
t − ξ−t , y ∈ [a, b],

dXx
t := µXx

t dt +
√

2σXx
t dWt, X0 := x > 0,

H : [a, b] → R is concave with H(y) = H(a) +

∫ y

a

h(z)dz,

K1 + K0 > 0, µ < ρ, and (without loss of generality) K1 > 0.

The supremum is taken over all strategies (ξ+, ξ−) ∈ A′
y, where

A′
y :=

{

(ξ+, ξ−) : ξ± are left continuous, non-decreasing processes, ξ±0 = 0;

y + ξ+
t − ξ−t ∈ [a, b];

E

[
∫ ∞

0

e−ρtdξ+
t +

∫ ∞

0

e−ρtdξ−t

]

< ∞.

}

We solved this problem completely and explicitly. (For readers’ convenience, sketches of

derivation are provided in the Appendix).

4.1 Explicit Solutions

Theorem 4.1. [Value function]

V (x, y) = ηH(a)x +

∫ y

a

v1(x, z)dz +

∫ b

y

v0(x, z)dz, (24)
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where v0 and v1 are given explicitly based on K0:

Case I (K0 ≥ 0):

1. For each z ∈ (a, b) such that h(z) = 0 : v0(x, z) = v1(x, z) = 0.

2. For each z ∈ (a, b) such that h(z) > 0:







v0(x, z) =

{

A(z)xn, x < G(z),

ηh(z)x − K1, x ≥ G(z),

v1(x, z) = ηh(z)x,

where G(z) = νh(z)−1, and A(z) = K1

(n−1)
(h(z)

ν
)n, with ν = K1σ

2n(1 − m).

3. For each z ∈ (a, b) such that h(z) < 0:







v0(x, z) = 0,

v1(x, z) =

{

B(z)xn + ηh(z)x, x < F (z),

−K0, x ≥ F (z),

where F (z) = − κ
h(z)

, and B(z) = K0

(n−1)
κ−n(−h(z)

κ
)n, with κ = K0σ

2n(1 − m).

Case II (K0 < 0):

1. For each z ∈ (a, b) such that h(z) ≤ 0: v0(x, z) = 0, v1(x, z) = −K0.

2. For each z ∈ (a, b) such that h(z) > 0 :

v0(x, z) =

{

A(z)xn, x < G(z),

B(z)xm + ηh(z)x − K1, x ≥ G(z),
(25)

v1(x, z) =

{

A(z)xn − K0, x ≤ F (z),

B(z)xm + ηh(z)x, x > F (z).
(26)

Here

A(z) =
h(z)n

(n − m)νn

(

ν

σ2(n − 1)
+ mK1

)

=
h(z)n

(n − m)κn

(

κ

σ2(n − 1)
− mK0

)

;

(27)

B(z) =
−h(z)m

(n − m)νm

(

ν

σ2(1 − m)
− nK1

)

=
−h(z)m

(n − m)κm

(

κ

σ2(1 − m)
+ nK0

)

.

(28)

The functions F and G are non-decreasing with

F (z) =
κ

h(z)
and G(z) =

ν

h(z)
, (29)
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where κ < ν are the unique solutions to

1

1 − m

[

ν1−m − κ1−m
]

= − ρ

m

[

K1ν
−m + K0κ

−m
]

, (30)

1

n − 1

[

ν1−n − κ1−n
]

=
ρ

n

[

K1ν
−n + K0κ

−n
]

. (31)

Here, m < 0 < 1 < n are the roots of σ2x2 + (µ − σ2)x − ρ = 0 such that

m,n =
−(µ − σ2) ±

√

(µ − σ2)2 + 4σ2ρ

2σ2
, (32)

and

η :=
1

ρ − µ
=

−mn

(n − 1)(1 − m)ρ
=

1

σ2(n − 1)(1 − m)
. (33)

