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Abstract

In this paper we present the implementation of a branch-and-cut algo-
rithm for solving Steiner tree problems in graphs. Our algorithm is based
on an integer programming formulation for directed graphs and comprises
preprocessing, separation algorithms and primal heuristics. We are able to
solve all problem instances discussed in literature to optimality, including
one to our knowledge not yet solved problem. We also report on our com-
putational experiences with some very large Steiner tree problems arising
from the design of electronic circuits. All test problems are gathered in a
newly introduced library called SteinLib that is accessible via World Wide
Web.
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1 Introduction

Given an undirected graph G = (V,E) and a node set T ⊆ V , a Steiner tree for
T in G is a subset S ⊆ E of the edges such that (V (S), S) contains a path from
s to t for all s, t ∈ T , where V (S) denotes the set of nodes incident to an edge in
S. In other words, a Steiner tree is an edge set S that spans T . The Steiner tree
problem is to find a with respect to some given edge weights ce, e ∈ E, minimal
Steiner tree. This problem is known to be NP-hard (Karp [1972]), even for grid
graphs (Garey and Johnson [1977]).
Nourished from the increasing demand in the design of electronic circuits the
solution of Steiner tree problems has received considerable and strongly growing
attention in the last twenty years. Among the proposed solution methods are
exact algorithms, heuristic procedures, approximation algorithms, polynomial al-
gorithms for special instances, polyhedral approaches, and many more. Excellent
surveys are given in Winter [1987], Maculan [1987], Hwang and Richards [1992],
and Hwang, Richards, and Winter [1992]. To solve the Steiner tree problem to
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optimality, Aneja [1980] proposes a row generation algorithm based on an undi-
rected formulation, Dreyfus and Wagner [1971] and Lawler [1976] use dynamic
programming techniques, Beasley [1984, 1989] presents a Lagrangean relaxation
approach, Wong [1984] describes a dual ascent method, Lucena [1993] combines
Lagrangean and polyhedral methods, and Chopra, Gorres, and Rao [1992] develop
a branch-and-cut algorithm. In particular, polyhedral methods have turned out
to be quite powerful in finding optimal solutions for various Steiner tree problems.
Reasons are the better understanding of the associated polyhedra, the availabil-
ity of fast and robust LP solvers, and the experience gained about turning the
theory into an algorithmic tool.
This paper moves within this framework and presents a branch-and-cut algorithm.
It is related to the algorithm described in Chopra, Gorres, and Rao [1992], but
differs and extends it in several aspects that are discussed in the paper. In Sec-
tion 2 we present and evaluate two different integer programming formulations. In
Section 3 we extensively discuss preprocessing by exploiting and combining many
of the ideas known from the literature. Our computational results demonstrate
how important preprocessing is: without this tool it would have not been possi-
ble to solve any of the large instances. Details of the cutting plane phase of our
branch-and-cut algorithms are discussed in Section 4, it includes different separa-
tion strategies and primal heuristics. Extensive tests are given in Section 5. We
solve all test instances from the literature including one not yet solved problem
and find the optimal solution for many very large instances arising from realistic
problems in the design of electronic circuits. We introduce a library for Steiner
tree problems called SteinLib (including most of the models from the literature
and all new VLSI-instances discussed in this paper). This library is available
via anonymous ftp (ftp ftp.zib.de;cd pub/mp-testdata/SteinLib) or from
WWW at URL: ftp://ftp.zib.de/pub/mp-testdata/SteinLib/.

2 Integer Programming Formulation

In this section we present the integer programming formulation we are going to
solve with our branch-and-cut algorithm. Let an undirected graph G = (V,E)
with edge weights ce ≥ 0, e ∈ E, be given. We assume throughout the paper that
the edge weights are nonnegative. In addition, there is a node set T ⊆ V , called
the set of terminals. We will denote an instance of the Steiner tree problem by
the triple ST(G, T, c).
A canonical way to formulate the Steiner tree problem as an integer program is
to introduce, for each edge e ∈ E, a variable xe indicating whether e is in the
Steiner tree (xe = 1) or not (xe = 0). Consider the integer program
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min cTx
(i) x(δ(W )) ≥ 1, for all W ⊂ V,W ∩ T �= ∅,

(V \W ) ∩ T �= ∅,
(ii) 0 ≤ xe ≤ 1, for all e ∈ E,
(iii) x integer,

(uSP)

where δ(X) denotes the cut induced by X ⊆ V , i.e., the set of edges with one
end node in X and one in its complement, and x(F ) :=

