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In this paper, the continuous genetic algorithm is applied for the solution of singular two-point
boundary value problems, where smooth solution curves are used throughout the evolution of the
algorithm to obtain the required nodal values. The proposed technique might be considered as a
variation of the finite difference method in the sense that each of the derivatives is replaced by an
appropriate difference quotient approximation. This novel approach possesses main advantages;
it can be applied without any limitation on the nature of the problem, the type of singularity,
and the number of mesh points. Numerical examples are included to demonstrate the accuracy,
applicability, and generality of the presented technique. The results reveal that the algorithm is
very effective, straightforward, and simple.

1. Introduction

Singular boundary value problems (BVPs) for ordinary differential equations arise very
frequently in many branches of applied mathematics and physics such as gas dynamics,
nuclear physics, chemical reactions, atomic structures, atomic calculations, and study of
positive radial solutions of nonlinear elliptic equations (e.g., see [1–3]). In most cases,
singular two-point BVPs do not always have solutions which we can obtain using analytical
methods. In fact, many of real physical phenomena encountered, are almost impossible
to solve by this technique, these problems must be attacked by various approximate and
numerical methods.
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The purpose of this letter is to introduce the continuous genetic algorithm (CGA),
previously developed by the second author, as an alternative to existing methods in solving
singular two-point BVPs of the form

y′′(x) = f
(

x, y(x), y′(x)
)

, x ∈ I, (1.1)

subject to the boundary conditions

y(a) = α, y(b) = β, (1.2)

where I is an open or half-open interval with endpoints a and b, a, b, α, β are real finite
constants, and f is linear or nonlinear function of y and y′.

When applied to the singular two-point BVP, standard numerical methods designed
for regular BVP suffer from a loss of accuracy or may even fail to converge [4], because of the
singularity. However, the finite difference method can be used to solve linear singular two-
point BVPs, but it can be difficult to solve nonlinear singular two-point BVPs. Furthermore,
the finite difference method requires some major modifications that include the use of some
root-finding technique while solving nonlinear singular two-point BVPs.

Special numerical methods have been proposed to handle the singular problem. To
mention a few, in [5], the author has discussed existence and uniqueness of solutions of
singular BVP y′′(x) + (α/x)y′(x) = f(x, y(x)), including the approximation of solutions
via finite difference method. In [6], the author has discussed existence and uniqueness of
solutions of singular equation y′′(x) = f(x, y(x), y′(x)) and presented variable meshmethods
for numerically solving such problems. The homotopy analysis method has been applied to
solve the singular equation (1/p(x))y′′(x)+(1/q(x))y′(x)+(1/r(x))y(x) = f(x) as described
in [7]. Furthermore, the higher order finite difference and cubic spline methods are carried
out in [8, 9] for the singular BVP y′′(x)+(k/x)y′(x)+q(x)y(x) = f(x). In [10] also, the authors
have provided the four-order accurate cubic spline method to further investigate the singular
equation y′′(x) + (a/x)y′(x) + (a/x2)y(x) = f(x). Also, the reproducing kernel method for
solving the singular BVP y′′(x) + (1/p(x))y′(x) + (1/q(x))y(x) = f(x) is proposed in [11].
Recently, the modified Adomian decomposition method for solving the singular equation
y′′(x) + (1/p(x))y′(x) + (1/q(x))N(y(x)) = f(x) is presented in [12].

The reader is kindly requested to go through the survey paper [13] in order to
know more details about singular two-point BVPs. In that paper, the authors introduced
various numerical techniques including finite difference, splines, finite element, collocation,
variational iteration, and other special approximation methods used in literature followed
by own critical comments as remarks for solving linear and nonlinear singular problems.
However, in most of the present references, the problems discussed are mostly special cases
of the general form (1.1) and (1.2), and there are few valid methods of solving (1.1) and (1.2).
Hence, one has to go for nonstandard methods.

CGA (The term “continuous” is used to emphasize that the continuous nature of the
optimization problem and the continuity of the resulting solution curves) depends on the
evolutions of curves in one-dimensional space. The algorithm begins with a population of
randomly generated candidates and evolves towards better solution by applying genetic ope-
rators which are reproduction, crossover, and mutation. This novel approach is a relatively
new class of optimization technique, which generates a growing interest in the mathematics
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and engineering community. CGA is well suited for a broad range of problems encountered
in science and engineering [14–22].

CGA was developed by the second author [14] as an efficient method for the solution
of optimization problems in which the parameters to be optimized are correlated with each
other or the smoothness of the solution curve must be achieved. It has been successfully
applied in the motion planning of robot manipulators, which is a highly nonlinear, coupled
problem [15, 16], in the numerical solution of regular two-point BVPs [17], in the solution
of optimal control problems [18], in the solution of collision-free path planning problem
for robot manipulators [19], in the numerical solution of Laplace equation [20], and in
the numerical solution of nonlinear regular system of second-order BVPs [21]. Their novel
development has opened the doors for wide applications of the algorithm in the fields of
mathematics and engineering. It has been also applied in the solution of fuzzy differential
equations [22]. The reader is asked to refer to [14–22] in order to know more details about
CGA, including their justification for use, conditions on smoothness of the functions used in
the algorithm, several advantages of CGA over conventional GA (discrete version)when it is
applied to problems with coupled parameters and/or smooth solution curves, and so forth.

The work presented in this paper is motivated by the needs for a new numerical
technique for the solution of singular two-point BVPs with the following characteristics.

(1) It does not require anymodificationwhile switching from the linear to the nonlinear
case; as a result, it is of versatile nature.

(2) This approach does not resort to more advanced mathematical tools; that is, the
algorithm should be simple to understand, implement, and should be thus easily
accepted in the mathematical and engineering application’s fields.

(3) The algorithm is of global nature in terms of the solutions obtained as well as its
ability to solve other mathematical and engineering problems.

However, being a variant of the finite difference scheme with truncation error of the order
O(h10), the method provides solutions with moderate accuracy.

The organization of the remainder of this paper is as follows: in the next section, we
formulate the singular two-point BVPs. Section 3 covers the description of CGA in detail.
Numerical results and discussion are given in Section 4. Finally, concluding remarks are
presented in Section 5.

2. Formulation of the Singular Two-Point BVPs

In this section, (1.1) and (1.2) are first formulated as an optimization problem based on the
minimization of the cumulative residual of all unknown interior nodes. After that, a fitness
function is introduced in order to convert the minimization problem into a maximization
problem.

