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Abstract: As one of the promising renewable energy resources, solar-wind energy has increasingly

become a regional engine in leading the economy and raising competitiveness. Selecting

a solar-wind power station location can contribute to efficient utilization of resource and instruct

long-term development of socio-economy. Since the selection procedure consists of several location

alternatives and many influential criteria factors, the selection can be recognized as a multiple

criteria decision-making (MCDM) problem. To better express multiple uncertainty information

during the selection procedure, fuzzy set theory is introduced to manage that issue. Interval

neutrosophic sets (INSs), which are characterized by truth-membership, indeterminacy-membership

and falsity-membership functions in the interval numbers (INs) form, are feasible in modeling more

uncertainty of reality. In this paper, a newly extended weighted aggregated sum product assessment

(WASPAS) technique, which involves novel three procedures, is utilized to handle MCDM issues

under INSs environment. Some modifications are conducted in the extended method comparing with

the classical WASPAS method. The most obvious improvement of the extended method relies on that

it can generate more realistic criteria weight information by an objective and subjective integrated

criteria weight determination method. A case study concerning solar-wind power station location

selection is implemented to demonstrate the applicability and rationality of the proposed method in

practice. Its validity and feasibility are further verified by a sensitivity analysis and a comparative

analysis. These analyses effectively reveal that the extended WASPAS technique can well match the

reality and appropriately handle the solar-wind power station location selection problem.

Keywords: multiple criteria decision-making (MCDM); interval neutrosophic sets (INSs); weighted

aggregated sum product assessment (WASPAS); integrated criteria weight information; solar-wind

power station location selection

1. Introduction

Remarkable growth of urbanization and industrialization make it imperative to increase

widespread useable electricity for facilitating regional economy development [1]. Due to the increasing

awareness of the global climate degradation, conventional energy resources cannot simultaneously

meet the environmental challenge and energy demand [2]. The solar-wind energy system has gradually

substituted the status of traditional energy for the friendly environment concern [3]. Solar-wind power

station devotes to convert renewable resources such as solar and wind energy into power for supporting

socio-economic requirement [4]. For better contributing to regional competition and determining future

energy generation, it is significant to seek a good solar-wind power station location [5]. Considerable
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researches have increasingly emerged concerning selecting the renewable energy location [6]. It is well

known that the usage starting point of multiple criteria decision analysis (MCDA) is a definition of

the set of decision variants [7]. The aim of MCDA is to select a good solution according to decision

makers’ (DMs’) preferences [8,9]. As numerous influential factors need to be considered in the selecting

procedure, the location selection problem can be treated as a complex multiple criteria decision-making

(MCDM) problem [6]. In addition, MCDM methods have been adopted as effective instruments in

this field. Incorporating analytic hierarchy process (AHP) to GIS environment, the most desirable

nuclear power plant location was determined by MCDM analysis technique [10]. The framework of

MCDM analysis based on GIS was also identified as an effective decision tool for wind-farm location

planning area [11]. Furthermore, grey cumulative prospect theory and cloud decision framework

were gradually employed into power location selection [12,13]. To manage inevitable fuzziness and

uncertainty in realistic application, ELECTRE-III as one of the most commonly used MCDM technique

was extended into intuitionistic fuzzy circumstances for determining a good offshore wind power

station location [14]. The selection of the solar-wind power station location can be regarded as another

complex MCDM problem involving many influential factors such as economic factors, traffic factors,

natural resources, environmental factors and social factors [15]. Though MCDM methods such as

ELECTRE-II has been widely employed into this field [15], existing researches concerning solar-wind

power station location selection neglect the impact of uncertainty and only evaluate the alternatives

in the real number context [16]. Effective information expression form should be introduced into the

selection problem for representing more abundant and realistic information.

Along with the development of fuzzy set theory, fuzzy set (FSs) [17] as well as interval valued fuzzy

sets (IVFSs) [18], intuitionistic fuzzy sets [19] and interval-valued intuitionistic fuzzy sets (IVIFSs) [20]

were extensively applied into dealing with uncertain situation. Owing to multiple uncertainty and

information existing in practice, above traditional types of FSs are unable to adequately express

indeterminate information and inconsistent information [21]. Neutrosophic sets (NSs) [22] were initially

presented by Smarandache to feasibly manage these uncertain information via considering the truth

membership, indeterminacy membership and falsity membership functions simultaneously [23,24].

However, NS was lacking of specific description to adequately express actual issues. As a particular

case of NSs, single-valued neutrosophic sets (SVNSs) were introduced for the first time by Smarandache

in 1998 in his book [22], reviewed in [25], which is also mentioned by Denis Howe, from England,

in The Free Online Dictionary of Computing, 1999. Since more information can be described by

interval numbers (INs), interval neutrosophic set (INS) [26] as a further extension of NS was utilized

in various fields such as trustworthy cloud service selection [27], lean supplier selection [28] and

medical diagnosis [29]. Relative basic theories of INS which briefly focus on its aggregation operators

and MCDM methods have already developed maturity [30]. Particularly, MCDM methods including

outranking approach [31], cross-entropy measure [32], and correlation coefficient measure [33] can

effectively deal with problems under INS environment. This paper aims to develop a novel MCDM

technique with flexibility and applicability under INSs circumstances for matching the solar-wind

power station location selection case.

The weighted aggregated sum product assessment (WASPAS) method was originally presented

in 2012 regarded as an effective extension of Weighted Product Model (WPM) and Weighted Sum

Model (WSM) [34]. Its accuracy in dealing with MCDM problems has been proven by comparing

with the simple utilization one of WPM or WSM [34]. This method has been extensively employed

into MCDM situation and various applications [35], especially in the site selection field. The complex

circuit design of lead-zinc froth flotation selection regarded as a MCDM procedure was adequately

settled by WASPAS method for fully processing costs and reinforcing the utilization [36]. Selection of

the best wind farm location was feasibly handled and assessed by utilizing the WASPAS method [37].

The selection of the construction site for a waste incineration plant plays a critical role in public

health and city development. It can be effectively solved by means of the WASPAS method [38].

Within the MCDM framework, relevant mathematical model and AHP approach were incorporated
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into the WASPAS method, by which the location selection problem of the garage was explicitly

formulated [39]. Its robustness was verified by comparing with other MCDM methods when finding

a good solution [40]. Referring to specific application setting, WASPAS method has been generalized

into a variety of assessment fields such as energy supply system [41], solar projects [42], third-party

logistics providers [43] and indoor environment [35]. The combination of the WASPAS method with

fuzzy set theory has been introduced into dealing with uncertainty under grey values [44], interval

type-2 fuzzy sets [43] or SVNSs environment [45]. Incorporating IVIFSs into WASPAS method, it can

effectively deal with the MCDM problems [46]. Relative research concerning the WASPAS technique

with INSs needs to be further investigated to enrich theory basics and represent more uncertain

information. Consequently, this paper generalizes the WASPAS technique into INSs circumstances for

matching the solar-wind power station location selection problem.