∑
e∈F xe, for F ⊆ E. It

is easy to see that there is a one-to-one correspondence between Steiner trees in
G and 0/1 vectors satisfying (uSP) (i). Hence, the Steiner tree problem can be
solved via (uSP).
Another way to model the Steiner tree problem is to consider the problem in a
directed graph. We replace each edge uv ∈ E by two anti-parallel arcs (u, v) and
(v, u). Let A denote this set of arcs and D = (V,A) the resulting digraph. We
choose some terminal r ∈ T , which will be called the root. A Steiner arborescence
(rooted at r) is a set of arcs S ⊆ A such that (V (S), S) contains a directed path
from r to t for all t ∈ T \ {r}. Obviously, there is a one-to-one correspondence
between (undirected) Steiner trees in G and Steiner arborescences in D which
contain at most one of two anti-parallel arcs. Thus, if we choose arc weights
−→c (u,v) := −→c (v,u) := cuv, for uv ∈ E, the Steiner tree problem can be solved by
finding a minimal Steiner arborescence with respect to −→c . Note that there is
always an optimal Steiner arborescence which does not contain an arc and its
anti-parallel counterpart, since −→c ≥ 0. Introducing variables ya for a ∈ A with
the interpretation ya := 1, if arc a is in the Steiner arborescence, and ya := 0,
otherwise, we obtain the integer program

min −→c Ty
(i) y(δ+(W )) ≥ 1, for all W ⊂ V, r ∈ W,

(V \W ) ∩ T �= ∅,
(ii) 0 ≤ ya ≤ 1, for all a ∈ A,
(iii) y integer,

(dSP)

where δ+(X) := {(u, v) ∈ A | u ∈ X, v ∈ V \X} for X ⊂ V , i.e., the set of arcs
with tail in X and head in its complement. Again, it is easy to see that each 0/1
vector satisfying (dSP) (i) corresponds to a Steiner arborescence, and conversely,
the incidence vector of each Steiner arborescence satisfies (dSP) (i) to (iii). How
are the models (uSP) and (dSP) related?
Polyhedral aspects of both models are intensively discussed in the literature. The
undirected model was studied in Grötschel and Monma [1990], Goemans [1994],
Goemans and Myung [1993], Chopra and Rao [1994a, 1994b], whereas the di-
rected version in Ball, Liu, and Pulleyblank [1989], Goemans and Myung [1993],
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Chopra and Rao [1994a, 1994b]. Chopra and Rao [1994a], and Goemans and
Myung [1993] relate both formulations. Chopra and Rao [1994a] show that the
optimal value of the LP relaxation of the directed model zd := min{−→c T y | y
satisfies (dSP) (i) and (ii)} is greater or equal to the corresponding value of the
undirected formulation zu := min{cTx | x satisfies (uSP) (i) and (ii)}. Even,
if the undirected formulation is tightened by the so-called Steiner partition in-
equalities (see Grötschel and Monma [1990], Chopra and Rao [1994a]) and odd
hole inequalities (see Chopra and Rao [1994a]), this relation holds. In addition,
Goemans and Myung [1993] show that zd is independent of the choice of the root
r. These results suggest the directed model and we followed this suggestion. Nev-
ertheless, one disadvantage of the directed model is that the number of variables
is doubled. But it will turn out that this is not really a bottleneck, since we are
minimizing a nonnegative objective function, and thus the variable of one of two
anti-parallel arcs will usually be at its lower bound.
It should be mentioned that further models to solve the Steiner tree problem
can be found in the literature, for example, models based on flow formulations
(Wong [1984], Maculan [1987]) or models extending the undirected formulation
by introducing node variables (Lucena [1993], Goemans and Myung [1993]).

3 Preprocessing

Preprocessing is a very important algorithmic tool in solving combinatorial and
integer programming problems of large scale. The idea in general is to detect
unnecessary information in the problem description and to reduce the size of
the problem by logical implications. For the Steiner tree problem many reduc-
tion methods are discussed in the literature. In this section we sketch the main
concepts from the literature and show how they are incorporated in our code.

Definition 3.1 (Reduction)
Given a Steiner tree problem ST(G, T, c), we call a transformation of ST(G, T, c)
to a pair (ST(G′, T ′, c′), cr) with G′ = (V ′, E ′) and cr ∈ R+ a (feasible) reduction
if |V ′| ≤ |V |, |E ′| ≤ |E|, or |T ′| ≤ |T | and if there exist an optimal solution S of
ST(G, T, c) and S ′ of ST(G′, T ′, c′) such that c(S) = c′(S ′) + cr.

Let (ST(G′, T ′, c′), c1) be a reduction of ST(G, T, c) and (ST(G′′, T ′′, c′′), c2) one
of ST(G′, T ′, c′), then (ST(G′′, T ′′, c′′), c1 + c2) is a reduction of ST(G, T, c), i. e.,
reductions can be combined and applied one after another.

Reduction methods focus on detecting special configurations that allow to neglect
certain edges and/or nodes for the optimization, or they show that some edges
and/or nodes are contained in some optimal solution. In the following we list
how the (feasible) reductions look like for possible situations that are discussed
thereafter:
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(i) Removable edges: Suppose there is an edge e ∈ E and an optimal solution
S∗ of ST(G, T, c) which does not include e, then (ST ((V,E \ {e}), T, c), 0)
is a reduction.

(ii) Removable nodes: Suppose there is a node v ∈ N and an optimal solu-
tion S∗ of ST(G, T, c) which does not include v, then (ST ((V \ {v}, E \
δ(v)), T, c), 0) is a reduction.

(iii) Choosable edges: Suppose there is an edge e = [u, v] ∈ E and an optimal
solution S∗ of ST(G, T, c) which includes e. Let G′ be the graph resulting
from contracting u and v along e and let w be the contracted node. Then
(ST (G′, T ′, c), ce) is a reduction with T ′ := T ∪{w}\{u, v} if {u, v}∩T �= ∅,
and T ′ := T otherwise.