To approximate the solution of (1.1) and (1.2), we make the stipulation that the mesh
points are equally distributed through the interval I. This condition is ensured by setting
xi = a + ih, i = 0, 1, . . . ,N, where h = (b − a)/N. Thus, at the interior mesh points, xi, i =
1, 2, . . . ,N − 1, the equation to be approximated is given as

F
(

xi, y(xi), y
′(xi), y

′′(xi)
)

:= y′′(xi) − f
(

xi, y(xi), y
′(xi)

)

= 0, x1 ≤ xi ≤ xN−1, (2.1)
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subject to the boundary conditions

y(x0) = α, y(xN) = β. (2.2)

The difference quotients approximation formulas, which closely approximate y′(xi)

and y′′(xi), i = 1, 2, . . . ,N − 1, using an (n + 1)-point at the interior mesh points with error
up to O(hn−m+1), where n = 2, 3, . . . ,N and m = 1, 2 is the order of the derivative can be
easily obtained by using Algorithm (6.1) in [23]. For example, based on that algorithm the
(3 + 1)-point formulas, with truncation error of order O(h3), for approximating y′(xi), are
given as

y′(xi) ≈
1

h

(

−11
6
y(xi) + 3y(xi+1) −

3

2
y(xi+2) +

1

3
y(xi+3)

)

, i = 0,

y′(xi) ≈
1

h

(

−1
3
y(xi−1) −

1

2
y(xi) + y(xi+1) −

1

6
y(xi+2)

)

, i = 1, 2, . . . ,N − 2,

y′(xi) ≈
1

h

(

1

6
y(xi−2) − y(xi−1) +

1

2
y(xi) +

1

3
y(xi+1)

)

, i = N − 1,

y′(xi) ≈
1

h

(

−1
3
y(xi−3) +

3

2
y(xi−2) − 3y(xi−1) +

11

6
y(xi)

)

, i = N,

(2.3)

while the (4 + 1)-point formulas, with truncation error of order O(h3), for approximating
y′′(xi), are given as

y′′(xi) ≈
1

h2

(

35

12
y(xi) −

26

3
y(xi+1) +

19

2
y(xi+2) −

14

3
y(xi+3) +

11

12
y(xi+4)

)

, i = 0,

y′′(xi) ≈
1

h2

(

11

12
y(xi−1) −

5

3
y(xi) +

1

2
y(xi+1) +

1

3
y(xi+2) −

1

12
y(xi+3)

)

, i = 1,

y′′(xi) ≈
1

h2

(

− 1

12
y(xi−2) +

4

3
y(xi−1) −

5

2
y(xi) +

4

3
y(xi+1) −

1

12
y(xi+2)

)

, i = 2, 3, . . . ,N − 2,

y′′(xi) ≈
1

h2

(

− 1

12
y(xi−3) +

1

3
y(xi−2) +

1

2
y(xi−1) −

5

3
y(xi) +

11

12
y(xi+1)

)

, i = N − 1,

y′′(xi) ≈
1

h2

(

11

12
y(xi−4) −

14

3
y(xi−3) +

19

2
y(xi−2) −

26

3
y(xi−1) +

35

12
y(xi)

)

, i = N.

(2.4)

However, it is clear that the first and last equations in (2.3) and (2.4) approximate the first
and second derivatives of y(x) at the boundary points x0 = a and xN = bwhere the solutions
are known. Thus, they are neglected, and only we use the remaining formulas.

We mention here that the number n is starting from 2 and gradually increases up to
N. To complete the formulation substituting the approximate formulas of y′(xi) and y′′(xi),
i = 1, 2, . . . ,N−1 in (2.1), discretized form of this equation is obtained. The resulting algebraic



Abstract and Applied Analysis 5

equations will be a function of y(xi−(n−1)), y(xi−(n−2)), . . ., y(xi+(n−1)), and xi, i = 1, 2, . . . ,N − 1.
After that, it is necessary to rewrite the discretized equation in the following form:

F
(

xi, y
(

xi−(n−1)
)

, y
(

xi−(n−2)
)

, . . . , y
(

xi+(n−1)
))

≈ 0. (2.5)

The residual of the general interior node, i = 1, 2, . . . ,N − 1, denoted by Res, is defined as

Res(i) = F
(

xi, y
(

xi−(n−1)
)

, y
(

xi−(n−2)
)

, . . . , y
(

xi+(n−1)
))

. (2.6)

The overall individual residual, Oir, is a function of the residuals of all interior nodes. It may
be stated as

Oir =

√

√

√

√

N−1
∑

i=1

(Res(i))2. (2.7)

A mapping of the overall individual residual into a fitness function, Fit, is required
in the algorithm in order to convert the minimization problem of Oir into a maximization
problem of Fit. A suitable fitness function used in this work is defined as

Fit =
δ

δ +Oir
, δ is a small positive number. (2.8)

The individual fitness is improved if a decrease in the value of the Oir is achieved. The
optimal solution of the problem, nodal values, will be achieved when Oir approaches zero
and Fit approaches unity.

3. Description of the CGA

In this section, a general review of the GA is presented. After that, a detailed description of
the CGA is given. As will be shown later, the efficiency and performance of CGA depend
on several factors, including the design of the CGA operators and the settings of the system
parameters.

GA is based on principles inspired from the genetic and evolution mechanisms
observed in natural systems. Its basic principle is themaintenance of a population of solutions
to the problem that evolves towards the global optimum. It is based on the triangle of genetic
reproduction, evaluation, and selection [24]. Genetic reproduction is performed by means
of two basic genetic operators: crossover and mutation. Evaluation is performed by means
of the fitness function that depends on the specific optimization problem. Selection is the
mechanism that chooses parent individuals with probability proportional to their relative
fitness for the mating process.

The construction of GA for any problem can be separated in five distinct and yet
related tasks [24]. First, the genetic representation of potential problem solutions. Second,
a method for creating an initial population of solutions. Third, the design of the genetic
operators. Fourth, the definition of the fitness function. Fifth, the setting of the system
parameters, including the population size, probabilities with which genetic operators are
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applied, and so forth. Each of the previous components greatly affects the solution obtained
as well as the performance of the GA.