Previous researches have revealed that incomplete or unknown weight information commonly

exists when applying the MCDM methods into assessment [47]. From the perspective of the

objective weight determination methods, maximizing derivation method [48], the most widely utilized

method, can generate the criteria weights under weights partly known or completely unknown

circumstances. Corresponding mathematical programming models are constructed according to

different circumstances such as hesitant fuzzy sets [49,50], IFSs [51] and multiple types of linguistic

circumstances [52,53]. As one of the representative subjective weight determination methods, order

relation analysis method (G1) determines the weight information by virtue of DMs’ experience

judgement [54]. G1 not only reflects the subjective judgment of DMs, but also possesses convenience

and feasibility comparing to AHP method. These advantages are due to its simple acquisition process,

and the fact that there is no need to construct judgement matrix [54]. To adequately reflect more realistic

information from both the subjective and objective aspects, this paper investigates an integrated criteria

weight utilizing the combination strengths of above determination methods, and further employs it to

the WASPAS technique under INSs environment.

The reminder of the paper is structured as follows. In Section 2, some basic concepts concerning

INs and INSs are roughly reviewed. In Section 3, the framework of the extended WASPAS technique is

constructed based on the objective weight and subjective weight integrated criteria weight information.

Subsequently, to verify its applicability within INSs environment, the extended WASPAS technique is

employed into practical solar-wind power station location case in Section 4. In Section 5, a sensitivity

analysis and a comparative analysis are conducted to further demonstrate the rationality of the

extended WASPAS technique. Finally, conclusions are summarized in Section 6.

2. Background

This section briefly reviews some basics concerning INSs for the latter discussion.

2.1. INs

Some definitions and concepts of INs are recalled.

Definition 1. [55] Let a =
[

aL, aU
]

=
{

x
∣

∣aL ≤ x ≤ aU
}

, then a is said to be an IN. Particularly,

a =
[

aL, aU
]

will be deduced to a real number if aL = aU .

Assume that there are two nonnegative INs a1 =
[

aL
1 , aU

1

]

and a2 =
[

aL
2 , aU

2

]

. Then, their operations are

defined as follows [56]:

1. a1 + a2 =
[

aL
1 + aL

2 , aU
1 + aU

2

]

,

2. λa1 =
[

λaL
1 , λaU

1

]

, λ > 0.
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Definition 2. [30] Let a1 =
[

aL
1 , aU

1

]

and a2 =
[

aL
2 , aU

2

]

be two INs, L(a1) = au
1 − aL

1 and L(a2) = au
2 − aL

2 ,

then the possibility degree of a1 ≥ a2 is denoted as:

p(a1 ≥ a2) = max

{

1 − max

{

aU
2 − aL

1

L(a1) + L(a2)
, 0

}

, 0

}

, (1)

Consider there exist m INs ai =
[

aL
i , aU

i

]

(i = 1, 2, . . . , m). The possibility degree of Equation (1) can be

denoted as

p
(

ai ≥ aj

)

= max

{

1 − max

{

aU
j − aL

i

L(ai) + L
(

aj

) , 0

}

, 0

}

, (2)

when comparing each IN ai to all INs aj =
[

aL
j , aU

j

]

(j = 1, 2, . . . , n). Then, a complementary possibility degree

matrix can be established as

P
(

ai ≥ aj

)

=













p11 p12 . . . p1n

p21 p22 . . . p2n
...

pn1 pn2 . . . pnn













n×n

, (3)

whose elements satisfy the conditions pij ≥ 0, pij + pji = 1 and pii = 0.5. Its ranking vector can be derived

from the equation as follows:

pi =

n

∑
j=1

pij +
m
2 − 1

m(m − 1)
, (i = 1, 2, . . . , m), (4)

2.2. INSs

Due to the fact that indeterminacy and inconsistency information commonly exist in the daily

life, numerous researches tackled the NSs as the instrument to manage that issue [57,58]. However,

to fully and adequately indicate uncertainty and fuzziness in the reality, IN is utilized as the form to

depict the truth-membership, indeterminacy-membership and falsity-membership information of NSs

rather than crisp values [59]. In this section, we briefly review some basics of INSs, which involves

operational laws, aggregation operators and score functions. For the convenience of expressing the

reality, INS is defined motivated by the definition of SVNS as follows:

Definition 3. [60] Let X be an arbitrary universe of discourse whose generic element can be denoted by x. Then,

an INS A in X is

A = {〈x, TA(x), IA(x), FA(x)〉|x ∈ X }, (5)

which is characterized by a truth-membership function TA(x), an indeterminacy-membership function IA(x)

and a falsity-membership function FA(x). For each point of x in X, there exists the conditions that TA(x) =
[

TL
A(x), TU

A (x)
]

, IA(x) =
[

IL
A(x), IU

A (x)
]

, FA(x) =
[

FL
A(x), FU

A (x)
]

and TA(x), IA(x), FA(x) ⊆ [0, 1] and

0 ≤ TU
A (x) + IU

A (x) + FU
A (x) ≤ 3.

For notation simplification, we adopt a =
〈[

TL, TU
]

,
[

IL, IU
]

,
[

FL, FU
]〉

as the representation of an INS

in this paper.

Definition 4. [61] Let a1 =
〈[

TL
1 , TU

1

]

,
[

IL
1 , IU

1

]

,
[

FL
1 , FU

1

]〉

and a2 =
〈[

TL
2 , TU

2

]

,
[

IL
2 , IU

2

]

,
[

FL
2 , FU

2

]〉

be two

arbitrary INSs, then, its operational laws can be defined as

(1) The complement of a1 is a1 =
〈[

FL
1 , FU

1

]

,
[

1 − IU
1 , 1 − IL

1

]

,
[

TL
1 , TU

1

]〉

,

(2) a1 + a2 =
〈[

TL
1 + TL

2 − TL
1 TL

2 , TU
1 + TU

2 − TU
1 TU

2

]

,
[

IL
1 IL

2 , IU
1 IU

2

]

,
[

FL
1 FL

2 , FU
1 FU

2

]〉

,
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(3) a1 × a2 =

〈[

TL
1 TL

2 , TU
1 TU

2

]

,
[

IL
1 + IL

2 − IL
1 IL

2 , IU
1 + IU

2 − IU
1 IU

2

]

,
[

FL
1 + FL

2 − FL
1 FL

2 , FU
1 + FU

2 − FU
1 FU

2

]〉

,

(4) ηa1 =
〈[

1 −
(

1 − TL
1

)η
, 1 −

(

1 − TU
1

)η
]

,
[

(

IL
1

)η
,
(

IU
1

)η
]

,
[

(

FL
1

)η
,
(

FU
1

)η
]〉

, η > 0,

(5) a1
η =

〈[

(

TL
1

)η
,
(

TU
1

)η
]

,
[

1 −
(

1 − IL
1

)η
, 1 −

(

1 − IU
1

)η
]

,
[

1 −
(

1 − FL
1

)η
, 1 −

(

1 − FU
1

)η
]〉

, η > 0.