(iv) Consecutive edges: Suppose there are two edges e1 = [u, v] and e2 =
[v, w] with {e1, e2} = δ(v) for some v ∈ N and an optimal solution S∗

of ST(G, T, c) with e1 ∈ S∗ ⇔ e2 ∈ S∗. Then (ST ((V \ {v}, E ∪ {[u, w]} \
δ(v)), T, c′), 0) is a reduction with c′[u,w] := ce1 + ce2 and c′e = ce otherwise.

How successful preprocessing methods might be in reducing the size of some
problem is demonstrated in Figure 1 and Figure 2. Figure 1 shows the original
graph of problem br (complete graph on 58 nodes, for a description of the prob-
lem see Section 5), and Figure 2 the graph that we obtain after applying our
preprocessing algorithm.

Figure 1: Original problem Figure 2: Reduced problem

Degree-Test I

The following tests summarized under the nameDegree-Test I (see Beasley [1984])
are easy to check.
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|δ(v)| = 1 for some v ∈ N : v can be removed.

|δ(v)| = 1 for some v ∈ T : Edge e = [u, v] ∈ δ(v) is contained in every feasible
solution.

|δ(v)| = 2 for some v ∈ N : If v ∈ V (S∗) for some optimal solution S∗, then both
edges e1, e2 ∈ δ(v) have to be part of S∗, i. e., e1 and e2 are consecutive
edges in the above classification.

|δ(v)| = 2 for some v ∈ T : Let δ(v) = {e1, e2} with e1 = [u, v] and ce1 ≤ ce2 . If
u ∈ T , there exists an optimal solution containing e1.

Special-Distance-Test

This test (introduced in Duin and Volgenant [1989a]) computes for each pair of
nodes a number (called the special distance) which can be exploited to remove
some edges.

Definition 3.2 (Special Distance)
Let two nodes u, v ∈ V with u �= v be given, and consider some path P ⊆ E
connecting u and v. Set TP = V (P ) ∩ T ∪ {u, v} and let

b(P ) = max{ c(F ) | F ⊆ P is a path connecting two nodes from TP

such that |TP ∩ V (F )| = 2}.
The number

s(u, v) = min{b(P ) | P is a path connecting u and v}
is called the special distance (between u and v).

To give an idea what s(u, v) means consider each terminal as a petrol station and
suppose you want to drive from location u to v. Then, s(u, v) denotes the distance
you must be able to drive without refilling if you choose among all possible routes.
Note that the following relations

s(u, v) ≤ d(u, v) ≤ c[u,v]

hold, where d(u, v) denotes the length of a shortest path between u and v.
The special distance can be computed by a modified shortest path algorithm
(cf. Hwang, Richards, and Winter [1992]).
Given the values s(u, v) for all u, v ∈ V there is an easy and very effective test
for deleting edges. An optimal solution S∗ of a Steiner tree problem ST(G, T, c)
cannot contain any edge [u, v] ∈ E with s(u, v) < c[u,v].

The Special-Distance-Test is published in Duin and Volgenant [1989a]. This test
is a generalization of many other tests known in the literature, for instance the
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Least-Cost-Test in Duin and Volgenant [1989b] (also mentioned as Longest Edge
Reduction Type I in Winter and Smith [1992]), the Minimal-Spanning-Tree-Test
(introduced in Balakrishnan and Patel [1987] as R-R Edge Deletion, R-S Edge
Deletion and S-S Edge Deletion and unified in Duin and Volgenant [1989a]), and
special cases of the Minimal-Spanning-Tree-Test (described in Winter and Smith
[1992] as Longest Edge Reduction Type II and in Duin and Volgenant [1989b] as
Vertices nearer to K Test).

We do not want to explain all these tests and their deductions to the Special-
Distance-Test here. This is comprehensively treated in Duin and Volgenant
[1989a]. Concerning implementation it should be noted that these special cases
can often be implemented more efficiently than the Special-Distance-Test.

Bottleneck Degree m Test

The bottleneck degree m test introduced in Duin and Volgenant [1989b] is the
following: Consider some node v ∈ N with |δ(v)| ≥ 3. Let (W,F ) be the complete
graph on node set W := V (δ(v) \ {v}) with edge weights s̄[u,v] = s(u, v) for
[u, v] ∈ F . If for all subsets U ⊆ W with |U | ≥ 3

s̄(B∗) ≤
∑
u∈U

c[v,u],

where B∗ is the edge set of a minimal spanning tree in (W,F ), holds, node v can
be deleted and for all u, w ∈ W , edge [u, w] with weight c[u,w] = c[u,v] + c[v,w] has
to be introduced. (In case of parallel edges only one edge will be retained.) Of
course, this might create many new edges, but in general most of these can be
eliminated by the Special-Distance-Test.

The running time for this test is O(2m · γ) with m = |δ(v)|, where γ denotes the
time for computing a minimal spanning tree. Due to the exponential behaviour
we perform this test only for m = 3.