Theorem 4.2. [Optimal control] The optimal singular control (ξ̂+, ξ̂−) ∈ A′
y exits. For

each z ∈ (a, b), the optimal control is described in terms of F (z) and G(z) from Theorem 4.1

such that

• (Case I, K0 ≥ 0): For z such that h(z) > 0, it is optimal to invest in the project past

level z when Xx
t ∈ [G(z),∞), and never disinvest. When h(z) < 0, it is optimal to

disinvest below level z when Xx
t ∈ [F (z),∞), and it is never optimal to invest. When

h(z) = 0, it is optimal to neither invest nor disinvest (i.e. F (z) = ∞ = G(z)).

• (Case II, K0 < 0): For z such that h(z) > 0, it is optimal to invest in the project past

level z when Xx
t ∈ [G(z),∞), and to disinvest below level z when Xx

t ∈ (0, F (z)]. For

z such that h(z) ≤ 0, it is always optimal to disinvest.

Theorem 4.3. [Optimally controlled process] The resulting optimal control process Ŷt

is give by:

Case I: (up to indistinguishability) for t > 0,

• If h(y+) > 0 then Ŷt = max{G→(Mt), y},

• If h(y+) = 0 or h(y−) = 0 then Ŷt = y,

• If h(y−) < 0 then Ŷt = min{F→(Mt), y}.

Here Mt = max{Xx
s : s ∈ [0, t]}, and F→ and G→ are respectively the left-continuous inverses

of F (non-increasing) and G (non-decreasing).

Case II: (up to indistinguishability) for t > 0,

Ŷt =











G→(M0
t ) ∨ y, on {t ≤ S1},

F←(mn
t ) ∧ ŶSn

, on {Sn < t ≤ Tn},
G→(Mn

t ) ∨ ŶTn
, on {Tn < t ≤ Sn+1},

(34)
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and limn→∞ Sn = ∞ = limn→∞ Tn almost surely.

Here F←(x) and G→(x) are respectively the right continuous inverse of F and the left-

continuous inverse of G. Moreover, the stopping times (Sn) and (Tn) are given by

S1 = inf{t > 0 : (Xx
t , Ŷt) ∈ S0}, T1 = inf{t > S1 : (Xx

t , Ŷt) ∈ S1},
Sn = inf{t > Tn−1 : (Xx

t , Ŷt) ∈ S0}, Tn = inf{t > Sn : (Xx
t , Ŷt) ∈ S1}.

Lastly, the processes Mn
t , mn

t are defined by M0
t = max{Xx

t : 0 ≤ s ≤ t}, and

mn
t = min{Xx

t : Sn ≤ s ≤ t}1{Sn≤t}, Mn
t = max{Xx

t : Tn ≤ s ≤ t}1{Tn≤t}.

4.2 Smooth Fit Principle and Region Characterization

Given the explicit solution, we further established the following regularity results, together

with the region characterization. (For more discussions about the implication of these regu-

larity results for the traditional HJB/Variational Inequality approach, interested readers are

referred to the discussion section in Guo and Tomecek (2008a)).

Theorem 4.4. [Sufficient Conditions] V (x, y) is C1 in x for all (x, y) ∈ (0,∞) × [a, b],

and

∂

∂x
V (x, y) = ηH(a) +

∫ y

a

∂

∂x
v1(x, z)dz +

∫ b

y

∂

∂x
v0(x, z)dz.

Moreover, if H is C1 on an open interval J ⊂ [a, b], then V (x, y) is C1 in y on (0,∞)×J ;

that is, V (x, y) is C1,1 on (0,∞) × J .

Theorem 4.5. [Necessary and Sufficient Conditions for Smooth Fit] V (x, y) is con-

tinuously differentiable in x for all (x, y) ∈ (0,∞) × [a, b]. V (x, y) is differentiable in y at

the point (x, y) if and only if

(x, y) ∈{(x, y) ∈ (0,∞) × (a, b) : H is differentiable at y} ∪ S0 ∪ S1,

where S0 and S1 are given in Eq. (35). Alternatively, it is not differentiable in y at the point

(x, y) if and only if

(x, y) ∈{(x, y) ∈ (0,∞) × (a, b) : H is not differentiable at y} ∩ C.