Definition 5. [61] Let aj =
〈[

TL
j , TU

j

]

,
[

IL
j , IU

j

]

,
[

FL
j , FU

j

]〉

(j = 1, 2, . . . , n) be a permutation of the INSs.

Then, the interval neutrosophic power generalized weighted aggregation operator is defined as

INPGWA(a1, a2, · · · , an) =











n

∑
j=1

ωj

(

1 + T
(

aj

))

aj
η

n

∑
j=1

ωj

(

1 + T
(

aj

))











1/η

, (6)

in which ωj = (ω1, ω2, · · · , ωn) is the associated weight vector of aj(j = 1, 2, . . . , n), ωj ∈ [0, 1],
n

∑
j=1

ωj = 1;

T
(

aj

)

=
n

∑

i = 1,

i 6= j

Sup
(

aj, ai

)

, Sup
(

aj, ai

)

is the support degree for aj from ai; η is a parameter belonging to

(0,+∞).

Theorem 1. [61] Let aj =
〈[

TL
j , TU

j

]

,
[

IL
j , IU

j

]

,
[

FL
j , FU

j

]〉

(j = 1, 2, . . . , n) be a permutation of the INSs, the

aggregated result utilizing the interval neutrosophic power generalized weighted aggregation operator derived

from Definition 4 is shown as

INPGWA(a1, a2, · · · , an) =

〈





(

1 −
n

∏
j=1

(

1 −
(

TL
j

)η)wj

)1/η

,

(

1 −
n

∏
j=1

(

1 −
(

TU
j

)η)wj

)1/η


,



1 −

(

1 −
n

∏
j=1

(

1 −
(

IL
j

)η)wj

)1/η

, 1 −

(

1 −
n

∏
j=1

(

1 −
(

IU
j

)η)wj

)1/η


,



1 −

(

1 −
n

∏
j=1

(

1 −
(

FL
j

)η)wj

)1/η

, 1 −

(

1 −
n

∏
j=1

(

1 −
(

FU
j

)η)wj

)1/η




〉

,

(7)

in which wj =
ωj(1+T(aj))

n
∑

j=1
ωj(1+T(aj))

. Particularly, when η → 0 , the interval neutrosophic power generalized weighted

aggregation operator reduces to an interval neutrosophic power geometric weighted aggregation (INPGWA)

operator, which is shown as

INPGWA(a1, a2, · · · , an) =

〈[

n

∏
j=1

(

TL
j

)wj
,

n

∏
j=1

(

TU
j

)wj

]

,

[

1 −
n

∏
j=1

(

1 − IL
j

)wj
, 1 −

n

∏
j=1

(

1 − IU
j

)wj

]

,

[

1 −
n

∏
j=1

(

1 − FL
j

)wj
, 1 −

n

∏
j=1

(

1 − FU
j

)wj

]〉

;

(8)



Symmetry 2017, 9, 106 6 of 20

When η → 1 , the interval neutrosophic power generalized weighted aggregation operator reduces to

an interval neutrosophic power weighted aggregation (INPWA) operator, which is shown as

INPWA(a1, a2, · · · , an) =

〈[

1 −
n

∏
j=1

(

1 − TL
j

)wj
, 1 −

n

∏
j=1

(

1 − TU
j

)wj

]

,

[

n

∏
j=1

(

IL
j

)wj
,

n

∏
j=1

(

IU
j

)wj

]

,

[

n

∏
j=1

(

FL
j

)wj
,

n

∏
j=1

(

FU
j

)wj

]〉

.

(9)

Definition 6. [62] Let a1 =
〈[

TL
1 , TU

1

]

,
[

IL
1 , IU

1

]

,
[

FL
1 , FU

1

]〉

and a2 =
〈[

TL
2 , TU

2

]

,
[

IL
2 , IU

2

]

,
[

FL
2 , FU

2

]〉

be two

arbitrary INSs. Then, the normalized Hamming distance between a1 and a2 can be defined as

d(a1, a2) =
1

6

(∣

∣

∣TL
1 − TL

2

∣

∣

∣ +
∣

∣

∣TU
1 − TU

2

∣

∣

∣+
∣

∣

∣IL
1 − IL

2

∣

∣

∣+
∣

∣

∣IU
1 − IU

2

∣

∣

∣+
∣

∣

∣FL
1 − FL

2

∣

∣

∣+
∣

∣

∣FU
1 − FU

2

∣

∣

∣

)

. (10)

Definition 7. [63] Let a =
〈[

TL, TU
]

,
[

IL, IU
]

,
[

FL, FU
]〉

be an INS, then, its score function as well as

accuracy function and certainty function are defined as

(1) S(a ) =
[

TL + 1 − IU + 1 − FU , TU + 1 − IL + 1 − FL
]

,

(2) H(a ) =
[

min
{

TL − FL, TU − FU
}

, max
{

TL − FL, TU − FU
}]

,

(3) B(a ) =
[

TL, TU
]

.

Its comparison rules are specifically introduced in [63].

3. The Framework of an Extended WASPAS Technique

In this section, an extended WASPAS technique is newly investigated to match solar-wind power

station location selection issue with completely unknown criteria weight information.

3.1. Maximizing Deviation Method for Objective Weight Estimating

The maximizing deviation method was initially presented by Wang [64] for managing MCDM

problems in numerical context. Its main ideal relies on the performance value of each alternative

differs under certain criteria. Thus, it can be inferred that if certain criteria makes the performance

values concerning all the alternatives apparently different, the criteria plays a critical role in seeking

a good alternative under the MCDM context. Therefore, by virtue of this ideal, criteria with similar

performance value with respect to all the alternatives should be allocated small weight; otherwise, the

criteria makes huge differences over alternatives should be allocated bigger weight. By above analysis,

the maximizing deviation method can be applied into specific MCDM application as an effective tool

in deriving completely unknown criteria weight information. Specially, the model, which reveals the

differences of the performance value for each alternative, can be established in the following within

the INS context.