Terminal-Distance-Test

In this test we consider a connected subgraph H = (W,F ) of G with T ∩W �= ∅
and T \ W �= ∅. Let e = argmine′∈δ(W )ce′ and f = argminf ′∈δ(W )\{e}cf ′ be a
shortest and second shortest edge of the cut induced by W .
Edge e = [u, v] with u ∈ W and v ∈ V \W is part of some optimal solution of
ST(G, T, c), if

cf ≥ du + ce + dv

with du = min{d(t, u) | t ∈ T ∩W} and dv = min{d(t, v) | t ∈ T \W}.
This test can be implemented in O(|V |3) steps. It is introduced in Duin and
Volgenant [1989b] as Nearest Special Vertices Test. Two special cases which can
be implemented faster are:
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The Terminal-Aggregation-Test which is presented in Balakrishnan and Patel
[1987] as R-R Aggregation, and second, the Nearest-Terminal-Test named in
Beasley [1984] and Duin and Volgenant [1989b] as Nearest Vertex Test and in
Winter and Smith [1992] als Closest Z-Vertices Reduction.

Results

When it comes to implement these reduction methods several questions arise:
Which of these tests should be implemented? For each single test, should all cases
be checked (complete test) which might result in high running times or should
one restrict the search to certain promising special cases which might result in an
incomplete test? In which order should the methods be called? How often should
they be called? Some reduction of one test might give rise to further reductions
by some other (already performed) test. We tried to find answers in the following
way. First, we implemented all the tests and each test in the complete version.
We called all these tests consecutively and iterated this process until no more
reductions could be found. Of course, this might be very time consuming but
for large difficult problems it might be worth to reduce as much as possible (see
Section 5). For small and medium sized problems the situation is different. Often
it did not pay to perform a complete test, rather to switch to the branch-and-cut
phase which usually solved the (reduced) problem very fast. We performed many
test runs to find a balance between the total running times and the success of
the reduction methods. Algorithm 3.3 shows our final selection. The success of
this strategy will be illustrated in Section 5.

Algorithm 3.3 (Presolve)
(1) Degree-Test I
(2) Special-Distance-Test
(3) Degree-Test I
(4) Terminal-Distance-Test
(5) Special-Distance-Test
(6) Degree-Test I
(7) Special-Distance-Test
(8) Degree-Test I
(9) return

4 Implementation Details

In this section we describe the implementation of our branch-and-cut algorithm
for solving the Steiner tree problem. We assume that the reader is familiar with
the general outline of a branch-and-cut algorithm (see, for instance, Applegate,

8



Bixby, Chvátal, and Cook [1995] or Padberg and Rinaldi [1991]). Algorithm 4.1
presents the main steps of such an algorithm.

Algorithm 4.1 (Branch-and-Cut Algorithm)
(1) Initialization
(2) while branch-and-bound tree is not empty
(3) select a leaf from the tree
(4) do (iterate)
(5) solve the LP
(6) call primal heuristics
(7) separate violated inequalities and add them to the LP
(8) while there are inequalities added
(9) branch if necessary
(10) print best feasible solution and best lower bound
(11) STOP.

In the Initialization phase we set up the first LP and initialize the branch-and-
bound tree with the root node representing the whole problem. In our case
the starting LP is essentially empty, consisting only of the trivial inequalities
(dSP) (ii). We have experimented with initial cuts for the first LP by doing a
breadth first search from the root to every other terminal and adding the cuts
between nodes of different depth. Though these cuts have disjoint support for
each root-terminal pair, only the smaller instances profited from this idea. While
the number of cutting plane iterations needed to solve the problems was always
smaller, the effect from initially having a lot of dense inequalities (i. e., inequalities
with many nonzero entries) in the LP slows considerably down the whole process.
For solving the linear programs we use CPLEX 4.01, a very fast and robust linear
programming solver, which features both a primal and dual simplex solver and
a primal-dual barrier solver. We use the dual simplex algorithm, since the LPs
from one iteration to the next stay dual feasible, when cutting planes are added
or variables are fixed to one of their bounds. It turned out that the best pricing
strategy was steepest edge pricing. However, for some instances (in particular for
large grid problems) the arising LPs are highly primal and dual degenerated.
We tried to avoid degeneracy by perturbing the objective function. We use
c̃ = −→c − bεa, where b = min(10−1, 1

2(|A|+1)
), and εa ∈ [0, 1) is some uniformly

distributed random number for each a ∈ A. Our choice of c̃ ensures that an opti-
mal solution with c̃ is also optimal for −→c . The running times for solving the LPs
were always better with the perturbed objective function than with the original.
Nevertheless, some of the larger problems continued to show signs of degeneracy.
We tried two further ways to remedy degeneracy. First we tried a perturbation
with b = 0.1. This however requires reoptimization with the original objective
function after the problem has been solved for the perturbed objective function.

�CPLEX is a registered trademark of CPLEX Optimization, Inc.
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Sometimes this reoptimization step needed several thousand simplex iterations
and we obtained a significant speed up only in very few cases. Second, we tried
the primal dual barrier solver of the CPLEX package. The barrier code does not
suffer from degeneracy, but has to solve each LP from scratch so that on average
it could not outperform the dual simplex method with our initial perturbation.

4.1 Branching and Selecting Leafs

In step (9), if it is necessary, to branch, we use strong branching (Bixby [1996]),
i. e., we determine a set of variables whose LP value is close to 0.5, perform for
each variable of this set a certain number of simplex iterations for the linear
program where the variable is set to one or zero, and finally select the variable
in the set as branching variable that obtained the best increase in the LP value.
We run through the branching tree in depth-first-search fashion. The reasons
are that the memory requirements for the whole tree stay small and that we try
to find a good primal solution as soon as possible. It almost never happened
that our branching tree grew to much. Branching was a rather rare event in
our computations anyway (within the time limit and with the default parameter
setting branching was necessary only in 12 of 334 cases, see Section 5).