Theorem 4.6. [Region characterization] Under the optimal singular control (ξ̂+, ξ̂−) ∈
A′

y, define the corresponding investment (S1), disinvestment (S0), and continuation (C) re-

gions by


















S0 :=

{ {(x, z) ∈ (0,∞) × [a, b] : x ≥ limw↑z F (w)}, if K0 ≥ 0 (Case I),

{(x, z) ∈ (0,∞) × [a, b] : x ≤ limw↑z F (w)}, if K0 < 0 (Case II),

S1 := {(x, z) ∈ (0,∞) × [a, b] : x ≥ limw↓z G(w)},
C := (0,∞) × [a, b] \ (S0 ∪ S1).

(35)
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Then, the action and continuation regions can be characterized as







S0 = {(x, y) ∈ (0,∞) × [a, b] : Vy(x, y) = −K0},
S1 = {(x, y) ∈ (0,∞) × [a, b] : Vy(x, y) = K1},
C = {(x, y) ∈ (0,∞) × [a, b] : Vy−(x, y) > −K0, Vy+(x, y) < K1}.

(36)
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5 Appendix: Derivation of Solutions in Section 4

The problem is solved in several steps. And the key is the representation theorem: first

define and solve the corresponding switching control problem, then establish the consistency

properties of the optimal control and verifying integrability conditions of the corresponding

singular controls.
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Step 1: Corresponding optimal switching problem. First, let R(x, y) := J(x, y; 0, 0)

be the no-action expected payoff. Then,

R(x, y) := E

[
∫ ∞

0

e−ρtH(y)Xx
t dt

]

= ηH(y)x, (37)

r(x, y) := Ry(x, y) = E

[
∫ ∞

0

e−ρth(y)Xx
t dt

]

= ηh(y)x. (38)

One can check that Standing assumptions A1, A2, and A3, and assumptions in Theorem 3.7

hold for this problem.

Now, the following lemma can be verified.

Lemma 5.1.

V (x, y) = ηH(a)x +

∫ y

a

v1(x, z)dz +

∫ b

y

v0(x, z)dz, (39)

where v0 and v1 for the optimal switching problem defined by

vk(x, z) := m∗
+(x, z, k) = sup

α∈B

κ0=k

E

[

∫ ∞

0

e−ρth(z)Xx
t Itdt −

∞
∑

n=1

e−ρτnKκn

]

. (40)

Here, α = (τn, κn)n≥0 is an admissible switching control so that almost surely τ0 = 0, τn+1 >

τn for n ≥ 1, τn → ∞, and for all n ≥ 0, κn ∈ {0, 1}, with κn = κ0 for n even and

κn = 1 − κ0 for n odd. B is the subset of admissible switching controls α = (τn, κn)n≥0 such

that E [
∑∞

n=1 e−ρτn ] < ∞}, and It is the regime indicator function for any given α ∈ B so

that It =
∑∞

n=0 κn1{τn<t≤τn+1}.

Next, modifying the argument in Ly Vath and Pham (2007, Theorem 3.1), we obtain

Proposition 5.2. v0 and v1 are the unique viscosity solutions with linear growth condition

to the following system of variational inequalities:

min {−Lv0(x, z), v0(x, z) − v1(x, z) + K1} = 0, (41)

min {−Lv1(x, z) − h(z)x, v1(x, z) − v0(x, z) + K0} = 0, (42)

with boundary conditions v0(0
+, z) = 0 and v1(0

+, z) = max{−K0, 0}. Here L is the gener-

ator of the diffusion Xx, killed at rate ρ, given by Lu(x, z) = σ2x2uxx(x, z) + µxux(x, z) −
ρu(x, z).