With respect to certain criteria Cj ∈ C, the performance derivation values of alternative xi to all

the other alternatives can be established as follows:

Dij

(

ω′
)

=
m

∑
k=1

d
(

aij, akj

)

ω′
j, i = 1, 2, · · · , m, j = 1, 2, · · · , n (11)

in which aij and akj represent the performance value of alternative i and alternative k

under criteria j, and characterized by aij =
〈[

TL
ij , TU

ij

]

,
[

IL
ij , IU

ij

]

,
[

FL
ij , FU

ij

]〉

and akj =
〈[

TL
kj, TU

kj

]

,
[

IL
kj, IU

kj

]

,
[

FL
kj, FU

kj

]〉

, respectively.
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Furthermore, let

Dj

(

ω′
)

=
m

∑
i=1

Dij

(

ω′
)

=
m

∑
i=1

m

∑
k=1

d
(

aij, akj

)

ω′
j (12)

Dj(ω) represents the derivation performance value of all the alternatives to the others under criteria

Cj ∈ C.

From above analysis, the determination of weight vector ω′ can maximize the collective derivation

performance value for all the criteria. A linear programming model can be established to derive the

optimal weight vector solution ω′ =
(

ω′
1, ω′

2, · · · , ω′
n

)

which is utilized as the criteria weight vector,

shown as follows:















maxD(ω′) =
n

∑
j=1

m

∑
i=1

Dij(ω
′) =

n

∑
j=1

m

∑
i=1

m

∑
k=1

d
(

aij, akj

)

ω′
j

s.t. ω′ ∈ Ω,
n

∑
j=1

ω′
j = 1, ω′

j ≥ 0, j = 1, 2, · · · , n,
(13)

in which specific distance equation d
(

aij, akj

)

refers to Definition 6. Above model is designed to solve

the decision-making problem with partial known criteria weight information in Ω. However, due to

the complexity in practice, criteria weight information tends to be completely unknown, and cannot

be predefined in MCDM problems in most cases. Another programming model is established in the

following to derive the criteria weight vector within the completely unknown weight information.











































maxD(ω′)

=
m

∑
i=1

Di(ω
′)

= 1
6

n

∑
j=1

m

∑
i=1

m

∑
k=1

(∣

∣

∣
TL

ij − TL
kj

∣

∣

∣
+
∣

∣

∣
TU

ij − TU
kj

∣

∣

∣
+
∣

∣

∣
IL
ij − IL

kj

∣

∣

∣
+
∣

∣

∣
IU
ij − IU

kj

∣

∣

∣
+
∣

∣

∣
FL

ij − FL
kj

∣

∣

∣
+
∣

∣

∣
FU

ij − FU
kj

∣

∣

∣

)

ω′
j

s.t.
n

∑
j=1

(

ω′
j

)2
= 1, ω′

j ≥ 0, j = 1, 2, · · · , n.

(14)

A Lagrange function can be established to solve this model, and shown as

L(ω′, γ) = 1
6

n

∑
j=1

m

∑
i=1

m

∑
k=1

(∣

∣

∣TL
ij − TL

kj

∣

∣

∣+
∣

∣

∣TU
ij − TU

kj

∣

∣

∣+
∣

∣

∣IL
ij − IL

kj

∣

∣

∣+
∣

∣

∣IU
ij − IU

kj

∣

∣

∣

+
∣

∣

∣FL
ij − FL

kj

∣

∣

∣+
∣

∣

∣FU
ij − FU

kj

∣

∣

∣

)

ω′
j +

γ
12

(

n

∑
j=1

(

ω′
j

)2
− 1

)

,

(15)

in which γ is the Lagrange multiplier. Differentiating Equation (15) concerning ω′
j (j = 1, 2, . . . , n) and

γ, respectively. Let these partial derivations equal to 0 value, these equations can be derived as follows:















∂L
∂ω′

j
=

n

∑
j=1

m

∑
i=1

m

∑
k=1

(∣

∣

∣TL
ij − TL

kj

∣

∣

∣
+
∣

∣

∣
TU

ij − TU
kj

∣

∣

∣
+
∣

∣

∣
IL
ij − IL

kj

∣

∣

∣
+
∣

∣

∣
IU
ij − IU

kj

∣

∣

∣
+
∣

∣

∣
FL

ij − FL
kj

∣

∣

∣
+
∣

∣

∣
FU

ij − FU
kj

∣

∣

∣

)

+ γω′
j,

∂L
∂γ =

n

∑
j=1

(

ω′
j

)2
− 1 = 0.

Then, to determine the criteria weight vector, a simple equation is generated as follows:

ω′
j =

m
∑

i=1

m
∑

k=1

(∣

∣

∣
TL

ij−TL
kj

∣

∣

∣
+
∣

∣

∣
TU

ij −TU
kj

∣

∣

∣
+
∣

∣

∣
IL
ij−IL

kj

∣

∣

∣
+
∣

∣

∣
IU
ij −IU

kj

∣

∣

∣
+
∣

∣

∣
FL

ij−FL
kj

∣

∣

∣
+
∣

∣

∣
FU

ij −FU
kj

∣

∣

∣

)

√

√

√

√

n
∑

j=1

(

m
∑

i=1

m
∑

k=1

(∣

∣

∣
TL

ij−TL
kj

∣

∣

∣
+
∣

∣

∣
TU

ij −TU
kj

∣

∣

∣
+
∣

∣

∣
IL
ij−IL

kj

∣

∣

∣
+
∣

∣

∣
IU
ij −IU

kj

∣

∣

∣
+
∣

∣

∣
FL

ij−FL
kj

∣

∣

∣
+
∣

∣

∣
FU

ij −FU
kj

∣

∣

∣

)

)2
(16)
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Consequently, the normalized weight vector of criteria can be derived as

ω′∗
j =

ω′
j

n

∑
j=1

ω′
j

,(j = 1, 2, . . . , n). (17)

Based on aforementioned discussion, we can obtain criteria weight vector via these models and

equations with incompletely or completely unknown weight information under INS context.

3.2. G1 for Subjective Weight Estimating

G1 [54] is one of the subjective weight estimation methods, in which all the weight information

index derived from subjective evaluation of DM according to their experience. Owing to its practical

applicability, G1 was adopted to dispose the weight information in the assessment of electric vehicle

sharing programs [65]. Specific acquisition process within the location selection case is outlined

as follows:

Step 1 Determine the criteria ranking order relation.

Let DMs provide the order relation of the set C =
{

C1, · · · , Cj, · · · , Cn

}

according to the

importance of the criteria judging from their experience.

Step 2 Assign the relative importance degree index of adjacent criteria.

Determine the relative importance degree index rj = ω
′′

j−1/ω
′′

j of the adjacent criteria Cj−1

and Cj according to Table 1.

Step 3 Calculate the subjective weights of criteria by Equations (18) and (19).