4.2 Primal Heuristic

The primal heuristic we use is basically the one introduced by Takahashi and
Matsuyama [1980]. The idea of this heuristic is to start from one terminal and
connect a terminal by a shortest path that is closest to the starting terminal.
The next terminal is chosen among the remaining terminals in such a way that
it is closest to the already existing path or subtree in general. This process is
continued until all terminals are connected. As edge weights for this heuristic we
use (1 − xe) · ce for e ∈ E, if x is the optimal solution of the current LP, i. e., we
try to prefer those edges that are already chosen in the LP solution. As suggested
in Rayward-Smith and Clare [1986] we also try to improve the heuristic solution
by computing a minimal spanning tree among the chosen nodes and prune non-
terminal leaves as along as possible.
A parameter to be specified for this heuristic is the starting terminal. Since
running the algorithm for all terminals is usually to time consuming, we made
the following selection: We always try the terminal which gave the best solution
so far, and try in addition up to 10 randomly selected terminals. The frequency
in which the heuristic is called in our code is specified by some parameter (default
is every 5 cutting plane iterations).
In 116 out of 334 test examples the first call to the heuristic found the optimal
solution and in 88% of the cases the gap ( heuristic solution - lower bound

lower bound
) was below 5%.

We also experimented with the Rayward-Smith [1983] heuristic. The results are
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quite promising, however a main bottleneck is the running time, especially for
big problems. The reason is that the heuristic requires all-to-all node distances
and due to memory limitations we must compute these on the fly, so most of the
time is spent for calculating shortest paths.

4.3 Separating Inequalities

It is well known that the separation problem for the cut inequalities (dSP) (i)
can be solved by any max flow algorithm and can thus be solved in polynomial
time. We regard the LP solution as capacities in the graph and check, for each
t ∈ T \ {r}, whether the minimal (r, t)-cut is less than one. If so, a violated
cut inequality is found, otherwise there is none. We add inequalities only if they
are violated by at least some epsilon (default is 10−4). In order to determine a
minimal (r, t)-cut, for all t ∈ T \ {r}, we use the preflow-push algorithm of Hao
and Orlin [1992]. The nice feature of the Hao-Orlin algorithm is that information
from one mincut calculation can be used to speed up the computation for the next
root-terminal pair, since the source node of the flow to be computed is always
the root r.

4.3.1 Back-Cuts

Chopra, Gorres, and Rao [1992] describe a method to increase the number of
separated inequalities by swapping the flow on each arc and checking in addition
all (t, r)-cuts, for t ∈ T \{r}. A drawback here is that we cannot use the speed up
feature mentioned above, since for each (t, r)-cut computation the source node
changes and thus the algorithm has to start from scratch again.

4.3.2 Nested Cuts

Another way to increase the number of found violated inequalities is to nest the
cuts. After finding a minimal cut between r and some terminal t, we temporary
fix all corresponding variables in the actual LP solution to one an try again to
find a cut between r and t. We repeat this procedure until the flow between r
and t is at least one. This idea can be combined with Back-Cuts so that we are
trying to find nested inequalities in both directions. The results of this procedure
are usually an increase in the time spent for separation and reoptimization the
linear programs per iteration, while the total number of cutting plane iterations
drastically decreases, resulting in an overall running time of about one magnitude
faster than without nested and back cuts.

4.3.3 Creep-Flow

We obtained another major speedup in the performance of our algorithm when
we implemented the following idea. Instead of trying to increase the number of
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separated inequalities, we tried to raise the “quality” of the inequalities. Since
most of the variables in our LP solution are zero, the optimal solution of the
mincut algorithm is not necessarily arc minimal, too. So we add a tiny capacity
of some ε (in the code we use ε = 10−6) to all arcs to get among all weight
minimal cuts one that is also arc minimal. While this increased the running
time for computing a minimal cut, since much more arcs have to be considered,
the time needed for reoptimization the linear programs decreased by a factor of
ten. Moreover, the reduction in the number of cutting plane iterations by using
these ideas over just adding pure (r, t)-cuts is between two and three orders of
magnitude.

4.3.4 Flow-Balance Inequalities

In our cutting plane phase we take another class of inequalities into consideration.
An (optimal) Steiner arborescence can be viewed as a set of flows sending one unit
from the root r to each terminal in T \ {r}. This means that for all nonterminal
nodes that are not branching nodes in the Steiner arborescence the flow balance
equality y(δ−(v)) = y(δ+(v)) must hold, and for the other nonterminal nodes
y(δ−(v)) ≤ y(δ+(v)). This is expressed in the following set of inequalities:

y(δ−(v))

⎧⎨
⎩

= 0,
= 1,
≤ 1,

if v = r;
if v ∈ T \ {r};
if v ∈ N ;

y(δ−(v)) ≤ y(δ+(v)), for v ∈ N ;
y(δ−(v)) ≥ ye, for all e ∈ δ+(v), v ∈ N.