The population-based nature of GA gives it two major advantages over other
optimization techniques. First, it identifies the parallel behavior of GA that is realized
by a population of simultaneously moving search individuals or candidate solution [24].
Implementation of GA on parallel machines, which significantly reduces the CPU time
required, is a major interesting benefit of their implicit parallel nature. Second, information
concerning different regions of solution space is passed actively between the individuals
by the crossover procedure. This information exchange makes GA an efficient and robust
method for optimization, particularly for the optimization of functions of many variables
and nonlinear functions. On the other hand, the population-based nature of GA also results
in two main drawbacks. First, more memory space is occupied; that is, instead of using one
search vector for the solution, Np search vectors are used, which represent the population
size. Second, GA normally suffers from computational burden when applied on sequential
machines. This means that the time required for solving certain problem using GA will be
relatively large. However, the solution time is a major point when we are interested in real
time applications. But if off-line solutions are required for any real-life problem, then our
major concern will be the accuracy of the solution rather than the time required for the
solution. For real-life problems, the computational time might be reduced to achieve real-
time processes utilizing its parallel nature which can be applied on parallel computers or
FPGA [18].

The fact that GA uses only objective function information without the need to
incorporate highly domain-specific knowledge points to both the simplicity of the approach
from one side and its versatility from the other. This means that once a GA is developed
to handle a certain problem, it can easily be modified to handle other types of problems by
changing the objective function in the existing algorithm. This is why GA is classified as a
general-purpose search strategy. The stochastic behavior of GA cannot be ignored as a main
part that gives themmuch of their search efficiency. GA employs random processes to explore
a response surface for a specific optimization problem. The advantage of this behavior is the
ability to escape local minima without supervision [18, 25].

The use of CGA in problems with coupled parameters and/or smooth curves needs
some justification [14, 17]. First, the discrete initialization version of the initial population
means that neighbouring parameters might have opposite extreme values that make the
probability of valuable information in this population very limited, and correspondingly
the fitness will be very low. This problem is overcome by the use of continuous curves that
eliminate the possibility of highly oscillating values among the neighbouring parameters and
result in a valuable initial population. Second, the traditional crossover operator results in a
jump in the value of the parameter in which the crossover point lies while keeping the other
parameters the same or exchanged between the two parents. This discontinuity results in a
very slow converging process. On the other hand, the CGA results in smooth transition in
the parameter values during the crossover process. Third, the conventional version of the
mutation process changes only the value of the parameter in which the mutation occurs
while it is necessary to make some global mutations which affect a group of neighbouring
parameters since either the parameters are coupled with each other or curve should be
smooth. To summarize, the operators of the CGA are of global nature and applied at the
individual level, while the operators of the traditional GA are of local nature and applied at
the parameter level. As a result, the operators of the traditional GA result in a step-function-

like jump in the parameter values while those of CGA result in smooth transitions.
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However, when using GA in optimization problems, one should pay attention to two
points; first, whether the parameters to be optimized are correlated with each other or not.
Second, whether there is some restriction on the smoothness of the resulting solution curve
or not. In case of uncorrelated parameters or nonsmooth solution curves, the conventional
GA will perform well. On the other hand, if the parameters are correlated with each other or
smoothness of the solution curve is a must, then the CGA is preferable in this case [14–22].
The steps of CGA used in this work are as follows.

(1) Initialization: The initialization function used in the algorithm should be smooth
from one side and should satisfy constraint boundary conditions from the other side. Two
smooth functions that satisfy the boundary conditions are chosen in this work, which include
the modified normal gaussian (MNG) function

pj(i) = r(i) +A exp

(

−0.5
(

i − µ

σ

)2
)

sin
( π

N
i
)

, (3.1)

and the modified tangent hyperbolic (MTH) function

pj(i) = r(i) +A tanh

(

i − µ

σ

)

sin
( π

N
i
)

, (3.2)

for each i = 1, 2, . . . ,N − 1 and j = 1, 2, . . . ,Np, where pj(i) is the ith variable value for the jth
parent, r is the ramp function of the ith variable value and defined as r(i) = α + ((β − α)/N)i,
Np is the population size, and µ, σ are random numbers within the range [1,N − 1] and
]0, (N − 1)/3], respectively.

The two initialization functions differ from each other by two main criteria: the
convex/concave nature and the possibility of any overshoot/undershoot of the concerned
function. The MNG function is either convex or concave within the given range of the
independent variable while the MTH function is convex in a subinterval of the independent
variable and concave in the remaining interval. TheMNG function andMTH function, on the
other hand, might result in an overshoot or an undershoot, which might exceed the values
of the given boundary conditions at some interior mesh points but not at the boundary
point {a, b} as will be shown later. The two initialization functions are multiplied by the
corrector function, sin((π/N)i), which guarantees that the two functions always satisfy the
given boundary conditions.

The choice of A depends on the boundary conditions α and β as follows: A is any
random numbers within the range [−3|β − α|, 3|β − α|] if β − α differ from zero, within the
range [−3|α|, 3|α|] if β − α vanished, and within the range [−(N − 1)/3, (N − 1)/3] if β and
α are both vanished. It is to be noted that for both initialization functions, A specifies the
amplitude of the corrector function and σ specifies the degree of dispersion. For small σ the
parameter µ specifies the center of the MNG function, while µ specifies the intersection point
between the ramp function and the MTH function, which determines the convexity point.
The two initialization functions together with the ramp function are shown in Figure 1.

The previously mentioned parameters µ, σ, and A are generated randomly due to
the fact that the required solutions are not known for us, and in order to make the initial
population as much diverse as we can, randomness should be there to remove any bias
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Figure 1: Initialization process.

toward any solution. The mentioned diversity is the key parameter in having an information-
rich initial population. In other cases where one of the boundaries of the solution curves is
unknown, the reader is kindly requested to go through [18] for comparison and more details.

(2) Evaluation: the fitness, a nonnegative measure of quality used to reflect the degree
of goodness of the individual, is calculated for each individual in the population.

(3) Selection: in the selection process, individuals are chosen from the current
population to enter a mating pool devoted to the creation of new individuals for the next
generation such that the chance of selection of a given individual for mating is proportional
to its relative fitness. This means that the best individuals receive more copies in subsequent
generations so that their desirable traits may be passed onto their offspring. This step ensures
that the overall quality of the population increases from one generation to the next.

Six selection schemes are incorporated in the algorithm, which include rank-based
[26], tournament with replacement [26], tournament without replacement [27], roulette
wheel [24], stochastic universal [27], and half-biased selection [28]. Rank-based selection
chooses a prescribed number of parent individuals with the highest fitness according to the
rank-based ratio, Rbr , and performs the mating process by choosing parents at random from
this subpopulation of the size RbrNp.