ω
′′
n =

(

1 +
n

∑
i=2

n

∏
j=i

rj

)−1

, (18)

ω
′′

j =
n

∏
k=j+1

rkω
′′
n . (19)

Table 1. The relative importance degree index among adjacent criteria.

rj Description

1.0 Cj−1 is equally important as Cj

1.2 Cj−1 is slightly more important than Cj

1.4 Cj−1 is obviously more important than Cj

1.6 Cj−1 is strongly more important than Cj

1.8 Cj−1 is extremely more important than Cj

3.3. An Extended WASPAS Technique with Integrated Criteria Weight Information

The WASPAS method [34] is a well-known decision-making technique which can effectively

increase the ranking accuracy by integrating WSM and WPM. It has better accuracy than only using

one of WSM or WPM, which has been proved in [34]. Total importance of an alternative is determined

by the aggregated WASPAS measure, which is in essence a joint criterion derived from the use of

weighted arithmetic and geometric averaging operators simultaneously [66]. The feasible ranking

order can be ensured by altering the parameter between the sum total relative importance and the

product total relative importance of alternative computed by theses operators within the completely

unknown criteria information.

In most practical cases, the criteria weight information tends to be completely unknown, and there

commonly exists relationship among alternatives. To this end, this paper combines the objective weight
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and subjective weight acquisition methods defined above to reflect more realistic weight information in

the integrated weight information estimation procedure of the newly extended WASPAS technique. It is

well known that a PA operator can effectively reveal the relationship among alternatives by calculating

support degrees from others [67]. The PA operator is generalized into the WASPAS method to optimize

the aggregated WASPAS measure determination procedure in this paper. Consider the human beings’

expression preference and the uncertainty they faced with, this paper proposes an extended WASPAS

technique in which three procedures are feasibly implemented under INSs context. The framework of

the extended technique is displayed in Figure 1.

 

A 

          
L
F A

 

Figure 1. The framework of the extended WASPAS technique.

Assume that a MCDM problem in which a permutation of m alternatives {A1, · · · , Ai, · · · , Am}

are evaluated under a permutation of n criteria
{

C1, · · · , Cj, · · · , Cn

}

. The performance evaluation

of the i th alternative on the j th criteria is assessed by the INSs denoted by aij =
〈[

TL
ij , TU

ij

]

,
[

IL
ij , IU

ij

]

,
[

FL
ij , FU

ij

]〉

. The main procedures are outlined as follows:

Step 1. Construct the decision matrix.
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Let a DM provide performance estimation of every alternative with respect to all the criteria,

which is shown as

A =
(

Aij

)

m×n
=













a11 a12 . . . a1n

a21 a22 . . . a2n
...

an1 an2 . . . ann













m×n

Step 2. Derive the normalized decision matrix.

Utilize Equation (1) in Definition 4 to convert the evaluation under cost criteria to benefit

criteria. For convenience, the normalized evaluations for the ith alternative with respect to the

jth cost criteria are also denoted by aij =
〈[

TL
ij , TU

ij

]

,
[

IL
ij , IU

ij

]

,
[

FL
ij , FU

ij

]〉

.

Step 3. Calculate the objective criteria weight.

Use Equations (16) and (17) to calculate the objective weight ω′∗
j for each criteria by the

maximizing deviation method.

Step 4. Estimate the subjective criteria weight.

Conduct the procedures proposed in Section 3.2, and estimate the subjective criteria weight

ω
′′

j for each criteria.

Step 5. Compute the integrated criteria weight.

Combine the objective and subjective weights generated from Step 3 and Step 4, the integrated

criteria weight ωj is shown as

ωj = λω′∗
j + (1 − λ)ω

′′

j , (20)

in which λ is the aggregation parameter altering in [0, 1].

Step 6. Calculate sum total relative importance of alternative.

Incorporate the INPWA operator defined in Equation (9), the sum total relative importance of

alternative i is calculated by Equation (21).

Q′
i = INPWA(a1, a2, · · · , an). (21)

Step 7. Calculate product total relative importance of alternative.

Refer to the INPGWA operator in Equation (8), the product total relative importance for

alternative i is defined as

Q
′′

i = INPGWA(a1, a2, · · · , an). (22)

Step 8. Determine the aggregated WASPAS measure for each alternative.

Aggregate Q′
i and Q′′ , the final WASPAS measure can be determined by the equation as

follows:

Qj = θQ′
i + (1 − θ)Q

′′

i , (23)

in which θ is the parameter to adjust the proportion of WSM and WPM in the WASPAS

technique altering in [0, 1]. When θ = 1, the WASPAS technique is degenerated to WSM. When

θ = 0, the WASPAS technique is degenerated to WPM.

Step 9. Generate the score, accuracy and certainty function values for each alternative.

Obtain the score, accuracy and certainty function values S(ai), H(ai) and B(ai) for each

alternative utilizing Equation (1) in Definition 7.

Step 10. Construct the likelihood matrix.
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Construct the possibility matrix of the score function value S(ai) according to Equation (2),

which is shown as follows:

PS
(

S(ai) ≥ S
(

aj

))

=













pS
11 pS

12 · · · pS
1n

pS
21 pS

22 · · · pS
2n

...

pS
n1 pS

n2 · · · pS
nn













n×n

,

whose elements pS
ij represents the possibility degree of S(ai) ≥ S

(

aj

)

. If pS
ij = 0.5, then

calculate the possibility degree of H(ai) ≥ H
(

aj

)

characterized by pH
ij . If pH

ij = 0.5, then

calculate the possibility degree of B(ai) ≥ B
(

aj

)

characterized by pB
ij. Obtain the ranking

vector pi according to Equation (4).

Step 11. Rank the alternatives and select the good location.

Rank all the alternatives and select the good location according to the descending order of

pi (i = 1, 2, · · · , m).

4. Case Study

4.1. Problem Description

With the increasing concern of the regional competition and circumstance protection, solar-wind

power station contributes to converting solar or wind resources into power, and further generating

electric energy. When assuming that government planners want to build a solar-wind power

station for better serving regional socio-economy, a good station construction location should be

selected. A group of experts are invited to consist a working team for evaluating four locations

Ai(i = 1, 2, · · · , 4) with respect to various influential factors utilizing numerical rating in the range

from 0 to 1. According to relative literature research, this paper concludes its influential factors into

five criteria in Table 2. In practical assessment procedure, the evaluation rating not only contains

the numerical rating but also the emotional tendency of DMs. For a candidate location i under

certain criteria j, the positive maximum evaluation among all the DMs is treated as the TU
ij in the

INS aij =
〈[

TL
ij , TU

ij

]

,
[

IL
ij , IU

ij

]

,
[

FL
ij , FU

ij

]〉

, and the negative minimum evaluation of the entire working

team is treated as FL
ij in the INS. For instance, when rating for location A1 with respect to economic

factors C2, the maximum and minimum evaluation from all the experts, who deem it is appropriate

to construct the station here, are 0.5, 0.3, respectively; the maximum and minimum of inappropriate

evaluation are 0.8, 0.2; the maximum and minimum of the other experts are 0.3, 0.2; then, the INS

can be expressed as a12 = 〈[0.3, 0.5], [0.2, 0.8], [0.2, 0.3]〉. Based on this principle, final decision matrix