Note that this system of inequalities is not valid for all Steiner arborescences (for
example cycles are cut off), but there is always an optimal solution that satisfies
these conditions, since the objective function is nonnegative.

We made several tests to evaluate the performance of these four separation rou-
tines and its combinations. Figures 3 and 4 show the results for all 16 possible sep-
aration strategies for examples alu7229 and taq0631 (F means that flow-balance
inequalities are applied, C , B, and N that creep-flow, back-cuts, and nested cuts
are added, respectively; “- - - -” indicates that just a minimal (r, t)-cut is possible
added for each t ∈ T \ {r}). For a description of these problems, see Section
5. We observe that the differences in the running times are up to two orders of
magnitude (note that the y axis is logarithmically scaled). It is worthwhile to
note that for almost all combinations it is better to apply flow-balance inequali-
ties. In Figure 4 we see that the combination of back-cuts and creep-flows almost
doubles the separation time. Also note that using creep-flows reduces the num-
ber of generated cuts yielding an decrease in the LP time and total time. The
two diagrams show that all combinations without creep-flow except for ’-BNF’
are not competitive. We evaluated the remaining nine strategies on some larger
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instances. Figures 5 and 6 show the results for problem gr and msm1234 (note
that the curves are not uniformly scaled and that the y-axis is not logarithmically
scaled to better illustrate the differences of the strategies).

1

10

100

1000
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Figure 3: alue7229

In Figure 6 we see that the curves for the running time and the number of
iterations are almost identical. The “-BNF”- strategy shows a big increase in
the number of cuts and nonzeros resulting in high LP times. This increase in
LP time per iteration is not compensated by the decrease in the total number
of iterations. For bigger instances this effect becomes even clearer. Again we
recognize the positive impact of the flow inequalities. For example gr we see that
the “ C- -F” strategy has the best nonzero per rows index. In fact, this strategy is
very robust, it is always among the four best, while the performance of the other
strategies seem not be predictable. Remarkable is that the connection of C with
B and N (with or without F) does not outperform “C- -F”. Therefore, we have
chosen the “C- -F” option as the final separation strategy in our branch-and-cut
algorithm.

4.4 Removing Inequalities

Sometimes in the iteration process inequalities get non-binding, i. e., the slack of
the inequalities are positive. In these case the inequality can be removed from the
LP without changing its optimal value. Although the inequality can be violated
again, it is in general a good idea to remove these inequalities in order to keep the
LP small. To minimize the occurences of these reviolated inequalities we added a
“life” counter to each inequality currently in the LP. If the slack of an inequality
is nonzero the counter is decreased, if the slack is zero it is reset to an initial
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Figure 6: msm1234

value (in our implementation 5). If the counter reaches zero, the inequality is
removed. This way we are delaying the removal of inequalities to a point where
it is more likely that it will never be used again.

4.5 Reduced Costs and Reduced Set of Variables

Every time the primal heuristic finds a better solution, we try to fix variables by
the reduced cost criterium. For a discussion on reduced cost fixing see Padberg
and Rinaldi [1987]. However, this idea had little effect on the performance of our
algorithm.
Another commonly known idea is to work only on a reduced set of variables by
fixing variables temporally to one of its bounds. After the problem has been
solved on the reduced set, we check the reduced costs of the temporally fixed
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variables, add them if necessary to the current set of variables and reoptimize.
Instead of really removing the variables that are fixed from the problem like it
is usually done in such type of column generation algorithm, we only fix these
variables to their bounds and keep them in the LP. CPLEX (the LP solver we use)
manages fixed variables very efficiently so that we could not detect a major loss of
performance (under the assumption that limits of memory are not reached). The
advantage is that we do not have to take care of the management of inequalities
for which some of the variables are in the current set of variables and some are
not. For the limited test runs we performed for this column generation idea we
could not obtain a speedup on average.