In the tournament selection scheme, two individuals are randomly selected from the
parent population, and a copy of the individual with the large fitness value, better individual,
of the two is replaced in the mating pool. Tournament selection has two forms depending
on whether the selection individuals will be placed back into the parent population or
not. In a tournament without replacement, the two individuals are set aside for the next
selection operation, and they are not replaced into the population until all other individuals
have also been removed. Since two individuals are removed from the population for every
individual selected, the original population is restored after the mating pool is half filled.
The process is repeated for a second round in order to fill the mating pool. In a tournament
with replacement, upon the selection of the better individual of the two, both individuals
are placed back into the original population for the next selection operation. This step is
performed until the mating pool is full. When tournament selection schemes are applied,
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the number of copies of each individual in the original population cannot be predicted except
that it is guaranteed that there will be no copies of the worst individual in the original
population.

Roulette wheel selection is a fitness proportionate selection scheme in which the slots
of a roulette wheel are sized according to the fitness of each individual in the population. In
stochastic universal selection, Np equidistant markers are placed around the roulette wheel.
The number of copies of each individual selected in a single spin of the roulette wheel is
equal to the number of markers inside the corresponding slot (the size of slot is still fitness
proportional).

Stochastic universal selection guarantees that the number of copies of an individual
selected is almost proportional to its fitness, which is not necessarily the case for roulette
wheel selection. In half-biased selection, one mate is selected as in roulette wheel selection,
while the other mate is selected randomly from the original population.

(4) Crossover: crossover provides the means by which valuable information is shared
among the individuals in the population. It combines the features of two parent individuals,
say s and h, to form two children individuals, say l and l + 1, that may have new patterns
compared to those of their parents and plays a central role in algorithm. The crossover process
is expressed as

cl(i) = c(i)ps(i) + (1 − c(i))ph(i),

cl+1(i) = (1 − c(i))ps(i) + c(i)ph(i),

c(i) = 0.5

(

1 + tanh

(

i − µ

σ

))

,

(3.3)

for each i = 1, 2, . . . ,N − 1, where ps and ph represent the two parents chosen from the mating
pool, cl and cl+1 are the two children obtained through crossover process, and c represents
the crossover weighting function within the range [0, 1]. The parameters µ and σ are as given
in the initialization process. Figure 2 shows the crossover process in a solution curve for the
two random parents. It is clear that new information is incorporated in the children while
maintaining the smoothness of the resulting solution curves.

(5) Mutation: the mutation function may be any continuous function within the range
[0, 1] such that the mutated child solution curve will start with the solution curve of the
child produced through the crossover process and gradually changes its value till it reaches
the solution curve of the same child at the other end. Mutation is often introduced to
guard against premature convergence. Generally, over a period of several generations, the
gene pool tends to become more and more homogeneous. The purpose of mutation is to
introduce occasional perturbations to the parameters to maintain genetic diversity within the
population. The mutation process is governed by the following formulas:

mj(i) = cj(i) +Am(i),

m(i) = exp

(

−0.5
(

i − µ

σ

)2
)

sin
( π

N
i
)

,
(3.4)

for each i = 1, 2, . . . ,N − 1 and j = 1, 2, . . . ,Np, where cj(i) represents the ith variable value
for the jth child produced through the crossover process, mj(i) is the mutated jth child for
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Figure 2: Crossover process.
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Figure 3: Mutation process.

the ith variable value, and m is the gaussian mutation function. The parameter A is as given
in the initialization process.

Regarding the mutation center, µ, and the dispersion factor, σ, used in the mutation
process, three methods are used for generating the mutation center where each method
is applied to one-third of the population and two methods are used for generating the
dispersion factor where each method is applied to one-half of the population. The reader is
asked to refer to [17] in order to knowmore details and descriptions about thesemethods. The
mutation process for a random child is shown in Figure 3. As in the crossover process, some
new information is incorporated in the mutated child while maintaining the smoothness of
the resulting solution curves.
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(6) Replacement: after generating the offspring’s population through the application of
the genetic operators to the parents’ population, the parents’ population is totally or partially
replaced by the offspring’s population depending on the replacement scheme used. This is
known as nonoverlapping, generational, replacement. This completes the “life cycle” of the
population.

(7) Termination: the algorithm is terminated when some convergence criterion is
met. Possible convergence criteria are as follows: the fitness of the best individual so far
found exceeds a threshold value, the maximum nodal residual of the best individual of the
population is less than or equals some predefined threshold value, the maximum number of
generations is reached, or the improvement in the fitness value of the best member of the
population over a specified number of generations is less than some predefined threshold,
is reached. After terminating the algorithm, the optimal solution of the problem is the best
individual so far found. If the termination conditions are not met, then the algorithm will go
back to Step 2.

It is to be noted that the two functions used in the initialization phase of the algorithm
will smoothly oscillate between the two ends with amaximum number of single oscillation. If
the final solution curves will havemore smooth oscillations than one oscillation, then this will
be done during the crossover and mutation mechanisms throughout the evolution process.
This is actually done by those two operators during the run of the algorithm while solving
a problem. However, the evaluation step in the algorithm will automatically decide whether
they are rejected or accepted modifications due to their fitness function value.

Two additional operators were introduced to enhance the performance of the CGA,
the “elitism” operator, and the “extinction and immigration” operator. These operators are
summarized in the form of the following [14–22].

(1) Elitism: elitism is utilized to ensure that the fitness of the best candidate solution in
the current population must be larger than or equal to that of the previous population.

(2) Extinction and immigration: this operator is applied when all individuals in the
population are identical or when the improvement in the fitness value of the best individual
over a certain number of generations is less than some threshold value. This operator consists
of two stages; the first stage is the extinction process where all of the individuals in the
current generation are removed except the best-of-generation individual. The second stage is
the mass-immigration process where the extinct population is filled out again by generating
Np − 1 individuals to keep the population size fixed. The generated population is divided
into two equal segments each of (Np/2) size; the first segment, with j = 2, 3, 4, . . . ,Np/2, is
generated as in the initialization phase, while the other segment is generated by performing
continuous mutation to the best-of-generation individual as given by the formula

pj(i) = p1(i) +Am(i), (3.5)

for each i = 1, 2, . . . ,N − 1 and j = (Np/2) + 1, (Np/2) + 2, . . . ,Np, where pj(i) is the ith
variable value for the jth parent generated using immigration operator, p1 represents the best-
of-generation individual, m is the gaussian mutation function, and A represents a random
number as given in the initialization process.