A =
(

Aij

)

m×n
involving the synthetic evaluation information from all the DMs in the working group

is derived as follows:

A =
(

Aij

)

4×5
=











〈[0.7, 0.8], [0.5, 0.7], [0.1, 0.2]〉 〈[0.3, 0.5], [0.2, 0.8], [0.2, 0.3]〉

〈[0.6, 0.8], [0.4, 0.5], [0.3, 0.3]〉 〈[0.5, 0.7], [0.3, 0.5], [0.1, 0.3]〉

〈[0.8, 0.8], [0.4, 0.6], [0.1, 0.2]〉 〈[0.6, 0.6], [0.2, 0.3], [0.4, 0.5]〉

〈[0.7, 0.9], [0.3, 0.4], [0.2, 0.2]〉 〈[0.6, 0.8], [0.4, 0.4], [0.2, 0.4]〉

〈[0.4, 0.6], [0.2, 0.2], [0.2, 0.4]〉 〈[0.4, 0.5], [0.5, 0.6], [0.4, 0.4]〉 〈[0.6, 0.7], [0.4, 0.5], [0.4, 0.5]〉

〈[0.6, 0.7], [0.4, 0.6], [0.3, 0.4]〉 〈[0.5, 0.6], [0.3, 0.4], [0.4, 0.5]〉 〈[0.8, 0.9], [0.3, 0.4], [0.1, 0.2]〉

〈[0.7, 0.8], [0.6, 0.7], [0.1, 0.2]〉 〈[0.6, 0.7], [0.7, 0.8], [0.2, 0.3]〉 〈[0.7, 0.8], [0.5, 0.6], [0.1, 0.2]〉

〈[0.5, 0.6], [0.5, 0.6], [0.2, 0.3]〉 〈[0.8, 0.9], [0.3, 0.4], [0.1, 0.2]〉 〈[0.5, 0.7], [0.5, 0.6], [0.2, 0.3]〉











4×5
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Table 2. Criteria information and relative description.

Criteria Cj Description

Natural resources C1
Natural resources include various indicators related to wind and solar
resources in the location.

Economic factors C2
Economic factors briefly measure the cost during the engineering
construction, operation and maintenance procedures.

Traffic conditions C3
Traffic conditions reflect the traffic convenience to the location during
the engineering construction, operation and maintenance procedures.

Environmental factors C4
Environmental factors reflect the environment destruction during the
engineering construction and operation procedures.

Social factors C5 Social factors reflect the attitude of the local residents to the engineering.

4.2. The Selection of Solar-Wind Power Station Location

The specific procedures of seeking a good solar-wind power station location with the extended

WASPAS technique are implemented as follows:

Step 1. Construct the decision matrix.

The decision matrix is constructed by the illustration in Section 4.1, which is shown as

A =
(

Aij

)

4×5
above.

Step 2. Derive the normalized decision matrix.

Referring to the criteria description in Table 2, C2 and C4 are cost criteria. Utilize Equation (1)

in Definition 4, the normalized decision matrix can be obtained as

A =
(

Aij

)

4×5
=











〈[0.7, 0.8], [0.5, 0.7], [0.1, 0.2]〉 〈[0.2, 0.3], [0.2, 0.8], [0.3, 0.5]〉

〈[0.6, 0.8], [0.4, 0.5], [0.3, 0.3]〉 〈[0.1, 0.3], [0.5, 0.7], [0.5, 0.7]〉

〈[0.8, 0.8], [0.4, 0.6], [0.1, 0.2]〉 〈[0.4, 0.5], [0.7, 0.8], [0.6, 0.6]〉

〈[0.7, 0.9], [0.3, 0.4], [0.2, 0.2]〉 〈[0.2, 0.4], [0.6, 0.6], [0.6, 0.8]〉

〈[0.4, 0.6], [0.2, 0.2], [0.2, 0.4]〉 〈[0.4, 0.4], [0.4, 0.5], [0.4, 0.5]〉 〈[0.6, 0.7], [0.4, 0.5], [0.4, 0.5]〉

〈[0.6, 0.7], [0.4, 0.6], [0.3, 0.4]〉 〈[0.4, 0.5], [0.6, 0.7], [0.5, 0.6]〉 〈[0.8, 0.9], [0.3, 0.4], [0.1, 0.2]〉

〈[0.7, 0.8], [0.6, 0.7], [0.1, 0.2]〉 〈[0.2, 0.3], [0.2, 0.3], [0.6, 0.7]〉 〈[0.7, 0.8], [0.5, 0.6], [0.1, 0.2]〉

〈[0.5, 0.6], [0.5, 0.6], [0.2, 0.3]〉 〈[0.1, 0.2], [0.6, 0.7], [0.8, 0.9]〉 〈[0.5, 0.7], [0.5, 0.6], [0.2, 0.3]〉











4×5

Step 3. Calculate the objective criteria weight.

Use Equations (16) and (17), then the objective weight ω′∗
j for each criteria can be calculated as

ω′∗
1 = 0.1259, ω′∗

2 = 0.2122, ω′∗
3 = 0.2086, ω′∗

4 = 0.2698, ω′∗
5 = 0.1835.

Step 4. Estimate the subjective criteria weight.

Assume that the aggregation parameter λ = 0.5, and the order relation of all the criteria is

C4 ≻ C2 ≻ C1 ≻ C5 ≻ C3 judging from DMs’ subjective experience. Referring to the relative

importance degree index among adjacent criteria in Table 1, the subjective criteria weight

for each criteria is estimated as ω
′′

1 = 0.3533, ω
′′

2 = 0.2945, ω
′′

3 = 0.1840, ω
′′

4 = 0.1022 and

ω
′′

5 = 0.0639.

Step 5. Compute the integrated criteria weight.

Combine the objective and subjective weights generated from Step 3 and Step 4, the integrated

weight of criteria is shown as ω1 = 0.2396, ω2 = 0.2534, ω3 = 0.1963, ω4 = 0.1860 and

ω5 = 0.1237.

Step 6. Calculate sum total relative importance of alternative.
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Incorporate the INPWA operator defined in Equation (9), the sum total relative importance of

all alternatives are

Q′
1 = 〈[0.4986, 0.6171], [0.3084, 0.6468], [0.1866, 0.3342]〉,

Q′
2 = 〈[0.4236, 0.6255], [0.4479, 0.5977], [0.3746, 0.4618]〉,

Q′
3 = 〈[0.6136, 0.6642], [0.5212, 0.6680], [0.2643, 0.3665]〉

Q′
4 = 〈[0.4867, 0.7214], [0.4433, 0.5128], [0.3468, 0.4122]〉

Step 7. Calculate product total relative importance of alternative.