5 Computational Results

In this section we report on the computational experiences with our branch-and-
cut algorithm. Our code is implemented in C and all runs are performed on a
Sun SPARC 20 Model 71. The test examples include public available benchmarks
discussed in the literature, some instances that authors of other Steiner tree codes
made us available, and some realistic problems arising in the design of electronic
circuits. All instances are gathered in the library SteinLib which is available
via anonymous ftp (ftp ftp.zib.de;cd pub/mp-testdata/SteinLib) or from
WWW at URL: ftp://ftp.zib.de/pub/mp-testdata/SteinLib/.
The format of our tables is as follows: The first column gives the problem name,
Columns 2 to 4 and 5 to 7 give the number of nodes, edges and terminals of the
original problem and the reduced problem, respectively. Comparing these two sets
of columns reflects the success of our preprocessing algorithm. The next three
columns give statistics about the branch-and-cut algorithm. Nod contains the
number of branch-and-bound nodes (1 means that no branching was necessary),
Iter gives the number of cutting plane iterations and Cuts the number of violated
cuts added to the LP. The following three columns provide information of the
root LP, which is the final linear program if no branching was necessary, otherwise
the last linear program before branching. Frac denotes the number of fractional
variables in the root LP, Rows and NZ the number of rows and nonzeros. Then
time statistics follow, Pre stands for presolve time, Heu for the heuristic time, LP
for the time spent to solve the LPs, the separation time is shown in column Sep,
and finally Tot gives the whole running time to solve the problem. The times are
in CPU seconds. As time limit for all runs (with exception the exceptions of e18
and diw0234) was 10000 seconds. The last three columns show solution values.
Heu(1) is the value of the solution found by the first call to the primal heuristic,
i. e. when no linear programming solution is at hand (x = 0). Comparing this
value to the lower bound depicted in column LB provides information about the
quality of the primal heuristic. If the difference between the lower and upper
bound is less than 1 the upper bound in the last column is shown in bold face to
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indicate that the optimal solution was found. If there is still a gap greater than
1 between LB and UB we have not found the optimal solution within the time
limit.
Table 1 and 2 show our results for the test series introduced by Beasley [1989].
Test set C is easy, we solve all instances with one exception within a minute.
Interesting to note is that already the first call to the heuristic (without any dual
information) gives in 11 out of 20 examples the optimal solution. Series D with
1000 nodes is a bit more difficult, the running times increase up to 6 minutes.
However, the optimal solution is obtained in the root node in all cases, i. e.,
branching was not necessary. To solve test series E (with the exception of e18)
we need up to 2 hours per instance, though still no branching is necessary. The
number of cuts needed to solve these examples goes up to about 22000. We could
not detect a correlation between number of violated inequalities and number of
variables or terminals. The number of inequalities in the final LP is rather high
compared to the number of cuts separated. This means that the inequalities
mostly stay in the LP whenever they are added and elimination is a rather rare
event. The exception of test series E is e18. To the best of our knowledge nobody
solved this problem up to now to optimality. We are able to solve it within half
a day of CPU time, where Algorithm 3.3 was replaced by a complete reduction
test. e18 and d19 are the only examples of Beasley’s test set where branching was
necessary with the default parameter setting2. Figures 7 and 8 show diagrams
of the runs for e16 and e18. The bars on the bottom indicate the number of
simplex iterations for each solved LP. Figure 7 shows that the number of simplex
iterations is high if there is an increase in the lower bound, and the numbers
are low when there is no progress in the lower bound. We have observed this
behaviour on many Beasley instances. The number of rows in the LP and the
number of nonzeros increase steadily and almost synchronously. This means that
the support of the violated inequalities increases during the run, saying that at
the beginning the cardinality of the cuts are small but increase steadily during
the run of the program. This property is common to almost all test examples
(see also Figures 9, 10, 11, and 12). An exception in this respect is e18. Except
for the first cutting plane iterations there is no correlation between number of
nonzeros and number of rows. The nonzeros go up and down with the number of
simplex iterations. That the linear programs get more difficult with an increase
in the number of nonzeros seems reasonable. However, for this up and down
behaviour of the nonzeros in example e18 we do not have an explanation.
Table 3 contains some instances made us available by Margot [1994] and some
problems on complete graphs. br was introduced in Ferreira [1989], whereas berlin
and gr are taken from the TSP library, where some nodes are defined as termi-
nals. It turns out that the winning procedure for complete instances is presolve.

�In fact, branching was only necessary to obtain an optimal solution, the objective function
value of the root LP rounded up already yields the optimal solution value.
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Figure 8: e18

Algorithm 3.3 reduces up to 98% of the edges (variables) and provides the bases
for solving even the big gr example with over 200000 variables within 6 minutes.
Figure 9 shows the diagram of gr. We observe that the number of fractionals (see
the curve reflecting the number of Integers) is low at the beginning, increases
continuously until the middle of the run and decreases again towards the end.
This u-shape behauviour is typical for complete instances.
Table 4 contains a collection of examples obtained from E. Gorres. They are
described in Chopra, Gorres, and Rao [1992]. We solve all these instances within
seconds3. Interesting to note is that almost always the root LP is integer (see
Column Frac).
The next series, denoted by R, is taken from Soukup and Chow [1973], see Table
5. We solve all of them in about a minute. Worthwhile to note are that in
24 out of 38 examples the first call to the heuristic already found the optimal
solution and that the LP-time dominates all other times. The latter fact seems
to be typical for grid examples, which the test set R consists of entirely. This
phenomen will become clearer in some of the next tests.
What one would like to have at this point is a comparison to other codes. How-
ever, this is very difficult. People have different machines with different storage
spaces, use different packages for the solution of subproblems like linear programs,
and so on. We refrain from giving a comparison here. The interested reader may
refer to Chopra, Gorres, and Rao [1992], Lucena [1993], or Beasley [1989] who
developed comparable codes for the Steiner tree problem in graphs.

Tables 6, 7 and 8 give computational results on real world VLSI instances. One
of the challenging problems in the design of electronic circuits is the routing prob-
lem which is, roughly speaking, the task to connect terminal sets via wires on a
predefined area. Depending on the underlying technology and the design rules
subproblems arise that can be formulated as the problem of packing Steiner trees

�The optimal values sometimes differ with the one described in Chopra, Gorres, and Rao
[1992], because they did not add the values of variables fixed by presolve.