To summarize the evolution process in CGA an individual is a candidate solution
that consists of 1 curve of N − 1 nodal values. The population of individuals undergoes
the selection process, which results in a mating pool among which pairs of individuals are
crossed over with probability pc. This process results in an offspring generation where every
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Table 1: List of input data to the algorithm.

Parameter Description

Np = 500 Population size

pc = 0.9 Individual crossover probability

pm = 0.9 Individual mutation probability

Rbr = 0.1 Rank-based ratio

δ = 1 Fitness factor

child undergoes mutation with probability pm. After that, the next generation is produced
according to the replacement strategy applied. The complete process is repeated till the
convergence criterion ismet where theN−1 parameters of the best individual are the required
nodal values. The final goal of discovering the required nodal values is translated into finding
the fittest individual in genetic terms.

We mention here the following facts about the previously mentioned parameters A,
µ, and σ: firstly, the value of these parameters can gradually increase or decrease out of
the mentioned intervals that are given in the initialization phase, crossover, and mutation
mechanisms throughout the evolution process. Secondly, these values are changed from
process to process, from generation to generation, and from curve to curve; this is due to
the fact that they are generated randomly.

4. Numerical Results and Discussion

In order to evaluate the performance of the proposed CGA, some problems of singular two-
point BVPs are studied. The results obtained by the CGA are compared with the analytical
solution of each problem. Results demonstrate that the present method is remarkably
effective. The effects of various CGA operators and control parameters on the convergence
speed of the proposed algorithm are also investigated in this section. The analysis includes
the effect of various initialization methods on the convergence speed of the algorithm in
addition to an analysis of the effect of the most commonly used selection schemes, the rank-
based ratio, the crossover and mutation probabilities, the population size, the maximum
nodal residual, and the step size effect.

The CGA was implemented using visual basic platform. The input data to the
algorithm are summarized in Table 1.

Mixed methods for initialization schemes are used where half of the population is
generated by the MNG function, while the other half generated using the MTH function. The
rank-based selection strategy is used. Generational replacement scheme is applied where the
number of elite parents that are passed to the next generation equals one-tenth of the pop-
ulation size. Extinction and immigration operator is applied when the improvement in the
fitness value of the best individual of the population over 400 generations is less than 0.001.
The termination criterion used for each problem is problem dependent and varies from one
case to another. However, the CGA is stopped when one of the following conditions is met.

(1) The fitness of the best individual of the population reaches a value of 0.999999.

(2) The maximum nodal residual of the best individual of the population is less than
or equal to 0.00000001.
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(3) A maximum number of 3000 generations is reached.

(4) The improvement in the fitness value of the best individual in the population over
500 generations is less than 0.001.

It is to be noted that the first two conditions indicate a successful termination process
(optimal solution is found), while the last two conditions point to a partially successful end
depending on the fitness of the best individual in the population (near optimal solution is
reached) [14–22]. Due to the stochastic nature of CGA, twelve different runs were made for
every result obtained in this work using a different random number generator seed; results
are the average values of these runs. This means that each run of the CGA will result in a
slight different result from the other runs.

Problem 1. Consider the following linear singular two-point BVP with singularity at left
endpoint:

y′′(x) +
1

x
y′(x) + y(x) = x2 − x3 − 9x + 4, 0 < x ≤ 1, (4.1)

subject to the boundary conditions

y(0) = 0, y(1) = 0. (4.2)

The exact solution is y(x) = x2 − x3.

Problem 2. Consider the following nonlinear singular equation with singularities at both
endpoints:

y′′(x) +
60

√
x(x − 1)2

y′(x) +
3

tan x
cos

(

y(x)
)

= f(x), 0 < x < 1,

f(x) =
3 cos

(

sin(πx) + exp(1)
)

tanx
− π2 sin(πx) +

60π cos(πx)
√
x(x − 1)2

,

(4.3)

subject to the boundary conditions

y(0) = exp(1), y(1) = exp(1). (4.4)

The exact solution is y(x) = sin(πx) + exp(1).

Problem 3. Consider the following nonlinear singular equation with singularities at both
endpoints:

y′′(x) +
1

x2(1 − x)3
y′(x)

y(x)
+

1

1 − x
y(x) −

f(x)

y(x)
= 0, 0 < x < 1,

f(x) = sinhx(sinhx − x sinh 1) − 1

x − 1
(sinhx − x sinh 1)2 − 1

x2(x − 1)3
(coshx − sinh 1),

(4.5)
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Table 2: Convergence data of the four problems.

Problem Average time (s)
Average

generations
Average
fitness

Average absolute
error

Average absolute
residual

1 120.98 889 0.99999900 3.73551730 × 10−12 5.20529873 × 10−11

2 237.39 1227 0.99999097 2.43196999 × 10−9 3.36319589 × 10−7

3 301.45 1024 0.99999900 2.07980689 × 10−11 5.16836745 × 10−11

4 256.70 1202 0.99999715 1.71191700 × 10−9 3.20372748 × 10−8

subject to the boundary conditions

y(0) = 0, y(1) = 0. (4.6)

The exact solution is y(x) = sinhx − x sinh 1.

Problem 4. Consider the following nonlinear singular two-point BVP with singularities at
both endpoints:

y′′(x) − 1

x − 1
tan

(

1

sinhx
y(x) − y′(x)

)

− cos

(

1

x
y(x)

)

= f(x), 0 < x < 1,

f(x) =
1

x − 1
tan

(

coshx +
x

sinhx
− 2

)

+ sinhx − cos

(

1 − 1

x
sinhx

)

,

(4.7)

subject to the boundary conditions

y(0) = 0, y(1) = sinh 1 − 1. (4.8)

The exact solution is y(x) = sinhx − x.

Throughout this paper, we will try to give the results of the four problems; however,
in some cases we will switch between the results obtained for the problems in order not to
increase the length of the paper without the loss of generality for the remaining problems and
results. The convergence speed of the algorithm, whenever used, means the average number
of generations required for convergence. The step size for the four problems is fixed at 0.1,
and thus, the number of interior nodes equals 9 for all problems.

The convergence data of the four problems is given in Table 2. It is clear from the table
that the problems take about 1086 generations, on average, within about 229.13 seconds to
converge to a fitness value of 0.99999653 with an average absolute nodal residual of the value
9.21151501× 10−8 and an average absolute difference between the exact values and the values
obtained using CGA of the value 1.04210515 × 10−9.