Refer to the INPGWA operator in Equation (8), the product total relative importance for

alternatives are

Q
′′

1 = 〈[0.3816, 0.4983], [0.3562, 0.7138], [0.2219, 0.3815]〉,

Q
′′

2 = 〈[0.2638, 0.4970], [0.4566, 0.6189], [0.4046, 0.5409]〉,

Q
′′

3 = 〈[0.5184, 0.6005], [0.5784, 0.7099], [0.4203, 0.4605]〉

Q
′′

4 = 〈[0.3533, 0.5616], [0.4852, 0.5355], [0.4509, 0.6134]〉

Step 8. Determine the aggregated WASPAS measure for each alternative.

Let θ = 0.5, then the final WASPAS measure can be derived as

Q1 = 〈[0.4401, 0.5577], [0.3323, 0.6803], [0.2043, 0.3579]〉,

Q2 = 〈[0.3437, 0.5613], [0.4523, 0.6083], [0.3896, 0.5014]〉,

Q3 = 〈[0.5660, 0.6324], [0.5498, 0.6889], [0.3423, 0.4135]〉

Q4 = 〈[0.4200, 0.6415], [0.4643, 0.5241], [0.3989, 0.5129]〉

Step 9. Generate the score, accuracy and certainty function values for each alternative.

For each alternative, the score, accuracy and certainty function values S(ai), H(ai) and B(ai)

are shown in Table 3.

Table 3. Relative function values of alternatives.

Ai S(ai) H(ai) B(ai)

A1 [1.4020, 2.0212] [0.1998, 0.2359] [0.4401, 0.5577]
A2 [1.2341, 1.7194] [−0.0459, 0.0599] [0.3437, 0.5613]
A3 [1.4636, 1.7402] [0.2189, 0.2237] [0.5660, 0.6324]
A4 [1.3831, 1.7783] [0.0212, 0.1286] [0.4200, 0.6415]

Step 10. Construct the likelihood matrix.

Construct the possibility matrix of the score function value S(ai) according to Equation (2),

which is shown as follows:

PS
(

S(ai) ≥ S
(

aj

))

=











0.5 0.7126 0.6224 0.6290

0.7126 0.5 0.3358 0.3820

0.6224 0.3358 0.5 0.5315

0.6290 0.3820 0.5315 0.5











4×4

.
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And the ranking vector can be obtained as p1 = 2.5981, p2 = 2.1977, p3 = 2.2423 and

p4 = 2.2819.

Step 11. Rank the alternatives and select the good location.

The ranking order of all the alternatives is A1 ≻ A4 ≻ A3 ≻ A2 and the good location is A1.

5. Sensitivity Analysis and Comparison Analysis

In this section, comparison analysis and sensitivity analysis are conducted to further testify

the effectiveness and reliability of the extended WASPAS technique with existing methods on the

same example.

5.1. Sensitivity Analysis and Discussion

To demonstrate the impact of different aggregation parameter λ and the proportion adjustment

parameter θ on the final location selection results, we conduct the sensitivity analysis on the same

example with five λ(0, 0.2, 0.5, 0.8, 1) values and five θ(0, 0.2, 0.5, 0.8, 1) values simultaneously. The

ranking results for different λ and θ are displayed in Table 4.

Table 4. Ranking results for different λ and θ.

λ θ = 0 θ = 0.2 θ = 0.5 θ = 0.8 θ = 1

0 A1 ≻ A4 ≻ A3 ≻ A2 A1 ≻ A4 ≻ A3 ≻ A2 A1 ≻ A4 ≻ A3 ≻ A2 A1 ≻ A4 ≻ A3 ≻ A2 A1 ≻ A4 ≻ A3 ≻ A2

0.2 A4 ≻ A1 ≻ A3 ≻ A2 A4 ≻ A1 ≻ A3 ≻ A2 A1 ≻ A4 ≻ A3 ≻ A2 A1 ≻ A4 ≻ A3 ≻ A2 A1 ≻ A4 ≻ A3 ≻ A2

0.5 A4 ≻ A1 ≻ A3 ≻ A2 A4 ≻ A1 ≻ A3 ≻ A2 A4 ≻ A1 ≻ A3 ≻ A2 A4 ≻ A1 ≻ A3 ≻ A2 A4 ≻ A1 ≻ A3 ≻ A2

0.8 A4 ≻ A1 ≻ A3 ≻ A2 A4 ≻ A1 ≻ A3 ≻ A2 A1 ≻ A4 ≻ A3 ≻ A2 A1 ≻ A4 ≻ A3 ≻ A2 A1 ≻ A4 ≻ A3 ≻ A2

1 A4 ≻ A1 ≻ A3 ≻ A2 A4 ≻ A1 ≻ A3 ≻ A2 A4 ≻ A1 ≻ A3 ≻ A2 A4 ≻ A1 ≻ A3 ≻ A2 A4 ≻ A1 ≻ A3 ≻ A2

The variation of λ represents the influence of criteria weight integrated by objective and subjective

weights to final selection results. In addition, altering the θ values means that the change from sum

total relative importance to product total relative importance. Synthetizing what is shown in Table 4,

it can be inferred that different λ and θ values indeed affect final selection results. When λ = 0 and

λ = 1, the integrated criteria weight is complete subjective or objective weight, and the ranking order

has different selection results A1 and A4 under these opposite context. Furthermore, no matter how

the variation of θ values, the ranking order remains all the same in these circumstances. When λ = 0.2

and λ = 0.8, the proportion adjustment parameter θ values make huge differences to the ranking order.

The ranking result yields A4 ≻ A1 ≻ A3 ≻ A2 when 0 ≤ θ < 0.5, while it yields A1 ≻ A4 ≻ A3 ≻ A2

when 0.5 ≤ θ ≤ 1. In view of the identical changeable tendency of ranking order, it is apparent that

the gradual increase of the adjustment proportion θ clearly affects the order when different importance

of the objective and subjective weights in the integrated weight. However, when the importance of

the objective and subjective weights in the integrated weight are totally equivalent, the ranking order

keeps A4 ≻ A1 ≻ A3 ≻ A2 all the time.

Obviously, these ranking order and selection results reveal that different λ and θ values have

an effect on the decision-making procedure. It further indicates that the combination of objective and

subjective weights, and the integration of sum total relative importance and product total relative

importance emphasize the influence to the selection procedure. Integrated the specific meaning of

λ and θ with their role playing in the decision-making procedures, the location selection becomes

a dynamic procedure by setting different parameter values derived from practical context.

5.2. Comparison Analysis and Discussion

This subsection further validates the effectiveness and reliability of the newly proposed method

by comparing it with different existing methods on the identical illustrative example. The ranking

results are shown in Table 5. As there exists no relative criteria weight obtainment method in [34,62,68]
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chosen for comparison, we use the integrated criteria weight obtained in this paper as the criteria

weight information for the comparison convenience.