17



in certain graphs (see Lengauer [1990] for an excellent treatment of this sub-
ject). The problems we are going to consider result from seven different circuits
described in Jünger, Martin, Reinelt, and Weismantel [1994]. The underlying
graphs are grid graphs that contain holes. The holes result from so-called cells
that block certain areas of the grid. The sets of terminals are located on the
border of these holes. For each of the seven circuits and for each terminal set
Ti (where index i runs from 1 to the number of terminal sets of the circuit) we
constructed an instance of the Steiner tree problem. For the graph G we have
chosen the underlying grid graph restricted to the minimal enclosing rectangle of
the terminal set. The distance of two neighboured grid points in horizontal and
vertical direction differ for these circuits. This results in different edge weights
for horizontal and vertical edges in G.
In the library SteinLib we put all instances with terminal sets whose cardinality
is at least 10 (in total 475). The examples are distinguished by the name of
the circuit followed by the index of the terminal set. For example msm1234
means that the instance is defined by terminal set 1234 of circuit msm. As
test problems for our algorithm we have chosen for each circuit all instances
whose two leading nonzeros of the index of the terminal set differ from the two
leading nonzeros of all other indices. If there are more than one index with the
same two leading nonzeros we have chosen the instance with the smallest index
(for instance among examplesmsm3727, msm3731, msm3761, msm3786 we have
chosen msm3727). In addition, we added an instance with the smallest and
largest number of terminals for each circuit. This way we obtained 116 different
VLSI test instances. The success of our branch-and-cut algorithm is shown in
Tables 6, 7 and 8. We solve 83 out of the 116 instances to optimality within
10000 seconds and provide a solution guarantee ( upper bound - lower bound

lower bound
) of less than

10% for 85% of the examples. The biggest with respect to number of terminals
that we solve within the time limit are alu5067 and alue6735 with 68 terminals
each. The biggest in size of the number of edges is msm3727 with over 8000
edges. However, there are also smaller instances, for example diw0795 with 10
terminals or msm2601 with less than 5000 variables after presolve, that we do not
solve within the time limit. All runs were performed with the default strategy
(except for diw0234 and alut2625), in particular we applied Algorithm 3.3 to
reduce the problem and did not perform a complete reduction test (see Section
3). If there is no time limit given it usually pays to call all reduction methods to
reduce the problem as much as possible in size. For instance, we solve example
diw0234 with over 10000 variables in about 24000 seconds. The complete presolve
reduces the problem from 10086 edges to 7266, whereas Algorithm 3.3 reduces it
just to 9991 edges. However, over 12000 seconds are spent in presolve when the
complete reduction test is performed and only 6 seconds when Algorithm 3.3 is
applied. (With the default parameter setting we obtain after 10000 seconds an
upper bound of 1997 and a lower bound of 1967 providing a solution guarantee
of 1.5%.) The difficulty of the VLSI problems seem not only depend on the
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number of terminals, but also on the shape of the grid graphs, how many holes
are there and how big these holes are. Figure 10 and 11 show typical diagrams for
these problems. The numbers of fractional variables continuously increase, and
the LPs get more and more difficult during the runs (see the number of simplex
iterations).

0 5 10 15 20 25 30 35 40

Lower bound
Upper bound

Rows
NZ

Integer
Simplex Iterations

Figure 9: gr
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Figure 10: alue5067

0 20 40 60 80 100 120 140 160

Lower bound
Upper bound

Rows
NZ

Integer
Simplex Iterations

Figure 11: gap3100
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Figure 12: es40o

Although our code is originally designed for solving Steiner tree problems in
graphs, it is of course also possible to solve rectilinear instances by modeling
them as graph problems. Tables 9 to 10 show results on rectilinear problems.
Table 9 contains the examples from Beasley with 10 and 20 terminals. They
are not very difficult (up to 4 minutes), though branching is necessary in three
cases. However, the situation changes for test sets es30 and es40. The running
times rapidly increase with the number of terminals and we are not able to solve
all instances with 40 terminals within 10000 seconds. Our diagram for example
es40o in Figure 12 shows that the LPs get increasingly difficult during the run of
the program, a behaviour we have already detected to some extent for the VLSI
examples. In fact, the LPs are highly dual and primal degenerated, a phenomen

19



that seems to be inherent for grid problems (see also Grötschel, Martin, and
Weismantel [1996]). Another drawback is that our presolve procedures do not
perform well. Reduction methods (as proposed for instance byWinter [1995]) that
exploit the structure of grid graphs would probably help to solve these instances
faster. Recently, Warme [1996] proposed an algorithm for rectilinear Steiner tree
problems. By exploiting the typical structure of rectilinear problems he is able
to solve much bigger instances in less time.

6 Conclusions

We have presented an implementation of a branch-and-cut algorithm for the
Steiner tree problem in graphs. We are able to solve all instances discussed in
the literature. Our algorithm especially performs well on complete and sparse
graphs. Here a good presolve seems to pay. We have also introduced new real
world VLSI instances. We solve many of these instances, and provide reasonable
solution guarantees (in general below 15%) for all examples except for the re-
ally big ones with several hundred terminals and tens of thousands of edges. On
rectilinear Steiner tree problems our code performs well only for examples with
a small number of terminals. To be competitive with state-of-the-art software
for rectilinear problems our reduction methods have to be adapted to rectilinear
instances and more investigations are necessary to avoid degenerated linear pro-
grams. All examples discussed in this paper are gathered in a newly introduced
library called SteinLib that is accessible via anonymous ftp or World Wide Web.
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