Step 2: Consistent collection of optimal switching controls. Applying the results

of Ly Vath and Pham (2007) for switching controls to Problem (40), we see that for any

given z ∈ (A,B) and k ∈ {0, 1}, the value function vk(·, z) is continuously differentiable.

Moreover, for each z ∈ (A,B), an optimal switching control exists, and can be described in
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terms of the switching regions: for each z ∈ (A,B), there exist 0 < F (z) < G(z) < ∞ such

that it is optimal to switch from regime 0 to regime 1 (to invest in the project at level z)

when Xx
t ∈ [G(z),∞), and to switch from regime 1 to regime 0 (disinvest at level z) when

Xx
t ∈ [0, F (z)].

Therefore, given any initial value y ∈ [A,B] for the singular control problem, a collection

of optimal switching controls can be defined as follows.

For (x, z) ∈ X × (A,B), define the switching control α̂(x, z) = (τ̂n, κ̂n)n≥0, starting from

τ̂0 = 0 and κ0 = 1{z≤y} by setting κ̂n := 1 − κn−1 for all n ≥ 1 and

• if κn−1 = 0, τ̂n := inf{t > τn−1 : Xx
t ≥ G(z)}, or

• if κn−1 = 1, τ̂n := inf{t > τn−1 : Xx
t ≤ F (z)}.

Moreover, by the regularity of the value functions, we solve for F (z) and G(z) explicitly in

our case, obtaining F (z) = κz
1−β

λ and G(z) = νz
1−β

λ where κ and ν are unique solutions to

β

λ − m

[

νλ−m − κλ−m
]

= − ρ

m

[

K1ν
−m + K0κ

−m
]

,

β

n − λ

[

νλ−n − κλ−n
]

=
ρ

n

[

K1ν
−n + K0κ

−n
]

.

Here m < 0 < n, and n,m =
−(b−σ2)±

√
(b−σ2)2+4σ2r

2σ2 .

Finally, by checking the appropriate integrability conditions, and by noting that F and

G are increasing in z, it is not hard to verify that the above collection of optimal switching

controls is consistent. (See Figure 1).

Step 3: Optimal singular control and value functions. By Proposition 2.7, this con-

sistent collection of optimal switching control corresponds to an admissible singular control

(ξ̂+, ξ̂−) ∈ Ay. Moreover, since I is bounded, it is integrable following Theorem 3.7.

Put together, the investment region is given by {(x, z) : x ≥ G(z)} and the disinvestment

region by {(x, z) : x ≤ F (z)}. Yt is constant when (Xt, Yt) is in the wait region, given by

{(x, z) : F (z) < x < G(z)}. If (x, y) is in the investment (or disinvestment) region, then a

jump is exerted at time zero to make Y0+ = G−1(x) (or Y0+ = F−1(x)).

Finally, by Lemma 3.3 and Theorem 3.6 the value function has the following representa-

tion

V (x, y) = R(x, y) +

∫ B

y

v0(x, z)dz +

∫ y

A

(v1(x, z) − r(x, z))dz

= R(x,A) +

∫ B

y

v0(x, z)dz +

∫ y

A

v1(x, z)dz,
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Figure 1: Illustration of optimal consistent switching control from optimal singular control

where v0 and v1 are given by Ly Vath and Pham (2007, Theorem 4.2.3),

v0(x, z) =

{

A(z)xn, x < G(z),

B(z)xm + r(x, z) − K1, x ≥ G(z),

v1(x, z) =

{

A(z)xn − K0, x ≤ F (z),

B(z)xm + r(x, z), x > F (z).

Where A(z) = ν−n

n−m

(

βνλ

σ2(n−λ)
+ mK1

)

z
−n(1−β)

λ , B(z) = − κ−m

n−m

(

βκλ

σ2(λ−m)
+ nK0

)

z
−m(1−β)

λ .
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