Table 5. Ranking results with different existing methods.

Methods Ranking Results

Similarity measure in [62] A4 ≻ A2 ≻ A3 ≻ A1

An extended TOPSIS method in [69] A3 ≻ A4 ≻ A2 ≻ A1

Method used weighted arithmetic aggregation operator in [68] A4 ≻ A1 ≻ A3 ≻ A2

Method used weighted geometric aggregation operator in [68] A4 ≻ A1 ≻ A3 ≻ A2

Classical WASPAS method in [34] A4 ≻ A1 ≻ A3 ≻ A2

The proposed method A1 ≻ A4 ≻ A3 ≻ A2

(1) The method in [62] generates the selection result by implementing two steps. Firstly, confirm

the ideal alternatives for different type of criteria. Subsequently, derive the result by similarity

measures. According to the first similarity measure in that literature, the similarity measures

are obtained as S∗
1(A∗, A1) = 0.8178, S∗

1(A∗, A2) = 0.8705, S∗
1(A∗, A3) = 0.8692 and

S∗
1(A∗, A4) = 0.9057.

(2) In the method of [69], maximizing deviation method is utilized to derive objective weights. Then,

based on the ideal of TOPSIS method, alternatives are ranked by the relative closeness coefficient.

Conduct these procedures, relative closeness coefficient can be calculated as RCC1 = 0.5226,

RCC2 = 0.5186, RCC3 = 0.5190 and RCC4 = 0.5189.

(3) The procedure of the method in [68] can be briefly classified into aggregation process and ranking

process. The ranking procedure in [68] is identical with our proposed method. Based on weighted

arithmetic aggregation operator or weighted geometric aggregation operator, the total score are

obtained as ps = [2.2997, 2.0098, 2.0589, 2.5926] or ps = [2.5804, 2.2751, 2.3728, 2.9288] with the

same ranking order A4 ≻ A1 ≻ A3 ≻ A2.

(4) Classical WASPAS method in [34] generates the final WASPAS measure by aggregating weighted

arithmetic aggregation operator and weighted geometric aggregation operator. To better compare

the classical WASPAS method with our method, the alternatives are ranked by the ranking

procedure in our paper. Then, ranking vector can be obtained as p1 = 2.4449, p2 = 2.1483,

p3 = 2.2189 and p4 = 2.7681.

It can be easily inferred from Table 5 that different methods generate totally distinct selection

results. Especially, the order sequence derived from the methods in [62,69] is entirely opposite to ours.

The good location selection for [62,69] and our paper are A4, A3 and A1, respectively. The primary

reason for that phenomenon relies on that these methods were proposed based on completely different

ideal. It results in the inconsistent sequence between each pair of alternatives in these methods. Both

the similarity measures and TOPSIS method rank the alternatives on the ideal of distance. For a better

comparison analysis, we adopt Hamming distance during the calculation procedure. Moreover, the

method in [62] neglects the relation of criteria to each other, while the method in [69] only considers the

objective criteria weight without focusing on the subjective preference of DMs. The proposed method

emphasizes the support relation from other criteria in the course of WASPAS measure determination.

It adequately considers the objective criteria weights and subjective experience judgement from

DMs by integrated criteria weight. The selection A4 and A3 cannot reflect realistic situation without

considering the subjective criteria during the MCDM procedure. In addition, these characteristics

ensure the effectiveness and reliability of the location selection A1 derived from our method. Although

both the method in [68] and our method utilize an identical ranking method, the aggregation operators

cause huge differences to the final location selection. When using one of the weighted arithmetic

aggregation operator or weighted geometric aggregation operator in [68], it yields identical selection

result A4. However, the proposed method not only contains the advantage of PA operator, but also

effectively utilizes the combination of INPGWA and INPWA rather than applying them respectively.
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Besides, the extended WASPAS technique reveals its superiority by implementing three procedures to

assure the selection result A1 rational and convincing.

Utilizing identical aggregation operator, methods in [34,68] provide the totally same ranking

order A4 ≻ A1 ≻ A3 ≻ A2 with identical location selection A4. It indicates that the superiority of the

classical WASPAS method cannot be inferred because there exists no ranking or selection discrepancy

when using completely different methods. It is obvious that the ranking and selection results of the

classical WASPAS method and the proposed method exists discrepancy. The order of A1 and A4 is

opposite in those methods. That is, though both the classical and extended WASPAS methods have the

same procedure in which the WASPAS measure are aggregated by two kinds of operators, the extended

WASPAS method reflects a more rational selection result by newly incorporating the advantage of PA

operators in that. Furthermore, the integrated weight information estimation procedure further ensures

the selection of the extended WASPAS method scientific. The identical order between alternatives A3

and A2 in these methods can verify the effectiveness of the extended one.

From above discussion, primary highlights of the newly extended WASPAS technique can be

simply summarized into the following points.

(1) It can effectively manage the solar-wind power station location problem via embedding three

procedures into the newly extended WASPAS technique. During the WASPAS technique

implement process, a rational location selection result will be generated by incorporating the

advantages of relevant methods in these procedures.

(2) With the maximizing derivation method, objective criteria weights can be simply determined no

matter under the criteria weights completely unknown or incomplete circumstances. Apart from

the objective criteria weights, subjective weights, which fully reflect the subjective preference

under practice, can be obtained with G1. The integrated criteria weight is the combination of the

objective and subjective weights, and can adequately represent more realistic situation.

(3) Different aggregation parameter λ and the proportion adjustment parameter θ facilitate the

whole procedures a dynamic selection. The parameter setting is based on the requirement of real

application and subjective preference of DMs, which makes the extended WASPAS technique

feasible in dealing with the reality.

6. Conclusions

A good location of the solar-wind power station can affect regional competitiveness and direct

future development to a great extent. Faced with multiple uncertainties in reality, the location selection

case is considered within the INSs circumstances for tackling such challenges. Recognized as a complex

MCDM procedure, the selection in this paper is settled by an extended WASPAS technique containing

three procedures to reinforce its applicability to real situation. For modelling more realistic information,

some modifications are made in the classical WASPAS method especially utilizing the objective and

subjective criteria weight integrated weight information. Its strengths have been adequately discussed

via comparison analysis and sensitivity analysis.

Highlights of the extended technique can be briefly summarized in three aspects. Firstly, it ensures

a relatively rational and scientific result by incorporating three procedures into the framework of the

technique. Secondly, the integrated weight information reflects more realistic weight information

with the combination of the objective and subjective criteria weight information. Thirdly, more

practical contexts can be reflected by altering the aggregation parameter and the proportion adjustment

parameter during performing relevant procedures. Although the location selection case can be well

measured by the criteria dimensions in this paper, potential work should also be focused on specific

sub-criteria information for reaching a more promising solution.
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