The detailed data of the four problems that includes the exact nodal values, the CGA
nodal values, the absolute error, and the absolute nodal residuals is given in Tables 3, 4, 5,
and 6, respectively. It is clear that the accuracy obtained using CGA is moderate since it has a
truncation error of the order O(h10).
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Table 3: Numerical results for Problem 1.

Node Exact value Approximate value Absolute error Absolute residual

0.1 0.009 0.0089999999973 2.68724626 × 10−12 4.86658042 × 10−11

0.2 0.032 0.0319999999954 4.58882932 × 10−12 4.67374089 × 10−11

0.3 0.063 0.0629999999949 5.07884013 × 10−12 6.04412663 × 10−11

0.4 0.096 0.0959999999950 5.03508346 × 10−12 6.49500377 × 10−11

0.5 0.125 0.1249999999952 4.82547335 × 10−12 4.92386236 × 10−11

0.6 0.144 0.1439999999957 4.28940217 × 10−12 6.36304374 × 10−11

0.7 0.147 0.1469999999965 3.45659612 × 10−12 4.15211688 × 10−11

0.8 0.128 0.1279999999976 2.43857712 × 10−12 4.98899878 × 10−11

0.9 0.081 0.0809999999988 1.21960775 × 10−12 4.34021510 × 10−11

Table 4: Numerical results for Problem 2.

Node Exact value Approximate value Absolute error Absolute residual

0.1 3.0272988228 3.0272988194 3.44467561 × 10−9 1.63203336 × 10−7

0.2 3.3060670808 3.3060670781 2.62084439 × 10−9 3.96302397 × 10−7

0.3 3.5272988228 3.5272988205 2.34136222 × 10−9 3.23475157 × 10−7

0.4 3.6693383448 3.6693383423 2.43342257 × 10−9 2.94909675 × 10−7

0.5 3.7182818285 3.7182818264 2.09142268 × 10−9 2.71410029 × 10−7

0.6 3.6693383448 3.6693383424 2.32483033 × 10−9 4.97262197 × 10−7

0.7 3.5272988228 3.5272988205 2.34696009 × 10−9 5.84368888 × 10−7

0.8 3.3060670808 3.3060670789 1.86955984 × 10−9 2.97780417 × 10−7

0.9 3.0272988228 3.0272988204 2.41465221 × 10−9 1.98164203 × 10−7

Table 5: Numerical results for Problem 3.

Node Exact value Approximate value Absolute error Absolute residual

0.1 −0.0173533693 −0.0173533694 1.53966943 × 10−11 6.41444866 × 10−11

0.2 −0.0337042362 −0.0337042362 1.35533459 × 10−11 4.32776073 × 10−11

0.3 −0.0480400646 −0.0480400647 1.76135703 × 10−11 8.11717037 × 10−11

0.4 −0.0593281517 −0.0593281517 2.14053150 × 10−11 5.04949093 × 10−11

0.5 −0.0665052913 −0.0665052913 1.61395758 × 10−11 2.37698996 × 10−11

0.6 −0.0684671340 −0.0684671341 1.93928484 × 10−11 7.63100592 × 10−11

0.7 −0.0640571337 −0.0640571337 2.67523642 × 10−11 4.27937399 × 10−11

0.8 −0.0520549727 −0.0520549728 2.28146529 × 10−11 4.38950218 × 10−11

0.9 −0.0311643486 −0.0311643486 3.41142531 × 10−11 3.92956427 × 10−11

Table 6: Numerical results for Problem 4.

Node Exact value Approximate value Absolute error Absolute residual

0.1 0.0001667500 0.0001667507 7.18826040 × 10−10 1.71306636 × 10−9

0.2 0.0013360025 0.0013360038 1.20977586 × 10−9 3.19077233 × 10−8

0.3 0.0045202934 0.0045202956 2.10596858 × 10−9 4.13413455 × 10−8

0.4 0.0107523258 0.0107523284 2.60542731 × 10−9 3.19655322 × 10−8

0.5 0.0210953055 0.0210953083 2.78381052 × 10−9 5.57818672 × 10−8

0.6 0.0366535821 0.0366535847 2.50558776 × 10−9 2.54131965 × 10−8

0.7 0.0585837018 0.0585837039 2.02570172 × 10−9 5.20041317 × 10−8

0.8 0.0881059822 0.0881059833 1.14684390 × 10−9 4.70201649 × 10−8

0.9 0.1265167257 0.1265167260 3.05311332 × 10−10 1.18844601 × 10−9
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Figure 4: Evolutionary progress plots for the best-of-generation individual for (a) Problem 1; (b)
Problem 2.
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Figure 5: Evolutionary progress plots for the best-of-generation individual for (a) Problem 3; (b) Problem
4.

The evolutionary progress plots of the best-fitness individual of the four problems are
shown in Figures 4 and 5. It is clear from the figures that in the first 35% of generations the
best fitness approaches to one very fast; after that, it approaches to one slower. That means
the approximate of CGA converges to the actual solution very fast in the first 35% of the
generations.

The way in which the nodal values evolve for Problems 1 and 4 is studied next.
Figure 6 shows the evolution of the first, x1, middle, x5, and ninth, x9, nodal values for
Problem 1 while Figure 7 shows the evolution of the second, x2, middle, x5, and eighth,
x8, nodal values for Problem 4. It is observed that from the evolutionary plots that the
convergence process is divided into two stages: the coarse-tuning stage and the fine-
tuning stage, where the coarse-tuning stage is the initial stage in which oscillations in
the evolutionary plots occur, while the fine-tuning stage is the final stage in which the
evolutionary plots reach steady-state values and do not have oscillations by usual inspection.
In other words, evolution has initial oscillatory nature for all nodes, in the same problem. As a
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Figure 6: Evolution of the nodal values for Problem 1 of (a) the first node; (b) the middle node; (c) the
ninth node.
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Figure 7: Evolution of the nodal values for Problem 4 of (a) the second node; (b) the middle node; (c) the
eighth node.
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Table 7: Average percentage of the coarse-tuning stage of the four problems.

Problem 1 Problem 2 Problem 3 Problem 4

35% 29% 32% 24%

Table 8: Convergence speed of the CGA using different initialization functions.

Initialization method Problem 1 Problem 2 Problem 3 Problem 4

MNG function 845 1107 916 1372

MTH function 976 1315 1098 1287

Mixed-type functions 889 1227 1024 1202

result, all nodes, in the same problem, reach the near optimal solution together. The average
percentage of the fine-tuning stage till convergence from the total number of generations
across all nodes of the four problems is given in Table 7. It is clear from the table that the
problems spent about 30% of generations, on average, in the coarse-tuning stage, while the
remaining 70% is spent in the fine-tuning stage.

The effect of the different types of initialization methods on the convergence speed of
the algorithm is discussed next. Three initialization methods are investigated in this work;
the first method uses the MNG function, the second uses the MTH function, while the
third is the mixed-type initialization method that initializes the first half of the population
using the MNG function and the second half of the population using the MTH function.
Table 8 shows that the used initialization method has a minor effect on the convergence
speed because usually the effect of the initial population dies after few tens of generations
and the convergence speed after that is governed by the selection mechanism, crossover,
and mutation operators. For Problems 1, 2, and 3, the MNG function results in the fastest
convergence speed while for Problem 4, the mixed-type initialization method results in the
fastest convergence speed. For a specific problem, the initialization method with the highest
convergence speed is the one that provides initial solution curves which are close to the
optimal solution of that problem; that is, the optimal solution of the Problems 1, 2, and 3
is close to the MNG function and so on. However, since the optimal solution of any given
problem is not assumed to be known, it is better to have a diverse initial population by the
use of the mixed-type initialization method. As a result, the mixed-type initialization method
is used as the algorithm default method [14–22].

The effect of the most commonly used selection schemes by GA community of the
performance on the CGA is explored next. Table 9 represents the convergence speed using
the six selection schemes previously described. It is clear from the table that the rank-based
selection scheme has the faster convergence speed for all problems. The tournament selection
(with and without replacement) approaches come in the second place with almost similar
convergence speeds. It is obvious that the fitness proportionate methods (i.e., roulette wheel,
stochastic universal, and half-biased selection schemes) have slower convergence speed of
the rest of the methods. The half-biased selection scheme has the slowest convergence speed.

The effect of the rank-based ratio, Rbr , on the convergence speed is studied next.
Table 10 gives the convergence speed of the algorithm for different Rbr value within the
range [0.1, 1]. It is clear that Rbr = 0.1 results in the best convergence speed for all problems.
Furthermore, it is observed that the average number of generations required for convergence
increases as the ratio increases.
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Table 9: Convergence speed of the CGA using different selection schemes.

Selection method Problem 1 Problem 2 Problem 3 Problem 4

Rank-based 889 1227 1024 1202

Tournament with replacement 928 1301 1190 1204

Tournament without replacement 945 1312 1204 1209

Roulette wheel 1167 1407 1655 1284

Stochastic universal 1260 1336 1519 1376

Half biased 1311 1641 1720 1810

Table 10: The effect of the rank-based ratio on the convergence speed of the CGA.

Rbr Problem 1 Problem 2 Problem 3 Problem 4

0.1 889 1227 1024 1202

0.2 910 1266 1037 1221

0.3 919 1308 1056 1271

0.4 927 1311 1092 1349

0.5 934 1341 1118 1357

0.6 996 1429 1177 1371

0.7 976 1431 1207 1395

0.8 997 1551 1255 1428

0.9 1029 1498 1283 1483

1.0 1048 1562 1342 1536

The effect of the vector norm used in the fitness evaluation is studied here. Two vector
norms are used: L1 norm and L2 norm. L1 norm is governed by the following equation:

Oir =
N−1
∑

i=1

|Res(i)|, (4.9)

while L2 norm is governed by (2.7). Figure 8 shows the evolutionary progress plots for the
best-of-generation individual for Problems 2 and 3 using L1 and L2 norms while Table 11
gives the convergence speed for the four problems. Two observations are made in this regard;
first, the evolutionary progress plots of both norms show that L2 norm has higher fitness
values than those of L1 norm throughout the evolution process. Second, L2 norm converges
a little bit faster than L1 norm. The key factor behind these observations is the square power
appearing in L2 norm. Regarding the first observation, it is known that for a given set of
nodal residuals with values less than 1, L1 norm results in a higher value than L2 norm, and
correspondingly, the fitness value using L2 norm will be higher than that using L1 norm.
Regarding the second observation, L2 norm tries to select individual solutions, vectors, with
distributed nodal residuals among the nodes rather than lumped nodal residuals where one
nodal residual is high and the remaining nodal residuals are relatively small. This distributed
selection scheme results in closer solutions to the optimal one than the lumped selection
scheme. In addition to that, the crossover operator will be more effective in the former case
than the latter one. These two points result in the faster convergence speed in L2 norm
as compared with L1 norm. Furthermore, it is observed that L2 norm is less sensitive to
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Figure 8: Evolutionary progress plots for the best-of-generation individual using L1 and L2 vector norms
for (a) Problem 2; (b) Problem 3.

Table 11: The effect of the vector norm on the convergence speed of the CGA.

Vector norm Problem 1 Problem 2 Problem 3 Problem 4

L1 968 1305 1096 1287

L2 889 1227 1024 1202

variations in the genetic related parameters and problem related parameters. As a result, L2

norm is preferred over L1 norm, and it is used as the algorithm’s default norm [14–22].

The particular settings of several CGA tuning parameters including the probabilities
of applying crossover operator and mutation operator are investigated here. These tuning
parameters are typically problem dependent and have to be determined experimentally. They
play a nonnegligible role in the improvement of the efficiency of the algorithm. Table 12
shows the effect of the crossover probability, pc, and the mutation probability, pm, on the
convergence speed of the algorithm for Problem 1. The probability value is increased in
steps of 0.2 starting with 0.1 and ending with 0.9 for both pc and pm. It is clear from the
tables that when the probabilities values pc and pm are increasing gradually, the average
number of generation required for convergence is decreasing as well. It is noted that the best
performance of the algorithm is achieved for pc = 0.9 and pm = 0.9. As a result, these values
are set as the algorithm default values.

The influence of the population size on the convergence speed of CGA is studied
next for Problem 2 as shown in Table 13. The population size is increased in steps of 100
starting with 100 and ending with 1000. Small population sizes suffers from larger number of
generations required for convergence and the probability of being trapped in local minima,
while large population size suffers from larger number of fitness evaluations that means
larger execution time. However, it is noted that the improvement in the convergence speed
becomes almost negligible (saturation is reached) after a population size of 600.

Now, the influence of the maximum nodal residual of the best individual on
the convergence speed and the corresponding error is investigated. This is the second
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Table 12: The effect of the crossover probability and the mutation probability on the convergence speed of
the CGA for Problem 1.

(pm, pc) 0.1 0.3 0.5 0.7 0.9

0.1 2439 1192 967 930 913

0.3 2360 1188 943 924 912

0.5 2272 1131 925 918 903

0.7 2181 1102 914 907 895

0.9 2089 1080 912 902 889

Table 13: The effect of the population size on the convergence speed and the corresponding error for
Problem 2.

Np Average generations Average fitness Average absolute error Average absolute residual

100 1988 0.99964220 3.12718761 × 10−6 3.97612490 × 10−4

200 1790 0.99992624 1.47420585 × 10−7 8.19555830 × 10−5

300 1576 0.99995238 9.93440660 × 10−8 5.29086025 × 10−6

400 1401 0.99998115 4.25985666 × 10−8 2.09453067 × 10−6

500 1227 0.99999097 2.43196999 × 10−9 3.36319589 × 10−7

600 1157 0.99999471 8.92741387 × 10−10 4.43209606 × 10−8

700 1127 0.99999684 3.07785722 × 10−10 2.09929902 × 10−8

800 1105 0.99999879 1.85693238 × 10−10 1.41213808 × 10−8

900 1097 0.99999895 1.00214321 × 10−10 9.94155486 × 10−9

1000 1085 0.99999900 8.95207632 × 10−11 1.44505115 × 10−9

termination condition of the algorithm and its value is set between 0.1 and 0.0000000001.
Table 14 gives the relevant data for Problem 3. Regarding the convergence speed, it is obvious
that as the maximum nodal residual decreases, the number of generations required for
convergence increases rapidly since the searching process will be dominated by the fine-
tuning stage. The difference between the exact and the CGA nodal values decreases initially
till a maximum nodal residual of the value 0.0000000001 is reached. After that, there will
be no improvement in the accuracy of the solution obtained for further reduction in the
maximum nodal residual. The proposed approach is a variant of the finite difference scheme
with a truncation error of order O(h10). As a result, the accuracy of the solution obtained is
dependent on the step size used, and for a certain step size there will be initial improvement
while decreasing the maximum nodal residual till the step size limit is reached where further
reduction will be of no use.

The effect of the number of nodes on the convergence speed and the corresponding
error is explored next. Table 15 gives the relevant data for Problem 4, where the number of
nodes covers the range from 5 to 20 in steps of 5. It is observed that the reduction in the step
size results in a reduction in the error and correspondingly an improvement in the accuracy
of the obtained solution. This goes in agreement with the known fact about finite difference
schemes where more accurate solutions are achieved using a reduction in the step size. On
the other hand, the cost to be paid while going in this direction is the rapid increase in the
number of generations required for convergence. For instance, while increasing the number
of nodes from 5 to 10 to 20, the required number of generations for convergence jumps from
almost 550 to 1200 to 3500, that is, 2.15 to 2.51 multiplication factor.
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Table 14: The influence of the maximum nodal residual on the convergence speed and the corresponding
error for Problem 3.

Max. nodal
residual

Average generations Average fitness Average absolute error Average absolute residual

0.1 116 0.73073861 9.53552997 × 10−4 2.99179323 × 10−2

0.01 194 0.98410064 2.45355430 × 10−6 1.76659532 × 10−4

0.001 355 0.99169030 1.70435356 × 10−7 9.23300479 × 10−5

0.0001 657 0.99970196 2.09730489 × 10−8 6.31153089 × 10−7

0.00001 809 0.99996292 2.64875409 × 10−9 3.47078673 × 10−8

0.000001 916 0.99999804 2.53687869 × 10−10 5.95772308 × 10−9

0.0000001 1022 0.99999899 2.35367806 × 10−11 5.27732298 × 10−11

0.00000001 1143 0.99999924 1.40500158 × 10−11 3.79932887 × 10−11

0.000000001 1181 0.99999946 8.50714082 × 10−12 2.83187520 × 10−11

0.0000000001 1195 0.99999951 5.71884849 × 10−12 8.92419002 × 10−12

Table 15: The influence of the number of nodes on the convergence speed and the corresponding error for
Problem 4.

Number of nodes Average generations Average fitness
Average absolute

error
Average absolute

residual

5 560 0.99999898 2.33561226 × 10−7 3.89151263 × 10−6

10 1202 0.99999715 1.71191700 × 10−9 3.20372748 × 10−8

20 3017 0.99999672 1.93030697 × 10−11 4.67261146 × 10−10

Table 16: Numerical comparisons of approximate solution for Problem 1.

Node Exact solution CGA solution Method in [11] Method in [12]

0 0 0 0 0

0.08 0.0058880 0.0058880 0.0058857 0.0058880

0.16 0.0215040 0.0215040 0.0214924 0.0215040

0.32 0.0696320 0.0696320 0.0695762 0.0696320

0.48 0.1198080 0.1198080 0.1196890 0.1198081

0.64 0.1474560 0.1474560 0.1472880 0.1474566

0.80 0.1280000 0.1280000 0.1278430 0.1280032

0.96 0.0368640 0.0368640 0.0368160 0.0368766

1 0 0 0 0.0000170

Finally, numerical comparisons for Problem 1 are studied next. Table 16 shows a
comparison between the CGA solution besides the solutions of reproducing kernel Hilbert
space method [11] and modified Adomian decomposition method [12] together with the
exact solution. As it is evident from the comparison results, it was found that our method in
comparison with the mentioned methods is better with a view to accuracy and utilization.

5. Conclusion

In this work, a new numerical algorithm to tackle the singular two-point BVPs is proposed.
Central to the approach is the novel use of CGA where smooth solution curves are used for
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representing the required nodal values. The proposed technique might be considered as a
variation of the finite difference method in the sense that each of the derivatives is replaced
by an appropriate difference quotient approximation. The proposed methodology possesses
several advantages: first, its ability to solve singular two-point BVPs without the use of other
numerical techniques. Second, it does not resort to more advanced mathematical tools; as
a result, the present method is found to be simple, efficient, and attractive method with a
great potential in mathematical and engineering applications. Third, it does not require any
modification while switching from the linear to the nonlinear case. The influence of different
parameters, including the evolution of nodal values, the initialization method, the selection
method, the rank-based ratio, the vector norm used, the crossover andmutation probabilities,
the population size, the maximum nodal residual, and the step size, is also studied. This
new method promises to open new possibilities for applications in an important class of
mathematical and engineering problems.
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